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ABSTRACT. Fourier transform inequalities in weighted Lebesgue spaces are proved. The in-
equalities are generalizations of the Plancherel theorem, they are characterized in terms of un-
certainty principle relations between pairs of weights, and they are put in the context of existing
weighted Fourier transform inequalities. The proofs are new and relatively elementary, and they
give rise to good and explicit constants controlling the continuity of the Fourier transform op-
erator. The smaller the constant is, the more applicable the inequality will be in establishing
weighted uncertainty principle or entropy inequalities. There are two essentially different proofs,
one depending on operator theory and one depending on Lorentz spaces. The results from these
approaches are quantitatively compared, leading to classical questions concerning multipliers and
to new questions concerning wavelets.

1. Introduction
1.1 Background

TheFourier transformof a complex-valued Lebesgue measurable functioR” —
C on Euclidean spad®” is formally defined as

Fro =Fo = [ fwei 1)
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wherey € @”(: R™). If f belongs to the Lebesgue spacg(R"), 1 < p < oo, then its
LP-norm is designatefif||,. It is elementary to see thmfnoo < | fll1for f e LYRM);
and if f € L?(R") then the Plancherel theorem asserts tlyatz = || fll2, see the first
paragraph of Section 2.

Both of these norm relationships can be viewed as special cases of a weighted Fourier

transform norm inequality,
| 714 < ClifllLe, (1.2)

where thaveightsu, v are non-negative, locally integrable functionsioh R”, respective-
ly, whereC is independent of a class of functiofisand where

1/p
1/l = ( /R ) If(X)I”v(X)dX> (13)

and
A R 1/q
71y = ([ Vo luear )

forl < p, ¢ < oo. The usual adjustment is made in the definition||¢f|.; and in
the case ofL”(R"), 1 < p < oo, we obviously have| |, = ||f||L§ in terms of the

notation (1.3). By definitionL? (R") is the space of complex-valued Lebesgue measurable
functionsf : R" — C for which I fllp < oo.

The main problems concerning (1.2) are characterizing the relationship between the
weightsu andv to ensure the validity of (1.2), and, in this case, of finding the smallest
possible constant so that (1.2) is true for alf e L} (R"). Both problems are related to
the uncertainty principle in harmonic analysis [25, 17]. In this case of characterization, the
uncertainty principle is manifested by conditions such as

1/s /g s , 1/p’
Sup(/ u(y) dy) </ v(x)~ 1)dx) <00. (1.4)
s>0 0 0

This particular condition (1.4) gives rise to (1.2) foff (R) in the case of even weightsand

v in whichu is decreasing andlis increasing ori0, co), €. g., [46, 4, 35, 21]. In the case of
finding the smallest possible constahtinequalities such as (1.2) are an essential step in
proving weighted uncertainty principle inequalities which generalize those of Heisenberg
type such as

1713 < 47t =100 f 02 | =00/ )]

e. g.,[32], [3] (Chapter 7.6 and 7.8).

In this article, we shall prove general inequalities (1.2) illustrating the role and limits
of operator theory in obtaining them, proving them from the point of view of Lorentz
spaces, obtaining explicit constaidisand showing the theoretical obstructions when it is
impossible to compute optimal constants.

Besides the inherent mathematical motivation of going beyond the Plancherel theorem
in this way, we are motivated to understand and apply general inequalities (1.2) in a manner
analogous to recent developments and applications of comparably general notions such as
Wiener amalgam spaces and Besov spaces, €. g., see [11, 12, 34].
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1.2 Results and Outline

The results by Muckenhoupt [46] and Jurkat and Sampson [35], as well as those
in [4] and [21], all cited in Section 1.1, also deal with general (non-even, non-monotone on
(0, 00)) weightsu andv onR andR, respectively. In this case the sufficient condition (1.4)
is replaced by a similar one in terms of equimeasurable decreasing rearrangemearid of
1/v, denoted by:* and(1/v)*, respectively, see Section 1.4 for definitions. These results
were further developed in the 1980s in [6, 33] and put in the context of related parts of
harmonic analysis in [22].

One aspect of the underlying ideas in this development was the characterization in [7]
by the authors with R. Johnson of a class of inequalities of type (1.2) in terms of so-called
A,weights, see Remark 1 b. This work was extended in [33] by one of the authors with
G. Sinnamon, and the interest in such a characterization is that, heretbfamejghts were
only considered in terms of characterizations dealing with maximal functions and Hilbert
transforms, e. g., [18].

It should be pointed out that necessary conditions for the validity of (1.2) in terms
of conditions such as (1.4) are sometimes valid, and their proofs, although technical, are
essentially easier than proofs of the sufficient conditions, e. g., see Theorem 2. Also, our
conclusions of the form (1.2) are always stated for the range/, ¢ < oo even though
they are sometimes valid fgr, ¢ € {1, c0}. We have not included the latter cases in
order to keep an already long presentation from getting out of hand by the inclusion of new
techniques.

Theorem 1, which comprises our contribution in Section 2, provides sufficient con-
ditions for (1.2) of the type (1.4) for general weights and the index rangepl g < oo.

The proof is operator theoretic, and draws on a sophisticated body of information. In order
to gauge the effect of our present approach, we point out our shortcomings from the early
1980s. For example, in [4] it was necessary for us to treat the following cases separately:
N1l<p<2,p=<gq;li)2 <p<=<aq;li) p=g =2 Moreover, in case (i), the constant

C in (1.2) became unbounded ps— 2—, and, in case (ii), it became unbounded as

g —> 2+. Inretrospect, although we were using a powerful weapon due to Calderén [10],
we were not able to adapt it to our approach in a way to make reasonable estimates on
constants. In any case, in the proof of Theorem 1 herein the congtamains bounded

in all cases; and, in fact, a specific upper bound’a$ proved. We also prove (1.2) in the
index range 1< g < p < oo.

Section 3 is devoted to an exposition of Lorentz spaces and to the work of Sawyer [50]
which we shall use in Section 4. We do not use the results of Flett [16] from 1973 on the
classical Lorentz spacdq p, q), nor do we use the comparably beautiful recent results of
Sinnamon [52]; on the other hand, their theories do complement our approach, e. g., see
the first paragraph of Section 4. We close Section 3 with a remark on Kéthe spaces, which
can be considered a formulation in topological vector spaces of a natural generalization of
Lorentz spaces.

In Section 4, Theorems 2 and 3 invoke conditions similar to (1.4) to characterize the
continuity of the Fourier transform in weighted Lorentz spaces. The weights and index
ranges are general, and there are basic examples in Examples 2 and 3. Mapping properties
of operators (besides the Fourier transform) on Lorentz spaces with power weights are
important in the theory of interpolation [8, 61].

Theorem 4 of Section 5 is our peroration in terms of obtaining (1.2) for a general
class of weights and for the index range:1p, ¢ < co. The proof uses Theorems 2 and 3.
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We quantitatively compare Theorems 1 and 4 in Remark 5; and then in Example 4 we make
a study of power weights in this context. This all leads to Pitt's theorem, including its role
in the theory of multipliers and in a wavelet theory problem, as well as in the evolution of
dealing with (1.2), see Remark 6 and the next subsection.

1.3 Pitt's Theorem

In 1937, Pitt [48] proved the following theorem for the case of Fourier seties.

1< p<gq < oo, choosed < b < 1/p/, setp = 1—%—%—1) < 0, and define
v(x) = |x|bP for all x € R. There isC > 0 such that
o 1/q RN
(/@Uw |y|ﬁqdy) < C(/le(x)l”IXI f’dx) (1.5)

forall f e LY(R). In particular,fis well-defined in this case.

In Example 5 we shall obtain Pitt's theorem Bfi as a consequence of our general
theorems. Evenwith all of the Fourier inequalities for weights more general than polynomial
weights, we have chosento highlight Pitt's theorem since it has been a catalyst for developing
some critical results in 20th century classical harmonic analysis. We close this article in
Remark 6 by tracing some of these results as an attractive and unified body of ideas.

With regard to our comment about weighted uncertainty principle inequalities in
Section 1.1, we point out that Beckner [2] proved a sharp form of Pitt’s theoreR¥ dor
the casep = g = 2, thereby allowing him to obtain a logarithmic estimate of uncertainty.

1.4 Mathematical Prerequisites

1.4.1. The unit spheres”1 in R” is the boundary of the open unit ba},(0, 1) € R”,
centered at & R” and with radius 1. The volume df, (0, 1) is denoted by

n/2
+2\ ’
r (=)

and the surface area 6f 1 is w,_1 = n|B, (0, 1)|. Recall thatiff € L1(R") then

| By (07 1)| =

F)dx = f / P11 (08) dp do_1(6) |
R s-1 Jo

wherex = p € R"\{0}, p > 0,6 € §"~1, ando,_1 is surface measure aff 1.

1.4.2. Let (X, u) be a measure space, whereC R"; and letf be a complex-valued
u-measurable function oR. Thedistribution functionDy : [0, co) — [0, oo) of f is
defined by

Dy(s) = pu{x € X 1 |f(x)| > s}.

Two measurable functiong andg on measure spaceé¥, u) and(Y, v), respectively, are
equimeasurablé Dy = D, on [0, co). Thedecreasing rearrangemenf f defined on
(X, ) is the functionf™ : [0, o0) — [0, o0) defined by

fr@)=inf{s >0: Dys(s) <1}.
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We use the convention ifff = oo, so thatifD s (s) > ¢ forall s € [0, co) then f*(r) = oo.

For a givenu-measurablef on (X, ), f* is a non-negative, decreasing, right con-
tinuous function oni0, co); and f and f* are equimeasurable, whefé is considered as
a Lebesgue measurable function[Onoo). Furthermore, for any & p < oo,

[ |f@Pdu) = p / 5P D () ds = f " prwrar.
X 0 0

These ideas have had an impact on harmonic analysis for most of the 20th century, e. g.,
[28, 29, 63, 58, 9].

