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ABSTRACT. We present a new approach to the construction of orthonormal wavelets on the
interval which allows to overcome the “non interacting boundaries” restriction of existing con-
structions, and therefore to construct wavelets]fdrl[ also at large scales in such a way that, in

the range of validity of the existing constructions, the two approaches give the same result.

1. Introduction

One of the main limitations to the full applicability of wavelet methods for solving
partial differential equations, in a realistic general context, is the issue of non trivial geome-
tries. Lately the research in this respect has been mainly directed to the use of a domain
decomposition approach. This has been proposed in several articles in several forms (con-
forming methods [3, 4, 10, 8], non conforming methods [2]), the common features of which
is the splitting of the non trivial domain as the union of subdomains, some or all of which
are conformalimages ¢0, 1[" and can therefore be discretized by tensor product wavelets,
obtained starting from the construction of wavelet bases on the unit interval.

The use of wavelets in this context has uncovered a limitation of the existing construction
of wavelets on the interval. We recall that basically all constructions of multiresolution on
the interval, which are actually implemented, are based on suitably modifying the scaling
functions that cross the boundaries, and they work under the assumption that the modifica-
tions made at boundary 0 do not interact with the ones made at boundary 1. This reduces to
constructing the sequence of spaﬁzfé%l[ (where the parametgrcorresponds to a mesh-

size 2°/) roughly with the restrictiory > jo, the limit level jo depending on the type of
wavelet on the line which is chosen as a starting point. In dimerkithis restriction fixes
the minimum number of degrees of freedom fé& Jwhere in realistic situationgy may
assume values of the size 0f45). In one or two dimensions, in a mono domain situation,
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this is acceptable, and wavelet methods based on such construction have been successfully
implemented.
However, when we go to a domain decomposition framework in three dimensions, the
situation becomes totally unacceptable. Just to make an examplg fer5, in three
dimensions, one would be forced to use a minimum number of degrees of freedom per
subdomain equals t®2 = 215 = 32768, and this also for small subdomains!

The aim of this article is to provide a new approach to the construction of multireso-
lution on]0, 1[ which allows to weaken such restriction by constructwjﬁ’l[ for j > jAo,

with jAO <« jo (for Daubechies wavelet;,% = 0 independently of the order of the starting
multiresolution on the line). For simplicity we will restrict ourselves to the orthonormal
case, though in principle the approach we propose applies also to the biorthogonal frame-
work, clearly with the additional problem of biorthogonalization that need to be faced in
such a case.

Forj > jo(small scales), the spac@.o’l[ constructed by this new approach coincide
with the ones constructed in the previously mentioned articles. This is important, since it
is not necessary to implement everything from scratch, in the case that a code for the
latter is already available. However this approach, based on the use of discrete extension
operators acting directly on the coefficient sequences rather than on the corresponding
functions, allows easily to treat also valuesjdbr which it is not possible to decouple the
modifications for the left and right boundaries.

At large scales (smalf) the resulting spac@}o’” will coincide with the space of polyno-
mials of degreeM; (M; ~ 2/ — ¢, ¢ depending on the starting multiresolution analysis

for R). For intermediate values gf(j ~ jo — 1), the functions iy %3 will be globally
supported functions which will allow to reconstruct polynomials of the same degree as the
ones reconstructed by the original multiresolution.

2. Multiresolution on ]O, 1]
2.1 MRAon L3(R)

The starting point to build all multiresolution analyses]Onl|[ is a multiresolution
analysis orR [12, 6]. In this section we briefly recall some definitions and properties that
will be useful later on.

We assume that we are given an orthonormal, compactly supported, multiresolution
analysis{V;};cz onR, that is a sequence of closed subspaces4@R), such that the
following properties are satisfied:

i) the subspaces are nestdd: C V4 forall j;
ii) the union of the spaces is denseliA(R) and the intersection is null:

UjezV; = L2(R), NjezV; = {0};

iif)  there exists a compactly supportedaling functionp € Vo such that, denoting by
@ik = 211292 - —k), the family{p; x}xcz is an orthonormal basis fdr;.

It is well known that properties i) and iii) imply the existence of reljssuch that the
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following refinement equatioholds:

+oo
90 =2 Y hp@x —k). 1)

k=—o00

Let N be the biggest integer such thauppy| > 2N — 1. Without loss of generality, after
possibly replacing with one of its integer translates, we can assume that the support of
is “centered” around the origin:

suppy < [-N, N]
which is equivalent to saying that [6]
hy=0 for all k¢[—-N,N]. (2.2)

Equation (2.1) can then be rewritten as

N
9O =2 ) hp@x —k). (2.3)

k=—N
Let P; : L%(R) — V; denote the.2 orthogonal projection onty’;
Pif=Y_ (/ ik dX> @ik s
keZ R

and letW; = (I — P;)V;1 be the orthogonal complement Bf in V; 1.

Visa=V; & Wj, WjJ_Vj.
Itis well known thatL2(R) = @jez W;. Moreover, letting thenother wavelety € Wo C
V1 be defined as

N+1
Y =v2 Y gp@c—k  with  go=(-D*hiy, (2.4)
k=—N+1

it is well known that the sefty; x = 2//2y(2/ - —k)}xez is an orthonormal basis fdav/;. It
is easy to check that

suppy C [1/2— N,1/2+ N] . (2.5)

We make the further assumption that the spBgeof polynomials of degree less or
equal thanV is exactly reproduced by the det(- — k) }rcz; thatis, if p € Py, it holds that

)=y ( /R PX)p(x — n)dx) p(x —n). (2.6)

nez

We observe that the scalar products on the right hand side are well definegréince
LFOC(R) and the scaling functiop is compactly supported. Moreover, the sum converges
pointwise since, for alt € R, only a finite number of terms is nonzero.
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In the following we will make use of some well known properties of MRAS. In particular
we will make use of the fact that a function is a polynomial if and only if its “scaling
coefficients” constitute themselves a polynomial sequence. More precisely we recall that
if, for f € L%C(R), we denote b)g‘k’ = (f, 0k the L2(R) scalar product off with the
scaling functionp; , the following lemma holds, of which we enclose a proof for the sake

of completeness.

Lemma 1. '

If fis a polynomial then the sequen@f;’ }kez Of its scaling coefficients is a polyno-
mial of the same degree in the varialdleConversely, ip is a polynomial of degree less or
equal thanM, then the functiory = )" p(k)p;« € L%C(R) is a polynomial of the same
degree.

