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ABSTRACT. Functions whose translates sp&qR) are calledL?-cyclic functions. For a fixed
p € [1, 00), we construct Schwartz-class functions which Afecyclic forr > p and notL”-
cyclic forr < p. We then construct Schwartz-class functions whichZareyclic forr > p and
not L"-cyclic forr < p. The constructions differ fgp € (1,2) andp > 2.

1. Introduction

Functions whose translates spafh(R) are called.”-cyclic functions. Equivalently,
f € LP(R) is cyclic if and only if the onlyg € L9(R) such thatf x g = 0isg =0
(p andg are conjugate exponents). In the 1920s and 1930s, Wiener proved two classic
results about cyclic functions ih'(R) andL?(R) [19]. If f € L1(R), thenf is cyclic in
LY(R) if and only if the Fourier transforny is never zero, and if € L2(R), then f is
cyclic in L2(R) if and only if £ is zero only on a set of Lebesgue measure zero. Wiener's
theorems make it possible to characterize cyclic functions completelyfod andp = 2;
however, no complete characterization exists £ércyclic functions when 1< p < 2
andp > 2. Attempts at classifyind.”-cyclic functions have been made throughout the
twentieth century; the work of Bary, Segal, Beurling, Salem, Kahane, Herz, Edwards, and
many others has touched on this problem. The partial classifications which exist involve
zero sets of Fourier transforms. In fact, a complete characterization of cyclic functions
in terms of Fourier transforms may not be possible, since even defining the zero set of a
Fourier transform is a delicate task when a function is natifR). However, when the
zero set is well-defined, the critical issue is whether a zero set can support a distribution
whose Fourier transform belongstd (R), whereg is the conjugate index tp. Different
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names are given to zero sets which cannot support distributions with this property: sets of
type U1, g-thin setsg-negligible sets, and sets 6f -uniqueness.

If f € LP(R)NL"(R), where 1< p < r < oo and f is LP-cyclic, thenf is
L"-cyclic. See [7] and [5] for two different approaches. A natural first question to ask
in response to this feature of cyclic functions is if it is possible to construct a function in
L1(R) N L*(R) which is not cyclic inL” (R) for r < p but cyclicinL” (R) forr > p. We
answer the first question (Theorem 3) and then show that one of the strict inequalities can
always be replaced with or > (Theorems 4, 6, 10, and 11).

2. Useful Constructions and Definitions
2.1 Smooth Functions with Specified Zero Sets

We construct functions in the Schwartz class which areaelpon specified compact
sets.

Lemma 1.
Let K C R be a compact set. There exigise S(R) such thaty (x) = 0 for all
x € K and¢(x) > Oforall x € R\K.

Proof. Letk; = min{x : x € K} and letk; = max{x : x € K} and letU denote the
complement ofK in [k1, k2]. SinceU is open,U is a countable disjoint union of open
intervals. For each € Z™*, there are only finitely many intervals h with length greater
than ¥/ n. Order these intervals by non-increasing lendfh} > |7,+1].

If I = (a, b), definef(x) by

e~ YA=2) ¢ (a,b)

0 x & (a,b) (2.1)

f(x)=!

whereg(x) = 2<"‘+’2“‘)/Z>. Thenf € S(R) and the support of and all its derivatives
is the closed intervdla, b]. Folland constructs this function dr-1, 1] [8, p. 228-230];

the dilation and translation shift the supporfta »]. Set

Sd.k = Sup fk(d)(x) and ¢ = Max sgk,
xely d.k<n

and define functions

fi=k 6 e n=) fi and ¢ = lm ¢,. (2.2)
k=1
For a fixedn,
oo n 1
sup [¢(x) — ¢n(x)| = sup fix) =) filx) | = ; (2.3)
xeC xeC k2=:l k2=:1 ‘ n+1
which implies thatp, — ¢ uniformly. Ford < n, we have
o0 oo 1
sup > P — | =sup | Y O <= (2.4)
xeC |11 xeC 250 n
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because we have bounded the fjrderivatives off; by 1. Thedth derivativep® therefore
exists and equals the sum of tith derivatives by [1, Theorem 9.13].
Defineg by

e~ V(—x—kn) p=(r—k? o

8() = 1600 * € [k ke @9
e~V —k) p=(x—k2)® o

Theng = O precisely ork, andg € S(R) because the functiors/(—*—*1 ande—1/(x—k2)
are bounded by 1. []

2.2 Distributions and Their Supports

We work with distributions whenever we take the Fourier transform of a function
f e L?, p> 2. Asaresult, we state some basic facts about distributio® which we
will use later.

