The Journal of Fourier Analysis and Applications

Volume 8, Issue 6, 2002

On a BMO-Property for Subharmonic Functions

Alexander Brudnyi

Communicated by Carlos A. Berenstein

ABSTRACT. We study traces of subharmonic functions to Ahlfors regular subsets of \mathbb{R}^2 . In par*ticular, we establish for the traces a generalized BMO-property and the reverse Hölder inequality.*

1. Introduction

We recall the following.

Definition 1. Let X be a complete metric space equipped with a regular Borel measure μ . A locally integrable on X function f belongs to *BMO*(X, μ) if

$$
|f|_* := \sup \left\{ \frac{1}{\mu(B)} \int_B |f - f_B| \, d\mu \right\} < \infty \, ;
$$

here supremum is taken over all metric balls $B \subset X$ and $f_B = \frac{1}{\mu(B)} \int_B f d\mu$.

Let v be another regular Borel measure on X. Clearly the condition $f \in BMO(X, \mu)$ does not necessarily imply that $f \in BMO(X, \nu)$. In general such f is not even locally integrable with respect to *v* (consider e.g., $\log |x| \in BMO(\mathbb{R}^2, dx dy)$, and any *v* supported on the line $x = 0$). In this article we show that if f is a subharmonic function defined in an open set $U \subset \mathbb{R}^2$ then $f \in BMO(\mathbb{R}^2, \mu)$ for a wide class of measures μ with supp $(\mu) \subset U$. To formulate the result we, first, introduce some notations.

Set $\mathbb{D}_s := \{z \in \mathbb{C} : |z| < s\}$ and $\mathbb{D}(x, t) := \{z \in \mathbb{C} : |z - x| < t\}$. For a $K \subset \mathbb{R}^2$ denote $K_{x,t} := \mathbb{D}(x,t) \cap K.$

Definition 2. A compact subset $K \subset \mathbb{R}^2$ is said to be (Ahlfors) *d-regular* if there is a positive number a such that for any $x \in K$, $0 < t \leq diam(K)$

$$
\mathcal{H}^d(K_{x,t}) \le at^d \tag{1.1}
$$

Math Subject Classifications. primary 31B05; secondary 46E30.

Keywords and Phrases. subharmonic function, d-regular set, *BMO*-function.

Here $\mathcal{H}^{d}(\omega)$ denotes the d-Hausdorff measure of ω .

This class will be denoted by $A(d, a)$.

A compact subset $K \in \mathcal{A}(d, a)$ is said to be a *d*-set if there is a positive number *b* such that for any $x \in K$, $0 < t \leq diam(K)$

$$
bt^d \le \mathcal{H}^d(K_{x,t})\,. \tag{1.2}
$$

We denote this class by $A(d, a, b)$.

The class of d -sets, in particular, contains Lipschitz d -manifolds (with d integer), Cantor type sets and self-similar sets (with arbitrary d), see, e. g., [5], p. 29 and [8], Sect. 4.13.

Theorem 1.

Let $K ⊂ \mathbb{R}^2$ *be a compact d-set. Assume that* f *is a subharmonic function defined in an open neighborhood of K. Then restriction* $f|_K$ *belongs to BMO(K, H^d).*

We deduce this result from the following distributional inequality.

Theorem 2.

Assume that f *is a subharmonic in* \mathbb{D}_1 *function satisfying*

$$
\sup_{\mathbb{D}_1} f \le M_1 \quad \text{and} \quad \sup_{\mathbb{D}_r} f \ge M_2 \qquad (r < 1) \,.
$$
\n(1.3)

Let K *be a compact from* $A(d, a, b)$ *. We set* $f_{x,t} := \sup_{K_{x,t}} f, x \in K$ *. Assume that* $\mathbb{D}(x, t/r) \subset \mathbb{D}_r$.