1.5 Notation

We shall use the standard notation in harmonic analysis as found in [58, 18], and [55].
On the other hand, we shall also use the following notational conventions. The
conjugate index of a givep > 1, is p’ = p/(p — 1). Our space variables arg y €
R”", and our spectral variables axey € R". When dealing with the domai¢®, co) of
rearrangements we shall use the variablese (0, co). On the occasion when there are
too many integrals or exponents in a formula we shall suppress using a variable, e. g., the
conditions (i) and (ii) of Theorem A in Section 2. We shall write™when we are defining
a constant, e. g., see the same conditions of Theorem A. We shall adhere to the convention
0-00=0.
Inequalities such as (1.2) are interpreted in the sense that if the right side is finite
then so is the left side and the inequality holds. Lest there be any dftipteans( f)*.
Also FV denotes the inverse Fourier transform of the functigny g is the characteristic
function of the Lebesgue measurable geC R”, and|E]| is its Lebesgue measure. All
of the functions with which we deal are Lebesgue measurable on &ther (0, oo), and
we usually omit this hypothesisLﬁ)c (X), X C R", is the space of complex-valued locally
Lebesgue integrable functions éh A weight functiorw on X is a non-negative element

of LL (X), whereX is R" or (0, co). Finally,

L1+L2=[f:f1+f2:fleLl(R") andfzeLz(R”)} .

2. Weighted Fourier Inequalities—Type (1, 0c0), (2, 2)
Method

In the introduction we motivated the relevance of proving weighted Fourier transform
norm inequalities by stating fllec < I fll1 for f € LY®") and | fll2 = | fll2 for
f e L3(R"). These results assert that the operafatefined in (1.1) is bounded from®
to L and fromL? to L2. Any bounded linear operator with these properties is said to
be of type(l, oo) and (2, 2). The main result, Theorem 1, in this section is in terms of
the Fourier transform operatdf. However, it is essentially valid for any bounded linear
operator of typgl, oo) and(2, 2), cf. Remark 6 c, d.

The proof of Theorem 1 requires a few well-known facts which we shall now state.
The first is a weight characterization of the Hardy operator on weighted Lebesgue spaces,
e. g., see [45] (Theorem 2 of Section 1.3) for a proof.
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Theorem A.

Let u and v be weight functions o110, co) and supposd < p,q < oco. There
is C > 0 such that for all non-negative Lebesgue measurable functfoas (0, co) the
weighted Hardy inequality

o] t q 1/q 00 1/p
p 2.
(/o </0 f> u(t)dt) §C</0 f@ v(t)dt) (2.1)

is satisfied if and only if
() forl< p <gqg < o0,

0 1/q s , 1/p’
sup(/ u(t)dt) </ v()P dt> = A <0,
s>0 s 0

(i) forl<gq < p < oo,

and

00 s roo \T/4 / ps N4 . Yr
/ </ u) (/ vl_”> v(s)l_p ds = Ay <00,
0 s 0

wherel =1 _ 1
r q p

Moreover, ifC is the best constant i(2.1), then in cas€i) we have
AL <C < Al(q/)l/lfql/q ,

and in casdii) we have

1/q'
pP—q 1/q'
(m) qg"1A; < C < (p') e g1 A;.

Maz'ja’s treatment of Theorem A in [45] is a little more general than what we have
stated and also includes the index values 1 and For example, in Theorem A (i) in
the casep = 1 or p = oo we haveC = Aj. In the casep = ¢, the characterization
of (2.1) in Theorem A is due to Artola (unpublished), Talenti (1969), and Tomaselli (1969).
Muckenhoupt (1972) gave an elegant proof in terms of Schur’s lemma. The caged
g < oowas first published by J. S. Bradley (1978), and independently by KokilaSvili (1979)
and Andersen and Muckenhoupt (1982). The casegl< p < oo was first published by
Maz'ja and Rosin (1980), and independently by Sawyer (1984). Thecase & p, p >
1, which is not considered in Theorem A, is due to Sinnamon (1987). References for these
attributions are found in [45, 22], and [5]; and it should be pointed out that Theorem A is also
part of an unpublished folklore (for which by definition we can not provide bibliographic
references!).

Note that the weights andv in Theorem A do not necessarily have to be locally
integrable, but only Lebesgue measurable. Of course, the weight conditions for both cases (i)
and (ii) requirex to be an element at (s, co) for all s > 0.

Our next ingredient for proving Theorem 1 is a rearrangement estimate for operators
of type (1, o0) and(2, 2). It is due to Jodeit and Torchinsky [36] (Theorem 4.7).
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Theorem B.
Letg > 2. There isK,; > 0 such that, for allf e LY+ L2 and for alls > 0, the
inequality
K s 1/t 9
/ F0)ide < Kg/ </ f*) dt (2.2)
0 o \Jo
holds.

Although probably not best possible, in the case 2, the constank, can be taken
to beK, = 2, see the proof of Theorem 4.6 in [36].

Finally, the following two results are needed in our proof of Theorem 1. They go
back to Hardy and Hardy—-Littlewood, respectively.

Hardy Lemma. Lety andy be non-negative Lebesgue measurable functiori6,ar),

and assume R E
/wmdrs/ X (1) di
0 0

forall s > 0. If ¢ is hon-negative and non-decreasing @ oo), then

/0 oV (1) dt < /O o3 () dt .

For a proof of Hardy’s lemma see [9] (Proposition 3.6 of Chapter 2), cf. [44].

Hardy—Littlewood Rearrangement Inequality. Let f and w be non-negative
Lebesgue measurable functions®h Then

fOwx)dx < /OO frOw* () dt (2.3)
Rn 0
and

o N l

Rn

For a proof and more general formulation of (2.3) see [9] (Theorem 2.2 of Chapter 2).
The discrete version of the reverse inequality (2.4) is Theorem 368 in Hardy, Littlewood,
and Polya’s book [29]. The inequality (2.4) is derived and applied in [21] (Corollary 2.5).

In the statement of Theorem 1 we shall use the congfainom Theorem B. In the
caseg > 2 considered in Theorem 1 this const&htqualsk, of Theorem B. However,
in the case 1< g < 2, thisK is K. Also, since the method of proof of Theorem 1
also applies to general operators of tyfieco) and(2, 2), and does not depend on specific
properties of the Fourier operat$t, we can not expect a sharp converse.

Theorem 1.

Letu andv be weight functions of®”, supposel < p, g < oo, and letK be the
constant from Theorem B associated with the relevant ind@x

There is a constanf > 0 such that, for allf € LY (R"), the inequality

~ 1/q 1/p
(/@ [Fl u(y)dy) <kc (/R If(x)l”v(X)dx) (2.5)
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holds in the following ranges and with the following hypotheses andv:
() 1<p=<g<ooand

1/s g N , 1/p
Sup(/ u*(t) dt) </ @a/v)*@®? _1dt> =B <;
s>0 0 0

(i) forl<g < p < o0,

00 1/s r/q s , r/q , 1/r
/ (/ u*) (/ (1/v)*® 1>> (1/v)*(s)? 1ds> =By <00,
0 0 0

1_1_1
where,—,_ 5

Moreover, the best constagtin (2.5) satisfies
(@) q¥s it 1<p<q.q=2,
C<B )
pYa(p)" f1<p<q<2,

andC < BygY1(p)V1 if1<q < p < .

Proof. a. We shall only prove the theorem for simple functighsStandard limiting
arguments yield the result fgf € LY (R"), e. g., see [6, 5].

Also, we shall first prove the result in pdrfor ¢ > 2 in order to apply Theorem B
directly, and then apply duality arguments in parendd to prove the result for the cases
l<p=<g<2andl<gqg < p < 2, respectively.

b. The inequality (2.2) from Theorem B with > 2 and Hardy’'s lemma withy =

o~ q .
[, x (@) = Kg ( Ol/t f*) , andyp = u* allow us to make the estimate

0o 1/q 00 1/t q 1/q
(/ F(I)qu*(t)dt) <K, ( / (/ f*) u*(t)dt)
0 0 0
o0 K . qu*(l/s) 1/q
s (f ) =)

where the equality follows from the change of variable 1/s.
Now, by (2.1) of Theorem A with: replaced byi*(1/s)/s2, v by 1/(1/v)*, and f
by f*, the right side of (2.6) is less than or equal to

(2.6)

00 1/p
K,C <f FHOPL/(1/v)* @) dr) (2.7)
0

since, with the aid of a change of variabldg, respectivelyA,, of Theorem A equal®81,
respectivelyBy, for the above replacementswfindv in Theorem A in the range < ¢,
respectivelyg < p. (Note that although we requirgd> 2 to invoke Theorem B, in order
to obtain (2.7) as a bound of the right side of (2.6) we only required p < g < oo,
respectively, < g < p < 00.)

Since(| f17)* = (f*)?, e. 9., [9] (p. 41), the reverse Hardy-Littlewood inequal-
ity (2.4) allows us to bound (2.7) by

1/p
K,C (/ | f(x)|Pv(x) dx) ) (2.8)
Rn
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Combining (2.6), (2.7), and (2.8) we obtain

00 1/q 1/p
</ F‘(t)qu*(t) dt> <K,C (/ [ f ) Po(x) dx> . (2.9
0 R~

An application of the Hardy—Littlewood inequality (2.3), in the cgsandw of (2.3) are
replaced by f|? andu, yields the lower bound

N 1/q
(/@ \f(y)rfu(y)dy)

of the left side of (2.9). Thus (2.5) is proved for the range= 2 and allp € (1, o).
Moreover, becausd1 = B1 and A2 = Bp, the assertions in the statement of the theorem
about best constant properties@follow from Theorem A.

c. We now consider the case<d p < ¢ < 2. By definition of theLZ(@") norm and
the Hahn—Banach theorem we have

. 1/q
(L 1ol unay) = su

16l q,=1

| F)G)dy
Rn

, (2.10)

where the sup can be taken over a dense subspdc¢e :o|(G||(L3), = 1}. The dual space
L{R"Y of L§(R") can be identified witiL?_, (R"), . g., the inclusior.’_, ®") <
LZ(TR”)’ is a consequence of Hélder’s inequality,

’ /% Fum M Gou) ™ dy| < |74 1610 . (2.11)

q'/q

and the opposite inclusion is a consequence of the Riesz representation thedréRfor
and the fact thaF e LZ(R") if and only if Ful/% € L4(R"). We can now invoke the
Parseval relation over an appropriate space of test functioas above, e. g., [4], and so
the right side of (2.10) is

sup

/ f(x)GV(x)dx
Ril

/ yy (2.12)
=Iflee S“'“(/W |GY(0)]” vt dx> ,

where the inequality (2.12) follows from Hélder's inequality as in (2.11) and wherg' &=
=p'/p.