The support of a measuteis the complement of the union of altnull sets. This
definition agrees with the following definition of the support of a distribution.

Definition 1. The closed seK is the support of the distributio® provided that for
every open sel/ such thal/ N K = @ and for every compactly supported smooth function
¢ such that sup@) c U, D(¢) = 0.

Borel measures provide examples of distributions; another class of distributions we
will use is the class of pseudo-measures. Pseudo-measures are obtained by taking Fourier
transforms of bounded functions. Animportant property of pseudo-measures and measures
is the following.

Lemma 2 ([11)]).
Suppose is a pseudo-measure antle L1. Then

supp( /) < supp( /) N supv)
3. Cyeclic Functions in L?(R), p € (1, 2)
3.1 Functions SpanningL” (R), r > p, butnot L"(R), r < p

Becausel 1(R)-cyclic functions must have Fourier transforms which never vanish
and L2(R)-cyclic functions can have Fourier transforms which vanish on sets of measure
zero, we need a way to compare sizes of sets, all of which have Lebesgue measure zero.
Supposef € S(R). Sincef has a continuous Fourier transform, the closedZegt) =
(& : f(g) = 0} is well-defined. If, for examplef € L2, the zero set of would be defined
up to a set of measure zero, which is too “big” for what we are about to do.

Theorem 1 (Beurling, p. 154, [5]).
If for somep € (1, 2) the linear span of translates gf is not dense irL.” (R), then
the Hausdorff dimension &( f), dimgy (Z(f)), is at least2 — %
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Stated another way, i € (1, 2) and dimg (Z(f)) < 2 — %, then f is cyclic in LP(R).
Beurling’s proof shows that iK is compact and dim(K) = «, thenK cannot support a
distribution D with D € L9 for anyq < 2/«. See [6] for more details. We also use the
following theorem of Salem.

Theorem 2 (Theorems 1 and 4, [17]).
Suppose € (0, 1) ande > 0.

1. There exists a measupewhose supporE,, is a perfect set witke = dimgy (E,,)
andp e LI(R) forall g > 2 + .

2. There exists a measurewhose suppork, is a perfect set witle = dimg (E))
andd € LI(R) forall ¢ > 2.

Lemma 3.

Supposey € (1, 2), u is a measure whose suppdit, is a perfect set witllimg
(Ep)=2— %, andp € LY9(R) for all ¢ > p’. Supposef € S(R) and Z(f) = E,. Then
fis not cyclic inL" (R) for » < p and f is cyclicinL"(R) for r > p.

Proof.  We first show thaif is not cyclic inL" (R) for r < p. Consider the convolution
f = [ Atthe outset, the only thing we can say about this convolution isfthat € L7(R),
whereqg > p’. A Fubini—Tonelli argument shows that

i) = / F@e ™ dur), (3.1)

so that the convolutionf * 1 is the inverse Fourier transform of the bounded Borel measure
f,lL. The total variation offu is zero, so the convolutiorf * (& is zero. Thereforep

is orthogonal to all translates gf, and the functionf cannot be cyclic inL” (R) for any

r < p. On the other hand, by Theorem L must be cyclic inL" (R) for » > p since the
Hausdorff dimension of ( f), 2 — %, is strictly less than 2- 2. [

Theorem 3.
Letp € (1, 2). There exists a functiofi € S(R) which is cyclic inL” (R) forr > p
and which is not cyclic il.” (R) for r < p.

