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ABSTRACT. Functions whose translates spanLp(R) are calledLp-cyclic functions. For a fixed
p ∈ [1,∞), we construct Schwartz-class functions which areLr -cyclic for r > p and notLr -
cyclic for r ≤ p. We then construct Schwartz-class functions which areLr -cyclic for r ≥ p and
notLr -cyclic for r < p. The constructions differ forp ∈ (1,2) andp > 2.

1. Introduction

Functions whose translates spanLp(R) are calledLp-cyclic functions. Equivalently,
f ∈ Lp(R) is cyclic if and only if the onlyg ∈ Lq(R) such thatf ∗ g = 0 is g = 0
(p andq are conjugate exponents). In the 1920s and 1930s, Wiener proved two classic
results about cyclic functions inL1(R) andL2(R) [19]. If f ∈ L1(R), thenf is cyclic in
L1(R) if and only if the Fourier transformf̂ is never zero, and iff ∈ L2(R), thenf is
cyclic inL2(R) if and only if f̂ is zero only on a set of Lebesgue measure zero. Wiener’s
theorems make it possible to characterize cyclic functions completely forp = 1 andp = 2;
however, no complete characterization exists forLp-cyclic functions when 1< p < 2
andp > 2. Attempts at classifyingLp-cyclic functions have been made throughout the
twentieth century; the work of Bary, Segal, Beurling, Salem, Kahane, Herz, Edwards, and
many others has touched on this problem. The partial classifications which exist involve
zero sets of Fourier transforms. In fact, a complete characterization of cyclic functions
in terms of Fourier transforms may not be possible, since even defining the zero set of a
Fourier transform is a delicate task when a function is not inL1(R). However, when the
zero set is well-defined, the critical issue is whether a zero set can support a distribution
whose Fourier transform belongs toLq(R), whereq is the conjugate index top. Different
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names are given to zero sets which cannot support distributions with this property: sets of
typeUq , q-thin sets,q-negligible sets, and sets ofLq -uniqueness.

If f ∈ Lp(R) ∩ Lr(R), where 1≤ p ≤ r < ∞ andf is Lp-cyclic, thenf is
Lr -cyclic. See [7] and [5] for two different approaches. A natural first question to ask
in response to this feature of cyclic functions is if it is possible to construct a function in
L1(R)∩L∞(R) which is not cyclic inLr(R) for r < p but cyclic inLr(R) for r > p. We
answer the first question (Theorem 3) and then show that one of the strict inequalities can
always be replaced with≤ or ≥ (Theorems 4, 6, 10, and 11).

2. Useful Constructions and Definitions

2.1 Smooth Functions with Specified Zero Sets

We construct functions in the Schwartz class which are zeroonlyon specified compact
sets.

Lemma 1.
LetK ⊂ R be a compact set. There existsφ ∈ S(R) such thatφ(x) = 0 for all

x ∈ K andφ(x) > 0 for all x ∈ R\K.

Proof. Let k1 = min{x : x ∈ K} and letk2 = max{x : x ∈ K} and letU denote the
complement ofK in [ k1, k2 ]. SinceU is open,U is a countable disjoint union of open
intervals. For eachn ∈ Z+, there are only finitely many intervals inU with length greater
than 1/n. Order these intervals by non-increasing length:|In| ≥ |In+1|.

If I = (a, b), definef̃ (x) by

f̃ (x) =
{
e−1/(1−g(x)2) x ∈ (a, b)
0 x 6∈ (a, b) (2.1)

whereg(x) = 2(x−a−(b−a)/2)
b−a . Thenf̃ ∈ S(R) and the support off and all its derivatives

is the closed interval[ a, b ]. Folland constructs this function on[−1,1] [8, p. 228–230];
the dilation and translation shift the support to[ a, b ]. Set

sd,k = sup
x∈Ik

f̃
(d)
k (x) and cn = max

d,k≤n sd,k ,

and define functions

fk = k−1c−1
k f̃k, φn =

n∑
k=1

fk, and φ = lim
n→∞φn . (2.2)

For a fixedn,

sup
x∈C

|φ(x)− φn(x)| = sup
x∈C

∣∣∣∣∣
∞∑
k=1

fk(x)−
n∑
k=1

fk(x)