Sincep’ > 2 andq’ < p’ we can use patt in the following way. For clarity, let
O0=p, P=gq,U=v"" andV = u'9. ThenP < Q, and so we shall show that
B1(P, Q, U, V), defined in (i) but in terms of the capitalized indices and weights, is finite.
Thus, we shall be able to conclude from pgathat

U 1/0 1/P
(f@nmy)l U(y)dy) sKQc</R”|f(x)|”V(x)dx> : (2.13)
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Before provingB1(P, Q,U, V) < oo, we use (2.13) to bound the right side of (2.12).
Hence,

- 1/q
(f@ [F| ur) dy) S sup(fRn 6Y ()| U(x)dx)

1/P
< IIfIILgKQCSUP</@n |G(—y>|PV<y>dy) (2.14)

/0

) ) 1/q'
=Ky Cll fll» SUHO(f@ 1G9 uly)*™1 d)/) =Ky Cllflipr,
recalling from parb for this setting ofP < Q that
/7 1 ! 1 J,
C < Bi(P. Q.U V) ()" @Y% =By(P. Q.U V)pY (p)"/! (2.15)
and thatthe supin (2.14) is taken over an appropriate dense subspéace|l ey =1}

Therefore, (2.14) yields the desired inequality (2.5) for the casepl< g < 2 once
we prove thatB1(P, Q, U, V) < oco. To this end we compute

(o) ey

0 0

(/Ol/s (Ul—l”>*)l/p/ (/OS <#>*(q_1))l/q 016
*('—1)\ /7’

(/OS u*>1/q </01/s (%) (p 1)) s

sincdg’ — 1)(¢g — 1) = 1 and(jw|P)* = (w*)P. The right side of (2.16) is finite by the
hypothesis (i). In particular, for this case ofd p < ¢ < 2, the constankK C in (2.5) is
K, C whereC < By p¥4(p')¥?" because of (2.15) and (2.16).

d. Finally, we consider the cased g < p < 2. Asin (2.10)—(2.12) of part we

have
= 1/q
(/@" lFon|* u(y)dy)

/ , 1/
=Ifler SUp</ |GY(0)]” vt dx> ,
]Rn

(2.17)

where the sup is taken over an appropriate dense subspfGe cﬂGH(LZ), =1}

Sincep’ > 2 andp’ < ¢’ we can use paib in following way. For clarity, let
O0=p,P=q,U=v"" andV = u24'. ThenQ < P, and so we shall show
thatB2(P, Q, U, V), defined in (ii) but in terms of the capitalized indices and weights, in
finite. Thus, we shall be able to conclude from gathat (2.13) is valid. Before proving
Ba2(P, Q,U,V) < oo, we use (2.13) to bound the right side of (2.17) as in (2.14). We
obtain

N 1/q
</@n |f(V)|q”(V)dJ/) < KpyClifllpr, (2.18)
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recalling from parb for this setting ofQ < P that
1/0 (pnY/ Q' _ 1p (NP
C < Ba(P, Q. U, V)QYC (P')'% = Ba(P, Q. U, V)q"'? (p')"" .
Therefore, (2.18) yields the desired inequality (2.5) for the cage;l< p < 2 once
we prove thatBo(P, Q, U, V) < occ. To this end, noting that with = 3 — 1 we have

[
R = r, we compute

By(P,Q,U, V)
r/Q'

LU LE)T) @ore a
L)) () o

Integrating by parts, and using the conventions® = 0 for the boundary term, the right
side of (2.19) is

L)) L) e

S CNNIC.
L))
e

Therefore,
(1 + %) Ba(P, Q,U, V)
r oo 1/s r/q s 1\* p-1
e
P Jo 0 0 v

r

r/q

(E>* ()P -las  (2:20)
v

Consequently, not only iB2(P, Q, U, V) < oo sinceB, < oo by the hypothesis (ii), but,
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because of (2.20), we compute that

Ba(P. Q. U, V)g¥? (p')”

r/p/ 1/r )
- B 1p (NP
2(1+%) )

_ qul/q( ) 1/q' _

Hence, for this case of k ¢ < p < 2, the constanK C in (2.5) isK,,C whereC <
Bag¥1(pHMe. ]

3. Weighted Lorentz Spaces and Hardy’s Inequality

In this section we define weighted Lorentz spaggs$v) and the spacs,, of weights,
and we also state a characterizatiomgf(v) (Theorem C) and a weighted Hardy inequality
for non-increasing functiong > 0 (Theorem D). Theorems C and D are due to Sawyer [50]
and depend on his duality principle [50] (Theorem 1), which in turn is an improvement on 1.
Halperin's expression for the dual norm &f, (v) proved in [20], cf. [42] (Theorem 1) for
the casep = 1 and [43] (Theorem 3.6.5). We shall use Theorems C and D in Section 4
in the weight characterization of the boundedness of the Fourier transform op&rator
Ap(v) = Ag(u).

Definition 1. Letv be a weight function 010, co) and let 1< p < oc.
a. Theweighted Lorentz spac&,(v) is the set of Lebesgue measurable functions
f : R" — C with the property that

00 1p
p(f)=</o f*(t)”v(t)dt) <00, (3.1)

see Remark 1 a.
b. We say that € B, if there is a constari, > 0 such that for alk > 0,

/ Mdt <b —/ v(t)dt, (3.2)

see Remark 1 b. Itis not difficult to see thabifs non-increasing then € B,,.

Remark 1 (Lorentz spaces as Banach spaces).

a. G.G. Lorentz defined ,(v) in [42] and proved that\ ,(v) is a normed linear
space withl| f1la,w) = p(f) if and only if v is non-increasing or0, co). It should be
pointed out that Lorentz requirade L%OC(O, oo) for his theory. Further, using a method
he developed in [41] for the casér) = ar® 1, 0 < « < 1, Lorentz [42] proved that
if v is non-increasing aanooo v(t)dt = oo, then A, (v) is a Banach space with norm
I flla,w) = p(f), cf. Remark 4 on Kéthe spaces.

b. To formulate a Banach space associated Wiff{v), in the case thab is not
necessarily non-increasing, consider the following condition: there is a formj on
A, (v) and there are constants0C; < Cz < oo such that for allf € A, (v),

Cillfll = p(f) = Call f1I; (3.3)
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in particularA , (v) is a linear space. Assuming (3.3), and using the classical Riesz—Fischer
criterion, the normed linear spa¢a ,(v), || ... ||) can be shown to be a Banach space by
proving that every absolutely summable series is summable.

This is accomplished in the following way. Lgf;} € A, (v) satisfyZ;?‘;l Ilfill <

00, i. e., an absolutely summable series, and defijne= Z;V:l |filandg = Z;?‘;l [ fil.
Thengy 1 g sothatgy 1 g*, and hence(gn) 1 p(¢) asN — oo. Further,f|f;I <
(C2/Cy)lfjll and so

o0 Yp 2 X
(/O g?‘v(S)”v(S)dS> < C—ZZ I fill <oo.

Combining these facts we hages A ,(v) for otherwise we would obtain a contradiction.
Sinceg € A,(v), a straightforward calculation allows us to verify that= Zj?‘;l fi €
A, (v) (since| f|* < |g|*) and thatﬂf Zjv 1 fill = 0asN — cc.
c. If, besides assuming e ,OC (0, o0) and (3.3), we also assume thdt”" <
|OC (0, 00), then we can show tha&i ,(v), p) is a Banach function space in the sense of
Luxemberg (1955), see Chapter 1 of [9], except that the triangle inequality is replaced by

o(f +g) < (C2/C1)(p(f) + p(g)) for non-negative Lebesgue measurable functins
andg onRR".

Remark 2 (4, and B, weights). Letv be aweight function oft and let 1< p < oo.
By definition,v € A, if there is a constant, > 0 such that for each intervalC R,

1 i/p L p
(III” /v(t)dt) (/1 v() ”dt) <a,,

see [18] for the fundamental role df, weights vis a vis the maximal function and the
Hilbert transform.

Because we are proving weighted Fourier inequalities, it should be pointed out that
if v is an even weight function dR which is non-decreasing q@, oo) andif 1< p < 2,
thenv € A, if and only if there isC > 0 such that for allf € LY (R),

/@|f(3/)|p y1P2u(/y)dy < C/R | f () v(x)dx (3.4)

see [7]for this result and some extensions as well as [33] for further generalizations. Besides
the perspective afforded by (3.4) we have also defiigcsince Hunt, Muckenhoupt, and
Wheeden [30] (Lemma 1) proved thiitv € A, thenv € B,. Their result is essential

in the proof of (3.4). [Technically, we have only defingg onR and B, on (0, co); but

the extension tdR” is clear for both concepts, and the result of Hunt, Muckenhoupt, and
Wheeden is true faR", e. g., [33] (Lemma 2.4).]

Example 1. A natural generalization of Lorentz’ exampl¢) = ar*1,0 < « < 1,

mentioned in Remark 1 a, is to consider the weight function = < t%_l on (0, oo) for

any fixed O< p, g < oco. Inthis caseA, (v) isusually denoted b¥(p, ¢), e.g.,[9, 16, 58].
Clearly,L(p, p) = L?(R"). L(p, q) can be normed in terms of a non-symmetric maximal
function so that it becomes a Banach space, e. g., Theorem 3.22 of Chapter V in [58].