Proof. Leta =2— 2 andletk = E, be a compact set with Hausdorff dimension
a which supports the measuge Apply Lemma 1 to construct € S(R) which is zero
precisely onK. By Lemma 3, the inverse Fourier transfogiv’ris an example of a function
which is cyclic inL" (R) for r > p and which is not cyclic in.” (R) for r < p. L]

3.2 Functions SpanningL”(R), r > p, butnot L"(R), r < p

Salem’s results do not immediately address what happens at the criticalog;nd’é»e
next construction will allow us to build a set which cannot support a pseudo-measure whose
Fourier transform is ifl. & (R).

Choosex € (0,1). Choos€la,,}, a sequence inf0, 1), with eachw,,;, < ap41 < «
andmirr;o a, = a. For eachy,, use Salem’s method to construct a compactietc

(37, 1) so that dimy (E,) = e, and such thak,, supports a non-zero positive regular

o0
Borel measureu,, such thati,, € L* for all s > % LetE = {OJU U En. The set

m=1
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E is compact by construction. Clearly, difdE) > «,, for allm > 1 and dimy (E) = «
because meas, (E,,), the Hausdorff measure of orderis O for allm > 1.

For anys > £, we haves > Z for sufficiently largem. Hence,E,, and thusE
contains the support of a non-zero pseudo-measure whose Fourier tragséami.® (R).

On the other handt cannot support a pseudo-measure whose Fourier transforni.fs.in
Indeed, supposg € Lf(R) N L*°(R) andg is supported irnE. Take a functionf,, € S,
such tha@ =10nE, and@ = 0OnE\E,,. Theng x v, isin Lg(R) N L*°(R) too
and by Lemma 2, its Fourier transform is supportedgn Butg vy, € Lé. By the proof

of Beurling’s theoremE,, cannot support a distribution with Fourier transformiif for
anyq < % Since2 < 2, g% ¥, = 0. It follows that the support of is contained in

Um
E\E,,. Since this is true for alk, the support of is contained if0}. Butg < Lg(R), o]
g=0.

Theorem 4.

Letp € (1, 2) and lete = 2 — 2, so that? is the conjugate index tp. There exists
f € S(R) such thatf is cyclic in L"(R), »r > p and such thatf is not cyclic inL" (R),
r < p.

Proof. Let E be the compact set Hausdorff dimensiononstructed above. Lgt € S

be a function such that the zero setﬁj[s E. Because of the support propertiessbabove,

fis cyclicin L"(R) for all » > p. Indeed, fixr > p and lets be conjugate t@. Then

s < 2. Letg e L°(R) with f x g = 0. Let € S be arbitrary. We havg * g + ¢ = 0.
Sinceg x ¢ € L"(R) N L*°(R) too, g * ¢ has a Fourier transform which is a non-zero
pseudo-measure supportedriby Lemma 2. But then the result abdutabove shows that

g = ¢ = 0. Sinceg is arbitrary, this meang = 0. Hence,f is cyclic in L" (R) for any

r > p. On the other handf is not cyclic inL" (R) for anyr < p. Lets be the conjugate
index tor; thens > 5 Hence E contains the support of a non-zero pseudo-measure whose

Fourier transform is irL.* (R). Therefore f cannot be cyclic irL.” (R) since f vanishes on
E. L]

3.3 Functions SpanningL”(R), r > p, butnot L"(R), r < p

In the previous section, we constructed sets with Hausdorff dimensiamich can-

. 2, . .
not support a pseudo-measure whose Fourier transformliis {{iR). In this section, we
describe a class of sets with Hausdorff dimensiavhich support measures whose Fourier

transforms are img(R). The constructions here depend on results of Kahane. We thank
Robert Kaufman for showing us how to use these results.

We note that Salem himself seemed to be attempting to prove Theorem 2 in the case
q = 5; however, with his probabilistic techniques he was only able to show thaisf

a measure supported dhwhere dimy (E) = «, thenj decays likeQ (x)x~% whereQ
grows slower than any polynomial.

