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ABSTRACT. We establish uniqueness in the inverse conductivity problem for conductivities which
have 3/2 derivatives in Lp , p > 2n. Our results are in dimensions three and higher.

The purpose of this note is to establish a small extension of a result of Panchenko,
Päivärinta and Uhlmann [14]. These authors recently showed that we have uniqueness in
the inverse conductivity problem for conductivities which are in the class C3/2 in three
dimensions and higher. This built on earlier work of one the authors, Brown [3]. In this
note, we relax this condition to conductivities which have 3/2 derivatives in Lp for p > 2n.
We will obtain an end-point result with p = 2n for a related problem for Schrödinger
equations. However, the problem of defining the trace on the boundary prevents us from
obtaining uniqueness for the inverse conductivity problem at the end-point. Our results are
in Rn with n ≥ 3. Better results are available in R2 in the work of Brown and Uhlmann [4].

The inverse conductivity problem is the problem of determining the coefficientγ in the
elliptic operator div γ∇ from information about solutions to this operator at the boundary.
This problem was posed in the mathematics community by A.P. Calderón [6]. As has been
known for some time [8, 12, 16], the key technique in establishing such uniqueness results
is the construction of solutions which are asymptotic to harmonic exponentials at infinity.
To construct these solutions, we use the standard relationship between an elliptic operator
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of the form div γ∇ and a Schrödinger operator. Of course, the coefficient γ is a scalar
valued function. The Schrödinger operators we consider are of the form

�− q

where the potential q = �
√
γ /

√
γ may be a distribution if γ is not smooth. We look for

solutions v of the Schrödinger equation �v − qv = 0 which are asymptotic to ex·ζ where
ζ is in Cn and satisfies ζ · ζ = ∑

j ζ
2
j = 0. A simple calculation shows that if we look for

solutions which are of the form

v(x, ζ ) = ex·ζ (1 + ψ(x, ζ ))

then the function ψ must satisfy

�ψ + 2ζ · ∇ψ − qψ = q .

And, at least formally, the solution ψ can be constructed as the series

ψ(x, ζ ) =
∞∑
j=0

(Gζmq)
jGζ (q) . (1.1)

In this expression, mq is the multiplication operator given by q

mq(φ) = qφ

and Gζ is the inverse of �+ 2ζ · ∇ defined by

Ĝζ (f )(ξ) = f̂ (ξ)

−|ξ |2 + 2iζ · ξ .

Since the symbol −|ξ |2 + 2iζ · ξ = 0 vanishes to first order on a sphere of codimension 2,
the right-hand side of the definition of Gζ will be a tempered distribution if f is in the
Schwartz class. The Fourier transform is normalized by f̂ (ξ) = ∫

f (x)e−ix·ξ dx. To
make sense of the infinite sum (1.1), we need to make estimates for the operatorGζ and the
multiplication operator mq acting on Banach spaces. The contribution of this note beyond
previous work is to provide an improved estimate for mq . To be precise, we will show that
if q is in the Sobolev spaceW−s,n/s , then the multiplication operatormq (which is defined,
say, as a map from S to S ′) also maps Ws,2 to W−s,2. The case s = 1 is a consequence
of such familiar results as the product rule and the Sobolev embedding theorem. To see
this, suppose u, v ∈ W 1,2, then we have that uv lies not only in W 1,1, but we also have
∇(uv) ∈ Ln/(n−1). This follows from the product rule and Sobolev embedding: u∇v+v∇u
is in Ln/(n−1) since ∇v,∇u ∈ L2 and u, v ∈ L2n/(n−2). Thus, we have∣∣∣∣

〈
∂p

∂xj
, uv

〉∣∣∣∣ =
∣∣∣∣
∫
p
∂uv

∂xj
dx

∣∣∣∣ ≤ C‖p‖Ln‖u‖W 1,2‖v‖W 1,2

from which it follows that the map u → u
∂p
∂xj

mapsW 1,2 to the dual spaceW−1,2 when p is

in Ln. Here, we use 〈·, ·〉 to denote the bilinear pairing between distributions and functions.
In this article, we contribute nothing to the analysis ofGζ . The estimates used are from

the article of Sylvester and Uhlmannn [16]. It is possible that some improvement can be
made here. We expect that one should be able to prove uniqueness for conductivities which
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have 3/2 derivatives in Lp with p > 2n/3. However, the straightforward generalization of
the argument presented below would require that f → ∇Gζf map Lp functions which
are compactly supported to functions which are locally in Lr with p and r satisfying
1/p − 1/r = 1/n. Many such estimates fail, see [2] for further discussion.