The weight spaceB, is the notion which relates Theorem C, concernitg(v),
and Theorem D, dealing with a general weighted Hardy inequality. In fact, Arifio, and
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Muckenhoupt [1] established a relationship betwdgrand a weighted Hardy inequality
by proving thatif 1 < p < oo andv is a weight function or{0, co), thenv € B, if and
only if there is a constan® > 0 such that for all non-increasing, non-negative functighs
on (0, co) we have

0 /1 8 P 1/p 00 1/p
</ <— / f) v(s) ds) <C </ F($)Pvu(s) ds) , (3.5)
0 s Jo 0

see Theorem D. The relationship betwegnand A ,(v) is established in the following
theorem due to Sawyer [50] (Theorem 4).

Theorem C.
Let v be a weight function o0, c0) and letl < p < oo. The following are
equivalent:
(i) (Ap), II...|)isBanach space whefle .. || isanormonA ,(v) satisfying(3.3);
(i) v € By with constanb,;
(iii) There is a constant such that for alls > 0,

(/0 v(t)dt)l/p (fo (% /Ot u>l_p/ dt)w <Cs. (3.6)

In Section 4, when we assumes B, to use (3.6) we shall designate tfiein (3.6)
asC(bp). Sawyer’s original treatment of Theorem C proves=i)(iii) = (ii) = (i). The
firstimplication depends on his duality principle [50] (Theorem 1). The second implication
uses the argument in Lemma 2.1 of [1], which itself follows from a result (Lemma 21)
of Stromberg and Torchinsky [53]. The third implication uses (3.5), and the fourth is
elementary. A simpler proof of Sawyer’s duality principle is due to Stepanov [56], cf. [19];
and Heinig and Kufner [26] adopted Stepanov’s method of proof to obtain a more general
duality theorem in weighted Orlicz spaces.

Theorem D (Theorem 2 in [50]) is a weight characterization for the Hardy operator,
defined on non-increasing functions, on weighi#dspaces. Arifio and Muckenhoupt [1]
proved a single weight, single index version of Theorem D in termi,of

Theorem D.

Letv and w be weight functions o0, co) and supposd < p,q < oco. There is
Cpy > 0such that for all non-increasing, non-negative functighsn (0, co) the weighted
Hardy inequality

0 /1 ps q 1/q ) 1/p
(/0 (;/0 f) w(s)ds) s@;(/o f(S)”v(s)ds> l<pg<oco, (37)

is satisfied if and only if
() forl< p <gq < o0,

s 1/q s -1/p
sup(/ w(t) dt) (/ v(t) dt> =(C1 <@
s>0 0 0

/ 1/p'

% w(t) 1/q s /1 [t -p
sup(/ —dt) (/ (—/ v) v(t)dt) =Cr< o0
s>0 s td 0 t Jo

and
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and
(i) forl<gqg < p < oo,
00 s Yp / ps ~1/p7 Yr
(/ |:</ w(t) dt) (/ v(1) dt> i| w(s) ds) =D <
0 0 0
and
00 00 1/q s -p' Yq7)"
/ (/ wdt> (/ <1'/tv> v(t)dt)
0 s 1 o \!Jo
1 R _P/ 1/r
X (—/ v) v(s)ds =Dy <00,
s Jo
wherel = ql — %.

Moreover, if Cy is the best constant in (3.7), thély ~ C; + C2, respectively,
D1+ D»s.

Remark 3 (B, and M, weights).

a. Due to a misprint, the exponentsg;land /¢’ in the second integral of Theorem D
part (i) were replaced by/lp and ¥/ p’, respectively, in the original article [50] (Theorem 2).

b. Letl< p < ¢ < oo. Itis natural to compare Theorem A and Theorem D
in light of the fact that the weighted Hardy inequalities (2.1) of Theorem A and (3.7) of
Theorem D are the same when the weighof Theorem D isw(r) = u(t)t?, whereu is
from Theorem A. On the other hand, with this definitionugfA1 of Theorem A is neither
C1 nor C, of Theorem D even though thes; factor,”

00 1/
([ 5P a)
s td

appears in botli; andC,. Of course, the test functions for Theorem A form a larger
class than those for Theorem D.

c. Nowletl< p =g < ocoandw(t) = u(?) t? = v(z) in Theorem A. In this case,
we state the conditiod1 < oo in Theorem A by writingw € M,, i. e.,

00 1/p s 1/p
Vs > 0, (/ %dr) (/ w()t= d:) <A;p. (3.8)
s 0

Then, in light of the Arifio and Muckenhoupt theorem (3.5) and the fact that the class of
non-increasing, non-negative functiofion (0, co) (for (3.5) and Theorem D) is a subset
of the non-negative functiongon (0, co) (for Theorem A), we can assert thidt, € B,. It
is not difficult to verify this inclusion directly, see paltand also to show that the inclusion
is proper, see pasd.

Besides this observation tha€, < B,, we also note that the conditiofy < oo
andC, < oo in Theorem D can be interpreted as follows for<l p = ¢ < oo and
w(@) = u(t)t? = v(t) : C1 < oo is automatically satisfied; anth < oo is essentially a
mean versionf A; < oo, i. e., the factor

K , 1/17/
( / w()? dt)
0
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in (i) of Theorem A is replaced by the factor

([ G L) o)

in (i) of Theorem D. In light of the Arifio and Muckenhoupt theorem (3.5) we can therefore
assertthat € B, if and only if

1/p’

00 1/p s N g
sup(/ malt) </ <}/ u)) w(t) dt) =(Cor < 0.
s>0 K tP 0 t Jo

d. For 1< p < oo and any weightv on (0, co), we have for each € (0, co) that

s s 1/p s . 1/p'
s:f wOYPw) VP dr < (/ w(t)dt> (/ w7 dt) ,
0 0 0
and hence
s -1 s LN\
(/ w(?) dt) <s7P (/ w1 dt) )
0 0

Thus, ifw € M, then

* w(r) s -
S s p/r
<s7P (/ wdt) ([ w(t) dt)
s tpP 0

< AiPs™P,

and sow € B, with constanb, = A1”.
e. The fact that the inclusioi, < B, is proper is due to Arifio and Mucken-
houpt [1] (p. 728), but perhaps a few details are required to convince the reader. Let

® 0, ifl<tr<2,
w(r) =
Y2 if0<tr<lort>2.

Clearly,w ¢ M, by evaluating the product in (3.8) fer> 1. On the other hand,

N

© w(t 1 1
/ w) dt < sTPFE < bp— | w()dt,
s sP Jo

where the firstinequality is immediate, and the second requires the calculaffprof) dr
and separately considering the intervalg @ < 2 ands > 2. Thus,w € B,,.

Remark 4 (Kéthe spaces).
a. GivenA ,(v) andp defined by (3.1). Further, letbe non-increasing o(0, co)
and assum%>o v(t)dt = oo. Itis straightforward to see that

00 1/p
Vfe ), p(f)=sup</o f*(t)f’ve(t)dt> ; (3.9)
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where the supremum is taken over all non-negative, Lebesgue measurable fungctions
on (0, co) which are equimeasurable to First, the inequality £” is obviously always
true. The opposite inequality>" follows from the Hardy—Littlewood Rearrangement
Inequality (2.3) and the fact that* = v in the case is non-increasing.

b. Because of (3.9) and the role the right side plays in proving Aha) is a

normed linear space in the casés non-increasing, it is relevant to mention Kéthe spaces.

In fact, many of the topological and uniform structure propertiea pfv), completeness

being an example of the latter, are special cases of results from the theory of Kéthe spaces.
This observation was made early-on by Lorentz [42] (Section 4), [43] (p. 66—67), where
the work in the former citation is possibly independent of Kéthe’s theory. In light of the
Fourier transform inequalities in weighted Lorentz spaces that we shall prove in Section 4,
we shall now define Kéthe spaces in the context of possibly generalizing Theorems 2 and 3
beyond Lorentz spaces.

c. In 1934, Kéthe and his teacher Toeplitz began the development of the duality
theory of a class of topological vector spaces (TVSs), which Kéthe called “vollkommene
Raume” perfect spacgsand which he developed deeply with his students after World
War Il, e. g., [38]. There is a generalization of perfect spaces by Dieudonné [14] (received
November 1950) and an even more general and quite different formulation by Cooper [13]
(received November 1951). Dieudonné refers to his generalizatidtdtize spaces.

LetD C L|1OC (R™). TheKdthe space defined byD is the linear space

K:{feL%oc(R"):VgeD, fgeLl(R”)] .

IC does not uniquely defin®. Notationally,C* is the Kdthe space defined iy, Clearly,
D c K* and therefordC is also defined byC*. Further,/C andK* are in weak duality for
the bilinear form< f, g >= fRn f(x)g(x)dx, andK* is theKdthe dualof .

d. AsetV € L} (0, 00) isnormalif f € N, g € L} (0, 00), and|g| < |f|on
(0, 00) imply g e NV.

Now, for A ,(v) with v non-increasing o0, oo), note that iff € A,(v) then

sup
heN,

/Oo Fr*@®h(@)dt
0

<p(f),

where, for a giverv, > 0 equimeasurable to, N, is the normal set of functions =
(ve)VPg, lgll,» < 1. Inthisway, one can establish the relationship between Lorentz Banach
spaces and Kothe spaces, see [43] (p. 66—67) and [14] (p. 101). The details depend on the
structure of the bounded sets in Kéthe spaces including the fact thabtheal envelope

of every weakly bounded set in a Kéthe space is weakly bounded [37] (Theorem 5).

e. Besides their intrinsic relationship with classical ideas such as Lorentz spaces and
their original formulation in terms of sequence spaces, Kéthe spaces were influential in the
development of locally convex TVSs, see [15] (p. 217-218). Briefly, Kéthe and Toeplitz
defined the weak topology (K, K*) and the associated weakly bounded set§ .o hen,
sinceC and IC* are symmetrical, they considered the weadpologyo (X*, K) and the
corresponding bounded s&8of £*. These bounded sets give rise to a neighborhood basis
{Vp} of the origin in/C:

Ve={feK:VgeB, |<fg>|<1},

the polar set ofB. Koéthe and Toeplitz then proved that the bounded sets instigg
topologyon K are the same as fer(IC, K*). This theorem is a major example of Mackey’s
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characterization of the range of topologies on a locally convex TVS for which all the bounded
sets are the same.