LetW denote a Wiener process i) 1] and letW (E) denote the image df C [0, 1]
under the proces®. In other wordsW (E) is the set of all images af under each¥ in
the sample space &7. We letW (E) denote one of these images.

Suppose dig(E) = o < % By [10, Theorem 2, p. 236], the image Bfunder the
Wiener processW(E), will almost surely have Hausdorff dimension.2If E supports a
measure® with certain growth properties depending on a concave funétjaghenW (E)
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almost surely supports a measuvéd) such that the growth dV@) is controlled by: as
well [10, Lemmas 3 and 4, p. 255]. This measure- W(0), called a random measure, is
formally defined by

1
/Rf(X)dM(X) =/0 JW())do(r) . 3.2)

With this definition, the Fourier transform of a measpurassociated with one sample path
W) is

1
A = / ¢2HE () = / 2TV O 4o (1)
0
Kahane shows
) =0 ( Iog|§|h(|§|—2)>

wherer is a positive concave functionon E such thatE has non-zer@-measure and
supports a measufesuch that (|7]) < Ch(|I|) for each interval C [0, 1].

As a result, we want to find a functignwhich is of the same order as the functign
where

g(x) = sup O(u,u+x), (3.3)
O<u<oo

because it is not hard to show that theneasure off is positive. We also look for a set
E C [0, 1] and a measurg supported orE which satisfies the inequalit(|I]) < Ch(|I|)

for each intervall C [0, 1]. Also, /log|&|h(|€|~2) must be inLg(R). It is possible to
satisfy all these conditions using a symmetric CantoEsedome of the ideas for this proof
arein [13].

Theorem 5.
There exists aséi C R such thatdimg (F) = « and such thaF supports a measure

pwith i € L% (R).

Proof. Let E c [0, 1] be a symmetric set of measure zero andl&e the standard
Lebesgue—Stielties measure Bn Suppose we have a function concave functiosuch

that theh-measure of is non-zero. Le = W(#). Thenj € Lg(R) provided that
h) =0 (x*2log 1 (x 1)) as x — 0. (3.4)
Set
h(x) = x/2 Ingzo‘*l (xil) . (3.5)

Thenk is concave for small enough positive values off he construction of is controlled
by the ratios of dissectiofi, &2, ... where eacl, < 1/2. We want to choosg, such that

h(r-... &) =0(2") asn — oco. We look for a formula fog,, so that
(E1-... &)%2log221 ((gl N gn)—l)) =0(2™") asn— . (3.6)
Since it will be hard to work withg; - ... - &, in both factors, we make the estimate

log(&r - ... &)~ = O(n). Equation (3.6) is valid when

2
1 o (20(+1)
> . 3.7)

n

£, =24 (1+
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With this choice ot,,, dimy (E) = 5 andh andg are of the same order. Létbe the image

of E under the Wiener proced¥ and letu = W(9). Thendiny F = ¢ andj1 € Lé.
L]

As aresult, we can state the following theorem.

Theorem 6.

Letp € (1,2) and letw =2 — % so that the index conjugate ois 5 There exists
f € S(R) such thatf is cyclic inL"(R) for r > p and such thatf is not cyclic inL" (R)
forr < p.

Proof. Chooser with Hausdorff dimensio such thatF supports a random measure
with Fourier transform irLg and letF = Z(f). L]

4. Cyeclic functions in L?(R), p € (2, 00)

In this section, we modify a theorem of Katznelson and Hirschman about sets of
uniqueness and multiplicity for the circlB. We prove that these same sets are sets of
uniqueness or multiplicity foL?(R), ¢ € (1, 2). We will then obtain theorems analogous
to Theorems 4 and 6 fgr > 2.

