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ABSTRACT. We study traces of subharmonic functions to Ahlfors regular sub&ets|afpar-
ticular, we establish for the traces a generalized BMO-property and the reverse Holder inequality.

1. Introduction

We recall the following.

Definition 1. Let X be a complete metric space equipped with a regular Borel measure
wu. Alocally integrable ornX function f belongs tdBMO(X, u) if

e = sup{if - fsldu} <o
(B /s

here supremum is taken over all metric batls- X and fz = ﬁ [g fdu.

Let v be another regular Borel measureXnClearly the conditiory € BMO(X, 1)
does not necessarily imply thgt € BMO(X, v). In general sucly is not even locally
integrable with respect to(consider e. g., logrx| € BMO(R?, dx dy), and any supported
on the linex = 0). In this article we show that if is a subharmonic function defined in an
openseU c R?thenf € BMO(R?, i) for awide class of measurgswith supgu) C U.

To formulate the result we, first, introduce some notations.

SetD; :={z € C: |z] <s}andD(x,?) :={z € C : |z — x| < t}. ForaK c R?denote
Ke =D, 0)NK.

Definition 2. A compact subsek ¢ R? is said to be (Ahlfors)i-regular if there is a
positive number: such that for any € K, 0 < ¢ < diam(K)

HUK,p) < ar? . (1.1)
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Here?{?(w) denotes the-Hausdorff measure aé.

This class will be denoted byi(d, ).

A compact subsek € A(d, a) is said to be al-setif there is a positive number
such that for any € K, 0 < ¢ < diam(K)

bt < HY(K.,) . (1.2)

We denote this class b (d, a, b).

The class ofi-sets, in particular, contains Lipschi#zzmanifolds (withd integer),
Cantor type sets and self-similar sets (with arbitrd)y see, e. g., [5], p. 29 and [8],
Sect. 4.13.

Theorem 1.
Let K c R? be a compact/-set. Assume that is a subharmonic function defined
in an open neighborhood & . Then restrictionf|x belongs to BMQK , H%).

We deduce this result from the following distributional inequality.

Theorem 2.
Assume thay is a subharmonic if; function satisfying

supf <Mi; and supf>Mx (r<1l). (1.3)
D Dy

Let K be a compact fromd(d, a, b). We setf,; = sup,, f, x € K. Assume that
D(x,t/r) C D,.
There is a constant = ¢(r) > 0 such that

d (4e)!a —2d/(c(M1—M2)) ~4d
HAy € Kar i fra—fO) z 2} = e M 1 (K )
As a consequence of the inequality of Theorem 2 we also prove the corresponding
reverse Holder inequality.

Theorem 3.
LetK € A(d,a,b). Then foranyK,,, x € K,t > 0, and anyl < p < oo the
inequality

1/p
1 1
— el e <CKK, f,d)—— el dH? 1.4
(Hd(Kx,f) Kes ) f HY(Kx o) Jk,, 4

holds.

2. Abstract Version of Cartan’s Lemma

Our proofs are based on estimates for subharmonic functions which generalize well-
known Cartan’s Lemma for polynomials (see [2]). We use a version of the generalized
Cartan’s Lemma proved by Gorin (see [3]).

Let X be a complete metric space and lebe a finite Borel measure aki. We
consider a continuous, strictly increasing, nonnegative funegiam [0, +oo[, ¢(0) =
0, limy; ¢ (x) > u(X). The functionp will be called amajorant
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Foreach point € X we setr(x) = sufz : u(B(x, 1)) > ¢(t)}, whereB(x, t) is the
closed ball inX with centerx and radius. It is easy to see that(B(x, t(x)) = ¢ (t(x))
and sup 7(x) < ¢~ 1(u(X)) < oo.

A point x € X is said to beregular (with respect tou and¢) if t(x) = 0, i. e,
w(B(x,t)) < ¢(¢t) forallt > 0. The next result shows that the set of regular points is
sufficiently large for an arbitrary majorapt

Lemma 1 (Gorin).

Let0 < y < 1/2. There exists a sequence of bals = B(xi, %), k = 1,2, ...,
which collectively cover all the irregular points and which are such that ; ¢ (y#) <
w(X) (i. ety — 0). B

For the sake of completeness we present Gorin’s proof of the lemma.