The proof in Theorem 1 of the weighted Fourier transform norm inequality (2.5)
depends on using the hypotheses of the theorem to prove (2.6) and (2.7). For appropriate
andv, (2.6) and (2.7) combine to yield

00 1/q 00 1/p
( / <ff>*(r)qu<r>dr) SC( / f*(t)”v(t)dt> ,
0 0

which reflects the continuity of
F:iAp() — Ay(u), (3.10)

where the convergence in the Lorentz spaces is defined by (3.1). Section 4 is devoted to
establishing computable relations between weighiadv in order to establish (3.10).

4. Fourier Transform Inequalities in Weighted Lorentz
Spaces

We now prove Fourier mapping theorems in weighted Lorentz spaces. Because of
Theorem C and Lorentz’ theorem, stated in Remark 1, these weighted Lorentz spaces are
in the Banach space setting. Sinnamon’s work [52], referenced earlier, provides different
Fourier mapping theorems by foregoing any Banach space structure.

Theorem 2.
Letu andv be weight functions o(D, co).
i. Assumex is non-increasing and € B, wherel < p < g andqg > 2. If

1/s /g s -1/p
sups / u (/ v) =(C3<o00, (4.1)
s>0 0 0

then there isC > O such that for allf € L1 + L2,

00 1/q 00 1/p
(/ f*(t)%t(t)dt) <C (/ fEOPvu() dt) . 4.2)
0 0

ii. Conversely, if(4.2)is satisfied for any weight functionsandv on (0, oo) and for
1 < p,q < oo, then(4.1) holds. In fact, the conclusion holds (#.2) is only assumed to
hold over the class of radial characteristic functiofigx) = x,r) (Ix|).

Proof. i. Asin the proof of Theorem 1, the inequality (2.2) from Theorem B (Jodeit—
Torchinsky) and Hardy’s lemma allow us to assert

o g 00 11 4 Ya
(f ) %u(t) dt> <K, (/ u(t) (/ f*) dt) (4.3)
0 0 0

for f € L1 + L2 In fact, since; > 2 we have

/05 fr@)dr < K (/0 (/ol/t f*)q dt) (4.4)
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for all s > 0 by (2.2); and so, setting = 7*4, ¢ = u, andx () = Kf} ( 01/’ f*)q, we
obtain (4.3) from (4.4), Hardy’s lemma, and the hypothesis ihigt non-decreasing on
(0, ). If we make the change of variable= 1/s on the right side of (4.3), then (4.3)
becomes

00 1/q 00 s q 1/q
(/ f*q(t)u(t)dt> <K, (/ @ (5/ f*) ds) . (45)
0 0 N s Jo

We shall now invoke Theorem D with the weights) = u(1/s)/s2 ¢ and constant
Cpy. Then the right side of (4.5) is bounded by

00 1/p
K,Cy (/ f*(s)”v(s)ds) ,
0

thereby completing the proof of (4.2), if and onlydf andC» defined in (i) of Theorem D
are finite. Thus, in order to complete the proof of (4.2) we must verify that

s 1/q s -1/p
sup(/ Sl dt> (/ v(?) dt) = (1 < o0 (4.6)
s>0 o f 4 0
00 1/q s t -p v
sup(/ u(lz/t) dt) </ (E/ v) v(t)dt) =(Cr < 00. 4.7)
s>0 s t 0 t Jo

To show that (4.6) is satisfied first note that B, sinceu is non-increasing. Thus.

E 00 1/s
/ u(1/) dt:/ &d,qusq/ u(t)dt,
0 ! °

t2—q /s t4

and

see (3.6). Hence,

s I/t(l/l‘) 1/q N -1/p
([0 ([ oo
1/s Ya , s ~1p
< b;/qs (/ u(t) dt) </ v(1) d[) < b;/qcs :
0 0

and so (4.6) is satisfied witfi; < bl}/ 1¢s.
To show that (4.7) is satisfied, observe that the first integral in the product of (4.7) is

1/s Ya
(/ u(t) dt) (4.8)
0

by means of a change of variable. In order to bound the second integral,

( s /71 [t - 1y
X = f (—/ v) v(t) dt)
o \7Jo
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in this product, we integrate by parts and obtain

, , s 1-p s /1 [t 1-p
X=1pXP +sP (/ v(t)dt) —p'/ (;/ v) dt
0 0 0

, s /1 t l—P/ , N 1_17/
(p’—l)X”:p’/ (—/ v) dt — sP (/ v)
o \7Jo 0
s /1 t 1-p'
p / (—/ v) dt] ,
o \IJo

1/p'

Thus,

IA

and so

_ 1/p’
’ s /1 [t 1-p
Xg{ /p 1/ (;/ v> dt} . (4.9)
p—1Jo 0

Sincev € B, p > 1, we can invoke Theorem C and the equivalence in terms of (3.6) to
bound the right side of (4.9) by

, s -1/p
cpYP's (/ v(?) dt) .
0
s /1 t -p' v’ , N -1/p
(f <—/ v) v(t)dt) §Cp1/”s</ v(t)dt) .
o \fJo 0

Combining this estimate with (4.8), we see that (4.7) holds With< p¥/?'CC3, where
C = C(bp) is the constant from (3.6) obtained since B,.
i. If (4.2) is satisfied for 1< p, ¢ < oo we define

n 1/n Y
K=K = (|Bn<o, 1>|> ’

for fixedr > 0. Let f(x) = x0.«)(Ix]). The distribution function off is

Hence,

Dy(s) = |{x e R" : x0.0)(x]) > s}|

0, if s>1
- </ p”_ld,o> do,_1(0). f0<s<1
sn—1 0
0, it s>1
| B0 .
MK”, f0<s<1
n

=7 x0,1(s) .
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Hence,f*(s) = x(.r(s). r > 0. Thus, for thisf, the right side of (4.2) is

r 1/p
C (f v(s) ds) . (4.10)
0

Since f (x) = x.0)(1x]) is radial, / is also radial, and in fact [cf. [51], [55] (Chapter 9,
Section 6.19)],

K
fayh = 2n|y|<2*">/2f0 "2 Ju—2)j2(2mt|y ) dt
where the Bessel function is

/2
Jn—2)/2(27s) = C,,s(”_z)/zfo cog27s cosg) sin" 2 g dg , (4.11)

Cy=27=3/2/T (252 )it n > 1, andifn = 1 then

J_1/2(27s) = 7~ Ls7Y2 cog2ms) .

Note that the integration in (4.11) is usually written from Grtdout that in fact the integrals
from O torr/2 andn /2 tor are equal.

We consider here only the cage- 1, since the argument far= 1 is essentially the
same, and in this latter case the Fourier transform is the sinc function. Let

1/n
E:E(F)Zizi M r—l/n’
2K 21 n

so that, forr € (0, k) andt € (0, k), we have
coS2rtT COSp) > cosl> 1/2

if0 < ¢ < /2. Hence, for suchandz, (4.11) gives the estimate

1 /2
Jo—2)2@rtT) > ECn(”)(n—Z)/Z/O Sin"=2 4 dg

r(z=2
_ }cn(n)<"—2>/2£—( )
2 2 r(3)
TR o
2r (3)

Consequently, ify| = t € (0, x), then

(n=2)/2
£y > 2xly @72 [n—} [ reane-2za
0

2r (3)
n/2 K
= ;TT%’)/O " dr = % : (4.12)

since the surface ares,_1 of S"~1is 27"/2/ ().
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Now, for any fixedr > 0, we have the estimate

I 1/q Ur Ya
(/ f*(t)qu(t)dt) > ( Fr@)u(t) dt)
0 0
[ele] 1/q
- (q / s971 [ / A u(t) dt] ds> (4.13)
0 {te(0,1/r): f*(t)>s}
0 min(D 4(s).1/r) g
= (q/ 5971 U u(t)dt:| ds) ,
0 0

where the last step follows since
{z - ) >s} - {t:t< Df(s)} .
Clearly, ifs > 0, then
pis) = ||y eR": |f )] > s}

/ </ "_1d,0> do,_1(0) .
{p>0:| f(p)|>s}

(O,F)E[p>0:f(p)>%]§{p>0:f(p)>s},

Further, ifs < nr/2, then

where the first inclusion follows from (4.12). Thus, in this case,

3
Df(s) = a)n—lf R 0" Ldp > a),,_1/ 0" Ldp
{p>0:| f(p)|>s} 0

1/1 1 111 1 1
= n 12 = — - > -, 4.14
(s 180 0) =T (2 5= (4.14)

where the second inequality follows from the definitio’adnd the assumption that> 2.
(Actually, thefirstintegralin (4.14)isinfinite.) Hence, mlnf(s), 1/r)y=1/rifs < nr/2.
Therefore, combining (4.13) and (4.14), we have

0o 1/q nr/2 1/r Yq
</ Fr)u@) dt) > (q/ 5771 [f u(t) dt:| ds)
0 0 0
1/q 1r 1a 1r 1/q
_ Y (%) (/O u() d;) - % (/O u(?) d:) .

() (6 <2 rommna) ()
UONTEREE

Thus,

SN

IA

| /\
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where the constant is from the hypothesis (4.2) and where the second inequality is a
conseqguence of the bound (4.10). (4.1) is obtained and the proof is complete.]

The following result provides sufficient conditions for the Fourier transform weighted
norm inequality (4.2) of Theorem 2 in the case?; < p < oo.

Theorem 3.
Letu andv be weighted functions @, oo). Assume is non-increasingand € B,
where2 < g < p < oo. If

1/r

o |1 s 1/p 1/s i
/ - (/ u(t) dt) (/ v(t) dt) u(s)ds =Cy<o0, (4.15)
0 N 0 0

wherel = 51 - %
is satisfied.