Finally, let us mention that one of us (Brown) conjectures that uniqueness should hold
when the conductivity γ has one derivative in Lp with p > n. The methods presented here
do not come close to addressing this conjecture.

We begin the formal development by stating a theorem on products of functions in
Sobolev spacesWs,p(Rn). There does not seem to be a standard notation for these spaces.
For s ∈ R and 1 < p < ∞, we will use Ws,p to denote the space of distributions (or
functions, if s ≥ 0) which are defined by the Bessel potential operator. Thus u ∈ Ws,p if
and only if J−su ∈ Lp where Js is the operator given by

f →
((

1 + |ξ |2
)−s/2

f̂ (ξ)

)
ˇ .

We recall that if s = 0 and 1 < p < ∞, then this space coincides with Lp. If s is a positive
integer and 1 < p < ∞, then the space Ws,p is precisely the functions with s derivatives
in Lp. For 1 < p < ∞, this space is also known as the Triebel–Lizorckin space F s,p2 . We
refer to the monograph of Triebel [18] for properties of these spaces.

Theorem 1.
Let u ∈ Ws,p and let v ∈ Ws,q , with 1 < p, q < ∞, 1/p + 1/q ≤ 1, and

0 ≤ s < nmin(1/p, 1/q). Then uv ∈ Ws,r∗ where 1/r∗ = 1/p + 1/q − s/n.

This result is well-known, see the monograph of Runst and Sickel [15, p. 177]. This
theorem immediately implies the following corollary.

Corollary 1.
If q ∈ W−1/2,2n with n ≥ 3, then the operator mq given by mq(u) = qu maps

W 1/2,2 → W−1/2,2 and satisfies

‖mq(u)‖W−1/2,2 ≤ C‖u‖W 1/2,2‖q‖W−1/2,2n .

Proof. To be precise, mq(u) is defined by 〈mq(u), v〉 = 〈q, uv〉. Using the duality
betweenWs,n/(n−s) andW−s,n/s which is valid (at least) for 1 < n/s < ∞, and Theorem 1
we conclude that

|〈q, vu〉| ≤ C‖q‖W−1/2,2n‖uv‖W 1/2,2n/(2n−1)

≤ C‖q‖W−1/2,2n‖u‖W 1/2,2‖v‖W 1/2,2 .

This inequality implies the corollary.

Now, we recall standard estimates for the operator Gζ . In order to simplify what
follows, we will not use the weighted estimates of Sylvester and Uhlmann, but a simple
consequence of these estimates. This will allow us to avoid mention of weighted Sobolev
spaces. A weighted version of the previous corollary is undoubtedly true, but it might be
a chore to chase down the proof. We will restrict our attention to compactly supported
potentials. This restriction is acceptable for our application to the inverse conductivity
problem. However, there may be interest in Schrödinger operators where the potential is
not compactly supported. If X is a space of distributions, we will fix R0 > 1 and let
Xc denote the subspace of X which is supported in B̄R0(0). Our notation obscures the
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dependence of the space Xc on R0, however we will give the dependence of the constants
in our estimates onR0. Also, we are using Bs(x) to denote the ball of radius s and center x.
The following result is due to Sylvester and Uhlmann [16]. The spaces we use are similar to
those used by Agmon and Hörmander (see [10, p. 227]), except that we require smoothness
of order s. We fix η an infinitely differentiable function which is supported in a ball of
radius 1 and is identically one in a neighborhood of B̄1/2(0) and set ηR(x) = η(x/R). With
this function η, we define the space B∗

s to be the space of distributions for which the norm

‖f ‖B∗
s

= sup
R>1

R−1/2‖ηRf ‖Ws,2

is finite. We leave it as an exercise to see that different choices of η, subject to the above
conditions, give equivalent norms on B∗

s .