∣∣∣∣∣ ≤ 1

n+ 1
, (2.3)

which implies thatφn → φ uniformly. Ford ≤ n, we have

sup
x∈C

∣∣∣∣∣
∞∑
k=1

f
(d)
k (x)− φ(d)n (x)

∣∣∣∣∣ = sup
x∈C

∣∣∣∣∣∣
∞∑

k=n+1

f
(d)
k

∣∣∣∣∣∣ ≤ 1

n
(2.4)
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because we have bounded the firstj derivatives offj by 1
j
. Thedth derivativeφ(d) therefore

exists and equals the sum of thedth derivatives by [1, Theorem 9.13].
Defineg by

g(x) =


e−1/(−x−k1)e−(x−k1)

2
x < k1

φ(x) x ∈ [ k1, k2 ]
e−1/(x−k2)e−(x−k2)

2
x > k2 .

(2.5)

Theng = 0 precisely onK, andg ∈ S(R) because the functionse−1/(−x−k1) ande−1/(x−k2)

are bounded by 1.

2.2 Distributions and Their Supports

We work with distributions whenever we take the Fourier transform of a function
f ∈ Lp, p > 2. As a result, we state some basic facts about distributions onR which we
will use later.

The support of a measureν is the complement of the union of allν-null sets. This
definition agrees with the following definition of the support of a distribution.

Definition 1. The closed setK is the support of the distributionD provided that for
every open setU such thatU ∩K = ∅ and for every compactly supported smooth function
φ such that supp(φ) ⊂ U ,D(φ) = 0.

Borel measures provide examples of distributions; another class of distributions we
will use is the class of pseudo-measures. Pseudo-measures are obtained by taking Fourier
transforms of bounded functions. An important property of pseudo-measures and measures
is the following.

Lemma 2 ([11]).
Supposeν is a pseudo-measure andf ∈ L1. Then

supp
(
f̂ ν
)

⊆ supp
(
f̂
)

∩ supp(ν) .

3. Cyclic Functions in Lp(R), p ∈ (1, 2)

3.1 Functions SpanningLr(R), r > p, but not Lr(R), r < p

BecauseL1(R)-cyclic functions must have Fourier transforms which never vanish
andL2(R)-cyclic functions can have Fourier transforms which vanish on sets of measure
zero, we need a way to compare sizes of sets, all of which have Lebesgue measure zero.
Supposef ∈ S(R). Sincef has a continuous Fourier transform, the closed setZ(f ) =
{ξ : f̂ (ξ) = 0} is well-defined. If, for example,f ∈ L2, the zero set off̂ would be defined
up to a set of measure zero, which is too “big” for what we are about to do.

Theorem 1 (Beurling, p. 154, [5]).
If for somep ∈ (1,2) the linear span of translates off is not dense inLp(R), then

the Hausdorff dimension ofZ(f ), dimH (Z(f )), is at least2 − 2
p

.
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Stated another way, ifp ∈ (1,2) and dimH (Z(f )) < 2 − 2
p

, thenf is cyclic inLp(R).
Beurling’s proof shows that ifK is compact and dimH (K) = α, thenK cannot support a
distributionD with D̂ ∈ Lq for anyq < 2/α. See [6] for more details. We also use the
following theorem of Salem.

Theorem 2 (Theorems 1 and 4, [17]).
Supposeα ∈ (0,1) andε > 0.

1. There exists a measureµ whose supportEµ is a perfect set withα = dimH (Eµ)

andµ̂ ∈ Lq(R) for all q ≥ 2
α

+ ε.

2. There exists a measureν whose supportEν is a perfect set withα = dimH (Eν)

and ν̂ ∈ Lq(R) for all q > 2
α

.

Lemma 3.
Supposep ∈ (1,2), µ is a measure whose supportEµ is a perfect set withdimH

(Eµ) = 2 − 2
p

, andµ̌ ∈ Lq(R) for all q > p′. Supposef ∈ S(R) andZ(f ) = Eµ. Then
f is not cyclic inLr(R) for r < p andf is cyclic inLr(R) for r > p.