Proof. Let f(x) = Zﬁ:o a,x" be a polynomial of degree. Then we can write

L
fk] = Zal’l (xl’l’ (pj,k) .

n=0

By making a change of variable, and using Newton’s rule, the general(térn; ;) can
be written as

. . . y+k\"
(x",ﬁﬁj,k>=2//2/x"(p (2/x—k) dx =2 //2/( o ) p(y)dy
n
=270y (") K / Vo dy = pall)
1
i=0

wherep, (k) is a polynomial of degree. From linearity it follows that fk] = Zﬁ:o an P

(k) is a polynomial of degreg, which proves the first part of the lemma. We will prove the
second part of the lemma by induction on the degree of the polyngmiagt us suppose first

that p(k) = C; sinced ", , ¢j(x) = C',itis easy to see that(x) = > ;. p(k)@j i (x)

is a constant too, so that the thesis is true for polynomial sequences of coefficients of degree
0. Letnowp(k) = 27:01 a;k' be a polynomial of degree+ 1, withn +1 < M. Therefore

fx) = Zp(k)fﬂj,k(X) = Z ( aikl) @jk(x)+ an+12k"+l<ﬂj,k(X) .
0

keZ keZ keZ

i=

By inductive hypothesis, the first term of the above sum is a polynomial of degseehat
it is sufficient to prove tha} _, ., k”+1goj,k(x) is a polynomial of degree + 1. In order to
do that, we recall thaPy, C V; for all j € Z and that the sequence of coefficientgpadh

terms of the scaling functions is a polynomiaidf the same degree asr(l) = Z;’:& bill,
so that we can write

IOED ( b,-l") 9a(k) +bar1 Y 1" i) .
0

leZ \i= leZ

Always by using the inductive hypothesis, we can concludestitat= 3", ., (31 bil’)
¢j.1(k) is a polynomial of degree, so that);_, l"+1<p.,~,l(k) = Tlﬂ(p(k) —s(k)) isa
polynomial of degree + 1, which implies the thesis. [
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In view of (2.1), an immediate consequence of Lemma 1 is the following corollary.

Corollary 1.
If the sequencé is a polynomial of degree less or equal thahin the variablek,
then the sequendg = ), hox—; fi is a polynomial ink of the same degree.

2.2 The Classical Construction

Different ways have been proposed to adapt the multiresolution analysi| 1[)
[12,7,1,5, 9, 14, 13]. The most successful class of constructions is based on the idea of
retaining all those scaling functiogs ; such that supp; « C [0, 1], and adding suitable
linear combinations of those scaling functions which cross the left (resp. right) boundary of
the interval|0, 1[, in such a way that a polynomial reproduction property analogous to (2.6)
holds.

For the purpose of comparing such constructions with the one proposed here, let us
briefly review their main features. To fix the ideas we refer to the work by P. Monasse and
V. Perrier [13]. Forj > jo = [Iogz 4N], the vector spac&(}o’l[ is obtained as the span of
the following functions:

i) 20720227 x) 011, for k=0,...,M,
i) @k for k=N,...,2/ —N,
i)y 27/2¢#2/(x — D)oy,  for k=0,..., M,
where the edge scaling functior;v§ and <p,’jt are defined as a linear combinations of the

@jk crossing the respective boundaries (0 or 1) with suitable polynomial coefficients: for
k=0,...,M

N-1
g = > PDekx-1),
I=—N+1
N-1
i = Y Plhex -1,
I=—N+1
where Pg, e, P,fd and Pg‘, e, P,ﬁ are suitable bases for the space of polynomials of
degreeM. Theg; fork = N,...,2/ — N are the so calleihterior scaling functions
(coinciding with those scaling functions Wy whose supportis included [0, 1]), while the
<p2 and the(p,‘iIE fork =0,..., M are the so calleddge scaling functionst the boundaries

0 and 1, respectively. An easy calculation yields the following identities:

N-1

2112 (21x) = 3 P (2.7)
I=—N+1
' . JiN-1
2P (2 -D) = Y B0 (2.8)
=2 —-N+1

with Pf(x) = Pf(x — 2/).
Itis beyond the goal of this article to thoroughly review the properties of such bases,
for which we refer to the articles mentioned above.
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Remark 1. To fix the ideas we chose, as a reference, the construction proposed by [13],
where the minimum levelp = [I092 4N] has been obtained imposing that edge functions at
boundary 0 and edge functions at boundary 1 do not interact in the sense that their supports
are disjoint. We remark that other constructions (see for example [9]) reduce the lower
bound onj and can be carried out for gll> log,(2N — 1).

2.3 The New Construction

In order to construct a MRA o}9, 1[, we start again from a MRA oh?(R) verifying
the assumptions of Section 2.1. Let us for convenience introduce the ndt’éﬂ&)n

2
Ve =span< gji, keZ >Hoc®= {Zcupj,k, ck eRVkeZ} .
k

The idea is to introduce at first the subspa’(;mf those functions =, ., fkj(pjk
in V}°° whose coefficientssfkj}kez form a sequence that has polynomial behavior across
the boundaries, in the sense that there exist two polynomijialsdp, such thatf,j = p(k)

forallvaluesofk < N —1 andf,f = p, (k) for all values ofk > 2/ — N 4+ 1. Then we will

defineV®Y to be the restriction o¥’* to the unit intervaI:V}O’l[ := V¥|jo,1;- The degree

of the polynomial is set depending grin such a way that, as we Wi|]| see, the subspace is
well defined even at much larger scale thjag jo. More precisely we give the following
definition (whereM is the degree of polynomials exactly reproduced by the MRA, &nd

is the smallest integer such thauppe| > 2N — 1):

Definition.
For everyj > 0, let

Nj=2 —2N +2M +3,
Mj=min{M,Nj—1},

and set
Vi= {fZkaj(ij : 3 p,pr€Pu; st
keZ
fl=p® Vkel-coN-1], (2.9)
fl=pk) ¥ ke [2f—N+1, —I—oo[} . (2.10)

Remark 2. vV} is well defined for allj > 36, Whereja is the smallest nonnegative
such thatv; — 1 > 0, that is

jo = [logy(2(N — M) — 1)] .