, then there isC > 0 such that, for allf € L! + L?, the inequality(4.2)

Proof. As in the proof of Theorem 2 (i) we obtain

00 1/q 00 s q 1/q
(/ f*(t)qu(t)dt> <K, (/ @ (Ef f*) ds)
0 0 s<4 s Jo
o] 1/p
<K,Cy </ FE)P v(s) ds) (4.16)
0

by means of Theorem B (requiring > 2 and giving rise to the constaii,), Hardy’s
lemma, and Theorem D (with constafi;). However, in the index rangg < p < oo,
the second inequality of (4.16) results from the validity of conditions (ii) of Theorem D for
the weightw(s) = u(1/s)/s2~4. Our hypothesis (4.15) will yield these conditions in the
following way.

To show thatD4 in Theorem D is finite we make the computation

oo (2 NN e
Yo o 1274 0 §2-4
olrreuwy Y7 (s YT w@ys)
Z/o (/1/ ,T‘“) </0 ”) ~ag s (4.17)

B -1/p]"
] o] u(t) 1/p 1/s u(s)

by means of a change of variable. Since non-increasing we know thate B,, and,
hence, using the fact that= % - %, we see that the last term of (4.17) is bounded by

0 s N [ s \ VP
b;/p/ |:1' (/ u) </ v) j| u(s)ds .
0 s 0 0

Consequently, from our hypothesis (4.15), we have

leb;/pC4<oo.
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To show thatD, in Theorem D is finite we make the computation
e [ ) (L) )]
= - v v
2 s 0 12 o \7Jo
K —P/
X (1'/ v) v(s)ds
s Jo
0o 1/s r/q s /1t - /g’
:/ / u(t) dt / (—/ U) v(r) dt
0 0 o \7Jo
K 1 t —I’/
X d / <—/ v) v(t) dt
o \7Jo

() (5 () ™ wonar) [ -

r
i

0

r I+h

L 00 1/s ¢ 1 s /1 ft -7 r(
+ — / / u / (—/ v) v(1) dt
r(z+35)Jo 0 o \IJo

u(l/s)
X

st

N

’ [e'9) 1/s r/p s t -p' /v
_ 1’_/ (/ u) (/ (3/ v> v(t)dt) “(12/5) ds
q Jo 0 o \7Jo N

by means of a change of variable and an integration by parts. Biacg,, the calculation
at the end of paiitin the proof of Theorem 2 allows us to make the same assertion now as

we did there, viz.,
, s -1/p
prl/ps</ v(t)dt) ,
0

s /1 t -p
f (—/ v) v(t)dt
0o \sJo
whereC = C(b,) is the constant from inequality (3.6) in Theorem C. Thus the right side
of (4.18) is bounded by

! poo 1/s r/p , s -1/p7"
p_/ (/ u) [pl/P C(bp)s (/ v) } u(lés) ds
q Jo 0 0 s
/ o0 r/p e \ VP '
Y Vi " t 1 /
=2 (p C(bp)> /O (/O u) {t ( o u(t)dt .

Consequently, from our hypothesis (4.15), we have

1/p’

p/ 1/r ,
Dy < (;) pYPC(b,)Cs < .

The proof of the theorem is complete. []



Weighted Fourier Inequalities: New Proofs and Generalizations 25

Example 2.

a. We give examples of weights satisfying the hypotheses of Theorem 2. et 1
p < q and letg > 2. We shall construct weight functiomsandv on (0, co) so thatu is
non-increasingy € B, and (4.1) is satisfied, i. e.,

1/s /g s -1/p
sups (/ u) </ v) <00. (4.1)
s>0 0 0

Letu(®) =t% -1 <o <0, and letv(r) = 14, -1 < a < p — 1. These conditions on
P, q,a, o, along with (4.19) below, ensure thaandv satisfy the hypotheses of Theorem 2.
In fact, u is clearly non-increasing, ande B, since

 u(t a—p+1 1 1 K
/ v oS _(_ et —/ v(t)dt ;
s P p—a-—1 p—a—1)sP Jg

and the productin (4.1) is

1/q —

1/ 1/p 1/

s / ' t* dt <fs 4 d;) = ws—(ﬂ&l)/qs—(tﬁl)/ps ,
0 0 (¢ +1)l/a

which is uniformly bounded for all > 0 if

a+1 a+1
+ =
q p

1. (4.19)

We illustrate these weights in two specific cases, gastsdc.

b. Letl1< p < 2andg = p’. Then (4.19) is equivalent te = —a(p'/p) =
—a/(p — 1). Suppose-1 < o < 0 so thatx is non-increasing. We need only check that
a = —a(p/p) € (=1, p— 1. Infact, this formula for implies that 0< a < p — 1.
Consequently,ifl< p <2,g=p',—1 <a <0,anda = —a(p/p’), thentherei€ > 0
such that for allf € L + L2,

© Y 00 Yp
(/ froPr® dt) <C (/ FH()Pre dt) .
0 0

c. In light of the conventional intuition, e. g., [4], from which the general theory has
been built, it is natural to ask if andv can both be non-trivally non-increasing in the case
of Theorem 2. The answer is “yes.” Letl < «,a < 0 so thaw andv are non-trivally
non-increasing, and, in particular,e B, for any p > 1. For the case of Theorem 2 we
must findp, ¢, a, « sothat 1< p < ¢,q > 2, and (4.19) is satisfied.

Ifl < p<2anda =1- pthen—1 < a < 0. We make this choice ¢f anda, and
shall momentarily further restrict the value pf In this case, (4.19) is equivalent to

a=2L _1. (4.20)

/

Thus,—1 <« < 0ifand only ifg < p’/2. Since we also require 2 ¢ we restrict values
of p to the intervak1, 4/3). Therefore, for suclp and for2< g < p’/2wesea =1—p
and definex by (4.20). Hence, Theorem 2 applies and we obtain (4.2).
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Example 3. We give examples of weights satisfying the hypotheses of Theorem 3. Let
2 < g < p < oo. We shall construct weight functionsandv on (0, oo) so thatu is
non-increasingy € B, and (4.15) is satisfied, i. e.,

1/p

o | 1 s 1/p 1/s - '
/ - (/ u(t) dt) (/ v(t) dt) u(s)ds < oo . (4.15)
0 s 0 0

Note thaty < p impliesr > 0. Let—1 < « < 0 andg < —1, and define

o t*, O0<tr<1,
OZ 8 i1

andv(t) = t“T? where—(p+1) <a < —1.
Clearly,u is non-increasing, and € B, since

® (t 1\ 1 ¢
/ —”()dt=_<—“+p+ )—f () dr,
s tP a~|—1 sP 0
as in Example 2 a.

In order to check (4.15) we write the integral there as

00 1 e
f 2/ +/ =h+1.
0 0 1

A direct calculation shows that

/P el
L= a+p+1Y p/ (rret@r/patp+r/p gy
a+1 0

Since the exponent in the integrandds+ 1)r/q + (a + D)r/p — 1, we see thal; < oo
if and only if
a+1 a+1
+
q p
noting thatw + 1 > 0,a + 1 < 0, andr > O, cf. (4.19).
Another direct calculation shows that

I 1)7/p % rBHatp+Dr/p 1 -1 1A+ v d
= t — — —t t.
2=(a+p+1 /1 (a+1+<,3+1)< ))

>0, (4.21)

Thus,x +1 > 0 and—(B8 + 1) > 0 allow us to make the estimate,

B—«a r/p oo .
0= o< arp el (ot ) [y

and the right side is finite f-r + 8+ (a + p+ Dr/p + 1= X < 0, which is clearly the
casesince < —1,8 < —-1l,andX =8+1+ (a+ Dr/p <O.

It remains to verify that the condition (4.21) is not vacuous. In fact, we can choose
a anda so thata + 1 = —(a + 1). In this case, taking-1 < « < 0, we see that
a=-1—(e+1 < —-1landa = -2—«a > —p — 1. Thus,u andv can be defined
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compatible with the constraiat+ 1 = —(« + 1). Further, (4.21) is obtained in this case
because the left side of (4.21) is

(oz+l)<£—£>>0
q9 P

One might expect that a duality argument as in the weighted Lebesgue case of Theo-
rem 1 would show that Theorems 2 and 3 are also valid in the indexranggs & g < 2
and 1< g < p < o0, g < 2. However, the dual of\ ,(v) is not A ,»(w) for somew,
see [50] for Sawyer's characterization of the duahgf(v) as well as the fundamental work
of Lorentz [41, 42, 43] and Halperin [20]. On the other hand, Theorems 2 and 3 can be used
to prove Fourier inequalities in weighted Lebesgue spaces for the complete index range
1 < p,q < oo. This is the subject of Section 5.

sinceax > —1 andg < p.

5. Weighted Fourier Inequalities—Lorentz Space Method

We now apply Theorems 2 and 3 to obtain a result similar in content to but different in
proof than Theorem 1, see Remark 5 for the manner in which Theorem 4 can be considered
a generalization of Theorem 1.

Theorem 4.
Letu and v be weight functions oiR" and supposd < p,q < oco. There is a
constantC > 0 such that for allf € L! 4+ L? the inequality

N 1/q /p
([# |[Fo| u(y)dy) <cC (/R If(x)l”v(x)dx) (5.1)

holds in the following ranges and with the following hypotheses andv:
() (/v teB,l<p=<g,q=>2and

1/s /g s =1/p
sups (f u* (1) dt) (/ (1/u)*(z)—1dz> <00 (5.2)
s>0 0 0

(i) (/v teBy2<qg<pl=

o | 1 s 1/p 1/s -1/p7"
/ - (/ u* (1) dt) (/ (l/v)*(t)ldt> u*(s)ds <oo.  (5.3)
0 0 0

(iii) @7 € By, 1< p<gq <2 and

1 1/s 1ot —1/d’ s " 1/p’
sup- / u ()1 dt </ a/v)*®? dt) <00} (5.4)
s>0 S 0 0

i 1-¢’ 1_1 1
(iv) ™)1 qu/,1<q<p,q<2,;—E—E,and

1/ , \Vd' [ rlys ) -1/4'7" /
/0 E(A WO dl) (/0 SN0 _1””) 1/v)*(s)? ~Lds < 0. (5.5)

=

1
L and



28 John J. Benedetto and Hans P. Heinig

Proof.  For part (i) we apply Theorem 2 withandv there replaced by* and 1/(1/v)*,
respectively. Similarly, for part (i), we apply Theorem 3 withandv there replaced by
u* and Y/ (1/v)*, respectively. These two cases deal wjtk 2, and with 1< p < g for
part (i) and withg < p for part (ii).