Proof. We first show thatf is not cyclic inLr(R) for r < p. Consider the convolution
f ∗ µ̌. At the outset, the only thing we can say about this convolution is thatf ∗ µ̌ ∈ Lq(R),
whereq > p′. A Fubini–Tonelli argument shows that

f ∗ µ̌(x) =
∫
f̂ (t)e2πixt dµ(t) , (3.1)

so that the convolutionf ∗ µ̌ is the inverse Fourier transform of the bounded Borel measure
f̂ µ. The total variation off̂ µ is zero, so the convolutionf ∗ µ̌ is zero. Therefore,̌µ
is orthogonal to all translates off , and the functionf cannot be cyclic inLr(R) for any
r < p. On the other hand, by Theorem 1,f must be cyclic inLr(R) for r > p since the
Hausdorff dimension ofZ(f ), 2− 2

p
, is strictly less than 2− 2

r
.

Theorem 3.
Letp ∈ (1,2). There exists a functionf ∈ S(R) which is cyclic inLr(R) for r > p

and which is not cyclic inLr(R) for r < p.

Proof. Let α = 2 − 2
p

and letK = Eµ be a compact set with Hausdorff dimension
α which supports the measureµ. Apply Lemma 1 to constructf ∈ S(R) which is zero
precisely onK. By Lemma 3, the inverse Fourier transform̌f is an example of a function
which is cyclic inLr(R) for r > p and which is not cyclic inLr(R) for r < p.

3.2 Functions SpanningLr(R), r ≥ p, but not Lr(R), r < p

Salem’s results do not immediately address what happens at the critical index2
α

. The
next construction will allow us to build a set which cannot support a pseudo-measure whose

Fourier transform is inL
2
α (R).

Chooseα ∈ (0,1). Choose{αm}, a sequence in(0,1), with eachαm < αm+1 < α

and lim
m→∞αm = α. For eachαm, use Salem’s method to construct a compact setEm ⊂

( 1
m+1,

1
m
) so that dimH (Em) = αm, and such thatEm supports a non-zero positive regular

Borel measureµm such thatµ̂m ∈ Ls for all s > 2
αm

. Let E = {0} ∪
∞⋃
m=1

Em. The set
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E is compact by construction. Clearly, dimH (E) ≥ αm for all m ≥ 1 and dimH (E) = α

because measH,α(Em), the Hausdorff measure of orderα, is 0 for allm ≥ 1.
For anys > 2

α
, we haves > 2

αm
for sufficiently largem. Hence,Em and thusE

contains the support of a non-zero pseudo-measure whose Fourier transformg is inLs(R).

On the other hand,E cannot support a pseudo-measure whose Fourier transform is inL
2
α .

Indeed, supposeg ∈ L 2
α (R) ∩ L∞(R) andĝ is supported inE. Take a functionψm ∈ S,

such that̂ψm = 1 onEm andψ̂m = 0 onE\Em. Theng ∗ ψm is in L
2
α (R) ∩ L∞(R) too

and by Lemma 2, its Fourier transform is supported onEm. Butg ∗ψm ∈ L 2
α . By the proof

of Beurling’s theorem,Em cannot support a distribution with Fourier transform inLq for
anyq < 2

αm
. Since 2

α
< 2

αm
, g ∗ ψm = 0. It follows that the support of̂g is contained in

E\Em. Since this is true for allm, the support of̂g is contained in{0}. Butg ∈ L 2
α (R), so

g = 0.

Theorem 4.
Letp ∈ (1,2) and letα = 2 − 2

p
, so that2

α
is the conjugate index top. There exists

f ∈ S(R) such thatf is cyclic inLr(R), r ≥ p and such thatf is not cyclic inLr(R),
r < p.

Proof. LetE be the compact set Hausdorff dimensionα constructed above. Letf ∈ S
be a function such that the zero set off̂ isE. Because of the support properties ofE above,
f is cyclic inLr(R) for all r ≥ p. Indeed, fixr ≥ p and lets be conjugate tor. Then
s ≤ 2

α
. Let g ∈ Ls(R) with f ∗ g = 0. Letφ ∈ S be arbitrary. We havef ∗ g ∗ φ = 0.