Theorem 2.
If n ≥ 3, |ζ | ≥ 1, ζ · ζ = 0 and 0 ≤ s ≤ 1, then

‖Gζf ‖B∗
1/2

≤ CR
1/2
0

|ζ |s ‖f ‖
W

−1/2+s,2
c

.

Proof. From the main estimate in [16] (see also [3] for the gradient estimate), we find
that ∫

Rn

(
1 + |x|2

)−1/2 (
|Gζf (x)|2|ζ |2 + |∇Gζf (x)|2

)
dx

≤ C

∫
Rn

(
1 + |x|2

)1/2 |f (x)|2 dx . (1.2)

On the ball BR(0), (with R > 1) the weight on the left-hand side of (1.2) is bounded
below by 2R and the weight on the right-hand side is bounded above by 2R. This gives the
estimate

R−1/2‖Gζf ‖L2(BR(0)) ≤ C

|ζ |R
1/2
0 ‖f ‖L2

c
. (1.3)

Also, since Gζ and ∇ commute, we obtain that for f compactly supported in B2R0

R−1/2‖∇Gζf ‖L2(BR(0)) ≤ C

|ζ |R
1/2
0 ‖∇f ‖L2

c
. (1.4)

We let η be a smooth function as in the definition of the B∗
. -spaces. The inequalities (1.3)

and (1.4) together imply that for s = 0, 1, we have

R−1/2‖ηRGζη2R0f ‖Ws,2 ≤ C

|ζ |R
1/2
0 ‖f ‖Ws,2 . (1.5)

Complex interpolation implies that the inequality (1.5) continues to hold for 0 < s < 1.
Finally, if we use the estimate for the gradient in (1.2), it is not hard to see that forR,R0 > 1,
we have

R−1/2‖ηRGζη2R0f ‖Ws+1,2 ≤ CR
1/2
0 ‖f ‖Ws,2 (1.6)

for s = 0. By duality (and interchanging R and 2R0), we obtain (1.6) with s = −1 also.
Then, interpolating gives (1.6) with s = −1/2. Interpolating between (1.6) with s = −1/2
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and (1.5) with s = 1/2, and taking the supremum in R gives the conclusion of the theorem.
Notice that if f is inWs,2

c and η = 1 in a neighborhood of B̄1/2(0), then η2R0f = f , hence
the estimates for Gζ on Ws,2

c follow from estimates for the map f → Gζ (η2R0f ).

Now, we consider a potential q in W−1/2,2n
c and consider the equation

(�+ 2ζ · ∇)ψ − qψ = f . (1.7)

In what follows, we will useGζ,q to denote the inverse of the operator�+ 2ζ · ∇ − q. We

prove the existence of this map by showing that it maps from W
−1/2,2
c to the space B∗

1/2.

Theorem 3.
Let q ∈ W−1/2,2n

c , then there exists C = C0(q) so that for |ζ | ≥ C0(q), we may find
a unique solution, ψ = Gζ,qf , to (1.7) in B∗

1/2. This map satisfies

‖Gζ,qf ‖B∗
1/2

≤ A‖f ‖
W

−1/2,2
c

.

The constant A = A(R0) in the previous estimate is independent of q and ζ .
Furthermore, we have

lim|ζ |→∞ ‖Gζ,qf ‖B∗
1/2

= 0 .

To carry out the proof of the theorem, we begin with the case of smooth potentials. The
key point is that smooth potentials are dense in W−1/2,2n and that for smooth potentials,
the norm of the inverse does not depend on the size of q. The size of q only enters in
determining how large ζ must be.

Lemma 1.
Suppose q ∈ C∞

c (R
n) and that supp q ⊂ BR0(0). Then there is a constant C0 =

C0(q) so that for |ζ | > C0(q) and 0 ≤ s ≤ 1, Gζ,q satisfies

‖Gζ,qf ‖B∗
1/2

≤ A

|ζ |s ‖f ‖
W

−1/2+s,2
c

. (1.8)

The constant A = A(R0) is independent of ζ and q.