We observe that, unlikg, }6 does not depend directly avi, but on the differenc&y — M;
if we consider, for example, Daubechies wavelets we héve M = 1, so that we can
ConstructV]?k for all j's such thatj > 0.
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Remark 3. The two polynomialsy; and p, in the definition ofVJ?k are not necessarily
independent; actually, defining

jo=[log(2(N — 1) — M)] , (2.11)
it is not difficult to check (see Proposition 4) that fpr< jo the two polynomials will
always coincide.

Remark 4. The parameters/; and M; will, respectively be the dimension 6f and
the degree of polynomials exactly reproducedfjth

The candidate to form a multiresolution analysis]onl[ is the sequence of spaces
V]?k lo.11 € L2(]0, 1[). The nestedness property will be atrivial consequence of the following
proposition.

Proposition 1.

The sequenc{avf} ~ satisfies

Jj=Jo
* * : -~
Vi Vi forall j > jo.

Proof. Letf e V* =X fkj@j,k. Using Equation (2.3) we obtain that

i+1
f= ka] Qitlk >
k
where the sequenqq,fﬂ}k satisfies

i1 1 ;
fk]+ = _th—ann :
V24

We can restrict the above sum to those values sfich thati;_», # O, that is, by the
property (2.2), to: such thatk — N)/2 < n < (k+ N)/2; we now observe that< N —1
implies thatn < N — 1, and then, by the definition Of]?“, we have that

fevi=  fi=p Yn=N-1,

with p; € Pu;. Using Corollary 1 it results thafkj+l = p(k) for some polynomial
P € Pu; S Py,
In a similar way, it is easy to show thatkf> 2/t1 — N + 1,

j+1
R =q®
for some polynomiay € Py; € Pu;+1. By definition ofvjf‘;rl this implies thatf € V].*H.
L]
Using Lemma 1 it is also not difficult to prove the following proposition.

Proposition 2.
The spacalf contains the polynomials of degree lower or equal tién

We now need to check that defining a multiresolution analysis on the interval by taking the
restriction t0]0, 1] of the space:V]?‘ is consistent with the classical definition @ O’l[, as
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reported in Section 2.2, thatis fgr> jo it holds thatV'¥|j0 1y = VJO’1l In order to do that,

and also to construct a basis for the spalcjéﬁo 1r and Iater on for the complement spaces,

it will be convenient to introduce some operator allowing to select a particular function in
V* “corresponding” to a given function m"oc in the sense that the related coefficients

WI|| coincide in a set corresponding to the degrees of freedom of the sﬁace
In order to do that, lef; be a set defined as follows:

={N-m-1..2-N+m+1].

By definition of Vj?*, it is easy to see that, for all the valuesjof Jo, the set of coefficients
{fkj}kez of a function f € V]?k is uniquely determined by the finite s(ef,f}kelj; the
remaining coefficientsf,f}kggj can be obtained via an “extension” operafoy which

extrapolates the sequen{:ﬁ;’}ke]j on the left and on the right by suitable polynomials of
degreeM;. More precisely, given any vecter = {ciler; € S(I;) (S(Z) denoting the
space of real valued sequences with indexes in th&)séet p;(c; -) and p,(c; -) be the
polynomials of degred/; interpolatingc at the node&v — M —1,..., N - M — 14+ M;
and2 - N+M+1—M;,...,22 — N+ M + 1, respectively:

pi(c;k)=c¢ forall k=N-M-1,... N-M—-1+M;,
and
prcik)=c forall k=2 ~N+M+1-M;,...., 2 ~N+M+1,

More precisely, set

N—M—1+M;

pic;) = Y enlly (0,

m=N—-M-1

whereL0 , denotes the Lagrange polynomial of deghégtaking value 1 ak = m and
Oatx—l;émle{N M-1...,N-M-1+M;},

N—M—1+M; .

0 X —1
Ly = |1

Mj,m _ 3 ’

i=N-M-1 m !

i#Em
and »

2J—-N+M+1

. 1

prc;x) = Z CmLMj’m(x) >

m:2j—N+M+1—Mj

L%@,m being the Lagrange polynomial of degrég; taking value 1 akk = m and O at

x=i#me{2l —=N+M+1-M;, ...,2/ —N+M+1},
2/ —N+M+1 i

L _
o= I 2=

i=2/ -N+M+1-M;
i#m
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The linear extension operatd; : S(I;) — S(Z) is then defined as follows: far =
(cK)ker; € S(I;) set

pic;k), Yk, k<N—-M-2,
(Ejo) = { ek, Vk, kel;, (2.12)
pr(cik), Yk, k>2/ —N+M+2.

Via E;, we can define an operator
.. yloc *
gV — V;

which associates to every function wjoc a “corresponding” function Wf: given f =

Zf,j(pj,k € V/'.°°, we define; f as the unique element ivr,.* whosek-th coefficient

coincide with thek-th coefficient of f for all k € ;. More precisely, iff/ = (fkj)k ,
) el

denotes the vector of “relevant” scaling coefficients of the funcfidfrelevant” meaning
“corresponding to & in I;,” that is corresponding to a degree of freedom Wtfr) &

V]'.OC —> V7 is defined as follows:

+00

&N =Y (Eif!), eixhoa- (2.13)

k=—00
Remark 5. Itis not difficult to check that
Vi=TIm(E&)), (2.14)

that is every function irv is the image of a function im’]'.°° via the operato€;. Thisis a
trivial consequence of the fact that for #lle Vj?k itholds&;(f) = f. Moreover, it is also
immediate to prove that

& (V}OC) =& (span< gjk, kel;>) .
It is now not difficult to prove the following proposition, showing that, for large values of
j, the spacé/;‘ho,l[ turns out to be exactly}O’l[ as defined in Section 2.2.

Proposition 3.
For all j such thatj > jg it holds
0,1
Vj*|]o,1[ = VJJ L,

Proof.  Since Vj*|]o,1[ is the image of a linear operator applied to the space span
¢jk, ke lI; > ofdimension equals to#, we have that

dim (V}‘I]o,l[) <#l; =2/ —2N +2M + 3= N; = dim (V}O’l[) .

Then, itis sufficient to prove thaztj].o’l[ C V;ﬁ 10,17, or equivalently that every basis function
of V}O’l[ belongs toV]i"|]o,1[. Itis easy to see that the interior scaling functions satisfy (2.9)
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and (2.10) forp; = p, = 0, while for the edge scaling functions, the thesis is a simple
consequence of (2.7) and (2.8). []

Thanks to the previous proposition, the following definition is then consistent with
the classical one.