There is a constant $c = c(r) > 0$ *such that*

$$
\mathcal{H}^d\left\{y\in K_{x,t}~:~f_{x,t}-f(y)\geq \lambda\right\}\leq \frac{(4e)^da}{r^d\,db}e^{-\lambda d/(c(M_1-M_2))}\cdot \mathcal{H}^d(K_{x,t})\ .
$$

As a consequence of the inequality of Theorem 2 we also prove the corresponding reverse Hölder inequality.

Theorem 3.

Let $K \in \mathcal{A}(d, a, b)$ *. Then for any* $K_{x,t}$, $x \in K$ *, t > 0, and any* $1 \leq p \leq \infty$ *the inequality*

$$
\left(\frac{1}{\mathcal{H}^{d}(K_{x,t})}\int_{K_{x,t}}e^{pf} d\mathcal{H}^{d}\right)^{1/p} \le C(K, f, d)\frac{1}{\mathcal{H}^{d}(K_{x,t})}\int_{K_{x,t}}e^{f} d\mathcal{H}^{d}
$$
 (1.4)

holds.

2. Abstract Version of Cartan's Lemma

Our proofs are based on estimates for subharmonic functions which generalize wellknown Cartan's Lemma for polynomials (see [2]). We use a version of the generalized Cartan's Lemma proved by Gorin (see [3]).

Let X be a complete metric space and let μ be a finite Borel measure on X. We consider a continuous, strictly increasing, nonnegative function ϕ on [0, +∞[, ϕ (0) = 0, $\lim_{x\to\infty} \phi(x) > \mu(X)$. The function ϕ will be called a *majorant*.

For each point $x \in X$ we set $\tau(x) = \sup\{t : \mu(B(x, t)) \ge \phi(t)\}\)$, where $B(x, t)$ is the closed ball in X with center x and radius t. It is easy to see that $\mu(B(x, \tau(x)) = \phi(\tau(x))$ and $\sup_{x} \tau(x) \leq \phi^{-1}(\mu(X)) < \infty$.

A point $x \in X$ is said to be *regular* (with respect to μ and ϕ) if $\tau(x) = 0$, i. e., $\mu(B(x, t)) < \phi(t)$ for all $t > 0$. The next result shows that the set of regular points is sufficiently large for an arbitrary majorant ϕ .

Lemma 1 (Gorin).

Let $0 < \gamma < 1/2$ *. There exists a sequence of balls* $B_k = B(x_k, t_k)$ *,* $k = 1, 2, \ldots$ *, which collectively cover all the irregular points and which are such that* $\sum_{k\geq 1} \phi(\gamma t_k) \leq$ $\mu(X)$ *(i. e., t_k* \rightarrow *0).*

For the sake of completeness we present Gorin's proof of the lemma.

Proof. Let $0 < \alpha < 1$, $\beta > 2$ but $\gamma < \alpha/\beta$. We set $B_0 = \emptyset$ and assume that the balls B_0, \ldots, B_{k-1} have been constructed. If $\tau_k = \sup{\{\tau(x) : x \notin B_0 \cup \cdots \cup B_{k-1}\}}$, then there exists a point $x_k \notin B_0 \cup \cdots \cup B_{k-1}$, such that $\tau(x_k) \geq \alpha \tau_k$. We set $t_k = \beta \tau_k$ and $B_k = B(x_k, t_k)$. Clearly, the sequence τ_k (and thus also t_k) does not increase. The balls $B(x_k, \tau_k)$ are pairwise disjoint. Indeed, if $l > k$, then $x_l \notin B_k$, i. e., the distance between x_l and x_k is greater than $\beta \tau_k > 2\tau_k \geq \tau_k + \tau_l$. Then,

$$
\sum_{k=1}^{\infty} \phi(\gamma t_k) \leq \sum_{k=1}^{\infty} \phi \alpha \tau_k \leq \sum_{k=1}^{\infty} \phi(\tau(x_k)) = \sum_{k=1}^{\infty} \mu(B(x_k, \tau_k)) \leq \mu(X) ;
$$

consequently, $\tau_k \to 0$, i. e., for each point x, not belonging to the union of the balls B_k , $\tau(x) = 0$, x is a regular point. In addition, $t_k = \beta \tau_k \rightarrow 0$. \perp

Remark 1. If X is a locally compact metric space then one can take $\gamma = 1/2$ (for similar arguments see, e. g., [7], Th. 11.2.3).

