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ABSTRACT. The Generalized Multifractional Brownian Motion (GMBM) is a continuous Gaus-
sian proces$X (1)};<[0,1) that extends the classical Fractional Brownian Motion (FBM) and the
Multifractional Brownian Motion (MBM) [15, 4, 1, 2]. Its main interest is that, its Holder regu-
larity can change widely from point to point. In this article we introduce the Generalized Multi-
fractional Field (GMF), a continuous Gaussian figld (x, y)}(x’y)e[o’llz that satisfies for every

t, X(¢t) = Y (¢, t). Then, we give a wavelet decompositiory aind using this nice decomposition,
we show that is g-Holder iny, uniformly inx. Generally speaking this result seems to be quite
important for the study of the GMBM. In this article, it will allow us to determine, without any
restriction, its pointwise, almost sure, Holder exponent and to prove that two GMBM’s with the
same Holder regularity differ by a “smoother” process.

1. Introduction

The pointwise Holder exponent of a function allows to measure the local variations
of its irregularity. This notion will be fundamental in this article, so let us recall it precisely.
A complex-valued function defined @&, is said to satisfy a Holder condition of exponent
a,m<a <m+1,me N ata pointy, if there are a polynomiaP,, of degree at most:
and a constant > 0 (that generally depend ag), such that the inequality

|f (1) = Pu(t —10)| < clt —10]*, (1.2)
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holds whenr — 1g| is small enough. The pointwise Holder exponenifddt zg is defined
to be the supremum of thethat satisfy (1.1) and denotedr). The functions +— «(s)
is called the pointwise Holder exponent pf

K. Daoudi, J. Lévy Véhel and Y. Meyer have completely described the class of point-
wise Holder exponents of continuous functions over a compact interval. More precisely,
they have shown that this class is that of lower-limits of continuous functions [5]. In [6]

S. Jaffard gives a wavelet proof of this fundamental result. However, the deterministic
continuous functions with the most general Hoélder exponent, given in [5] and [6], seems to
be extremely peculiar. Therefore, the problem of constructing continuous stochastic pro-
cesses, with the most general Holder exponent that extend the FBM has been raised in [7].
Such processes would allow to model random signals with very erratic Holder exponents
and non-stationary increments, as for instance some signals that occur in finance or in tur-
bulence. A partial answer to this problem is supplied by the GMBM [1, 2]. This continuous
Gaussian process has been introduced by the author and J. Lévy Véhel. Roughly speaking
it is obtained “by substituting” to the Hurst parameter of the FBM a sequence of Holder
functions. So, at least for this reason, the GMBM is an extension of the FBM and thus
seems to be a good candidate for modeling.

Let us now introduce some notations that will allow us to define precisely the GMBM.
These notations will be used extensively in the sequel (throughout this article, we will be
using non-random as well as random constants. To ease distinction, we use small letters
(e. 9.,¢) to denote non-random constants and capital letters (€ g, C(w)) to denote
random constants).

(A) The GMBM will mainly depend of one parameter a sequen&g(.)),cn Of
(B, ¢y)-Holder functions with values in an intervial, b] c]0, 1], fixed once and
for all. Recall thatf is said to be &8, ¢)-Hdlder function if

|f(t1) — f(t2)| < cltr — 12

wheneverr — 12| is small enough. The admissible sequen@®s(.)),<n Will
satisfy the condition:

sup H(r) < B andé, = O (2’“‘1—")) , ©)
te[0,1]

where the fixed real > Ois arbitrarily small and forevery H (r) = liminf H, (¢).
n—oo

(B) We will denote(f,,(.)) a sequence of functions of the Schwartz cl&€R), satis-

fying for every&
2 ey f | rifiE=F
f-1) = f~1(=§) = { 0if 5] > 7 (1.2)
and for everyr € N,
fo® = fra (2777%) = fa(278) = fo(278) - (L3)

Recall thatS(R) is the space of all infinitely differentiable functions:) which

n

. . . d _
satisfy for all integersn andn, ‘ |I|m " <E> u(t) = 0. Let us mention that
t|—>00

to characterize the classical functional spaces one constructs Littlewood—Paley
Analyses via such functiong,.
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(C) The Generalized Multifractional Field (GMF) of parameték, (.)), <, OF more
simply the GMF, will be the mean-zero Gaussian figle= {Y (x, W, y)er0,172:
with continuous realizations and the covariance kernel

E(Y(x,nY (x',))) = /RK(XJ,E)K(X’»)”,E)dg, (1.4)

where for every reals, y andé we have set

= (e 1)

K(X,y,$)=§)mﬁ1—l(é)- (1.5)
This definition makes sense. Indeed, for evésy, t1), ..., (sp, 1) € [0, 1]2 the

matrix (fg K (si, ti. §)K (s 1j, §) d&),_, ;_, is positively defined: for all complex num-
bershy, ..., h,, we have o

2
dé > 0.