Proof. We write

Gζ,q(f ) =
∞∑
j=0

(Gζmq)
jGζf .

According to Theorem 2, we have

‖Gζf ‖B∗
1/2

≤ CR
1/2
0

|ζ |s ‖f ‖W−1/2+s,2

for 0 ≤ s ≤ 1. Because, q is smooth and η = 1 in a neighborhood of B1/2(0), it is clear
that

‖mqf ‖
W

1/2,2
c

≤ C(q)‖η2R0f ‖W 1/2,2 ≤ C(q)R
1/2
0 ‖f ‖B∗

1/2
.

Using this and the estimate in Theorem 2 with s = 1 , we obtain

‖Gζmqf ‖B∗
1/2

≤ C(q)R0

|ζ | ‖f ‖B∗
1/2
.
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Now, if we require |ζ | to be sufficiently large, the norm ofGζ ◦mq onB∗
1/2 will be bounded

by 1/2 and hence the norm of
∑
j (Gζ ◦mq)j as an operator on B∗

1/2 will be at most 2. This
proves the lemma.

Proof of Theorem 3. We suppose now that q is in W−1/2,2n and is supported, say, in
BR0/2(0). We let ε > 0, be a number to be determined later. We can write q = qs + qr
where the smooth part of q, qs , is inC∞

0 (R
n) and is supported inBR0(0) and the remainder,

the rough part, qr is also supported in BR0(0) and satisfies ‖qr‖W−1/2,2n < ε. We suppose
f ∈ B∗

1/2 and observe that with η as in the definition of B∗
1/2, we have that mqr (f ) =

mqr (η2R0f ) because η2R0 = 1 on the support of qr . We use the estimate for Gζ,qs on

W
−1/2,2
c in Lemma 1 and the estimate for mqr in Corollary 1 to obtain

‖Gζ,qsmqr f ‖B∗
1/2

≤ A‖mqr f ‖
W

−1/2,2
c

≤ CA‖qr‖W 2n,−1/2‖η2R0f ‖W 1/2,2 (1.9)

≤ CAε
√

2R0‖f ‖B∗
1/2
.

We search for u which satisfies �u+ 2ζ · ∇u− qsu− qru = f and if we let Gζ,qs be an
inverse to �u+ 2ζ · ∇ − qs , then we can write

Gζ,qf =
∞∑
j=0

(Gζ,qsmqr )
jGζ,qs f . (1.10)

If we choose ε so that CAε
√

2R0 = 1/2, then the series in (1.10) will converge thanks to
the estimate in (1.9). According to Lemma 1, the maps Gζ,qs will exist for |ζ | sufficiently
large depending on qs and hence on q.

To obtain uniqueness, we suppose that u ∈ B∗
1/2 is a distribution solution of �u +

2ζ · ∇u − qu = 0 in Rn. Note that u must have half of a derivative for the product
qu to be defined. Again, we split q = qr + qs and by Proposition 2.1 in Sylvester and
Uhlmann [16], see also Hörmander [9, Theorem 7.1.27], there is a unique solution of
�u + 2ζ · ∇u − qsu = qru, namely u = Gζ,qs (qru). By the estimate of Lemma 1, we
obtain

‖u‖B∗
1/2

≤ A‖qr‖W−1/2,2n‖u‖B∗
1/2
,

at least for |ζ | sufficiently large. Since the norm of qr may be arbitrarily small, it follows
that we have u = 0 for ζ large.

Finally, we observe that if we fix f ∈ W−1/2,2, then we have

lim|ζ |→∞ ‖ηRGζ,qf ‖B∗
1/2

= 0 .