We now apply Lemma 1 to obtain estimates for logarithmic potentials of measures. Assume that X is a locally compact metric space with metric $d(.,.).$

Theorem 4.

Let

$$
u(z) = \int_X \log d(x, \xi) \, d\mu(\xi)
$$

where μ *is a Borel measure,* $\mu(X) = k < \infty$ *.*

 $Given H > 0, d > 0$ *there exists a system of balls such that*

$$
\sum r_j^d \le \frac{(2H)^d}{d} \tag{2.1}
$$

where rj *are radii of these balls, and*

$$
u(z) \ge k \log \frac{H}{e}
$$

everywhere outside these balls.

Proof. Let $\phi(t) = (pt)^d$ be a majorant with $p = \frac{(kd)^{1/d}}{H}$. We cover all irregular points of X by balls according to Gorin's Lemma 1 and Remark 1. It remains to estimate the potential

u outside of these balls, i. e., at any regular point z. Let $n(t; z) = \mu(\{\xi : d(z, \xi) \le t\}).$ Clearly, for any $N \ge \max\{1, H\}$

$$
u(z) \ge \int_{d(z,\xi)\le N} \log d(z,\xi) d\mu(\xi) = \int_0^N \log t \, dn(t;z) = n(t;z) \log t \Big|_0^N - \int_0^N \frac{n(t;z)}{t} \, dt \; .
$$

Since $n(t; z) < (pt)^d$, we then have

$$
u(z) \ge n(N; z) \log N - \int_0^N \frac{n(t; z)}{t} dt.
$$

In addition, $n(t; z) \le n(N; z)$ for $t \le N$. Therefore,

$$
u(z) \ge n(N; z) \log N - \int_0^H \frac{(pt)^d}{t} dt - \int_H^N \frac{n(N; z)}{t} dt
$$

= $n(N; z) \log N - \frac{(pH)^d}{d} - n(N; z) \log N + n(N; z) \log H = -k + n(N; z) \log H.$

Letting here $N \to \infty$ and taking into account that $\lim_{N \to \infty} n(N; z) = k$ we obtain the required result. $\mathcal{L}=\mathcal{L}$

3. Proof of Theorem 2

We deduce Theorem 2 from the following result.

Theorem 5.

Let $\omega \subset \mathbb{D}(x, t)$ *be a compact set of* $\mathcal{A}(d, a)$ *satisfying* $\mathcal{H}^d(\omega) \geq \epsilon > 0$ *. Assume that* $\mathbb{D}(x, t/r) \subset \mathbb{D}_r$. Then there is a constant $c = c(r) > 0$ such that inequality

$$
\sup_{\mathbb{D}(x,t)} f \le \sup_{\omega} f + (M_1 - M_2)c \log \frac{4\eta^{1/d}}{r(d\epsilon)^{1/d}}
$$

holds for any subharmonic f *satisfying* (1.3)*.*

Proof. We begin with

Proposition 1.

Let u *be a nonpositive subharmonic function on* \mathbb{D}_1 *satisfying*

$$
\sup_{\mathbb{D}_r} u \ge -1 \quad \text{ for some } r < 1 \, .
$$

Then for any $H > 0$, $d > 0$ *there is a set of disks such that*

$$
\sum r_j^d \le \frac{(2H)^d}{d} \,,\tag{3.1}
$$

where rj *are radii of these disks, and*

$$
u(z) \ge c \log \frac{H}{e}
$$

outside these disks in \mathbb{D}_r *. Here* $c = c(r) > 0$ *depends on* r *only*.