Proof. Let0O <o < 1,8 > 2buty < a/B. We setBy = ¥ and assume that the
balls B, ..., Bx_1 have been constructed. df = sup{t(x) : x € BoU---U By_1}, then
there exists a point;y ¢ Bo U --- U By_1, such thatr (x;) > at,. We setr, = Bt and
Br = B(xk, tr). Clearly, the sequence (and thus alsa;) does not increase. The balls
B(xy, T) are pairwise disjoint. Indeed, if> k, thenx; ¢ By, i. e., the distance between
x; andxy is greater that;, > 2t > 7 + 7. Then,

Do) <) gan) <Y () =Y w(Bl, w) < u(X);
k=1

k=1 k=1 k=1

consequentlyr, — 0, i. e., for each point, not belonging to the union of the balk,
7(x) = 0, x is aregular point. In addition; = Bt — O. []

Remark 1. If X is alocally compact metric space then one can jake 1/2 (for similar
arguments see, e. g., [7], Th. 11.2.3).

We now apply Lemma 1 to obtain estimates for logarithmic potentials of measures.
Assume tha¥ is a locally compact metric space with metic, .).

Theorem 4.
Let

u(Z)Z/X|09d(x,§)dM(§)

wherepu is a Borel measurgy(X) = k < oc.
GivenH > 0, d > Othere exists a system of balls such that

d
> ol < (2% (2.1)

wherer; are radii of these balls, and
H
u(z) > klog —
e

everywhere outside these balls.

Proof. Let¢(r) = (pr)? be amajorantwithy = % We cover allirregular points of

X by balls according to Gorin’s Lemma 1 and Remark 1. It remains to estimate the potential
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u outside of these balls, i. e., at any regular paintetn(s; z) = u({§ : d(z,&) < t}).
Clearly, foranyN > max1, H}

N t;
a Z)dt.

N
u(z) z/ logd(z, &) d(§) =f logr dn(t; z) = n(t; 2) Iogtlév—/
d(z,§)<N 0 0

Sincen(t; z) < (pt)?, we then have

n(t; z)
t

dt .

N
u(z) > n(N; z) log N —/
0
In addition,n(t; z) < n(N; z) fort < N. Therefore,

ot /N n(N; 2)
t t

H

dt

u(z) > n(N; z)logN _/
0

(pH)?
d

=n(N;z)logN — —n(N;z)logN+n(N;z)logH = —k +n(N;z)logH .

Letting hereN — oo and taking into account that lign, o n(N; z) = k we obtain the
required result.  []

3. Proof of Theorem 2

We deduce Theorem 2 from the following result.

Theorem 5.
Letw C D(x, r) be a compact set od(d, a) satisfyingi? (w) > ¢ > 0. Assume that
D(x,t/r) C D,. Then there is a constant= c¢(r) > 0 such that inequality

1/d

DS()lCJ’E)) f= Scl;lpf + (M1 — M3)clog rded

holds for any subharmoni¢ satisfying(1.3).
Proof. We begin with

Proposition 1.
Letu be a nonpositive subharmonic functionbn satisfying

supu > —1 forsomer < 1.
Dy

Then for anyH > 0, d > Othere is a set of disks such that

d
pt < GHY

f= . (3.1)

wherer; are radii of these disks, and
H
u(z) > clog—
e

outside these disks iD,. Herec = ¢(r) > 0 depends om only.
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Proof. Clear we can considdd < e for otherwise the statement is trivial.
Let « be a nonnegative radial*°-function onC satisfying

// k(x,y)dxdy =1 and supp)CDi (z=x+41iy). (3.2)
C

Let u; denote the function defined dby_1,, by

u(w) := // k(x, yyu(w —z/k)dxdy . (3.3)
C

Itis well known, see, e. g., [6], Theorem 2.9.2, thats subharmonic ofd1_1 4 of the class
C* and that; (w) monotonically decreases and tends t@) for eachw € D; ask — oc.
LetK :={z e Dy : 8L <|z] < 2} be an annulus iy andk > ko =[]+ 1. We
are based on the following result (see, e. g., [1], Lemma 2.3).

There are a constadt = A(r) > 0 and numbers,, k > ko, satisfyingl—;’ <t <
347 such thaty(z) > —A foranyz € C, |z| = k.

Then we can construct functiorfg subharmonic o€ by

u(z) (zeDy) ;
—2Alog|z| ]
fk(Z) = max{uk(Z), W} (Z (S D]_ \ ]D)fk) )
—2Alog|z|
W (Z eC \ Dl) .

Without loss of generality we may assume that> ¢ € [1%, 3%4”] ask — oo. Finally,

define .
1@ = (Jm o) .
k— 00
whereg* denotes upper semicontinuous regularizatiog.oThen f is subharmonic irtC
satisfying

—2Alog|z|

f@=u@ ebp and f@)=— " (ZGC\mTl).

