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ABSTRACT. We study traces of subharmonic functions to Ahlfors regular subsets ofR
2. In par-

ticular, we establish for the traces a generalized BMO-property and the reverse Hölder inequality.

1. Introduction

We recall the following.

Definition 1. Let X be a complete metric space equipped with a regular Borel measure
µ. A locally integrable onX functionf belongs toBMO(X, µ) if

|f |∗ := sup

{
1

µ(B)

∫
B

|f − fB | dµ

}
< ∞ ;

here supremum is taken over all metric ballsB ⊂ X andfB = 1
µ(B)

∫
B

f dµ.

Let ν be another regular Borel measure onX. Clearly the conditionf ∈ BMO(X, µ)

does not necessarily imply thatf ∈ BMO(X, ν). In general suchf is not even locally
integrable with respect toν (consider e. g., log|x| ∈ BMO(R2, dx dy), and anyν supported
on the linex = 0). In this article we show that iff is a subharmonic function defined in an
open setU ⊂ R

2 thenf ∈ BMO(R2, µ) for a wide class of measuresµ with supp(µ) ⊂ U .
To formulate the result we, first, introduce some notations.

SetDs := {z ∈ C : |z| < s} andD(x, t) := {z ∈ C : |z − x| < t}. For aK ⊂ R
2 denote

Kx,t := D(x, t) ∩ K.

Definition 2. A compact subsetK ⊂ R
2 is said to be (Ahlfors)d-regular if there is a

positive numbera such that for anyx ∈ K, 0 < t ≤ diam(K)

Hd(Kx,t ) ≤ atd . (1.1)
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HereHd(ω) denotes thed-Hausdorff measure ofω.
This class will be denoted byA(d, a).
A compact subsetK ∈ A(d, a) is said to be ad-set if there is a positive numberb

such that for anyx ∈ K, 0 < t ≤ diam(K)

btd ≤ Hd(Kx,t ) . (1.2)

We denote this class byA(d, a, b).

The class ofd-sets, in particular, contains Lipschitzd-manifolds (withd integer),
Cantor type sets and self-similar sets (with arbitraryd), see, e. g., [5], p. 29 and [8],
Sect. 4.13.

Theorem 1.
Let K ⊂ R

2 be a compactd-set. Assume thatf is a subharmonic function defined
in an open neighborhood ofK. Then restrictionf |K belongs to BMO(K, Hd).

We deduce this result from the following distributional inequality.

Theorem 2.
Assume thatf is a subharmonic inD1 function satisfying

sup
D1

f ≤ M1 and sup
Dr

f ≥ M2 (r < 1) . (1.3)

Let K be a compact fromA(d, a, b). We setfx,t := supKx,t
f , x ∈ K. Assume that

D(x, t/r) ⊂ Dr .
There is a constantc = c(r) > 0 such that

Hd
{
y ∈ Kx,t : fx,t − f (y) ≥ λ

} ≤ (4e)da

rd db
e−λd/(c(M1−M2)) · Hd(Kx,t ) .

As a consequence of the inequality of Theorem 2 we also prove the corresponding
reverse Hölder inequality.

Theorem 3.
Let K ∈ A(d, a, b). Then for anyKx,t , x ∈ K, t > 0, and any1 ≤ p ≤ ∞ the

inequality(
1

Hd(Kx,t )

∫
Kx,t

epf dHd

)1/p

≤ C(K, f, d)
1

Hd(Kx,t )

∫
Kx,t

ef dHd (1.4)

holds.

2. Abstract Version of Cartan’s Lemma

Our proofs are based on estimates for subharmonic functions which generalize well-
known Cartan’s Lemma for polynomials (see [2]). We use a version of the generalized
Cartan’s Lemma proved by Gorin (see [3]).

Let X be a complete metric space and letµ be a finite Borel measure onX. We
consider a continuous, strictly increasing, nonnegative functionφ on [0, +∞[, φ(0) =
0, limx→∞ φ(x) > µ(X). The functionφ will be called amajorant.
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For each pointx ∈ X we setτ(x) = sup{t : µ(B(x, t)) ≥ φ(t)}, whereB(x, t) is the
closed ball inX with centerx and radiust . It is easy to see thatµ(B(x, τ (x)) = φ(τ(x))

and supx τ (x) ≤ φ−1(µ(X)) < ∞.
A point x ∈ X is said to beregular (with respect toµ andφ) if τ(x) = 0, i. e.,

µ(B(x, t)) < φ(t) for all t > 0. The next result shows that the set of regular points is
sufficiently large for an arbitrary majorantφ.