Proof. Clear we can consider $H \leq e$ for otherwise the statement is trivial. Let κ be a nonnegative radial C^{∞} -function on $\mathbb C$ satisfying

$$
\int \int_{\mathbb{C}} \kappa(x, y) dx dy = 1 \quad \text{and} \quad \text{supp}(\kappa) \subset \mathbb{D}_1 \quad (z = x + iy) \,. \tag{3.2}
$$

Let u_k denote the function defined on $\mathbb{D}_{1-1/k}$ by

$$
u_k(w) := \int \int_{\mathbb{C}} \kappa(x, y) u(w - z/k) dx dy.
$$
 (3.3)

,

It is well known, see, e. g., [6], Theorem 2.9.2, that u_k is subharmonic on $\mathbb{D}_{1-1/k}$ of the class C^{∞} and that $u_k(w)$ monotonically decreases and tends to $u(w)$ for each $w \in \mathbb{D}_1$ as $k \to \infty$. Let $K := \{z \in \mathbb{D}_1 : \frac{1+r}{2} \le |z| \le \frac{3+r}{4}\}$ be an annulus in \mathbb{D}_1 and $k \ge k_0 = [\frac{8}{1-r}] + 1$. We are based on the following result (see, e. g., [1], Lemma 2.3).

There are a constant $A = A(r) > 0$ and numbers t_k , $k \ge k_0$, satisfying $\frac{1+r}{2} \le t_k \le$ $\frac{3+r}{4}$ such that $u_k(z) \geq -A$ for any $z \in \mathbb{C}$, $|z| = t_k$.

Then we can construct functions f_k subharmonic on $\mathbb C$ by

$$
f_k(z) := \begin{cases} u_k(z) & (z \in \mathbb{D}_{t_k}) ; \\ \max\left\{u_k(z), \frac{-2A\log|z|}{\log t_k}\right\} & (z \in \mathbb{D}_1 \setminus \mathbb{D}_{t_k}) ; \\ \frac{-2A\log|z|}{\log t_k} & (z \in \mathbb{C} \setminus \mathbb{D}_1) . \end{cases}
$$

Without loss of generality we may assume that $t_k \to t \in [\frac{1+r}{2}, \frac{3+r}{4}]$ as $k \to \infty$. Finally, define

$$
f(z) = \left(\overline{\lim_{k \to \infty}} f_k(z)\right)^*
$$

where g^* denotes upper semicontinuous regularization of g. Then f is subharmonic in $\mathbb C$ satisfying

$$
f(z) = u(z)
$$
 $(z \in \mathbb{D}_r)$ and $f(z) = \frac{-2A \log |z|}{\log t}$ $(z \in \mathbb{C} \setminus \overline{\mathbb{D}_1})$.

Consider now $\mu = \Delta f$. Then μ is a finite Borel measure on C supported in $\overline{\mathbb{D}_1}$. According to F. Riesz's theorem (see, e. g., [4], Th. 3.9)

$$
\tilde{f}(z) := \frac{1}{2\pi} \int \int_{\mathbb{C}} \log|z - \xi| \, d\mu(\xi)
$$

is subharmonic in C and satisfies $\Delta \tilde{f} = \Delta f = \mu$. Thus $h = \tilde{f} - f$ is a real-valued harmonic in C function. Moreover, h goes to infinity as $\left(\frac{\mu(C)}{2\pi} - \frac{-2A}{\log t}\right)$ \int log |z|. This immediately implies (by arguments involving Liouville's theorem) that $h = 0$ and $\frac{\mu(C)}{2\pi} = \frac{-2A}{\log t}$. Now according to Theorem 4 applied to $f = \tilde{f}$, for any $0 < H \le e, d > 0$ there is a system of disks with radii r_j satisfying $\sum r_j^d \leq \frac{(2H)^d}{d}$ such that

$$
f \ge \frac{-2A}{\log t} \log \frac{H}{e} \ge \frac{-2A}{\log[(3+r)/4]} \log \frac{H}{e}
$$

outside these disks. It remains to set $c = \frac{-2A}{\log[(3+r)/4]}$. The proof of the proposition is complete. \Box