To see this, we let ε > 0 and split f = fs + fr with ‖fr‖W−1/2,2 < ε. Let qs and qr be the
splitting used above in constructing Gζ,q . Using the representation for Gζ,q , (1.10), and
the estimate for Gζ,qs , (1.8), we have

‖Gζ,qfs‖B∗
1/2

≤ C(fs, q)/|ζ | . (1.11)

While the estimate of this theorem, which we have already proved, shows that for |ζ |
sufficiently large, we have

‖Gζ,qfr‖B∗
1/2

≤ Aε . (1.12)
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Together these observations imply that lim sup|ζ |→∞ ‖Gζ,qf ‖B∗
1/2
< Aε and since ε is an

arbitrary positive number, the limit is zero.

Corollary 2.
If q ∈ W

−1/2,2n
c , then there is a constant C0(q) so that if ζ satisfies |ζ | > C0(q)

and ζ · ζ = 0, we can construct solutions v of �v − qv = 0 of the form v(x, ζ ) =
ex·ζ (1 + ψ(x, ζ )) with

lim|ζ |→∞ ‖ψ‖B∗
1/2

= 0 .

Furthermore, ψ is the unique function in B∗
1/2 and so that v = ex·ζ (1 + ψ(x, ζ )) satisfies

�v − qv = 0.

Proof. We constructψ = ψ(·, ζ ) = Gζ,q(q)whereGζ,q was constructed in Theorem 3.
The existence and the limiting behavior of ψ follow from Theorem 3. It is a simple
calculation to see that theψ and then thev constructed in this way have the desired properties.

If we have two such ψ , call them ψ1 and ψ2, then their difference is a solution of the
homogeneous equation

�(ψ1 − ψ2)+ 2ζ · ∇(ψ1 − ψ2)− q(ψ1 − ψ2) = 0 .

According to Theorem 3, the function 0 is the only solution of this equation inB∗
1/2.

In what follows, we will also need function spaces on domains. For s ≥ 0, we define
the space Ws,p(
) as the image of the space Ws,p(Rn) under the map u → u|
. Thus
elements in the space Ws,p(
) automatically have extensions to all of Rn. We also recall
that the space Ws,p

0 (
) denotes the closure of C∞
0 (
) in the space Ws,p(
).

Next, we recall the definition of the Dirichlet to Neumann map, which we denote�γ ,
for the elliptic operator div γ∇. We suppose that we have a bounded domain with Lipschitz
boundary. We define the space W 1/2,2(∂
) as the quotient space W 1,2(
)/W

1,2
0 (
). It is

well-known that this space can be identified with the Besov space B1/2,2
2 on the boundary.

The coefficient γ in the operator div γ∇ will lie in L∞(
) and satisfy

δ ≤ γ ≤ 1/δ (1.13)

for some δ > 0. If f is in W 1,2(
), we can solve the Dirichlet problem{
div γ∇u = 0 in 


u = f on ∂
 .

This solution u is, of course, independent of the particular representativef of an equivalence
class in W 1/2,2(∂
). Given the solution u of the Dirichlet problem with data f , we may
define a map �γ : W 1/2,2(∂
) → W−1/2,2(∂
) by

�γ (f )(g) =
∫



γ∇u · ∇g dx .

Since u is a solution, the expression on the right does not change if we add a function in
W

1,2
0 (
) to g. Thus, we may define �γ (f ) as an element of the dual of W 1/2,2(∂
).

Now, we quote the following result on determining the coefficient at the boundary.
This will be an important step in connecting the Dirichlet to Neumann map in
 to a problem
in all of space. In our argument below, we will work with two conductivities γ1 and γ2
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with
√
γj in W 3/2,2n+ε(
) and try to extend them to preserve smoothness and so that the

extensions are equal in the complement of 
. The next two results explain when this can
be done.

Proposition 1.
Assume that ∂
 is Lipschitz and assume that for some ε > 0, γ1 and γ2 are in

W 3/2,2n+ε and that �γ1 = �γ2 . Then we have γ1 = γ2 and ∇γ1 = ∇γ2 on ∂
.

Proof. The hypothesis that γj is in W 3/2,2n+ε(
) implies, by the Sobolev embedding
theorem, that there is an ε′ > 0 so that ∇γj is in C1+ε′(
̄) for j = 1, 2. It has been proven
many times that the boundary values of a conductivity and its derivatives are determined
by the Dirichlet to Neumann map. The result stated here for C1+ε′ conductivities may be
found in Alessandrini [1].