Consider nows = Af. Thenp is a finite Borel measure o supported iD;. According
to F. Riesz’s theorem (see, e. g., [4], Th. 3.9)

~ 1
f(@ :=2—[/|09|Z—€Idlt($)
7 J Jc

is subharmoniciff and satisfiea f = Af = u. Thush = f— f isareal-valued harmonic

in C function. Moreover/: goes to infinity as(%? - %) log|z]. This immediately
implies (by arguments involving Liouville’s theorem) that= 0 and 42 = ooy Now

according to Theorem 4 applied fa= f), forany 0< H < e, d > 0 there is a system of
disks with radiir; satisfyingy_ r¢ < @ such that

—2A H 2A
f="log

— H
~ logt e = log[(3+ r)/4] Iog?
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. . . —2A
outside these disks. It remains to set IEEBIEIE
The proof of the proposition is complete. []

Assume now thajf is subharmonic and satisfies (1.3). Then by the main theorem
in [1] there is a constar@ = C(r) > 0 such that the inequality

sup f < C(My— M)+ sup f
D(x,t/r) D(x,1)
holds for any pair of disk®(x, r) C D(x, t/r)(C D,). Applying inequality of Proposition 1

to the function
f([Z/I") - Sug])(x,t/r) f

C(M1 — M)
and then going back tg we obtain the following.

u(z) =

(z € Dy)

Proposition 2.
There is a constant = ¢(r) > 0 such that for any disk(x, ) satisfyingD(x, t) C
D(x,t/r) c D, and anyH > 0, d > Othere is a system of disks such that

d
2’4 _ (H/r) ’
I d
wherer; are radii of these disks, and

H
f(z) = sup f+c(M1— Mp)log—
D(x,1) e

outside these disks n(x, 7).

Remark 2. A particular case of Proposition 2 for functioms= log | f| with holomorphic
f and ford = 1 was proved in [7].

We proceed to the proof of Theorem 5. First we show déhaan not be covered by a
system of disks such that

1-1
p < Qe > Cf D s (3.4)

wherer; are radii of these disks. Assume to the contrary that there exists a system of disks
{D(x;, r;)} whose radii satisfy (3.4) which covess For anyx; choosey; € w so that

|x; —yj| < r;. Then the system of disk®(y;, 2r;)} also coversv. Sincew € A(d, a),

we obtain inequality

Hl@) = Y HU@ND; ) s 2lay rd <

which contradicts td{%(w) > €.
. . _ 1/d
We now apply Proposition 2 witltl, = %

with 3 rd < @H:/D° can not cover, Proposition 2 implies that there is a point €
such that

. Since any system of disks

Hy,
supf > f(xy) > sup f +c(M1— Mz)log— .
(2] D(x,t) e

Lettingn — oo we get the required inequality.
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Theorem 5is proved. [

Let us also show that the condition éfregularity is necessary for the set to satisfy
the inequality of Theorem 5.

Proposition 3.
LetK C Dy, be a compact set with¢(K) < co. Assume that the inequality

sup f <supf + L+ Clog
D(x,t) w

t

i

holds for anyw C K ND(x, 1) C D(x, 3t/2) C Dy/3, x € K, with H?(w) = € and any
f subharmonic ifD; satisfying(1.3) with » = 2/3 and someV(;, M. HereL andC > 0O
depend orK, d, M1, M>. ThenK € A(d, c¢) for somec > 0.

Proof. Foranyf, w,t < 1/9 satisfying assumptions of the proposition the inequality
t t
—Clog—— < sup f —supf —Clog—— <L < o©
cld Dxr) » eld

holds. For a poink € K we setf,(z) = log|z — x| ande; := H4(D(x, 1) N K). Clearly
the family { f,} satisfies inequality (1.3) with = 2/3, M1 = 3/2 andM, = 1/6. Then
from the above inequality applied 6 we obtain

t
L > —Clogm s
€

that is equivalent te; < Lt4 for L = ¢°¢. Thus the definition ofi-regularity is checked
forr < 1/9. Fort > 1/9 the inequality is obvious.  []

Proof of Theorem 2. The proofis an easy consequence of the inequality of Theorem 5
where we choose := H?{y ¢ Kyt ¢ fxr— f(y) > A} and the definition of/-sets. We
leave the details to the reader. []

4. Proofs

Proof of Theorem 1. First, we prove a local version of the theorem. Assume that
K c D, is a compact frond(d, a, b) and f, D(x, ¢) satisfy conditions of Theorem 2. Set
f'=for—fandDp(h) :=HUy € K« : fer— f(y) > A}. Then from the inequality

of Theorem 2 it follows that

1 1 00 ca(de)d (M1 — M)
A 'dH' = ——— | Dpx)d . @1
"k Jx, T Hd(Kx,,)/o pdx < e (4.1)

Now we have
S |f = fx |de<; |(f = fe) = (f = frdk.,| dHY
HIUKx ) Jr, w = HYU(K ) Ik, It Ixt Rt

2ca(4e)? (M1 — Mp)

/d d<
fra = brdd?