Assume now that f is subharmonic and satisfies (1.3) . Then by the main theorem in [1] there is a constant $C = C(r) > 0$ such that the inequality

$$
\sup_{\mathbb{D}(x,t/r)} f \le C(M_1 - M_2) + \sup_{\mathbb{D}(x,t)} f
$$

holds for any pair of disks $\mathbb{D}(x, t) \subset \mathbb{D}(x, t/r)$ $(\subset \mathbb{D}_r)$. Applying inequality of Proposition 1 to the function

$$
u(z) = \frac{f(tz/r) - \sup_{\mathbb{D}(x,t/r)} f}{C(M_1 - M_2)} \quad (z \in \mathbb{D}_1)
$$

and then going back to f we obtain the following.

Proposition 2.

There is a constant $c = c(r) > 0$ *such that for any disk* $\mathbb{D}(x, t)$ *satisfying* $\mathbb{D}(x, t) \subset$ $\mathbb{D}(x, t/r) \subset \mathbb{D}_r$ and any $H > 0, d > 0$ there is a system of disks such that

$$
\sum r_j^d \leq \frac{(2tH/r)^d}{d} \;,
$$

where rj *are radii of these disks, and*

$$
f(z) \ge \sup_{\mathbb{D}(x,t)} f + c(M_1 - M_2) \log \frac{H}{e}
$$

outside these disks in $\mathbb{D}(x, t)$ *.*

Remark 2. A particular case of Proposition 2 for functions $u = \log |f|$ with holomorphic f and for $d = 1$ was proved in [7].

We proceed to the proof of Theorem 5. First we show that ω can not be covered by a system of disks such that

$$
\sum r_j^d \le \frac{(1 - 1/n)\epsilon}{2^d a} \quad (n \ge 1)
$$
\n(3.4)

where r_i are radii of these disks. Assume to the contrary that there exists a system of disks $\{\mathbb{D}(x_i, r_i)\}\$ whose radii satisfy (3.4) which covers ω . For any x_i choose $y_i \in \omega$ so that $|x_i - y_j| \le r_i$. Then the system of disks $\{\mathbb{D}(y_i, 2r_j)\}\$ also covers ω . Since $\omega \in \mathcal{A}(d, a)$, we obtain inequality

$$
\mathcal{H}^{d}(\omega) \le \sum \mathcal{H}^{d}(\omega \cap \mathbb{D}(y_{j}, 2r_{j})) \le 2^{d} a \sum r_{j}^{d} < \epsilon
$$

which contradicts to $\mathcal{H}^{d}(\omega) > \epsilon$.

We now apply Proposition 2 with $H_n = \frac{(d(1-1/n)\epsilon)^{1/d}r}{4ta^{1/d}}$. Since any system of disks with $\sum r_j^d \leq \frac{(2tH_n/r)^d}{d}$ can not cover ω , Proposition 2 implies that there is a point $x_n \in \omega$ such that
 $lim_{x \to a} f \ge f(u) \ge \lim_{x \to a} f + g(M - M) \log H_n$

$$
\sup_{\omega} f \ge f(x_n) \ge \sup_{\mathbb{D}(x,t)} f + c(M_1 - M_2) \log \frac{H_n}{e}.
$$

Letting $n \to \infty$ we get the required inequality.

Theorem 5 is proved. \Box

Let us also show that the condition of d -regularity is necessary for the set to satisfy the inequality of Theorem 5.

Proposition 3.

Let $K \subset \mathbb{D}_{1/2}$ *be a compact set with* $\mathcal{H}^d(K) < \infty$ *. Assume that the inequality*

$$
\sup_{\mathbb{D}(x,t)} f \le \sup_{\omega} f + L + C \log \frac{t}{\epsilon^{1/d}}
$$

holds for any $\omega \subset K \cap \mathbb{D}(x, t) \subset \mathbb{D}(x, 3t/2) \subset \mathbb{D}_{2/3}, x \in K$, with $\mathcal{H}^d(\omega) = \epsilon$ and any f subharmonic in \mathbb{D}_1 satisfying (1.3) with $r = 2/3$ and some M_1, M_2 . Here L and $C > 0$ *depend on* K , d , M_1 , M_2 . *Then* $K \in \mathcal{A}(d, c)$ *for some* $c > 0$.