Sinceg ∗ φ ∈ Lr(R) ∩ L∞(R) too, g ∗ φ has a Fourier transform which is a non-zero
pseudo-measure supported inE by Lemma 2. But then the result aboutE above shows that
g ∗ φ = 0. Sinceφ is arbitrary, this meansg = 0. Hence,f is cyclic inLr(R) for any
r ≥ p. On the other hand,f is not cyclic inLr(R) for anyr < p. Let s be the conjugate
index tor; thens > 2

α
. Hence,E contains the support of a non-zero pseudo-measure whose

Fourier transform is inLs(R). Therefore,f cannot be cyclic inLr(R) sincef̂ vanishes on
E.

3.3 Functions SpanningLr(R), r > p, but not Lr(R), r ≤ p

In the previous section, we constructed sets with Hausdorff dimensionα which can-

not support a pseudo-measure whose Fourier transform is inL
2
α (R). In this section, we

describe a class of sets with Hausdorff dimensionα which support measures whose Fourier

transforms are inL
2
α (R). The constructions here depend on results of Kahane. We thank

Robert Kaufman for showing us how to use these results.
We note that Salem himself seemed to be attempting to prove Theorem 2 in the case

q = 2
α

; however, with his probabilistic techniques he was only able to show that ifµ is

a measure supported onE where dimH (E) = α, thenµ̂ decays like�(x)x− α
2 where�

grows slower than any polynomial.
LetW denote a Wiener process on[0,1] and letW(E) denote the image ofE ⊆ [0,1]

under the processW. In other words,W(E) is the set of all images ofE under eachW in
the sample space ofW. We letW(E) denote one of these images.

Suppose dimH (E) = α < 1
2. By [10, Theorem 2, p. 236], the image ofE under the

Wiener process,W(E), will almost surely have Hausdorff dimension 2α. If E supports a
measureθ with certain growth properties depending on a concave functionh, thenW(E)
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almost surely supports a measureW(θ) such that the growth of̂W(θ) is controlled byh as
well [10, Lemmas 3 and 4, p. 255]. This measureµ = W(θ), called a random measure, is
formally defined by ∫

R

f (x) dµ(x) =
∫ 1

0
f (W(t)) dθ(t) . (3.2)

With this definition, the Fourier transform of a measureµ associated with one sample path
W(t) is

µ̂(ξ) =
∫
e−2πiξxdµ(x) =

∫ 1

0
e−2πiξW(t) dθ(t) .

Kahane shows

µ̂(ξ) = O

(√
log |ξ |h(|ξ |−2

))
whereh is a positive concave functionh onE such thatE has non-zeroh-measure andE
supports a measureθ such thatθ(|I |) ≤ Ch(|I |) for each intervalI ⊆ [0,1].

As a result, we want to find a functionh which is of the same order as the functiong,
where

g(x) = sup
0≤u<∞

θ(u, u+ x) , (3.3)

because it is not hard to show that theg-measure ofE is positive. We also look for a set
E ⊆ [0,1] and a measureθ supported onE which satisfies the inequalityθ(|I |) ≤ Ch(|I |)
for each intervalI ⊆ [0,1]. Also,

√
log |ξ |h(|ξ |−2) must be inL

2
α (R). It is possible to

satisfy all these conditions using a symmetric Cantor setE. Some of the ideas for this proof
are in [13].

Theorem 5.
There exists a setF ⊂ R such thatdimH (F ) = α and such thatF supports a measure

µ with µ̂ ∈ L 2
α (R).

Proof. Let E ⊂ [0,1] be a symmetric set of measure zero and letθ be the standard
Lebesgue–Stieltjes measure onE. Suppose we have a function concave functionh such

that theh-measure ofE is non-zero. Letµ = W(θ). Thenµ̂ ∈ L 2
α (R) provided that

h(x) = O
(
xα/2 log−2α−1

(
x−1

))
as x → 0 . (3.4)

Set

h(x) = xα/2 log−2α−1
(
x−1

)
. (3.5)

Thenh is concave for small enough positive values ofx. The construction ofE is controlled
by the ratios of dissectionξ1, ξ2, . . . where eachξn < 1/2. We want to chooseξn such that
h(ξ1 · . . . · ξn) = O(2−n) asn → ∞. We look for a formula forξn so that

(ξ1 · . . . · ξn)α/2 log−2α−1
((
ξ1 · . . . · ξn)−1

))
= O

(
2−n) as n → ∞ . (3.6)

Since it will be hard to work withξ1 · . . . · ξn in both factors, we make the estimate
log(ξ1 · . . . · ξn)−1 = O(n). Equation (3.6) is valid when

ξn = 2− 2
α

(
1 + 1

n

) 2
α
(2α+1)

. (3.7)
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With this choice ofξn, dimH (E) = α
2 andh andg are of the same order. LetF be the image

of E under the Wiener processW and letµ = W(θ). Then dimH F = α andµ̂ ∈ L
2
α .