Corollary 3.
If, for some ε > 0,

√
γ1 and

√
γ2 are inW 3/2,2n+ε(
), and�γ1 = �γ2 , then we may

extend γ1 and γ2 to all of Rn so that
√
γj − 1 ∈ W 3/2,2n+ε and γ1 = γ2 in Rn \
.

Proof. According to the previous proposition, γ1 = γ2 on ∂
 and also ∇γ1 = ∇γ2 on
∂
. By our definition of the spaceWs,p(
), it is immediate that there are extensions of

√
γ1

and
√
γ2 to all of Rn. Using smooth cutoff functions, we can arrange that the extensions

(which we still denote by
√
γj ) have

√
γj − 1 in W 3/2,2n+ε

c (Rn) for j = 1, 2. We claim
that the function

β =
{ √

γ2 − √
γ1, in 
 ,

0, in 
̄c ,

lies in W 3/2,2n+ε(Rn). This will suffice to prove our corollary since
√
γ1 and

√
γ1 + β

provide the two extensions which agree in the complement of 
.
Thus, we must establish the claim. Of course, this depends on the hypothesis that

γ1 and γ2 agree to first order on the boundary of 
. In fact, this claim is a consequence
of Corollary 2.11 in Triebel’s monograph [18, p. 210]. Alert readers will note that this
monograph assumes that the domain is smooth. However, that assumption is not needed
when p > 1. The key step is to show that the characteristic function of 
 is multiplier on
Ws,p(Rn)when −1+1/p < s < 1/p. The proof proceeds by changing variables to flatten
the boundary. As the discussion on p. 172 of Triebel indicates, when p > 1, the needed
results for Lipschitz change of variables can be proven for s = 0, 1 using the chain rule
(for s = 1) and change of variables. Then, we interpolate to obtain results for 0 < s < 1.

The next proposition uses the equality of the Dirichlet to Neumann maps to deduce the
equality of expressions involving the solutions vj constructed above. In this proposition
and below, we will use a Schrödinger operator with a potential qj which is defined by
�

√
γj /

√
γj . Since, in general, the coefficient γj does not have two derivatives, we define

the Laplacian in a weak sense. To be precise, we will define the pairing between qj and a
function φ with one derivative by

〈qj , φ〉 = −
∫

Rn
∇√

γj · ∇ φ√
γj
dx . (1.14)

Proposition 2.
Suppose n ≥ 3. Let γ1 and γ2 satisfy (1.13) and suppose that ∇√

γj is in Lnc .
Suppose further that γ1 = γ2 outside 
 and that �γ1 = �γ2 . We let qj = �

√
γj /

√
γj . If



Uniqueness in the Inverse Conductivity Problem for Conductivities with 3/2 Derivatives 571

for j = 1, 2, vj is a solution of �vj − qjvj = 0 which lies in W 1,2
loc (R

n), then

〈q1, v1v2〉 = 〈q2, v1v2〉 .
Proof. We first observe that the multiplication operator given by �

√
γj /

√
γ
j

maps

W 1,2(Rn) to W−1,2(Rn). To see this, we use the definition of the distribution �
√
γj /

√
γj

in (1.14) to obtain 〈
�

√
γj√
γj

, uv

〉
= −

∫
Rn

∇√
γj · ∇ uv√

γ
j

dx . (1.15)

The product rule, Hölder’s inequality, and then the Sobolev inequality (which requires
n ≥ 3), imply that∣∣∣∣∣

∫
∇√

γj · ∇ uv√
γj
dx

∣∣∣∣∣
≤ ‖u‖W 1,2BR0

‖v‖W 1,2BR0

(∥∥∇ log
√
γj

∥∥
Ln

+ ∥∥∇ log
√
γj

∥∥2
Ln

)
.