> h,-h_j/ K(si,ti,E)K(sj,tj,S)d€=/
R R

1<i,j<p

p
> K (s 1, §)
k=1

The existence of a continuous version¥ofollows from the Kolmogorov criterion,
since for every(x, y) and(x’, y')

E <|Y(x, y)—Y (x/, y/)|2> <c <|x - x/|2 + |y - y’|2>a . (1.6)

The inequality (1.6) evenimplies that for any- 0, with probability 1, the trajectories
of Y are(a — €)-Holder functions (see Lemma 8). At last, it is useful to note thaain be
represented as the Wiener integral

Y(x,y) = /H;K(x,y,é)dW(E)- .7

The Brownian measur&W, will be chosen so that be real-valued (see for exam-
ple [2]). The GMBM{X (r)};¢[0,1] can be defined as the restriction of the fi¢l{x, y)
Yx,yero,12 1O the diagonal: for every € [0, 1]

Xt)=Y(@,1). (1.8)

One the main interest of this Gaussian process is that its Hélder expsgéntan be
prescribed via the sequen¢l, (.)),en and may differ widely from point to point. Indeed,
it is shown in [1] and [2] that under the conditioGs and(ii) below, one has for eveny,
almost surely (a.s. in short),

ax(tg) = Iir?ligof H,(t0) = H(1p) . (1.9

(i) Foreachr € [0, 1] and eackx > 0, there areig € N andn > 0 (depending only
ont ande) such that the inequalitf,, (r + h) > H(t) — € holds for everyh| < n
andn > ng.

(i) Forall¢, H(t) < g andc, = O(n) whenn goes to infinity.
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Remarks.

1) The definition of the GMBM is not canonical. It depends on the choice of the
function f_l(.) in the Littlewood—Paley construction.

2) The GMBM depends on the whole sequeii£g (.)) and not only on its lower-
limit H(.). However, we will show that when two admissible sequenégs.))
and(H, (.)) satisfy for allz andn, |H,(t) — H,(1)| < c(1)2~"%®) then the corre-
sponding GMBM'’s differ by “a smoother” process (see Theorem 2).

3) The GMBM is an extension of the FBM. Mainly for the following reasons.

— Itis defined “by substituting” to the Hurst parameter, in the harmonizable
representation of the FBM, a sequence of admissible Holder functions.

— According to Proposition 3in [1], under some technical conditioty.)),
the GMBM is Locally Asymptotically Self-Similar in the sense of Benassi,
Jaffard and Roux [4] 1. e.,

{X(to + pu) — X(to)

lim law )

p—0t

} = laW{ By (1) () }u ,

where the procesgBpy ) (1)}, is an FBM of parametef (r9). Roughly
speaking this property means that@tthere is an FBM of parametéf (7o)
tangent to the GMBM.

4) The GMBM is an extension of the MBM in the sense that when allHhé) are
equal to the same Hdlder functidh(.), then the GMBM is an MBM of parameter
H (.). Recall that the MBM has been introduced independently in [15] and in [4].
It is defined by substituting to the Hurst parameter of the FBM a Holder function.
5) One can construct sequendés, (.)) satisfying(i) and (ii) whose lower-limits
H () have sets of discontinuities with accumulation points (see [1] Proposition 2).
Forinstanced (.) can be equal ta on the Cantor set and taon its complementary.
6) The conditioni) implies that the functiorH (.) is lower-semi-continuous, which
may be restrictive in some situations. In contrast with the conditiongii) and
(C) are not restrictive at all: any lower-limit of continuous functiong0nl] can
be written as a lower-limit of a sequence of Lipschitz functions (or even a sequence
of polynomials) satisfyingii) or satisfying(C) [5, 6]. Observe thafC) is weaker
than (ii). One of the main result of our article will be that the Relation (1.9)
remains true, only under the conditi¢f)).

The goal of our article is to study some local properties of the GMBM (see Section 3).
However, we think that the main point of it, is to introdude(x, y)} y)e[0,1)2 the GMF
and to show that it ig-Holder iny, uniformly inx i. e., it satisfies almost surely for every
x,y,y" €[0,1],

sup |Y(xe,y) =Y (v, )| <Cly =y .
x€[0,1]

Indeed, this nice property af, turns out to be very useful in some problems on the GMBM,
as for instance the determination or the indentification of its Holder exponent.

Our article is organized as follows. In Section 2, we introduce a “wavelet decompo-
sition” of the GMF and using this nice decomposition we show that the GM#FHIder
in y uniformly in x. Then, this important result, allows us, in Section 3 to determine the
pointwise (a.s.) Holder exponent of the GMBM and to prove that two GMBM'’s with the
same Hoélder regularity differ by “a smoother” process.
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2. The GMF is -Hélder in y Uniformly in x

In this section our objective will be to show that
Proposition 1.
LetY be the GMF, then we have almost surely,
sup |Y(x,y)—Y(x,y/)| < C1|y—y’|ﬁ , (2.2)
x€[0,1]

whereC; is a positive random variable of finite moment of arbitrary order.

To prove Proposition 1 we need to introduce “a wavelet decomposition” of the GMF.