As a result, we can state the following theorem.

Theorem 6.
Letp ∈ (1,2) and letα = 2 − 2

p
, so that the index conjugate top is 2

α
. There exists

f ∈ S(R) such thatf is cyclic inLr(R) for r > p and such thatf is not cyclic inLr(R)
for r ≤ p.

Proof. ChooseF with Hausdorff dimensionα such thatF supports a random measure

with Fourier transform inL
2
α and letF = Z(f ).

4. Cyclic functions in Lp(R), p ∈ (2, ∞)

In this section, we modify a theorem of Katznelson and Hirschman about sets of
uniqueness and multiplicity for the circleT. We prove that these same sets are sets of
uniqueness or multiplicity forLq(R), q ∈ (1,2). We will then obtain theorems analogous
to Theorems 4 and 6 forp > 2.

4.1 Functions SpanningLr(R), r > p, but not Lr(R), r ≤ p

We say that a setK ⊂ T is a set oflq -uniqueness provided that ifD is a distribution
supported onK and{D̂(n)} ∈ lq(Z), thenD = 0. Otherwise, the setK is called a set of
lq -multiplicity. Similarly, we say that the setE ⊂ R is a set ofLq -uniqueness provided
that if D is a distribution supported onE andD̂ ∈ Lq(R), thenD = 0. Otherwise, the
setE is called a set ofLq -multiplicity. In 1964, Katznelson proved that there exist sets
of positive Lebesgue measure which are sets oflq -uniqueness for allq ∈ (1,2) [12]. In
1965, Katznelson and Hirschman proved that fors, q ∈ (1,2)with s < q, there exist sets of
positive measure which are sets ofls-uniqueness andlq -multiplicity [9, Theorems 3 and 5]).

Theorem 7.
Let q ∈ (1,2). There exists a setE of positive measure inT which is a set of

ls-uniqueness for alls < q and a set oflq -multiplicity.

Proof. Choose sequences{sn} and{εn} such thatsn < sn+1, sn → q, and
∑
εn < 1/2.

For eachn, choose a closed setẼn ⊂ T and functionsF̃n, G̃n ∈ C∞(T) such thatẼn, F̃n,
andG̃n satisfy Theorems 4 and 5 in [9] withε = εn andq = qn. We must dilate these sets
and functions further. We show that there exists a sequence{3k}∞k=1 of positive integers
such that for eachN ∈ Z+,∥∥∥∥∥

(
N∏
k=1

Gk

)
ˆ
∥∥∥∥∥
q

≤ exp

(
N−1∑
k=1

εk

)
N∏
k=1

∥∥Ĝk∥∥q
whereGk(x) = G̃k(3kx).
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Suppose that31,32, . . . , 3M−1 have been chosen so that∥∥(G1G2) ˆ∥∥
q

≤ exp(ε1)
∥∥Ĝ1

∥∥
q

∥∥Ĝ2
∥∥
q

...∥∥∥∥∥
(
M−1∏
k=1

Gk

)
ˆ
∥∥∥∥∥
q

≤ exp

(
M−2∑
k=1

εk

)
M−1∏
k=1

∥∥Ĝk∥∥q .
Let φ = ∏M−1

k=1 Gk andψ = G̃M . Since eachG̃k ∈ C∞(T), eachGk ∈ C∞(T) as well,
soφ = ∏M−1

k=1 Gk ∈ C∞(T). Furthermore,{φ̂(n)} ∈ l1 ∩ lq becauseφ ∈ C∞(T) implies
thatφ and all of its derivatives are inL1(T); we haveφ̂(n) = o(n−k) asn → ∞ for each
k ∈ Z+. We are now able to apply Lemma 2 in [9] to the functionsφ andψ : choose3M
such that ∥∥∥φ̂ψ3M∥∥∥

q
≤ eεM−1

∥∥∥φ̂∥∥∥
q

∥∥∥ψ̂3M∥∥∥
q
.