Definition.
Forall j > jo, we definevjlo’” to be the restriction of’; to the unit interval:

1010 ._
Vj = V;k|]0,1[ .

Propositions 1 and 2 yield then trivially the following corollary.

Corollary 2.

The sequenc{aV}O’l[} =~ satisfies

j=jo
10,1 10,1 L~
Vit Vi forall j > jo.

Moreover,V}o’l[ contains the polynomials of degree lower or equal thén

Forj > jothe spaceyjjo’l[ have been studied in several articles and their properties

are well understood. Let us then give a closer look at the structua‘%oﬂwE for small values
of j. The following proposition holds.

Proposition 4.
Let j be such thafip < j < jo (we recall thatjo = [log,(2(N — 1) — M)]); then
V}O’l[ coincides with the space of polynomials of degiée

Proof. According to the definition o/ ¥, the two polynomial sequences andp, are
uniquely determined by thei/; + 1 values at the nodés= N —1—-M;,...,N -1

andk =2/ — N+1,...,2/ — N+ 1+ M;, respectively. Ifi < jo [see (2.11)], which is
equivalenttaV; —1 < M, then2 — N + 1+ M; < N — 1; this implies that

pitk)y = £ = prk) |
that is the two polynomials coincide. Letting then= p; = p,, we have then
fl=pl forallk, with degp)=M;

and, from Lemma 1, it follows thaf is a polynomial of degred/;. L]

Remark 6. Forthe values of such thatip < j < Jjo, the functions o#/1%* are globally
supported and they have a polynomial behavior near the boundaries 0 and 1.

2.4 ABasis ForVJ].O’l[

ARiesz basi$¢]/.?,;l[}k€1j for V1% can be constructed by simply applying the operator
&; defined in (2.13) to a suitable subset of the bégis}«cz of V;. More precisely, we
introduce the following definition.
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Definition.
5101 101 ; .
Foreveryk = I letg; ;™ € V;~ be defined as follows:

+10,1
G = Epiklo - (2.15)

In particular, denoting by/-* = (8,{"‘),,61]. e Sj)

i o it nk
‘Sn = .
1 if n=k,

the vector of length2— 2N + 2M + 3, whose components are all zero butihg, which
takes value 1, by definition the functiorﬁ%:?;(l[ are a linear combination of the functions

®j.ml10,17 With coefficientsn{};k obtained by extrapolating)‘,{’k},1e I

N+2/

.10,1 X , - ;

= > mieimhoy  with  plt = (EJ'SJ’k> ; (2.16)
m=—N

where we consider in the sum only those values dbr which ¢; ,,|10,1; does not vanish.
In Figure 1 we give some plots of the scaling coefficiept§ and of the corresponding
scaling functionsbl.o,;l[. The diamonds represent the values of the scaling coefficjéfits
while the dashed lines represent the polynomjaland p, extrapolating the coefficients
on the left and on the right, respectively. As we can see, in the first two cases (plots (al)
and (b1)) such an extrapolation acts only near the boundaries and the corresponding scaling
functions have supports thatintersect the unitintg@gl[. Inthe third case (plot(c1)) such
an extension has no effects and the delta functidhis not modified: the corresponding
scaling functionﬁ}?;cl[ = ¢, and it is supported if0, 1[. In the last case (plot (c2)) the
two polynomialsp; and p, interact in such a way that the corresponding scaling function
is globally supported and has polynomial behavior near the boundaries 0 and 1.

The following proposition holds:

Proposition 5.
The sel{¢}?;(l[}k€1j is a Riesz basis foV}o’l[ uniformly inj.

Proof. We first observe that the s&b}?,;l[}kGIj generateS/}O’l[. In fact, thanks to Re-

mark 5, every € V}O’l[ is the restriction of the image by the operafpiof a corresponding
function f inspan< ¢, ke l; >:

N+2J

g=E&iflou= Y, (Ejij>m @jmhoar
m=—N

where we recall thaf = (fkj)kel_/. is the vector of those scaling coefficients otorre-
sponding to an indek € I;. if can also be written as

2l —N+M+1

=) R

k=N-M-1
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FIGURE1 Scaling coefficients’-* (diamonds) of expansion (2 16) and the associated extrapolating polynomi-
als p; andp, on the left; the corresponding scaling functlepﬂl%( on the right. Db3 wavelets are used with level

parameterj = 3 in cases (a), (b), and (c), arid= 2 in case (d) In all the cases the degree of the extrapolating
polynomials is 2. Remark that for the case (a) (resp. (b)) the right (resp. left) extrapolating polynomial vanishes
identically. In case (c) both polynomials vanish and the resulting function coincides with the corresponding scal-
ing function on the line, while in case (d) both polynomials are different from zero and the resulting function is
globally supported of0, 1[ (cont.).

Now, using the linearity of the operatdr;, it follows that

N+2/ (2] —-N+M+1

g= > > fkj(Ej5j’k) @jml01

m=—N \ k=N-M-1

m
2/ —N+M+1 N+2/ 2/ -N4+M+1
v101
= Z fk Z nm (Pj m|]Ol[ Z fk .
k=N-M-1  m=—N k=N-M-1

Let us now prove that the s{gb] . [}kel is also linearly independent. Suppose in fact
that for some scalaksg, it holds

Y et =

kel;
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FIGURE 1 (Cont.) Scaling coefficients)/-* (diamonds) of expansion (2.16) and the associated extrapolating
polynomialsp; and p, on the left; the corresponding scaling functnoﬂg 1 on the right. Db3 wavelets are

used with level parameter = 3 in cases (a), (b), and (c), apd= 2 in case (d). In all the cases the degree

of the extrapolating polynomials is 2. Remark that for the case (a) (resp. (b)) the right (resp. left) extrapolating
polynomial vanishes identically. In case (c) both polynomials vanish and the resulting function coincides with
the corresponding scaling function on the line, while in case (d) both polynomials are different from zero and the
resulting function is globally supported 3@, 1[.

This rewrites

2/ 4N-1

> om@jmloa =0 (2.17)
m=—N+1

where, form ¢ I}, a,, is given by

i,k
am=<2k61 n,j,,ak>, m=—-N+1..., N—-M-2

2 - N+M+2,..., 2+ N-1.