4.1 Functions SpanningL” (R), r > p, butnot L"(R),r < p

We say that a set’ C T is a set of-uniqueness provided that#} is a distribution
supported ork and{D(n)} € 19(Z), thenD = 0. Otherwise, the set is called a set of
[9-multiplicity. Similarly, we say that the séf C R is a set ofL7-uniqueness provided
that if D is a distribution supported of andD € L4(R), thenD = 0. Otherwise, the
setE is called a set of.Z-multiplicity. In 1964, Katznelson proved that there exist sets
of positive Lebesgue measure which are set¥ afniqueness for aly € (1, 2) [12]. In
1965, Katznelson and Hirschman proved thatfar € (1, 2) with s < ¢, there exist sets of
positive measure which are setg6liniqueness and-multiplicity [9, Theorems 3 and 5]).

Theorem 7.

Letg € (1,2). There exists a sef of positive measure il which is a set of
I*-unigueness for alt < g and a set of/?-multiplicity.

Proof. Choose sequencgs,} and{e,} such that, < s,+1,s, — ¢, and) e, < 1/2.
For each:, choose a closed sét, c T and functionsF,, G, € C*®(T) such that&,, F,,
andG,, satisfy Theorems 4 and 5 in [9] with= ¢, andg = ¢,. We must dilate these sets
and functions further. We show that there exists a sequehgg? ; of positive integers
such that for eaclv € ZT,

(f1e:)

whereGy(x) = Gi(Agx).

N

N-1
< eXp<Z 8k>
k=1 k

1G],
1

q
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Suppose thah 1, Ao, ..., Ay —1 have been chosen so that

16162, = exaen |Gal, |G,

M-1
k=1

Lety = [[V5' Gy andy = Gy Since eaclG; e C*(T), eachGy € C(T) as well,

S0¢ = ]'[,’{”;1l Gy € C(T). Furthermore{¢(n)} € I* N 19 because € C>(T) implies

that¢ and all of its derivatives are ibX(T); we havep(n) = o(n*) asn — oo for each
k € Z*. We are now able to apply Lemma 2 in [9] to the functignand: chooseA y,
7], e
q

such that
M
k=1

Let E, = (E,)a, and letF,(x) = F,(A,x). ThenE, supportsG, andF, is
identically 1 onE,. Also, ||F,ll; = ||I7"n||s’/1 < & and log|G,ll; = 10g(|G,lly; < &n
SetE = NZ2,E;. The setkE is a set of/*-uniqueness for alk < g. Suppose that
wu is a distribution supported ot such that{i(m)} € I for somes, < ¢g. Since
Sp < Spg1 < ... < q,wehavelilly < ... < i,y < llitls,. The distributionu is
supported orE, for alln andF,, is 1 onE,, sou = uF, and

M-2 M-1 .
5exp<z sk> [ |Gl -
k=1

k=1

q

o, o,

Then

M-1 M .
< exp(Z sk> l_[ ||Gk||q .
k=1

q k=1

o~

Fy

A

jaom| < [l = [l = 2= Bl < |

Sn Sn

Since{||i|ls,} is a non-increasing sequence and— 0 asn — oo, |i(m)| = 0 for each
m.

The setE is also a set of?-multiplicity. Let gy (x) = ]_[,’(V=1 G (x). We have chosen
{ex} andG,, such that for eacV € Z T,

N-1 N
Ignlly < exp(Z 5k> [T1Gklg <e. (4.2)

k=1 k=1

The sequencegy (n)} live inside the closed ball, radivsin 19(Z). Becausd is separa-
ble, {gn (n)} has a weak limit poinfg(n)}. We can choose a subsequerigg, (n)} such

that limy_ o (2n;» ¥) = (g, ¥) for eachy e 19' by [16, Theorem 11.29]. Lep be the
distribution onT defined byg(n) = g(n). First, the distribution is nontrivial since

$0) =g(0) >1-2» & >0. (4.3)
n=1

Second, the support gf is contained inE. Lety e C°(E€) with supportK, and letU
be an open set containirigwhich is disjoint fromk. We haveE C ... C Ey, ., C Ey;.
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Chooseékg such that for alk > ko, Ey, C U. Then fork > ko, (gn,, ¥) = 0 because
KNEN =9. But

0= lim (e ¥) = lim (g5 0) = (0. 9) = (&)= (0.9).  (44)
which implies that the support @f is contained int. L]

We now show that the sets of uniqueness and multiplicity in Theorem 7 are also sets
of uniqueness and multiplicity fat? (R) and vice versa.