Then ∥∥∥∥∥
(
M∏
k=1

Gk

)
ˆ
∥∥∥∥∥
q

≤ exp

(
M−1∑
k=1

εk

)
M∏
k=1

∥∥Ĝk∥∥q .
Let En = (Ẽn)3n and letFn(x) = F̃n(3nx). ThenEn supportsGn andFn is

identically 1 onEn. Also, ‖Fn‖s′n = ‖F̃n‖s′n < εn and log‖Gn‖q = log‖G̃n‖q < εn.
SetE = ∩∞

k=1Ek. The setE is a set ofls-uniqueness for alls < q. Suppose that
µ is a distribution supported onE such that{µ̂(m)} ∈ lsn for somesn < q. Since
sn < sn+1 < . . . < q, we have‖µ̂‖q ≤ . . . ≤ ‖µ̂‖sn+1 ≤ ‖µ̂‖sn . The distributionµ is
supported onEn for all n andFn is 1 onEn, soµ = µFn and∣∣µ̂(m)∣∣ ≤ ∥∥µ̂∥∥1 = ∥∥µ̂Fn∥∥1 = ∥∥µ̂ ∗ F̂n

∥∥
1 ≤ ∥∥µ̂∥∥

sn

∥∥F̂n∥∥s′n ≤ ∥∥µ̂∥∥
sn
εn . (4.1)

Since{‖µ̂‖sn} is a non-increasing sequence andεn → 0 asn → ∞, |µ̂(m)| = 0 for each
m.

The setE is also a set oflq -multiplicity. Let gN(x) = ∏N
k=1Gk(x). We have chosen

{εn} andGn such that for eachN ∈ Z+,

‖ĝN‖q ≤ exp

(
N−1∑
k=1

εk

)
N∏
k=1

‖Gk‖q ≤ e . (4.2)

The sequences{ĝN (n)} live inside the closed ball, radiuse, in lq(Z). Becauselq is separa-
ble, {ĝN (n)} has a weak limit point{g(n)}. We can choose a subsequence{ĝNk (n)} such
that limk→∞〈ĝNk , ψ〉 = 〈g,ψ〉 for eachψ ∈ lq

′
by [16, Theorem 11.29]. Letφ be the

distribution onT defined byφ̂(n) = g(n). First, the distributionφ is nontrivial since

φ̂(0) = g(0) ≥ 1 − 2
∞∑
n=1

εn > 0 . (4.3)

Second, the support ofφ is contained inE. Letψ ∈ C∞
c (E

c) with supportK, and letU
be an open set containingE which is disjoint fromK. We haveE ⊂ . . . ⊂ ENk+1 ⊂ ENk .
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Choosek0 such that for allk > k0, ENk ⊂ U . Then fork > k0, 〈gNk , ψ〉 = 0 because
K ∩ ENk = ∅. But

0 = lim
k→∞〈gNk , ψ〉 = lim

k→∞

〈
ĝNk , ψ̂

〉
=
〈
g, ψ̂

〉
= 〈
ǧ, ψ

〉 = 〈φ,ψ〉 , (4.4)

which implies that the support ofφ is contained inE.

We now show that the sets of uniqueness and multiplicity in Theorem 7 are also sets
of uniqueness and multiplicity forLq(R) and vice versa.

Theorem 8.
If K ⊂ [0,1) is a set of uniqueness forlq(Z) for someq ∈ (1,2), thenK is a set of

uniqueness forLq(R).

Proof. Fix q ∈ (1,2). Let D be a distribution onR whose support isK and let
F(t) = 〈D, e2πixt 〉. The functionF(t) is the Fourier transform ofD. We want to show that
if F ∈ Lq(R), thenF = 0. Setdn = ∫ n+1

n
F (t) dt . We have

∑∞
n=−∞ dn = ∫

R
F(t) dt .