Q
3
Il
N
™
m
N
]
E\
.
Q
bl
N—"
3
Il

Now, it is well known (see for instance [11]) that the §gty, k= -N+1,..., 2]
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+N — 1} is linearly independent i 2(]0, 1[). Then Equation (2.17) implies that
o, =0 forallme[—N+1,2f+N—1]DIj.

In particulare,, = 0 for allm € I;, hence the se{tb}?;(l[}ke[j is linearly independent.

Forj > jo, the fact that the se{tp]o 1[}ke, is a Riesz basis fo\'/]o’1 can be proven
by some nowadays standard arguments. ]60( j < jothis descends from the fact that
[ de/ fk](p]o l[||iz and Zke, |fk |2 are norms on the finite dimensional spadé) U
hence they are equivalent. D

Remark 7. It is not difficult to check that the above reasoning also yields that for all

functionsf € Vit holds
</ f(pj k) j k ,

thatis for such functions, the coefficients of their restrictiofdtd[ with respect to the basis
{gb}?;{l[}ke,j , can be retrieved by integrating over the whifhe functionf times the original

basis function on the ling; ;. A consequence is that, if the basis functic{rﬁ%?,;l[}kelj

were to be used in a biorthogonal framework, some of the steps of the corresponding
biorthogonal wavelet transform (namely the reconstruction step that allows the computation
of the coefficients ieri’%[ of afunction inVJO’l[) would reduce to performing an extension

E; and then the usual FWT on the line. We will not exploit this feature in the present article,
where we rather concentrate on obtaining an orthonormal setting.

kel

Remark 8. Forj > jo, the linear independency of the functlo{m_:],o ter, could also
be proven by a dimensional argument. In fact we have a generator system of cardinality

#(I;) = dim V}O A This implies that the generator system is a basis. However this

argument cannot be applied fpr< jo, since in such case we only know that dij’l[ <
#(1)).

For simplicity of notation, we now introduce the following sets of indexes:
Definition.
For all j > jo, let define
IJL = {k el; st supp gb}?;{l[ N]—o00,0] # @} (2.18)
and
N = {k €l; st supp<p]01 N [1, 4oo[ # QJ} (2.19)
to be the sets of indexes of those scaling funct|olv(§‘ whose supportintersect, respectively
the left and right boundary of the unit interval.
Remark 9. Itis easy to check that,

c if jo<j<jo= IjL = IJR = ];, since aIIthefunctioné]Okl[ are polynomials

globally supported oi0, 1[.
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e if jo<j < jo—= IJ.L N IJR #@andl; = I].L U I]R, since no function is
compactly supported o}, 1.
« if j = jo=> I} NIf=4¢. Inparticular

I]-LE{N—M—l,...,N—l},
IJRE{2/'—N+1,...,2-/—N+M+1}

and/; = I7 U1 UIE, with
f={k=n...21-N}.

In this case, the basi{sbp’l[, k e I;} just constructed has the same structure

as the basis obtained ([g’efore orthonormalizing) using the classical constructions.

In fact it is easy to see that, fare 1 ]’ , the scaling functioné}?,;l[ verify ¢}?,’€l[

= @;, Since the extension operator has no effect on the corresponding scaling
coefficients. Such functions are usually calieterior, while we will refer to the
functions interacting with the left boundar € IjL), resp. with the right boundary

(k e If), asleft boundary(resp.right boundary scaling functions.
The following proposition holds.

Proposition 6.
For j > jothe interior scalingfunctiongl)}o,;l[}ke,g are orthogonal to the left bound-
’ J

ary scaling fUﬂCtiOﬂ?‘eé}o,;l[}ke,_L and to the right boundary scaling functionﬁ}ol;l[}kew_
. f ’ |
Proof. Letk be such that ¢ I,.L. It is easy to see that, for such valueskothe sum
in (2.16) becomes '
-1
+10,1 ik
(p},k ‘= Z M @j.m110.1] -
m=—N

since the remaining components of the extended coefficients are either zero or correspond to
scaling functiong; ,, verifying ¢; |10,y = 0. Therefore, for suchthatv </ <2/ — N
we have

N-1

v10,1[ +]0,1 +10,1] i,k

(651 651 = (6% wia) = 22 0 @sme0ia) = 0.
m=—N

The second part of the proof is analogous to the first one.[]
The boundary scaling functions are scale invariant, as the following proposition states.

Proposition 7.
If j > jo, for the values of such thatk € I/L (left boundary functions) it holds that

M) = 20720 (21 hox ) (2.20)
while for the values of such thatk I/R (right boundary functions) it holds that

¢}f’,;1[ (x) = Z(j_jO)/ng)}gjl::[— pat (2f—f0(x — D+ 1) . (2.21)
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Proof.  We will prove the scale invariance only for the left boundary functions, since
for the right ones the proof is essentially the same. Sjneejo, andk verifiesk € IL it
follows that

g = Z M 9jm 10,21 (2.22)
where we observe that
N1 i
Jok _< iKY —
mm = \E;d ) = 1_[ =
" i=N7M71k_l

is independent of, since the polynomial extension is scale invariant. In particular we have
that

N-1

ik
J+1k Z i @m0 = > wneiramho - (2.23)
m=—N

Therefore, simply recalling that
9j1(x) =2/ <2jx - l) and @jy1,(x) = 201D/2 (2j+1x - l) ,
comparing (2.22) and (2.23) and setting= 2x, yields
Pt = V25t 2y) .
By induction onj it is then not difficult to conclude that (2.20) holds. [

An orthonormal baS|s{<pj i [}kel for V]0 % can be obtained by simply applying

an orthonormalization procedure to the ba{sp% Yker; - Since forj > jo, V]]O s
nothing else than the space defined by classical def|n|t|on any of the procedures (preserving
localization) of the articles quoted at the beginning of the section can be used. As far as
Jj < jois concerned, we recall that the corresponding spéjtes by nature, global. The
support of all elements of * is in fact the entire intervalO, 1[. Therefore, there is no
particular need to use some specific orthonormalization procedure (since localization is not
achievable), and then any approach, like for instance the application of a Gram—-Schmidt
procedure can be applied. Figure 2 shows some examples of orthonormalized scaling
functions obtained by a Daubechies MRA.