In these cases, and for these substitutions wihdv, (5.2) becomes (4.1) and (5.3)
becomes (4.15), respectively. Further, sinté non-increasing and since we are assuming
that 1/(1/v)* € B, in Theorem 4, we can apply Theorems 2 and 3 for the cases (i) and (ii),
respectively. Thus, (4.2) is obtained for both cases, i. e., there is a co@staftsuch that
forall f e LY+ L?,

0 1/q ) 1/p
(/ f*(t)‘fu*(t)dt> <C (/ f*(t)”(l/v)*(t)ldt> : (5.6)
0 0

Finally, we obtain (5.1) for both cases (i) and (ii) by applying (2.3) to the left side
of (5.6) and (2.4) to the right side of (5.6), noting, of course, thfa)? = (| f|7)*.

For parts (iii) and (iv), and since £ ¢ < 2, we invoke the duality method used in
Theorem 1. In fact, by the same argument used to obtain (2.12) irc paithe proof of
Theorem 1, we have

. 1/q
(/@Jf(y)wu(y)dy) = sup

1Glgq,=1

Fx)GY (x)dx

Rﬂ
(5.7)

, . 1/p
S ||f||L5 SUHIGH(L‘I)/:]- (/ |G\/(x)‘p ‘U()C)l—p dx> 3

whereL? (R = LZLq,/q (R™). It should be emphasized that this argument to obtain (5.7)
only involves elementary functional analysis and not the general operator theoretic point of
view of Theorem 1.

For part (iii) with 1 < p < g < 2 we have 2< ¢’ < p’. Thus, we are able to
apply part (i) withg (in part (i) replaced by’, p replaced byy’, u replaced byv!~?',
andv replaced by:1~%". For clarity, letQ = p/, P = ¢/, U = v¥"7, andV = u1 4",
In particular, 2< P < Q, and the hypothesi@*)l‘q/ € B, becomes A(1/V)* € Bp.
Further, the hypothesis (5.4) is

1/ (s —Yr s 1/0
sup- (/ (1/V)*(t)ldt> (/ U*(t)dt) < o0 (5.8)
s>0 9 0 0

since(1/V)* = ! ~H* = (u*)? " and

l*p/_l :|.pl71>‘< 11— \*
_ = —_ = —Pp = *
() =) ) =ty =e
Thus, (5.8) is the capitalized version of (5.2) so that part (i) applies with this notation.
Therefore, there is a constafit> 0 such that for allF LC(R”),

1/0 1/P
([ Irwlowa) <c([ironvea) . 69
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Rewriting (5.9) in its lower-case version, we have

/ RN , ) 1/q’
(fR |[FY0]” vt dx) =C (é [FIT u(y) = dy) (5.10)

forall F € LZ;_q/ (R"). Combining (5.7) and (5.10) we obtain (5.1) in case (iii) since

Lhy =L, ®").

Forpart(iv)withl< g < p,q < 2,we proceed asin part (iii) using (5.7) and invoking
part (ii) to obtain the analogue of (5.10) but for this range of indices. Inequality (5.7) and
this analogue yield (5.1). [

The constan€ in Theorem 4 is a product of the forkiC g, depending on the various
case (i)—(iv). The product itself was determined in the proofs of Theorems 2 and 3, and its
factors are the constants from Theorems B and D.

Remark 5 (Comparison of Theorem 1 and Theorem 4). It is not apparent that
Theorem 4 is a generalization of Theorem 1. In order to analyze the relationship between
Theorems 1 and 4 we proceed as follows.

a. Letl< p,g < oo and assume weight functiomsand v on R” satisfy the
hypothesis of Theorem 1 (i), viz.,

1/s g s , 1/p
sup(/ u™(t) dt) (/ @a/v)*@)? _1dt) =B <. (5.11)
0 0

s>0

Then, Holder’s inequality allows us to make the estimate

1/s g s -1/p
s< / u*(t)dt) ( / (1/v)*(t)_1dt)
0 0
s 11 1/s s -1/p
=</ @/v)y*@) 7 dt) (/ u*(t)dt) (/ (1/v)*(t)ldt>
0 0 0
s 1/p s , 1/p
< ( / <1/v>*(r)ldr) ( / (1/v)*(t)"”’dt>
0 0
1/s /g K -1/p
X (/ u*(t)dt) (/ (1/v)*(t)1dt> <B1.
0 0

Consequently, if one supposes the hypothesis of Theorem 1 (i), then (5.2) is valid.

b. Again, let 1< p, ¢ < oo and assume weight functionsandv onR” satisfy the
hypothesis of Theorem 1 (i), viz., (5.11). Then, Hélder’s inequality allows us to make the
estimate

1 1/s , ~L/4’ s , 1/p’
1 (/ OL dt) (/ (1/v)*(1)” _1dt)
S 0 0
1/s 11 1/s , ~L/4’ s , 1/p'
= (/ RO d;) (/ u* ()14 dt) (f (1/v)* ()P _1dz)
0 0 0
1/s Yq s , /v
< (/ u*(t)dt) </ (1/v)*(1)? _1dt> < B,
0 0

1/q
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since—q’/q = 1 — q’. Consequently, if one supposes the hypothesis of Theorem 1 (i),
then (5.4) is valid.

c. Next, let 1< g < p < oo and assume weight functionsandv on R” satisfy the
hypothesis of Theorem 1 (ii), viz.,

00 1/s r/q s , r/q ,
/ (/ u*> </ 1/v)*® —1>> (1/v)*(s)? tds = By < 0,
0 0 0

wherel = ql — % (and hence;, = 7, —1). Note that- > 0 sinceg < p. Then, Holder’s
inequality and an integration by parts allow us to make the calculation

oo |1 s 1/p 1/s -1/p"
/ —</ u*(t)dt) (/ (l/v)*(t)_ldt) u*(s)ds
0 s 0 0
o | 1/s s 1/p 1/s -1/p7"
=/ (f ((1/v)*)‘l’+'l’) </ u) (/ ((1/v)*)1) } u*(s)ds
0 0 0 0
s 1/p
(£ )
0

*© Vs x\—1 v Ys «\P' /P
< ( | @) ) ( | @) )
1/s N\ '
1/v)* *(s)d
X (/0 (@/v*) ) :| u*(s)ds
00 1/s , r/p’ s r/p s
/ </ ((1/v)*)p/p) (f M*) d/ M*
0 0 0 0
oo | s r/p 1/s , /v
_ r * 1)) /P *
L) (£ o) o
, s 21 [ elys N vl L1 Plrq
L o) (23]
r/q’

0 s r/q 1/s , p'/p
P (L ) e () 3o
P Jo 0 0 s s

where we have used the conventiond = 0 and the fact that there is a negative term
in the integration by parts step. By a change of variabte 1/s on the last term of this
calculation, we see that

o | 1 s 1/p 1/s 1 -yp"
/0 B (fo u*) (/(; ((1/1))*) ) u*(s)ds
) 1/t rla t RN )
/ (/ u*) (/ ((1/v)*)? /”) (L/v)* ()PP dt
0 0 0

B

1/p'

IA

1

A

IA
SHTRECER

)

N~
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sincep’/p = p’ — 1. Consequently, if one supposes the hypothesis of Theorem 1 (ii),
then (5.3) is valid.

d. A similar calculation in the case 4 ¢ < p, ¢ < 2, also allows us to conclude
that if one supposes the hypothesis of Theorem 1 (ii), then (5.5) is valid.

Remark 5 establishes that the hypotheses of Theorem 1 are special cases of the
boundedness hypotheses (5.2)—(5.5) of Theorem 4. This does not prove that Theorem 4 is
a generalization of Theorem 1 since, in particular, we have not shown that the hypotheses
of Theorem 1 imply the3, and B, conditions of Theorem 4. It is reassuring to know that
Theorems 1 and 4 are equivalent for power weights and that these theorems are genuine
generalizations of Pitt’s theorem stated in the introduction. These two assertions are the
content of Examples 4 and 5, respectively.

Example 4. _

a. Letu(y) = |yl%, v(x) = |x|%, wherey € R", x € R" anda < 0,a > 0. ltis
easy to check that* (1) = Cot®/" and(1/v)*(t) = C,t~%/" forall t > 0. C, andC, are
dimensionality constants.

We have chosea < 0,a > 0in light of Theorem 4. For example, ¢ > 0, then
D, (s) = oo and sau* = oo on (0, o0); and, consequently, if (5.2) is assumed thea co
on R". In this situation ofe > O, for the case 1< p < ¢, ¢ > 2, Theorem 4 only
guarantees (5.1) fof = 0. There is a similar consequence:itk 0. As such, we assume
o < 0anda > 0.

b. Now, for these weights, the boundedness hypothesis of Theorem 1 (i) becomes

B Ys Y § _ap '
A7y g = / tndt (/ t "Pdt>
C, pCaq 0 0

1/p'

1 \Va 1 o 1,1 o
n 1-0%

np

and so the boundedness hypothesis is valid if and only if

—n <aanda <n(p—1) (5.12)
and
1 1 1 1 1
_<Z+E)=_,__= _i b (5.13)
n\p ¢4 p q P g

where (5.12) ensures local integrability of the weights. Thua, & 0 anda > 0, then
(5.12) and (5.13) allow us to use Theorem 1 (i) to conclude that

. 1/q 1/p
(/@ [Fnl* |y|“dy> <kC (/R |f<x)|"|x|“dx) : (5.14)

see (2.5) of Theorem 1.