Proof. For any $f, \omega, t \leq 1/9$ satisfying assumptions of the proposition the inequality

$$
-C \log \frac{t}{\epsilon^{1/d}} \le \sup_{\mathbb{D}(x,t)} f - \sup_{\omega} f - C \log \frac{t}{\epsilon^{1/d}} \le L < \infty
$$

holds. For a point $x \in K$ we set $f_x(z) = \log |z - x|$ and $\epsilon_t := \mathcal{H}^d(\mathbb{D}(x, t) \cap K)$. Clearly the family $\{f_x\}$ satisfies inequality (1.3) with $r = 2/3$, $M_1 = 3/2$ and $M_2 = 1/6$. Then from the above inequality applied to f_x we obtain

$$
L \geq -C \log \frac{t}{\epsilon_t^{1/d}} ,
$$

that is equivalent to $\epsilon_t \leq \widetilde{L} t^d$ for $\widetilde{L} = e^{\frac{dL}{C}}$. Thus the definition of d-regularity is checked for $t \leq 1/9$. For $t > 1/9$ the inequality is obvious.

Proof of Theorem 2. The proof is an easy consequence of the inequality of Theorem 5 where we choose $\omega := \mathcal{H}^d\{y \in K_{x,t} : f_{x,t} - f(y) \ge \lambda\}$ and the definition of d-sets. We leave the details to the reader. leave the details to the reader.

4. Proofs

Proof of Theorem 1. First, we prove a local version of the theorem. Assume that $K \subset \mathbb{D}_r$ is a compact from $\mathcal{A}(d, a, b)$ and $f, \mathbb{D}(x, t)$ satisfy conditions of Theorem 2. Set $f' = f_{x,t} - f$ and $D_{f'}(\lambda) := \mathcal{H}^d\{y \in K_{x,t} : f_{x,t} - f(y) \ge \lambda\}$. Then from the inequality of Theorem 2 it follows that

$$
\frac{1}{\mathcal{H}^d(K_{x,t})} \int_{K_{x,t}} f' d\mathcal{H}^d = \frac{1}{\mathcal{H}^d(K_{x,t})} \int_0^\infty D_{f'}(x) dx \le \frac{ca(4e)^d (M_1 - M_2)}{br^d d^2} \,. \tag{4.1}
$$

Now we have

$$
\frac{1}{\mathcal{H}^{d}(K_{x,t})} \int_{K_{x,t}} |f - f_{K_{x,t}}| d\mathcal{H}^{d} \le \frac{1}{\mathcal{H}^{d}(K_{x,t})} \int_{K_{x,t}} |(f - f_{x,t}) - (f - f_{x,t})_{K_{x,t}}| d\mathcal{H}^{d}
$$

$$
\le \frac{2}{\mathcal{H}^{d}(K_{x,t})} \int_{K_{x,t}} f' d\mathcal{H}^{d} \le \frac{2ca(4e)^{d}(M_{1} - M_{2})}{br^{d}d^{2}}.
$$

This gives the estimate of the BMO-norm in each ball $K_{x,t} = \mathbb{D}(x, t) \cap K$ with $\mathbb{D}(x, t) \subset$ $\mathbb{D}(x, t/r)$ ($\subset \mathbb{D}_r$). In the general case, we cover K by a finite number of open disks $\mathbb{D}(x_i, R)$, $i = 1, ..., N$ such that f is defined in the union of these disks, the set $\bigcup_{i=1}^{N} \mathbb{D}(x_i, R/2)$ also covers K and any disk of radius $\leq R/4$ centered at a point of K belongs to one of $\mathbb{D}(x_i, R/2)$. Then the estimate of the BMO-norm in any $\mathbb{D}(x, t) \cap K$, $x \in K$, $t \leq R/4$, follows from Theorem 2 and inequality (4.1). To estimate BMO-norms for $\mathbb{D}(x, t) \cap K$ with $t \geq R/4$ we write

$$
\frac{1}{\mathcal{H}^d(K_{x,t})}\int_{K_{x,t}}|f-f_{K_{x,t}}|\,d\mathcal{H}^d\leq \frac{4^d}{bR^d}\int_{K_{x,t}}2|f|\,d\mathcal{H}^d
$$

Here we used that $\int_K |f| d\mathcal{H}^d < \infty$ by Theorem 2. \Box

We now formulate another corollary of Theorem 2.