3. Wavelets

The aim of this section is the construction of an orthonormal wavelet basis for
L?(10, 1) corresponding to the multiresolution analysis just introduced. }Pg@tl[ :

L2(R) —> V}O’ll denote the.2(]0, 1) orthogonal projection onW}o’ll, and IetW}O’l[
be the complement space % 01l in V]Jrl

10,1 _ 10,1] 10,1]
Wit = (1 - PP VIO

Ho vt =yl and vOU L wlol,
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FIGURE 2 Orthonormal Daubechies scaling functions; (a) Db3 scaling functionjsfot. For such value of
7 V]0 Uis the space of polynomials of degree 2. Figures (b) and (c) show Db2 scaling functigns-farand

j= 3 respectively. This is the cage> jo, so that the construction consists in retainingititerior functions
and modifying only those one crossing the boundaries. (d) Db4 scaling functiops=fa?; this is the case the
functions are globally supported on ]0,1[.

Forj > jo several constructions of bases Wﬂo’”, basically consisting in retaining
“interior” wavelets and adding the projection W}O’l[ of the right number of suitably

chosen scaling functions 6f%;!, are available.

Using a standard baS|s completion argument, ffoe jg it is always possible to

choose a subset of Zunctions{wﬁll[n},,elw (with 17" C 111, #1}" = 2/) out of the basis

{¢,+1 i Ikelj in such a way that, together with the ba{so%o ”}kd they form a new basis

10.11.
for Viii:

10,1( 10,1( +10,1[
V]+1 —Span<<p]+1n, ne[}’.", ¢/k , kel > .

Then it is trivial to show that the set of functions

01 _ 1011 1011 _10.1[
lﬂ ¢ii1k— P ¢l kelf

10,11

forms a basis foWj , which again can be orthonormalized by any technique (recall that
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for j < jo all functions are global by nature, so there is no need to look for a special
technique).

Alternatively we propose, in the following section, a way of constructing a basis for
w1 that unifies the casg > jo, andj < jo. Numerical evidence seems to indicate that
the basis resulting from the construction has ghétstability properties (in the sense that
the resulting basis functions have &t bound with a reasonable constant, contrary to what
happens with some other choice). Unfortunately a number of assumptions on the linear
independence of certain (small) sets of functions are needed in order for such a construction
to work. These have to be verified “a posteriori” case by case. In all the cases we tested such
assumptions did hold. We want to underline that, in the case in which such assumptions
did not hold, one can always resort to the previous wavelet constructiofsfaip and to
the basis completion technique mentioned abov%‘oi Jj < Jjo-

3.1 A Wavelet Basis

In order to construct a basis for !, we start by considering the wavelet functions
¥« € W;. We recall that, using the two-scale Equation (2#), € W; C V;41 can be
written as follows:

0,1[

I/fj,k = Zg)1§0j+l,2k+n .
n

By applying the extension operatér 1 (2.13) we define for each e Z a function
915t e vIoilby

j+1
0.1
19}’;{ U= &y -
It is easy to see that
0,1 +10,1
D= D A b - (3.2)
meljiq

Now, letting

1}”:{0,...,21‘—1}

for everyk € I}” we define
Y101 _ 410,1( 10,1] 410,1(
Iﬂj’k = ﬂ/k — P/’ ﬁ/’k .
We point out that forj > jo, such construction gives us essentially the same basis as
the one constructed in the articles quoted at the beginning of Section 2.2. In particular, for
kel the functions&}?,;l[ coincide with the so callethterior wavelets:

710,
w},k "=y,

where, for such values df it holds suppy;« C [0, 1]. Furthermore, it is easy to show
that the boundary wavelets satisfy a scaling invariance property, as stated by the following
proposition:

Proposition 8.
If j > jo, for the values ok such thatd < k < N — 1 (left boundary wavelets) it
holds that

P50 = 2020 (27ox ) (3.2)
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while for the values of such tha?2/ — N + 1 < k < 2/ — 1 (right boundary wavelets) it
holds that

100, _ o= jo)/2,7,10.11 i
iMoo =20zl (2/ JO(x—1)+1) . (3.3)

Proof. Aswell as in the case of the scaling functions, we will prove the scale invariance
property only for the left boundary wavelets. We recall that in the sum of (3.1) the filter
coefficients are different from zero for those valuesiaduch that-N <m — 2k < N, so

that, sincej > joandk < N — 1, 19] lis a linear combination of those scaling functions
whose supports do not cross the rlght boundary 1. Therefore we can write

M@ =v2 Y gmagint@0) = V2ol @n)

mel;

and, foralll € I;

1 +o0o
/0 Bl @ dr = / 200 0 ar
—f/ j 1k(2t)(pj Lrydr
=/0 o101 02 (1) dr

1
0,1 +10,1
=/0 0}71Fk(t)<p}7£l(t)dt.

Finally

1
10,1 410, _ S0
PRI =Y (/0 Bloe! (t)dt) (x)

lel;

=v2 Yy ( / }‘li?ka)gb],“”(z)dr) g1 2x)

lelja

= V2P 101} 2v)

which implies the thesis. [
The following orthogonality property holds.

Proposition 9.
For j > jo the interior wavelets{l/vf}o,;l[}ke,z are orthogonal to the left boundary

Waveletﬁ{plf]0 u } and to the right boundary wavele{gr]o u }k N4t

Proof.  We will prove only that the interior wavelets are orthogonal to the left boundary
wavelets, that is that
0,1 10,1
(7R, 52%) =0

forallk=0,...,N—1andl = N...,2/ — N, since for the right boundary wavelets the
proof is essentially the same.
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By the definition ofw it follows that

Jk ’
10,1[ 10,1[ 10,1[ 410,1[ 10,1[
(12 0I5 = (015 ) = (Pl ) = /Ra,,k Vjadsx,

where the last identity descends from the observation that, on one B}?H{Hﬁlo s the

restriction to]0, 1] of a V; function (which isL?(R)-orthogonal toy;;) and, on the other
hand, thanks to the property of the suppori/gf;, the integral ovet0, 1[ can be replaced
by an integral oveR.