We will show that the sequence{dn} is the set of Fourier coefficients for a distribution on
T whose support isK. We can switch the order of integration and the application of the
distributionD becauseD can be interchanged with Riemann sums, and the Riemann sums
for

∫ n+1
n

e2πixt dt converge uniformly to
∫ n+1
n

e2πixt dt . We have

dn =
∫ n+1

n

〈
D, e2πixt

〉
dt =

〈
D,

∫ n+1

n

e2πixt dt

〉
= e2πix − 1

2πix

〈
D, e2πinx

〉
; (4.5)

this calculation tells us thatdn is thenth Fourier coefficient of the distribution onT defined
by

D̃ = e2πix − 1

2πix
D . (4.6)

The support of̃D is the same as the support ofD becausee
2πix−1
2πix has a removable singular-

ity atx = 0. There are no other zeros or singularities ine2πix−1
2πix . At x = 0, e

2πix−1
2πix = 1. By

Katznelson’s theorem [12], if the Fourier coefficients{dn} are inlq , thenD̃ = 0. Hölder’s
inequality allows us to conclude that

| dn |q ≤
∫ n+1

n

|F(t)|qdt , (4.7)

and summing overZ yields ∑
n

| dn |q = ‖F‖qq < ∞ . (4.8)

The sequence{dn} ∈ lq , soD̃ = D = 0.

Theorem 9.
SupposeK ⊂ (0,1) is a compact set which is a set ofLq -uniqueness. ThenK is also

a set oflq -uniqueness.

Part of the idea for this proof came from Mantero, who extends Katznelson’s and
Hirschman’s construction to locally compact groups [14].
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Proof. Let P ∈ C∞(R), supp(P ) ⊂ [0,1], P(x) > 0, x ∈ (0,1), and letP be real-
valued. SupposeD is a distribution supported onK such that{D̂(n)} ∈ lq(Z). Because
the functionP is smooth and compactly supported,P is slowly increasing onR (P and all
of its derivatives are bounded onR). As a result, the productDP is a distribution onR as
well as a distribution onT. The Fourier transform ofDP is given by〈DP, e−2πiξx〉. We
have 〈

DP, e−2πiξx
〉
=
∑
n∈Z

D̂(n)
(
Pe2πiξx

) ˆ(n) (4.9)

and (
Pe2πiξx

) ˆ(n) =
∫
P(x)e−2πi(ξ−n)dx = P̂ (ξ − n) , (4.10)

so

(DP )ˆ(ξ) =
∑
n∈Z

D̂(n)P̂ (ξ − n) . (4.11)

We want to show that(DP )ˆ ∈ Lq(R); the iterated integral∥∥(DP )ˆ∥∥
Lq(R)

≤
∫ ∑

n

∣∣∣D̂(n)P̂ (ξ − n)

∣∣∣q dξ =
∑
n

∣∣∣D̂(n)∣∣∣q ∫ ∣∣∣P̂ (ξ − n)

∣∣∣q dξ, (4.12)

is finite sinceP ∈ S(R) and
∑
n |D̂(n)|q are both finite. The setK contains the support

of the distributionDP . Let U be an open set onR which does not intersectK, and let
φ ∈ C∞

c (U). Then supp(Pφ) = [0,1] ∩ supp(φ). The functionPφ can be considered an
element ofC∞(T) because supp(Pφ) ⊂ [0,1] andP(0) = P(1) = 0. Since supp(Pφ) is
compact and disjoint fromK in T, there is an open setV containing supp(Pφ) which is
also disjoint fromK. ThenPφ ∈ C∞

c (V ), and〈DP, φ〉 = 〈D,Pφ〉 = 0.

Lemma 4.
Supposef ∈ L1(R) ∩ Lp(R), 2 ≤ p < ∞ and g ∈ Lq(R), 1 < q ≤ 2, where

1
p

+ 1
q

= 1. Thenf̂ ∗ g = f̂ ĝ in Lp(R).

Proof. Sincef ∈ L1 andg ∈ Lq , f ∗ g ∈ Lq by Young’s inequality. By Riesz–Thorin
interpolation,f̂ ∗ g ∈ Lp. The productf̂ ĝ ∈ Lp as well. Choose a sequencegn ∈ L1∩Lq
such that‖g− gn‖q → 0 asn → ∞. Since the Fourier transform is a continuous mapping
fromLq toLp, ‖ĝ − ĝn‖p → 0 asn → ∞.