Theorem 8.
If K C [0, 1) is a set of uniqueness fét(Z) for someg € (1, 2), thenkK is a set of
unigueness foL?(R).

Proof. Fix ¢ € (1,2). Let D be a distribution orR whose support iX and let

F(t) = (D, ¢%"*1y. The functionF () is the Fourier transform ab. We want to show that

if F e L1(R), thenF = 0. Setd, = :H F(t)dt. We have) 2 d, = [, F(1)dt.

We will show that the sequendé, } is the set of Fourier coefficients for a distribution on

T whose support iK. We can switch the order of integration and the application of the
distribution D becauseéD can be interchanged with Riemann sums, and the Riemann sums
for ["**¢2mixt4; converge uniformly to" ™t e27ix 1. We have

n+1 . n+1 ) 62711')6 -1 .
d, =/ (D,eZ”'“)dz: D,/ N gr ) = —,<D,32”””‘>; (4.5)
n n 2mix

this calculation tells us tha}, is thenth Fourier coefficient of the distribution dhdefined
by
eZﬂix -1

D= (4.6)

2mwix

The support oD is the same as the supportloibecausee— has a removable singular-

2mix _
ity atx = 0. There are no other zeros or smgulantleé—iﬁ— Atx =0,%—= 27nx =1. By
Katznelson’s theorem [12], if the Fourier coefficiefds} are inl?, thenD = 0. Holder's
inequality allows us to conclude that

n+1
dy |9 < / \F(o\dr | 4.7)
n

and summing over yields

Z|dn 9 =F|§ < oo. (4.8)

The sequencgi,} € 14, soD = D = 0. O

Theorem 9.
Suppos& C (0, 1) is a compact set which is a setbf-uniqueness. Thek is also
a set of/9-uniqueness.

Part of the idea for this proof came from Mantero, who extends Katznelson’s and
Hirschman'’s construction to locally compact groups [14].
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Proof. LetP € C®(R), supgP) C [0, 1], P(x) > 0,x € (0, 1), and letP be real-
valued. Suppos® is a distribution supported ok such that{ D(n)} € 1(Z). Because
the functionP is smooth and compactly supporterljs slowly increasing ofiR (P and all

of its derivatives are bounded @). As a result, the produdd P is a distribution orR as

well as a distribution off. The Fourier transform ab P is given by(D P, e=27i6¥) We

have

<DP, e—zf”'f"> =3 D) (PeZmiEr) *(n) (4.9)
nez
and
(Pe2misx) *(n) = / P(x)e ZEM gy = Pg —n), (4.10)
SO
(DP) (€)=Y Dm)PE—n). (4.11)
nez

We want to show thatD P)” € L4(R); the iterated integral
IO e = [ S [ppe —m|'de =3 [bon]" [|pe-n[ @t @12)

is finite sinceP € S(R) and)_, |D(n)|4 are both finite. The sek contains the support
of the distributionD P. Let U be an open set oR which does not intersed{, and let
¢ € CX(U). Then suppP¢) = [0, 1] N supf¢). The functionP¢ can be considered an
element ofC*°(T) because sufP¢) C [0, 1] andP(0) = P(1) = 0. Since supfPo) is
compact and disjoint fronk in T, there is an open sét containing supfP¢) which is
also disjoint fromK. ThenP¢ € C°(V), and(DP, ¢) = (D, P¢) = 0. L]

Lemma 4.
Supposef € LYR)NLP(R),2 < p < ocandg € LI(R), 1 < g < 2, where

2+2-1 Thenf * g = f2in LP(R).

Proof. Sincef e L'andg € L, f x g € L9 by Young’s inequality. By Riesz—Thorin
interpolation,m € L?. The productfg € L? aswell. Choose a sequengee LNLY
such that|g — g,ll; — 0 asn — oo. Since the Fourier transform is a continuous mapping
fromL9to L?, ||g — gull, — O asn — oo.