By the definition of the extension operatdy, for k < N we have that

N—M-2
Ein¥ik=Vik+ Y. dn@jiim -

m=—00

whered,, are suitable coefficients, whose value is irrelevant for the proof.
We next observe thak < 2/ + 1 — N implies that

f 1;[fj,lﬂl)j—ﬁ—l,m dx = gm—o = 0.
R

Finally, > N — 1 implies on one hand that

N—-M-2

< ;Okl’wjl /5/-5-1'#/1(‘1”/1— Z dm /‘p/+1m¢115

m=—00
whilem < N — M — 2 implies thatn < 2/ + 1 — N, which implies the thesis. [

Unfortunately, we are unable to prove (in general) that thegk}%”}ke,}» is linearly
independent. We will then have to make some minimal hypotheses, and verify them a
posteriori. More precisely we make the following assumptions:

#1. The functions o o
Voo Vjgn-1

are linearly independent, as well as

1041 Y1041
1//10 200-N+1’ wjo,ZjO—l :
#2. Foreveryj,j = jo,..., jo— 1, the sei{xp]O [}kel}u is linearly independent.

Under such assumptions it is not difficult to prove the following proposition:

Proposition 10.
Forall j > jo. The set{x/?}f’,f[}ke 1v forms a basis for the spadef]].o’l[

Proof. Thanks to the scale invariance properties (3.2) and (3.3) assumption #1 yields,
also for allj > jp, the linear independence of the set

10,1 ¥10,1[
WJQ ) w]N 1>

as well as of the set o o 1[
I//] 2/—N+1’ """ 1/,] 27—
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Therefore, for every > jo, the complete se{t&}?,;”}ke,}p is linearly independent, since
the interior waveletw'0 - Jxey! @re linearly independent and, according to Proposition 9,
J

they are orthogonal to the boundary wavel(a};l.?,;l[} and{w] A }13]_21 vape Using
assumption #2, we then obtain that the{sj@f’”}kelw is Imearly independent for afl > jB.

Finally, since dinQWj].O'l[) #17, it follows that the sew [}kelw forms abasis. [

The considerations at page 276 on the orthonormalization of theﬁﬁé{, kel;}
carry over unchanged to the orthonormalization of thelﬁﬁ” k e Iw} We will denote

by {1/;10 i } the corresponding set of orthonormalized wavelet functions. Figure 3 show the
orthonormal wavelets corresponding to the orthonormal scaling functions of Figure 2.

FIGURE 3 Orthonormal Daubechies wavelet functions; (a) Wavelet base corresponding to the Db3 MRA for
j = 1. Figures (b) and (c) show the wavelet basis corresponding to the Db2 MRA for2 and; = 3,
respectively. In both casgs> jg so that the new construction coincides with the classical one. (d) Db4 wavelet
base forj = 2: the functions are globally supported.
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4. Fast Wavelet Transform

Let us now briefly describe the Fast Wavelet Transform algorithm, which allows the
computation of the coefficients

fk_<f(p]Ol[>7 and d] <fwjk )
of the L2(]0, 1) projections

0,1 10,1 10,1( 710,11
Ap=2slepil. and (Pj+1_Pj ) = dlv;
kel kel“

10,1

of a functionf € L2(]0, 1[) onto Vj and W}O’l[ directly from the coefficients

Jj+1 10,1[
ko= <f’ (pj+1,k>

of its projection

P,](ﬁ = Z f/fH(PjH,k
keljp
onto V%41,
For j > jo, when the spaces constructed in this article coincide with the ones al-
ready studied in the previous constructions, the considerations of the corresponding articles
trivially carry over to our case: the FWT takes the form

left pj+1 L
Zlel,+1 a. nfl kel
f=1% hl—Zkfz ke I/I
rlght j+1 R

Dieliy % Ji kel

1
ZIEI_H_]_ bleﬁf‘[‘/+ k= 07 ey N-1
dl =1 aaf/ ™ kell
Sren W I k=2 - N2 -1,

where the coefficientse, a,i'%lht, bt andy, " are independent of the scaleln particular,

we recall that for the values @fcorrespondlng to the interior functions, the transform has
the same form than the FWT i?(R).
For j < jo the trivial matrix-vector multiplication form of the transform

J_ J oo+l J_ Joopit+l
fi = Z AGenli s and d; = Z b fi

lelji lelji

nght

with
i __ ] 101 101 j o _ [ 101] 10,1[
o —<9"]+11 ‘/’]k > and by, _<¢j+l,l’wj,k >
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for everyk € I; and! € I;1, cannot be further simplified. The matrices

Al = (a;f’l) and B/ = (b,{’l)
depend ory and they will then have to be pre-computed and stored, and large scale steps

of the fast wavelet transform will simply be matrix-vector multiplications.

Analogous considerations hold for the inverse fast wavelet transform, allowing to
deduce the coefficientﬁkjﬂ, k € Ij41, directly from the coefficients‘kj, k € I; and
d,{, k e IY". In particular, forj < jo, setting £/ = (fkj+1)k61,-+1, fi= (fkj)kel_,-,
andd’/ = (d;;/)kezf, using the fact that the FWT operator is, in the case here considered,
orthogonal, we have

pr[B](8) - ey e

Remark 10. The last expression in Equation 4.1 can also be directly derived from the
trivial equality

10,1[ 10,1[ 10,1[ 10,1[
PRI =PPUs 4 (P - PN 1

5. Multiresolution on ]0, 1[ with Boundary Conditions

In this section we briefly describe how to incorporate boundary conditions in the
construction ofV}O’l[. Assuming from now on tha¥/ > 1 and thaty ¢ HL(R), let us
define the space

0,1
V0= v} A HEqo, 1)
as the set of functiong belonging tij]O*l' and satisfying the homogeneous boundary

conditions f(0) = f(1) = 0. Before presenting the construction of a basisvl'ﬁr we
introduce some notations and establish some preliminary results.

Definition.
Forall j > joandk € I;, let
cjl.k_" =<1-x, (ﬁ}?,}l[ > and cfk =<x, (Z)}?,’{l[ > .
Let us define
1—x +10.1 10,1}
gL =Y M. gr) =Y et (5.1)
kteL kelf

and
1 1
frx) = —=[gr(x) — gL (Dx], fR(xX) = ——[gr(x) —gr(@ (1L —-x)]. (5.2)
g.(0) gr(D

Proposition 11.
Forall j > jo, the functionsf; and fr verify
fu() = fr(0)=0  and /10 = fr()=1.

Moreover,
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o forall j < jo, fo(x) =1—x and fr(x) = x,
« forall j > jo, frL(x) = gL(x) and fr(x) = gr(x).