Corollary 1.

Assume that a subharmonic function f *defined on* C *satisfies*

$$
f(z) \le c' + \log(1 + |z|) \quad (z \in \mathbb{C})
$$

for some $c' \in \mathbb{R}$ *. Assume also that* $S \in \mathcal{A}(d, a, b)$ *. Then* $f|_S \in BMO(S, \mathcal{H}^d)$ *and the BMO norm* $|f|_{S}|_* \leq \frac{\tilde{c}a}{bd^2}$ *with an absolute constant* \tilde{c} *.*

Proof. For functions f satisfying conditions of the corollary the Bernstein–Walsh inequality

$$
\sup_{\mathbb{D}(x,qt)} f \le \log q + \sup_{\mathbb{D}(x,t)} f \tag{4.2}
$$

.

.

holds for any $x \in \mathbb{C}$, $t \geq 0$, $q \geq 1$. (The proof is based on the classical Bernstein inequality for polynomials and the polynomial representation of the \mathcal{L} -extremal function of the disk (see, e. g., [6]).) Then the estimate of the BMO-norm in $f|_{\mathbb{D}(x,t)\cap S}$ follows from inequality (4.1) with $r = 1/2$ and $M_1 - M_2 = \log 2$. \mathbb{L}

Proof of Theorem 3. As in the proof of Theorem 1 we, first, consider a local version of the theorem. Assume that $K \subset \mathbb{D}_r$ is a compact from $\mathcal{A}(d, a, b)$ and $f, \mathbb{D}(x, t)$ satisfy conditions of Theorem 2. Denote $g_t = e^{-f'} = e^f/e^{f_{x,t}}$. Consider the distribution function $d_g(\lambda) := \mathcal{H}^d\{y \in K_{x,t} : g_t(y) \leq \lambda\}$. Then from the inequality of Theorem 2 we deduce

$$
d_g(\lambda) \leq \frac{(4e)^da}{r^d\,db}(\lambda)^{d/(c(M_1-M_2))}\cdot \mathcal{H}^d(K_{x,t})\;.
$$

Let $g_*(s) = \inf \{ \lambda : d_g(\lambda) \geq s \}.$ From the previous inequality we obtain

$$
g_*(s) \ge \left(\frac{sr^d \, db}{(4e)^d \mathcal{H}^d(K_{x,t})a}\right)^{c(M_1 - M_2)/d}
$$

In particular,

$$
\frac{1}{\mathcal{H}^{d}(K_{x,t})} \int_{K_{x,t}} g_t d\mathcal{H}^d = \frac{1}{\mathcal{H}^{d}(K_{x,t})} \int_0^{\mathcal{H}^{d}(K_{x,t})} g_*(s) ds
$$
\n
$$
\geq \int_0^1 \left(\frac{sr^d \, db}{(4e)^d \, a} \right)^{c(M_1 - M_2)/d} \, ds = \frac{1}{1 + c(M_1 - M_2)/d} \left(\frac{r^d \, db}{(4e)^d \, a} \right)^{c(M_1 - M_2)/d}
$$