Lemma 1 (Gorin).
Let 0 < γ < 1/2. There exists a sequence of ballsBk = B(xk, tk), k = 1, 2, . . . ,

which collectively cover all the irregular points and which are such that
∑

k≥1 φ(γ tk) ≤
µ(X) (i. e., tk → 0).

For the sake of completeness we present Gorin’s proof of the lemma.

Proof. Let 0 < α < 1, β > 2 but γ < α/β. We setB0 = ∅ and assume that the
ballsB0, . . . , Bk−1 have been constructed. Ifτk = sup{τ(x) : x 6∈ B0 ∪ · · · ∪ Bk−1}, then
there exists a pointxk 6∈ B0 ∪ · · · ∪ Bk−1, such thatτ(xk) ≥ ατk. We settk = βτk and
Bk = B(xk, tk). Clearly, the sequenceτk (and thus alsotk) does not increase. The balls
B(xk, τk) are pairwise disjoint. Indeed, ifl > k, thenxl 6∈ Bk, i. e., the distance between
xl andxk is greater thanβτk > 2τk ≥ τk + τl . Then,

∞∑
k=1

φ(γ tk) ≤
∞∑

k=1

φατk) ≤
∞∑

k=1

φ(τ(xk)) =
∞∑

k=1

µ(B(xk, τk)) ≤ µ(X) ;

consequently,τk → 0, i. e., for each pointx, not belonging to the union of the ballsBk,
τ(x) = 0, x is a regular point. In addition,tk = βτk → 0.

Remark 1. If X is a locally compact metric space then one can takeγ = 1/2 (for similar
arguments see, e. g., [7], Th. 11.2.3).

We now apply Lemma 1 to obtain estimates for logarithmic potentials of measures.
Assume thatX is a locally compact metric space with metricd(., .).

Theorem 4.
Let

u(z) =
∫

X

logd(x, ξ) dµ(ξ)

whereµ is a Borel measure,µ(X) = k < ∞.
GivenH > 0, d > 0 there exists a system of balls such that

∑
rd
j ≤ (2H)d

d
(2.1)

whererj are radii of these balls, and

u(z) ≥ k log
H

e

everywhere outside these balls.

Proof. Letφ(t) = (pt)d be a majorant withp = (kd)1/d

H
. We cover all irregular points of

X by balls according to Gorin’s Lemma 1 and Remark 1. It remains to estimate the potential
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u outside of these balls, i. e., at any regular pointz. Let n(t; z) = µ({ξ : d(z, ξ) ≤ t}).
Clearly, for anyN ≥ max{1, H }

u(z) ≥
∫

d(z,ξ)≤N

logd(z, ξ) dµ(ξ) =
∫ N

0
log t dn(t; z) = n(t; z) log t |N0 −

∫ N

0

n(t; z)

t
dt .

Sincen(t; z) < (pt)d , we then have

u(z) ≥ n(N; z) logN −
∫ N

0

n(t; z)

t
dt .

In addition,n(t; z) ≤ n(N; z) for t ≤ N . Therefore,

u(z) ≥ n(N; z) logN −
∫ H

0

(pt)d

t
dt −

∫ N

H

n(N; z)

t
dt

= n(N; z) logN− (pH)d

d
− n(N; z) logN+n(N; z) logH = −k + n(N; z) logH .

Letting hereN → ∞ and taking into account that limN→∞ n(N; z) = k we obtain the
required result.

3. Proof of Theorem 2

We deduce Theorem 2 from the following result.

Theorem 5.
Letω ⊂ D(x, t) be a compact set ofA(d, a) satisfyingHd(ω) ≥ ε > 0. Assume that

D(x, t/r) ⊂ Dr . Then there is a constantc = c(r) > 0 such that inequality

sup
D(x,t)

f ≤ sup
ω

f + (M1 − M2)c log
4η1/d

r(dε)1/d

holds for any subharmonicf satisfying(1.3).

Proof. We begin with

Proposition 1.
Letu be a nonpositive subharmonic function onD1 satisfying

sup
Dr

u ≥ −1 for somer < 1 .