¢. We now turn our attention to Theorem 4 for the weights of part

With regard to theB,, hypothesis in Theorem 4 (i), it is an easy calculation to check
thatif » > 1and p > 1 are given, ther((1/v*))~1 B,ifandonlyif0 <a < n(p — 1),
and in this case the lower bouihd in the definition ofB), in (3.2) is

n—+a

by=————.
P n(p -1 +a
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In fact, the left side of thes,, inequality (3.2) for the weight(1/v*))~1(t) = (1/C)t¥/"
is finite and equal to

11 o (5.15)
Cap—1-1¢

if and only ifa < n(p — 1); and the right side of th&,, inequality in this case is

by 1 [°

4" dr
Cu.s? Jo

which is finite and of the same form as (5.15) ifand onl§ i 1 > 0, i. e.,a > —n, which
is automatic since we are assumiag- 0.

In this regard, recall that , € B, see Remark 1 b, whereds = B, in the case of
power weights.

d. Continuing with Theorem 4 (i) for the weights of padsthe product in the
boundedness condition (5.2) is

1/s /g s -1/p
s / Cot®/" dt (/ cle/m dt)
0 0

1/q 1/ @ _1,1_a
_ cMreya (L> (1497 ibedh
=C,/"C 1+ s omaoa o
* \1+¢

n

and so (5.2) is valid if and only if

—-n<a<0and O<a (5.16)
and
1 1 1 1 1
_(EJFE):_/__:l____, (5.17)
n\p ¢q p q P q

where (5.16) ensures local integrability of the weights. Note that (5.13) and (5.17) are the
same and, from pafi, that ((1/v*))~! € By ifand only if 0 < a < n(p — 1) [and that
a < n(p —1)isrequired in (5.12)]. Thus, in the case<lp < ¢, ¢ > 2, conditions (5.16)
and (5.17) andi < n(p — 1) allow us to use Theorem 4 (i) to conclude that (5.1), i. e.,
(5.14), is valid for a sufficiently large class of functiofis

e. Inthiswayby considering other casage can verify the equivalence of Theorems 1
and 4 for power weights

For example, in the cased p < g < 2, in order to invoke Theorem 4 (iii), we must
verify that (u*)*~9" € B, and

1/s 1 ~1/q’ s vl 1/p
s71 / (Cat®™) ™ ar (/ (Cat™/m) dt) <C (5.18)
0 0

independent of > 0.
For the claim abouB,, we use the approach in partfor the functions®-4"/
instead oft*/". Thus, by the analogue of (5.15) for this case we see(that—4 ¢ By
if —n < « < 0. In order to verify (5.18) for fixedt, —n < o < 0, we first note that
0 < a < n(p — 1) is also required to ensure the local integrability necessary for (5.18).
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Then, by a calculation on the left side of (5.18) analogous to the calculation id, paet

see that for the case4 p < g < 2 condition (iii) of Theorem 4 is satisfied if and only if
—n<a<0,0<a<n(p—1),and (5.17) are assumed. These are the same conditions
verified in partsc andd for the case .k p < ¢,q > 2.

Example 5. In light of Example 4 we have the following corollary of Theoremif:

1<p§q<oo,—n<ot<0,0<a<n(p—1),%<%+%>=l—%—é—1l,and

v(x) = |x|* for all x € R", then there i< > 0 such that for allf € L (R"),

~ 1/q 1/p
@ﬁ Faalk |V|°‘dy> <C (/R |f(x)|p|x|“dx) . (5.19)

Forn = 1, (5.19) is precisely Pitt's theorem stated in (1.5), cf. [49]. In fact, given the
hypotheses k p < g <o00,0<b < 1/p/,andf =1— % — % — b < 0 from Section 1.3,
and setting: = bp anda = fBq, it is easy to show tha%f< a<0,0<a<p-1,and

SHe=1- % - % These are the hypotheses we used to obtain (5.19).

Remark 6 (Pitt's theorem, wavelets, and multipliers).
a. Pitt's theorem for Fourier series was a generalization of the following inequalities
due to Hardy and Littlewood in [27].

i. If g > 2, then there i€ (g) > 0 such that for all f(x)|9x972 e LY(R), f exists
in L9(R) and

R 1/q 1/q
( f@ If(y)|qdy) <C(q) ( fR If(X)I"IXIq‘de> : (5.20)
i. Ifl < p <2, thentherei€(p) > 0such thatforallf € L?(R), f exists and
n 1/p 1/p
( é |f(7/)|p|ylp‘2d7/> <C(p) ( /R If(X)I”dX) . (5.21)

Hardy and Littlewood first proved these inequalities for Fourier series [27] (Theorems 2, 3,
5, and 6); and then were able to state them for Fourier transforms in light of work by Titch-
marsh [59], see [60] (Theorems 79 and 80) where Titchmarsh obtains (5.20) and (5.21) by
using the original Fourier series inequalities and taking successively longer periodizations.
In 1931, Hardy and Littlewood obtained new proofs and finer estimates of the original
Fourier series inequalities by means of decreasing rearrangement arguments.

There are natural generalizations of these results in terras, ofreights. In fact,
ifl<p<g < p < ooandw is an even weight ofR increasing on(0, co), then
wi'P € A1y (g, if and only if

1/q
( f@ | F)| 1y 19/P0 "L y)a/P dy)

1/p
< Cip.w) ( / If(x)l”w(x)dx) , (5.22)
R

see [7] as well as [33] for extensions®y. (5.22) is (5.21) in the case= p andw = 1.
b. In 1931, Paley [47] generalized the inequalities of Hardy and Littlewood in [27, 28]
from trigonometric series to other orthonormal systems, cf. [40] for adulatory comments on
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Paley’s proofs from on high. See also [63] (Chapter XII, Sections 5 and 6). This direction
of generalization was carried on by Littlewood [40], Stein [54], Hirschman [23], and Stein
and Weiss [57]. The present authors suggest it is natural to resurrect this program in light
of wavelet orthonormal bases and related recent decompositions.

c. The essence of this Remark 6 is to comment on fundamental observations by
Zygmund [62] and Hormander [31], cf. a related remark by Hirschman [24].

To this end, recall that a linear operator,

T:LJ(X) — LL(Y),

for measure spacéX, n) and(Y, v), is (strong)type(p, ¢) if it is continuous onL? (X),
see the beginning of Section 2. Alsb,is weak typd p, ¢) if there isK > 0 such that for
all f e LY (X) and for alls > 0,

K q
ply €Y A\Tf(y)l > s} = (;IIfIIy;) . (5.23)

The infimum of thos& > 0 for which (5.23) is valid is referred to as theak(p, ¢g) norm
of T.

d. In [62], Zygmund gives a complete proof of the Marcinkiewicz interpolation
theorem. He then uses this theorem to give a new proof of the Fourier series version
(actually for bounded orthonormal systems) of (5.21), i. e., he gives a new proof of the
Hardy—Littlewood—Paley theorem of padgsandb. His proof makes use of the mapping
T defined byT (f) = {Zninf[n]}, when{f[n]} is the sequence of Fourier coefficients of
the 1-periodic functiory. T is type(p, p) for p € (1, 2] but not type(1, 1). Thus, Riesz
interpolation is not available to prove (5.21). On the other hand, if we define a measure
w on R by the property thate({n}) = 1/n% n # 0, andu(B) = 0 if n ¢ B, then the
Marcinkiewicz theorem allowed Zygmund to proué"fugﬁ < ClfllLrw/z), i. €., the
Fourier series analogue of (5.21), by proving tiias weak type(1, 1!).

e. In [31] (Theorem 1.10), Hérmander used Zygmund’s proof of wdat) and
Zygmund’s use of the Marcinkiewicz theorem to generalize (5.21) in the following way.
Letl < p < 2, letu > 0 be a weight function o®”, and setw = 4@, Assumew is
in weakL!. (This means that the distribution functidh, is weak typg1, 1), i. e., there
is K > Osuch thatforalls > 0, D,,(s) < K/s.) Then there is a constaxt > 0 such that
forall f e LP(R"),

R 1/p
(/@ |f(V)}”u(J/)dy) <Clfler, (5.24)

cf. Theorem 4. In particular, note thatify) = |y|?—2 onR thenD,, is weak type(l, 1)
wherew(y) = u(y)Y@ P = |y~ andK = 2. In this case, (5.24) reduces to (5.21).

It should also be pointed out that Hormander's theorem (5.24) is a special case of
Theorem 1 withp = ¢, 1 < p < 2, andv = 1. To verify this assertion we must prove that

1/s p s 1/p
sup / u*(t) dt (/ dt) =B1 <o0. (5.25)
s>0 0 0

To this end we shall show th&; < oo if and only if D, (s) < K /s, whereu = w?~?. In
one direction, since* = (w*)2~?, we see thaB; < co implies

2-p
e 1 1
Vs > 0, (w* <})) ' < Bis? 7
s
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i. e., w*(s) < BP/@P)/s and henceD,(s) < K/s. Conversely, ifw*(t) < K/t
then (u*)Y@=P)(r) < K/t and so the product on the left side of (5.25) is bounded by
K@nirp—1)-Yr,

f. Let L‘,‘,(R") be the space of tempered distributidhs S’(R") for which there is
a constant (T') such that

VfeS[R"), IT* fliLa < CDIfler

By definition,MZ R = L?(R™)" is thespace of multipliers of typg. ¢), see [39]. Using

an elementary generalization of (5.24) [31] (Corollary 1.6), as well as a straightforward
argument [31] (Theorem 1.11), H6rmander proved the followihgtl < b < oo, let

f : R" — C be a measurable function, and assume that theée is 0 such that for all
s>0,Dr(s) < K/s?. Ifl<p<2<g<ocandl/p—1/q =1/b,thenf MR,

One can expect more general multiplier theorems by using Theorem 1 as we have done in
parte.
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