Proof. The first part of the proofis a simple consequence of the definition of the functions
fr and fg. If j < jo, thanks to Remark 9, and recalling thé}t = Py;, it follows that

gr) =Y el =1-x, and  gr(x) =) el =x,
kel kel
and consequently that;, = g, and fx = gg. If j > jo the two sets/ and /[ are
disjoint and the left (resp. right) boundary functions satts&l 1 =0 for allk € IL

(resp. ¢]0 l[(O) 0 for all k € IR). Thereforeg; (1) = gr(0) = 0. Moreover,g;
(resp. gR) locally reproduces the function-1 x (resp.x), so thatg; (0) = gg(1) = 1.
L]

Proposition 12.
The sets = {f1.(x). fr(0). (6] ey0). With

I?:{N—M,...,ZJ—N—FM},

is a basis forV}o’”.

Proof.  The thesis follows by proving that the matrix that represents the change of
coordinates of the s& with respect to the bas{sva}?l;l[}ke 1; isinvertible. This is extremely
easy in the casg¢ > jo, when the functiong;, and fr are linear combination of the left
and right boundary scaling functions, respectively. Concerning thef@a§ej < jo, let
{gb]/.?,,’(l[}kdj be the basis foV}o’l[ defined in (2.15); by Corollary 2, the functions-Ir and

x belong toV}O’l[, so they can be expanded in terms of the basis func(ibﬁ;“}ke,j:

—)C_ch xv'01

kel;

x 10,1
x= Ge

kel;

and

for some coefficients,%‘" andcy . Using Remark 7, it follows that

c,%*x =fR(1—x)(pj,kdx and ¢ =/Rx<pj,kdx

so that
1—x =) (a+ g (5.3)
kel
and
x=Y A-—a-phght, (5.4)

kel;
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for some constants andg depending ory. Using Equations (5.3) and (5.4), we deduce
that

spar{B} = span{ 1, k(ZJJ'Okl', {¢j'°kl'

}kelo
kel J

Now, the sef{1, Zke] k(l)}o,;l[, {<p] A }kelo} is a basis foﬂ/]o’l[ since the matrix that repre-

sents the change of coordinates with respect to the h@}g,;é[}ke 1. isinvertible, as one can

easily verify. Therefore it follows thas too is a basis foivjO 1 and the thesis is proved.
L]

Let now/; : C9([0, 1]) — V}O’l[ be the linear interpolation operator

IL(Hx) = FOfLx) + fD) frx).

Remark 11. For the values ofi such that}B < j < jo, the operator; associates to
every continuous functioif a globally supported function interpolatingat the two points

0 and 1. In patrticular, njo < j < jo, the interpolating function is a polynomial of degree

1. Forj > jo, I; associates the corresponding linear combination of boundary scaling
functions interpolating’ at the two points 0 and 1 (recall th#t (1) = fz(0) = 0). Such

a distinction allows us to preserve the localization property of the scaling function at small
scales { > jo), while there is no need for large scalé‘é (< j < Jjo) since the basis
functions are globally supported.

Let nowg?,, k € 12, be defined by

_ ~101[ +10,1[
w,k—w,k — 1o .

Proposition 13.
The sel{ég’yk}kdp is a basis foerO.

Proof. The operatokl — I) : V — V0 is surjective sincél — IL)|V0 coincides
with the identity. Therefore, smoa — IL)fL(x) = Q-1 fr(x) =0, the sef{(1 —
Ir )gojokl[, ke 1;’} generatesvjp. Moreover, it is a basis since d(rVIJQ) = #1](.’. ]
The validity of the following corollary is easily checked.

Corollary 3.
The sel f.(x), fr(x), ¢%,. k € 1% is a basis forv !

We can then construct an orthonormal basisvfﬁrby applying any orthonormaliza-
tion procedure to the seq‘b?k}kelg. We thus obtain a seao‘/?k}kelp satisfying:
b J i J

1
/(; (P?,k(ﬂ?,n = Sn ks and (p?,k(O) = (p?’k(l) =0

(see Figure 4). Clearly, fof > jo we will employ one of the localization preserving
orthonormalization techniques proposed in the articles mentioned at the beginning of Sec-
tion 2.2.
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FIGURE 4 Orthonormal Daubechies scaling functions with homogeneous boundary conditions; (a) A base
for V]].O’l[ corresponding to Db3 MRA foj = 1. VJ].O‘l[ is the space of polynomials of degree 2 satisfying

homogeneous boundary conditions. (b) The spé%gel[ corresponding to Db2 for = 2. (c)VlO’ u corresponding
to Db2 for j = 3. (d) The basis functions coming from Db4 MRA fpi= 2 are globally supported.

A particular orthonormal basis fdf}o'l[ can then be obtained by orthonormalizing
the two functionsfy (x) and f (x) with respect t(:{(p?’k}kelj(_ﬁ

F10) = Lero (1), 09) 2,000
1100 = Cyeo (£, 00, )62 0|

¢?,N—M—1(x) = ’

£2(0,1)

and

F0) = Ty (700 024 ) #0400

0 _
9 oi—Nrm41 ) =

SrR(xX) — Zkelj(.” <fR(x)’ w?,k>¢?’k(x)

L2(0,1)
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whereI;y ={N-M-1}U I](.’. With this procedure we end up with an orthonormal basis
for V}O’l[ such that

(p?,Nfol(l) # 0 ¢?,N,M,1(0) =0 s
0 0
Cioienimer D #0 @0y @ #0,

and

‘p?,k(O)ZQO?,k(l):O VN—MS]SZj—N+M,

In particular non homogeneous boundary conditions are very easily imposed.

The argument discussed at the beginning of Section 3 with respect to the construction
of wavelets forWJ].O’l[, carry over to the construction of an orthonormal basis for the orthog-
onal compIemenWJQ of V/Q in VJQH. In order to apply also in this case the idea proposed

in Section 3.1, we introduce the orthogonal projectith: L*([R) — V? onto V).

S~

FIGURE 5 Orthonormal Daubechies wavelet functions with homogeneous boundary conditions; (a) Db3 j=1,
(b) Db2 j=2, (c) Db2 j=3, (d) Db4 j=2.
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ThereforeW]Q is defined as

0_ (7 _ pO)y0
Wo=(1-P) V0.

In particular, a basis foWj‘.) is defined as follows: forevery=0,...,2/ —1

Y0 _ 40 040
ik =05k~ PV,

wherez‘)ﬁk = (A= 1IL)E 0o Figure 5 shows the basﬁ&ﬁk} for W]Q, obtained after
orthonormalization.
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