Thus the expressions in (1.15) are defined, at least when n ≥ 3.
Now, we turn to the proof of the equality of the theorem. First, we consider the

integral outside of 
. Since we have
√
γ1 = √

γ2 outside 
, it follows immediately that∫
Rn\


∇√
γ1 · ∇ v1v2√

γ1
dx =

∫
Rn\


∇√
γ2 · ∇ v1v2√

γ2
dx . (1.16)

To study the integral inside 
, we observe that if we define uj = vj /
√
γj , then we

have that div γj∇uj = 0. This follows from a well-known calculation which we omit.
Next, we claim that∫




∇√
γ 1 · ∇

(
1√
γ1
v1v2

)
− ∇v1 · ∇v2 dx = −�γ1(u1)(u2) . (1.17)

Now, if we interchange the indices 1 and 2 in (1.17), subtract the result from (1.17), use
that �γj (f )(g) = �γj (g)(f ), and then our assumption that �γ1 = �γ2 we obtain that

∫



∇√
γ 1 · ∇ v1v2√

γ1
dx =

∫



∇√
γ2 · ∇ v1v2√

γ2
dx . (1.18)

If we add (1.16) and (1.18), we obtain the conclusion of the theorem.
Thus, we turn to the proof of (1.17) and for this we will need an additional function

ũ2 = v2/
√
γ1. By the definitions of u1 and ũ2 and the product rule, we obtain

∫



∇√
γ1 · ∇

(
1√
γ1
v1v2

)
− ∇v1 · ∇v2 dx

=
∫



∇√
γ1 · ∇ (√

γ1u1ũ2
) − u1∇√

γ1 · ∇ (√
γ1ũ2

)
− √

γ1∇u1 · (
ũ2∇√

γ1
) − γ1∇u1 · ∇ũ2 dx

= −�γ1(u1)(u2) .
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In the last equality, we use that u2 − ũ2 is in W 1,2
0 (
) and hence they restrict to the same

element in W 1/2,2(∂
). This is a consequence of Lemma 2 below. This completes the
proof of (1.17) and hence the proposition.

Lemma 2.
Assume ∂
 is Lipschitz and that
 is bounded. If β isC(
̄)∩W 1,n(
) and β(x) = 0

for x ∈ ∂
, then the map u → βu maps W 1,2(
) to W 1,2
0 (
).

Proof. We let ε > 0 and construct a cutoff function ηε(x)where ηε(x) = 1 if δ(x) > 2ε
and ηε(x) = 0 if δ(x) < ε. Here, we are using δ(x) to denote the distance from x to
∂
. This function may be constructed to satisfy |∇ηε | ≤ C/ε. We consider ∇(ηεβ) −
∇β = (ηε − 1)∇β + β∇(ηε − 1). By the dominated convergence theorem, we have
limε→0+

∫



|∇β|n|(1 − ηε)|n = 0. While Hardy’s inequality (see [7, p. 28], for example)
implies that ∫




|β|n|∇ηε |n dx ≤
∫

{x:δ(x)<Cε}
|∇β|n dx .

Hence, we can approximateβ in the norm ofW 1,n(
)byβηε . Furthermore, by regularizing,
we can find a sequence of functions {βj } which are infinitely differentiable, converge to β
in W 1,n

0 (
), the sequence is bounded in L∞(
) and converges pointwise to β. Now, we
claim that βju converges to βu in W 1,2(
). The convergence of βju to βu in L2 follows
from the dominated convergence theorem. Now consider ∇(βju) = u∇βj + βj∇u. The
convergence of βj∇u to β∇u follows from the dominated convergence theorem. We have

‖u(∇βj − ∇β)‖L2(
) ≤ ‖∇βj − ∇β‖Ln(
)‖u‖L2n/(n−2)(
) . (1.19)

From the inequality (1.19), we see that the convergence of ∇βj in Ln implies the conver-
gence of u∇βj to u∇β in L2. We have established that ‖∇(βju) − ∇(βu)‖Ln(
) goes to
zero as j → ∞. The term ‖u‖L2n/(n−2)(
) is finite because of the Sobolev embedding theo-
rem. Hence, the right-hand side of (1.19) tends to zero. Because the sequence of functions
βju tend to βu in W 1,2(
) we can conclude that βu is in W 1,2

0 (
).