Then for anyH > 0, d > 0 there is a set of disks such that∑
rd
j ≤ (2H)d

d
, (3.1)

whererj are radii of these disks, and

u(z) ≥ c log
H

e

outside these disks inDr . Herec = c(r) > 0 depends onr only.
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Proof. Clear we can considerH ≤ e for otherwise the statement is trivial.
Let κ be a nonnegative radialC∞-function onC satisfying∫ ∫

C

κ(x, y) dx dy = 1 and supp(κ) ⊂ D1 (z = x + iy) . (3.2)

Let uk denote the function defined onD1−1/k by

uk(w) :=
∫ ∫

C

κ(x, y)u(w − z/k) dx dy . (3.3)

It is well known, see, e. g., [6], Theorem 2.9.2, thatuk is subharmonic onD1−1/k of the class
C∞ and thatuk(w) monotonically decreases and tends tou(w) for eachw ∈ D1 ask → ∞.
Let K := {z ∈ D1 : 1+r

2 ≤ |z| ≤ 3+r
4 } be an annulus inD1 andk ≥ k0 = [ 8

1−r
] + 1. We

are based on the following result (see, e. g., [1], Lemma 2.3).
There are a constantA = A(r) > 0 and numberstk, k ≥ k0, satisfying1+r

2 ≤ tk ≤
3+r

4 such thatuk(z) ≥ −A for anyz ∈ C, |z| = tk.
Then we can construct functionsfk subharmonic onC by

fk(z) :=



uk(z)
(
z ∈ Dtk

) ;
max

{
uk(z),

−2A log |z|
log tk

} (
z ∈ D1 \ Dtk

) ;
−2A log |z|

log tk
(z ∈ C \ D1) .

Without loss of generality we may assume thattk → t ∈ [1+r
2 , 3+r

4 ] ask → ∞. Finally,
define

f (z) =
(

lim
k→∞fk(z)

)∗
,

whereg∗ denotes upper semicontinuous regularization ofg. Thenf is subharmonic inC
satisfying

f (z) = u(z) (z ∈ Dr ) and f (z) = −2A log |z|
log t

(
z ∈ C \ D1

)
.

Consider nowµ = 1f . Thenµ is a finite Borel measure onC supported inD1. According
to F. Riesz’s theorem (see, e. g., [4], Th. 3.9)

f̃ (z) := 1

2π

∫ ∫
C

log |z − ξ | dµ(ξ)

is subharmonic inC and satisfies1f̃ = 1f = µ. Thush = f̃ −f is a real-valued harmonic

in C function. Moreover,h goes to infinity as
(

µ(C)
2π

− −2A
log t

)
log |z|. This immediately

implies (by arguments involving Liouville’s theorem) thath = 0 andµ(C)
2π

= −2A
log t

. Now

according to Theorem 4 applied tof (= f̃ ), for any 0< H ≤ e, d > 0 there is a system of

disks with radiirj satisfying
∑

rd
j ≤ (2H)d

d
such that

f ≥ −2A

log t
log

H

e
≥ −2A

log[(3 + r)/4] log
H

e
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outside these disks. It remains to setc = −2A
log[(3+r)/4] .

The proof of the proposition is complete.

Assume now thatf is subharmonic and satisfies (1.3). Then by the main theorem
in [1] there is a constantC = C(r) > 0 such that the inequality

sup
D(x,t/r)

f ≤ C(M1 − M2) + sup
D(x,t)

f

holds for any pair of disksD(x, t) ⊂ D(x, t/r)(⊂ Dr ). Applying inequality of Proposition 1
to the function

u(z) = f (tz/r) − supD(x,t/r) f

C(M1 − M2)
(z ∈ D1)

and then going back tof we obtain the following.

Proposition 2.
There is a constantc = c(r) > 0 such that for any diskD(x, t) satisfyingD(x, t) ⊂

D(x, t/r) ⊂ Dr and anyH > 0, d > 0 there is a system of disks such that

∑
rd
j ≤ (2tH/r)d

d
,

whererj are radii of these disks, and

f (z) ≥ sup
D(x,t)

f + c(M1 − M2) log
H

e

outside these disks inD(x, t).

Remark 2. A particular case of Proposition 2 for functionsu = log |f | with holomorphic
f and ford = 1 was proved in [7].

We proceed to the proof of Theorem 5. First we show thatω can not be covered by a
system of disks such that ∑

rd
j ≤ (1 − 1/n)ε

2da
(n ≥ 1) (3.4)

whererj are radii of these disks. Assume to the contrary that there exists a system of disks
{D(xj , rj )} whose radii satisfy (3.4) which coversω. For anyxj chooseyj ∈ ω so that
|xj − yj | ≤ rj . Then the system of disks{D(yj , 2rj )} also coversω. Sinceω ∈ A(d, a),
we obtain inequality

Hd(ω) ≤
∑

Hd(ω ∩ D(yj , 2rj )) ≤ 2da
∑

rd
j < ε

which contradicts toHd(ω) ≥ ε.