Consider the sequengex g,. We have

If*gn—fxgllg=1If*@n—&lg =Ifl1llgn —gllg > O (4.13)

—

asn — oo. Asaresultf x g, — f *gin L7, which in turn implies tham, — fx*xg
in LP by the continuity of the Fourier transform. Singee L! andg, < L for all n,
f % gn = f&n. Finally, g, — gin L% impliesg, — & in L”. We have

—_—

Fxgn—fxg and  fxgy=fé.— f8 (4.14)
sofxg=Ffg. [

We note that the sets in Theorem 7 are contained within the open inenialwhen
T is viewed as a subset &.
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Theorem 10.
Letp > 2. There existy € S(R) such thatf is cyclic inL"(R) for all » > p and
such thatf is not cyclic inL" (R), r < p.

Proof. Fix p > 2; then the conjugate exponent (1, 2). By Theorem 7, there exists
E C T which is a set of*-uniqueness for al < ¢ and which is a set dff -multiplicity.
By Theorems 8 and & is a set of uniqueness fdr' (R) for all s < ¢ andE is a set of
multiplicity for L4 (R). By Lemma 1 choos¢ € S(R) such thatZ(f) = E. Thenf is
cyclicin L™ (R) for all r > p, and f is not cyclic inL?(R). Suppose there exisfse L*
such thatf x ¢ = 0. Apply Lemma 4 to the functiong andg: (f xg)" = fg=0inL".
This means that € L” must be supported in the zero setfofwhich isE. Butg € L* and
E is a set ofL*-uniqueness, sg = 0. To see thaf is not cyclic inL”(R), consider the
distributionD P € L4(R) supported ink in Theorem 9. Thelf  (DP)")" = fDP =0
even thoughD P # 0. L]

4.2 Functions SpanningL”(R), r > p, butnot L"(R), r < p

This case is handled in the way as in the case (1, 2), but we use the machinery
of the previous section.

Theorem 11.
Let p > 2. There exists a functioi € S such thatf is cyclic inL"(R), r > p and
such thatf is not cyclicinL" (R), r < p.

Proof. Choosdg p,,}, anincreasing sequence with limpit Letg,, be the index conjugate
to p,,. Use the results of Section 4.1 to select compactBgts (ﬁ’ n—ll) such that each
E,, is a set ofL* (R)-uniqueness for any < ¢,, and is also a set af?» (R)-multiplicity.

o0
Again, letE = {0}U |J E,. The arguments in Section 3.2 show tliais a set ofL* (R)-
m=1
unigueness for any < g and is a set o’ (R)-multiplicity for any s > ¢. Hence, if we
select a functiory € S whose Fourier transform hdsas the zero set, thefiwill be cyclic

in L"(R) for all » > p and is not cyclic inL" (R) for anyr < p. L]

5. Concluding Remarks

The question of whether a function spai¥é(R) is closely connected to the theory
of translation-invariant subspaces. We have examined translation-invariant subspaces gen-
erated by a single Schwartz-class function. In general, translation-invariant subspaces are
not always singly generated; in 1973 and 1975, Atzmon showed that there are translation-
invariant subspaces af” (R) which are not generated by a single function fotp < 2
[2] and [3].

The construction of a cyclic or non-cyclic functigh boils down to constructing a
distribution D whose support can “hide” i€ (f) and proving that some version of the
formula( f * D) = fD is correct. In general, even# () supports a distributio, it is
not always the case that su@p) < Z(f) impliesthatf =D = 0 (see [6, p. 231-232]). The
study of spectral synthesis properties of sets helps settle this question; the implication does
hold if we know thatD is a pseudomeasure and sgppis a set of spectral synthesis. For
example, Wiener's original theorem about cyclic functions iiR)—that / never vanishes
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if and only if f spansL1(R)—can be rephrased in the language of spectral synthesis by
stating that the empty set is a set of spectral synthesis. See [4] and [15] for more details.
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