Finally, we give the proof of our main theorem. Given the above, the proof of the
main result follows familiar lines.

Theorem 4.
Suppose n ≥ 3, ∂
 is Lipschitz, γj ∈ W 3/2,2n+ε(
) for some ε > 0 and that

�γ1 = �γ2 , then we have that γ1 = γ2.

Proof. Because of the equality of the Dirichlet to Neumann maps, we may use the result
of Corollary 3 to extend γ1 and γ2 to all of Rn so that γ1 = γ2 in Rn \
. Thus, according
to Proposition 2 we have

〈(q1 − q2), v1v2〉 = 0 (1.20)

where qj are the potentials,�
√
γj /

√
γj as above and vj are solutions of�vj − qjvj = 0.

Now, we fix ξ ∈ Rn, let R > 0 be large and construct ζ1 and ζ2 in Cn satisfying

ζj · ζj = 0, j = 1, 2 (1.21)

ζ1 + ζ2 = −iξ, j = 1, 2 (1.22)

|ζj | > R, j = 1, 2 . (1.23)
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We recall the standard construction of ζj . Choose e1 and e2 unit vectors in Rn and so that
e1, e2 and ξ are mutually orthogonal and then put ζ1 = −Re1 − ie2

√
R2 − |ξ |2/4 − iξ/2

and ζ2 = Re1 + ie2
√
R2 − |ξ |2/4− iξ/2. We construct the solutions vj of�vj −qjvj = 0

corresponding to ζj as given by Corollary 2. Note that the solutions given by this corollary
must have 3/2 derivatives L2

loc and thus they satisfy the hypotheses of Proposition 2. To

see this, observe that the right-hand side of �v = qv lies W−1/2,2
loc and thus by elliptic

regularity, v has two more derivatives. We substitute ex·ζj (1 + ψj ) for vj in (1.20) and
obtain

0 =
〈
q1 − q2, e

−ix·ξ (1 + ψ1 + ψ2 + ψ1ψ2)
〉
.

Because the functions ψj tend to zero in B∗
1/2 as R → ∞, passing to the limit in the

previous equation gives q̂1 = q̂2. Here, we must use Theorem 1 and our estimate for
ψ1, ψ2 in B∗

1/2 to conclude that the product ψ1ψ2 goes to zero in W 1/2,2n/(2n−1)
loc . Hence,

it follows that �
√
γ1/

√
γ1 = �

√
γ2/

√
γ2. As in [3, p. 1056], this implies that log(γ1/γ2)

solves div
√
γ1γ2∇ log(γ1/γ2) = 0 and is compactly supported and hence vanishes by the

weak maximum principle.

We close with several questions motivated by the above work.
1. Can we obtain uniqueness in the inverse conductivity problem at the endpoint

p = 2n? The above argument requires p > 2n in order to carry out the extension in
Corollary 3.

2. Can we lower the Lp-space from p = 2n to p = 2n/3 in the uniqueness result for
conductivities with 3/2 derivatives?

3. Can we lower the smoothness index to 1 and obtain a uniqueness result?
4. The result for uniqueness at the boundary in Proposition 1 that we quote from

Alessandrini [1] does not seem sharp. There is a boundary uniqueness result for the gradient
of the conductivity which requires that the coefficient be continuously differentiable in the
work of Sylvester and Uhlmann [17], however the domain must be smooth. The work of
Brown [5] gives a way of reconstructing the boundary values for continuous (and some
discontinuous) conductivities in Lipschitz domains. However, this work does not discuss
the gradient of the conductivity. The work Tanuma and Nakamura [13] and Kang and
Yun [11] gives boundary identifiability of the gradient of a C1+ε conductivity in a C2+ε
domain. Results of Nachman [12] give boundary identifiability for the gradient of C1,1

conductivities in domains with C1,1 boundaries. A reasonable conjecture is that we can
determine the gradient of continuously differentiable conductivities at the boundary in a
Lipschitz domain. This result does not seem to be in the literature.
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