We now apply Proposition 2 withHn = (d(1−1/n)ε)1/d r

4ta1/d . Since any system of disks

with
∑

rd
j ≤ (2tHn/r)d

d
can not coverω, Proposition 2 implies that there is a pointxn ∈ ω

such that

sup
ω

f ≥ f (xn) ≥ sup
D(x,t)

f + c(M1 − M2) log
Hn

e
.

Lettingn → ∞ we get the required inequality.
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Theorem 5 is proved.

Let us also show that the condition ofd-regularity is necessary for the set to satisfy
the inequality of Theorem 5.

Proposition 3.
LetK ⊂ D1/2 be a compact set withHd(K) < ∞. Assume that the inequality

sup
D(x,t)

f ≤ sup
ω

f + L + C log
t

ε1/d

holds for anyω ⊂ K ∩ D(x, t) ⊂ D(x, 3t/2) ⊂ D2/3, x ∈ K, with Hd(ω) = ε and any
f subharmonic inD1 satisfying(1.3)with r = 2/3 and someM1, M2. HereL andC > 0
depend onK, d, M1, M2. ThenK ∈ A(d, c) for somec > 0.

Proof. For anyf , ω, t ≤ 1/9 satisfying assumptions of the proposition the inequality

−C log
t

ε1/d
≤ sup

D(x,t)

f − sup
ω

f − C log
t

ε1/d
≤ L < ∞

holds. For a pointx ∈ K we setfx(z) = log |z − x| andεt := Hd(D(x, t) ∩ K). Clearly
the family {fx} satisfies inequality (1.3) withr = 2/3, M1 = 3/2 andM2 = 1/6. Then
from the above inequality applied tofx we obtain

L ≥ −C log
t

ε
1/d
t

,

that is equivalent toεt ≤ L̃td for L̃ = e
dL
C . Thus the definition ofd-regularity is checked

for t ≤ 1/9. Fort > 1/9 the inequality is obvious.

Proof of Theorem 2. The proof is an easy consequence of the inequality of Theorem 5
where we chooseω := Hd{y ∈ Kx,t : fx,t − f (y) ≥ λ} and the definition ofd-sets. We
leave the details to the reader.

4. Proofs

Proof of Theorem 1. First, we prove a local version of the theorem. Assume that
K ⊂ Dr is a compact fromA(d, a, b) andf , D(x, t) satisfy conditions of Theorem 2. Set
f ′ = fx,t − f andDf ′(λ) := Hd{y ∈ Kx,t : fx,t − f (y) ≥ λ}. Then from the inequality
of Theorem 2 it follows that

1

Hd(Kx,t )

∫
Kx,t

f ′ dHd = 1

Hd(Kx,t )

∫ ∞

0
Df ′(x) dx ≤ ca(4e)d(M1 − M2)

brdd2
. (4.1)

Now we have

1

Hd(Kx,t )

∫
Kx,t

∣∣f − fKx,t

∣∣ dHd ≤ 1

Hd(Kx,t )

∫
Kx,t

∣∣(f − fx,t ) − (f − fx,t )Kx,t

∣∣ dHd

≤ 2

Hd(Kx,t )

∫
Kx,t

f ′ dHd ≤ 2ca(4e)d(M1 − M2)

brdd2
.
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This gives the estimate of the BMO-norm in each ballKx,t = D(x, t) ∩ K with D(x, t) ⊂
D(x, t/r)(⊂ Dr ). In the general case, we coverK by a finite number of open disksD(xi, R),
i = 1, . . . , N such thatf is defined in the union of these disks, the set∪N

i=1D(xi, R/2)

also coversK and any disk of radius≤ R/4 centered at a point ofK belongs to one of
D(xi, R/2). Then the estimate of the BMO-norm in anyD(x, t) ∩ K, x ∈ K, t ≤ R/4,
follows from Theorem 2 and inequality (4.1). To estimate BMO-norms forD(x, t) ∩ K

with t ≥ R/4 we write

1

Hd(Kx,t )

∫
Kx,t

|f − fKx,t | dHd ≤ 4d

bRd

∫
Kx,t

2|f | dHd < C

∫
K

|f | dHd < ∞ .