Consider the sequencef ∗ gn. We have

‖f ∗ gn − f ∗ g‖q = ‖f ∗ (gn − g)‖q ≤ ‖f ‖1‖gn − g‖q → 0 (4.13)

asn → ∞. As a result,f ∗ gn → f ∗ g in Lq , which in turn implies that̂f ∗ gn → f̂ ∗ g
in Lp by the continuity of the Fourier transform. Sincef ∈ L1 andgn ∈ L1 for all n,
f̂ ∗ gn = f̂ ĝn. Finally,gn → g in Lq implies ĝn → ĝ in Lp. We have

f̂ ∗ gn → f̂ ∗ g and f̂ ∗ gn = f̂ ĝn → f̂ ĝ (4.14)

so f̂ ∗ g = f̂ ĝ.

We note that the sets in Theorem 7 are contained within the open interval(0,1)when
T is viewed as a subset ofR.
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Theorem 10.
Letp > 2. There existsf ∈ S(R) such thatf is cyclic inLr(R) for all r > p and

such thatf is not cyclic inLr(R), r ≤ p.

Proof. Fix p > 2; then the conjugate exponentq ∈ (1,2). By Theorem 7, there exists
E ⊂ T which is a set ofls-uniqueness for alls < q and which is a set oflq -multiplicity.
By Theorems 8 and 9,E is a set of uniqueness forLs(R) for all s < q andE is a set of
multiplicity for Lq(R). By Lemma 1 choosef ∈ S(R) such thatZ(f ) = E. Thenf is
cyclic in Lr(R) for all r > p, andf is not cyclic inLp(R). Suppose there existšg ∈ Ls
such thatf ∗ ǧ = 0. Apply Lemma 4 to the functionsf andǧ: (f ∗ ǧ)ˆ = f̂ g = 0 inLr .
This means thatg ∈ Lr must be supported in the zero set off̂ , which isE. But ǧ ∈ Ls and
E is a set ofLs-uniqueness, sog = 0. To see thatf is not cyclic inLp(R), consider the
distributionDP ∈ Lq(R) supported inE in Theorem 9. Then(f ∗ (DP )ˇ)ˆ = f̂ DP = 0
even thoughDP 6= 0.

4.2 Functions SpanningLr(R), r ≥ p, but not Lr(R), r < p

This case is handled in the way as in the casep ∈ (1,2), but we use the machinery
of the previous section.

Theorem 11.
Letp > 2. There exists a functionf ∈ S such thatf is cyclic inLr(R), r ≥ p and

such thatf is not cyclic inLr(R), r < p.

Proof. Choose{pm}, an increasing sequence with limitp. Letqm be the index conjugate
topm. Use the results of Section 4.1 to select compact setsEm ⊂ ( 1

m+1,
1
m
) such that each

Em is a set ofLs(R)-uniqueness for anys < qm and is also a set ofLqm(R)-multiplicity.

Again, letE = {0} ∪
∞⋃
m=1

Em. The arguments in Section 3.2 show thatE is a set ofLs(R)-

uniqueness for anys ≤ q and is a set ofLs(R)-multiplicity for any s > q. Hence, if we
select a functionf ∈ S whose Fourier transform hasE as the zero set, thenf will be cyclic
in Lr(R) for all r ≥ p and is not cyclic inLr(R) for anyr < p.

5. Concluding Remarks

The question of whether a function spansLp(R) is closely connected to the theory
of translation-invariant subspaces. We have examined translation-invariant subspaces gen-
erated by a single Schwartz-class function. In general, translation-invariant subspaces are
not always singly generated; in 1973 and 1975, Atzmon showed that there are translation-
invariant subspaces ofLp(R) which are not generated by a single function for 1≤ p < 2
[2] and [3].

The construction of a cyclic or non-cyclic functionf boils down to constructing a
distributionD whose support can “hide” inZ(f ) and proving that some version of the
formula(f ∗ Ď) ˆ = f̂ D is correct. In general, even ifZ(f ) supports a distributionD, it is
not always the case that supp(D) ⊆ Z(f ) implies thatf ∗Ď = 0 (see [6, p. 231–232]). The
study of spectral synthesis properties of sets helps settle this question; the implication does
hold if we know thatD is a pseudomeasure and supp(D) is a set of spectral synthesis. For
example, Wiener’s original theorem about cyclic functions inL1(R)—thatf̂ never vanishes
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if and only if f spansL1(R)—can be rephrased in the language of spectral synthesis by
stating that the empty set is a set of spectral synthesis. See [4] and [15] for more details.
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