Thus we obtain

$$
\sup_{K_{x,t}} e^f \le (1 + c(M_1 - M_2)/d) \left(\frac{(4e)^d a}{r^d \, db}\right)^{c(M_1 - M_2)/d} \frac{1}{\mathcal{H}^d(K_{x,t})} \int_{K_{x,t}} e^f \, d\mathcal{H}^d \qquad (4.3)
$$

which implies the required local reverse Hölder inequality. In the general case, we cover again K by a finite number of open disks $\mathbb{D}(x_i, R)$, $i = 1, \ldots, N$ such that f is defined in the union of these disks, the set $\cup_{i=1}^{N} \mathbb{D}(x_i, R/2)$ also covers K and any disk of radius $\leq R/4$ centered at a point of K belongs to one of $\mathbb{D}(x_i, R/2)$. Then the reverse Hölder inequality of the form (4.3) holds for any $K_{x,t} = \mathbb{D}(x,t) \cap K$, $x \in K$, $t \le R/4$. Assume now that $t > R/4$ and set

$$
m:=\inf_{x\in K,t>R/4}\left\{\frac{1}{{\mathcal H}^d(K_{x,t})}\int_{K_{x,t}}e^f\,d{\mathcal H}^d\right\}\ .
$$

Then $m > 0$. Indeed, let x_i , $t_i > R/4$, be a sequence for which the expression on the right above converges to m. Without loss of generality we may assume also that x_i tends to $x \in K$ and t_i tends to $t \ge R/4$. Then there is i_0 such that for any $i \ge i_0$, the ball K_{x_i,t_i} contains $K_{x, R/8}$. Note that sup $K_{x, R/8}$ $e^f > 0$ because $K_{x, R/8}$ is not a polar set. Then inequality (4.3) applied to $K_{x, R/8}$ and the d-regularity of K show that

$$
m \geq \frac{C}{\mathcal{H}^d(K_{x,R/8})} \int_{K_{x,R/8}} e^f d\mathcal{H}^d > 0
$$

for a constant $C := C(K)$. Finally, since $\sup_{K \times I} e^f \leq M := \sup_K e^f < \infty$, inequality (4.3) for $t > R/4$ is valid with the constant $\hat{M/m}$.

 \Box

The proof of the theorem is complete.

Corollary 2.

Assume that a subharmonic function f *defined on* C *satisfies*

$$
f(z) \le c' + \log(1 + |z|) \quad (z \in \mathbb{C})
$$

for some $c' \in \mathbb{R}$ *. Assume also that* $S \in \mathcal{A}(d, a, b)$ *. Then for* $e^f|_S$ *the reverse Hölder inequality* (4.3) *holds with the constant* $\frac{c_1}{d} \left(\frac{a}{db} \right)^{c_2/d}$ *, where* c_1 *,* c_2 *are absolute positive constants.*

Proof. The proof follows directly from the Bernstein–Walsh inequality (4.2) and Theorem 3. \Box

References

- [1] Brudnyi, A. (1999). Local inequalities for plurisubharmonic functions, *Ann. of Math.,* **199**, 511–533.
- [2] Cartan, H. (1928). Sur les systèmes de fonctions holomorphes á variétés linéaires lacunaires et leurs applications, *Ann. Sci. École Norm. Sup.,* **45**(3), 255–346.
- [3] Gorin, E.A. and Koldobskii, A.L. (1987). On potentials of measures with values in a Banach space, *Sibirsk. Mat. Zh.,* **28**(1), 65–80. English transl. in *Siberian Math. J.,* **28**, (1987).
- [4] Haymann, W.K. and Kennedy, P.B. (1976). *Subharmonic Functions I,* Academic Press, NY.
- [5] Jonsson, A. and Wallin, H. (1984). *Function Spaces on Subsets of* \mathbb{R}^n . Harwood Academic Publishers.
- [6] Klimek, M. (1991). *Pluripotential Theory,* Oxford University Press.

- [7] Levin, B. Ya. (1996). Lectures on entire functions, *Am. Math. Soc.,* Transl. of *Math. Monographs,* **150**, Providence, RI.
- [8] Mattila, P. (1995). *Geometry of Sets and Measures in Euclidean Spaces,* Cambridge University Press.

Received July 10, 2001

Department of Mathematics and Statistics, University of Calgary, 2500 University Drive N.W. Calgary, Alberta Canada e-mail: albru@math.ucalgary.ca