Here we used that
∫
K

|f | dHd < ∞ by Theorem 2.

We now formulate another corollary of Theorem 2.

Corollary 1.
Assume that a subharmonic functionf defined onC satisfies

f (z) ≤ c′ + log(1 + |z|) (z ∈ C)

for somec′ ∈ R. Assume also thatS ∈ A(d, a, b). Thenf |S ∈ BMO(S, Hd) and the BMO
norm|f |S |∗ ≤ c̃a

bd2 with an absolute constantc̃.

Proof. For functionsf satisfying conditions of the corollary the Bernstein–Walsh in-
equality

sup
D(x,qt)

f ≤ logq + sup
D(x,t)

f (4.2)

holds for anyx ∈ C, t ≥ 0, q ≥ 1. (The proof is based on the classical Bernstein
inequality for polynomials and the polynomial representation of theL-extremal function of
the disk (see, e. g., [6]).) Then the estimate of the BMO-norm inf |D(x,t)∩S follows from
inequality (4.1) withr = 1/2 andM1 − M2 = log 2.

Proof of Theorem 3. As in the proof of Theorem 1 we, first, consider a local version
of the theorem. Assume thatK ⊂ Dr is a compact fromA(d, a, b) andf , D(x, t) satisfy
conditions of Theorem 2. Denotegt = e−f ′ = ef /efx,t . Consider the distribution function
dg(λ) := Hd{y ∈ Kx,t : gt (y) ≤ λ}. Then from the inequality of Theorem 2 we deduce

dg(λ) ≤ (4e)da

rd db
(λ)d/(c(M1−M2)) · Hd(Kx,t ) .

Let g∗(s) = inf {λ : dg(λ) ≥ s}. From the previous inequality we obtain

g∗(s) ≥
(

srd db

(4e)dHd(Kx,t )a

)c(M1−M2)/d

.

In particular,

1

Hd(Kx,t )

∫
Kx,t

gt dHd = 1

Hd(Kx,t )

∫ Hd (Kx,t )

0
g∗(s) ds

≥
∫ 1

0

(
srd db

(4e)da

)c(M1−M2)/d

ds = 1

1 + c(M1 − M2)/d

(
rd db

(4e)da

)c(M1−M2)/d

.
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Thus we obtain

sup
Kx,t

ef ≤ (1 + c(M1 − M2)/d)

(
(4e)da

rd db

)c(M1−M2)/d 1

Hd(Kx,t )

∫
Kx,t

ef dHd (4.3)

which implies the required local reverse Hölder inequality. In the general case, we cover
againK by a finite number of open disksD(xi, R), i = 1, . . . , N such thatf is defined
in the union of these disks, the set∪N

i=1D(xi, R/2) also coversK and any disk of radius
≤ R/4 centered at a point ofK belongs to one ofD(xi, R/2). Then the reverse Hölder
inequality of the form (4.3) holds for anyKx,t = D(x, t) ∩ K, x ∈ K, t ≤ R/4. Assume
now thatt > R/4 and set

m := inf
x∈K,t>R/4

{
1

Hd(Kx,t )

∫
Kx,t

ef dHd

}
.

Thenm > 0. Indeed, letxi, ti > R/4, be a sequence for which the expression on the right
above converges tom. Without loss of generality we may assume also thatxi tends tox ∈ K

andti tends tot ≥ R/4. Then there isi0 such that for anyi ≥ i0, the ballKxi,ti contains
Kx,R/8. Note that supKx,R/8

ef > 0 becauseKx,R/8 is not a polar set. Then inequality (4.3)
applied toKx,R/8 and thed-regularity ofK show that

m ≥ C

Hd(Kx,R/8)

∫
Kx,R/8

ef dHd > 0

for a constantC := C(K). Finally, since supKx,t
ef ≤ M := supK ef < ∞, inequal-

ity (4.3) for t > R/4 is valid with the constantM/m.
The proof of the theorem is complete.

Corollary 2.
Assume that a subharmonic functionf defined onC satisfies

f (z) ≤ c′ + log(1 + |z|) (z ∈ C)

for somec′ ∈ R. Assume also thatS ∈ A(d, a, b). Then foref |S the reverse Hölder
inequality (4.3) holds with the constantc1

d

(
a
db

)c2/d , wherec1, c2 are absolute positive
constants.

Proof. The proof follows directly from the Bernstein–Walsh inequality (4.2) and The-
orem 3.
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