= d
H (Kx,t) Ky
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This gives the estimate of the BMO-norm in each Bl = D(x, r) N K with D(x, ¢) C
D(x, z/r)(C D,). Inthe general case, we covéby a finite number of open disk&(x;, R),

i = 1,..., N such thatf is defined in the union of these disks, the @é(:tlﬂ))(x,-, R/2)
also coversK and any disk of radiug R/4 centered at a point & belongs to one of
D(x;, R/2). Then the estimate of the BMO-norm in abyx,t) N K, x € K, t < R/4,
follows from Theorem 2 and inequality (4.1). To estimate BMO-normdli¢r, 1) N K
with > R/4 we write

1 44

S — fk. |dH? < — decf dH* .
K Jg, T el U S g [ Af1dH < C [ 171dH < o0

Here we used thaf, | f|dH? < co by Theorem2.  []
We now formulate another corollary of Theorem 2.

Corollary 1.
Assume that a subharmonic functigrdefined orC satisfies

f@ < +logl+1z]) (zeO©)

for somer’ € R. Assume also that € A(d, a, b). Thenf|s € BMO(S, H¢) and the BMO

norm| f|sls < b% with an absolute constaiat

Proof.  For functionsf satisfying conditions of the corollary the Bernstein—Walsh in-
equality

sup f <logg + sup f (4.2)
D(x,qt) D(x,t)

holds for anyx € C, ¢t > 0, g > 1. (The proof is based on the classical Bernstein
inequality for polynomials and the polynomial representation ofttextremal function of
the disk (see, e. g., [6]).) Then the estimate of the BMO-norri|if. ;)ns follows from
inequality (4.1) withr = 1/2 andM; — M2 = log 2. L]

Proof of Theorem 3. As in the proof of Theorem 1 we, first, consider a local version
of the theorem. Assume th&t C D, is a compact fromA(d, a, b) and f, D(x, ¢) satisfy
conditions of Theorem 2. Denoge = ¢~/" = ¢/ /e/++. Consider the distribution function
de(A) = Hy € K., : g(y) < A}. Then from the inequality of Theorem 2 we deduce

(4e)’a -
dg () = 2= CONTMD HUK )

Let g.(s) = inf{A :d,(A) = s}. From the previous inequality we obtain

sr‘l db )C(MlMZ)/d

8(5) = ((@)W(Kx,t)a

In particular,

1 1 H (K )
. AH! = — — / L(5)d
HI(Kyp) /K 8 HI(Ky D) Jo gs(s)ds

. /]_ Srd db C(leMZ)/d d 1 rd db C(leMZ)/d
— s = .
~Jo \(de)la 14 c(M1— Mp)/d \ (4e)?a
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Thus we obtain

((4e)da>C(Ml_M2)/d 1

supe’! < (1+ (M1 — M) /d) 4 db He(Ky )
x,t) JKy;

Kx,t

el dH?  (4.3)

which implies the required local reverse Holder inequality. In the general case, we cover
againkK by a finite number of open disk3(x;, R), i = 1, ..., N such thatf is defined
in the union of these disks, the aefﬁ’:lID)(xi, R/2) also coversk and any disk of radius
< R/4 centered at a point o belongs to one oD (x;, R/2). Then the reverse Holder
inequality of the form (4.3) holds for ang, ; = D(x,f) N K, x € K,t < R/4. Assume
now thatt > R/4 and set

1
= inf Py TN fd ¢ '
" xEKI,t>R/4{Hd(Kx,t) \/I'(x.t ‘ " }

Thenm > 0. Indeed, lek;, #; > R/4, be a sequence for which the expression on the right
above converges ta. Without loss of generality we may assume also thégéndstor € K
andy; tends tor > R/4. Then there igp such that for any > io, the ballK,, ;, contains

K r/g. Note that SUR, 4z e/ >0 because, g/s is nota polar set. Then inequality (4.3)
applied toK r/g and thed-regularity of K show that

C
mzd—/ e/ dH’ > 0
HY(Kx,Rr/8) JK, pys

for a constanC := C(K). Finally, since Sup, |, ef <M= Supk e/ < oo, inequal-
ity (4.3) forr > R/4 is valid with the constan//m.
The proof of the theorem is complete. []

Corollary 2.
Assume that a subharmonic functigrdefined orC satisfies

f@) < +log(l+1z]) (z€C)

for somec’ € R. Assume also thaf € A(d, a, b). Then fore/|s the reverse Hélder

inequality (4.3) holds with the constang (d"—b)”/d, wherecy, ¢, are absolute positive
constants.

Proof. The proof follows directly from the Bernstein—Walsh inequality (4.2) and The-
orem 3. L]
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