2.1 “A Wavelet Decomposition” of the GMF

Let{v/; x(x)}; rez be aLemarié—Meyer orthonormal wavelet basis &R) [11, 13].
Recall that for every, k € Z,

Vi) =22y (22— k) |
where the mother wavelgt belongs toS(R) and has a Fourier transforgnwith a support

in the domain{é, 27/3 < |&| < 87/3}. In this subsection our goal will be to show that.

Proposition 2.
The GMF can be expressed as the random series,

Yooy = D Y sk, yej, (2.2)

Jj=—00k=—00

where for everyx, y) € [0, 112 and (j, k) € Z?

ad (eixé—l) N n
sjk(x,y) Z/R wan—l(f) Vi) dE (2.3)

n=0

and{e; «}j rez is a sequence oV (0, 1) independent Gaussian variables. This series is
almost surely convergent, for evey, y) € [0, 1]2. The deterministic coefficients (., .)
will be called “the wavelet coefficients.”

To prove Proposition 2 we need the following results.

Remark 1. Let an arbitrary(x, y) € [0, 1]2, the wavelet coefficients; x(x, y) can be
expressed as:

» foreveryj e Nandk € Z,

2 .
sjkCe, )= 2w (gl—l (2])6 +k, Hj+1()’))—gl—1(k, Hj+1(y))> - (2.4)

o foreveryk € Z

Caale =30 M0 (g (2 + k) — g1tk HGY) . (25)
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 foreveryj >2andk € Z
S, ) = 2700 (g1 (275 + k. Ho)) = g-1(k, Hox)) . (26)

where for alll € {—1,0, 1}, X € R anda € [a, b] C]0, 1], we have set
ixe (HEVE)
gaX,a) = /Re X¢& (W) dt . (2.7)

Proof of Remark 1. We will only give the proof of (2.4) that of (2.5) and (2.6) are
quite similar. The intersection of the supportsfhfandy; , being a negligible set when
Jj ¢ {n—1,n,n+ 1}, we get that

2. ixé _q Cien i\ A
806, ) = ZT’/Z/R ,gﬁeﬂjﬂwi/ze"z 9 (278) frua@) de
=0

Then setting: = 27/& in this last integral and using (1.3) we obtain (2.4). []

Lemma 1. 5
Leta, b as in paragraph(A) of Section 1 and the function defined for allX, «) €
R x [a, b] as

E(X,oz):/eixé h(&) dt
R

|§|a+1/2

whereh is a function ofS (R), with supportinthedomain = {¢ e R, 0 < d < || < D}.
Then for any integef. > 0, there is a constant, > 0, depending only of., a andb, such
that for all (X, ) € R x [a, b],

‘ﬁ(x, a)‘ <+ 1XD7E. (2.8)

Proof of Lemma 1. We will suppose thak > 0, the proof is quite similar whek < 0.
Let us set (§) = e % (&), HE, o) = ‘;"% if (£,0) € A x [a,b]andH (&, a) =0
else. ltis clear that for any € [a, b] the function — H(E, o) belongs taS(R). Let us

first prove that
a\" -
— | H
<8$> ¢ o

Using the Leibniz Formula we obtain that for affy o) € A

c:SUp{ , (é,a)eAx[a,b]} < 00. (2.9)

2\" 5 S ke 0Lh )
<£> H@,a):g(—l)k @)eL,k(a)W, (2.10)

whereo (¢§) =1if & < 0ando (&) = 0elseer o(a) =1 andey (o) = (i) ]—[ﬁzl(a +
n —1/2) else. Then, as for every integers<Ok < L and(§¢, «) € A X [a, b]

k
lep k()] < (,f ) H(b—i-n -1/2)+1,
n=1
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and

|09 )|
— <
|€_—|a+1/2+k -

) 1 1 1 1
HOO |d|a+l/2+k + |d|b+1/2+k + |D|a+l/2+k + |D|b+1/2+k
we get (2.9). Now let us prove (2.8), for aqy, «) € R} x [a, b], we have
h(X, ) = / ¢! CHIXDE g (g, ) dE .
R

After L integrations by parts we obtain that

/ei(2+|X|)§ <i>L1§(g o) dg
R 85 ’

L .
Atlastthe support of the functiof — (%) H (¢, o) being contained in the domain

A for anyoa € [a, b], it follows from (2.9) and (2.11) that for eaclX, o) € Ry x [a, b],

L A\
2+1X]) /A(%) HE, )

2(D—dye+ X)L O

‘E(X,oz)‘ =@+ XDk . (2.11)

d§

’E(X,a)’

IA

Lemma 2.
Leta andb be as in paragraph{A) of Section 1. For every integdr > O there is a
constanicz > 0 (depending only o, b and L) such that the inequalities

. . —L
Isj (x, ¥)| < c3279¢ {(1+ ’2/)( n k‘) A+ |k|)‘L} (2.12)

and
s i (e, )| < 327D @ kL, (2.13)

holdforall j € N,k € Z andx, y, y’ € [0, 1].

Proof of Lemma 2. First, let us prove (2.12). It follows from Remark 1 that it is
sufficient to show that there is a constant- 0, such that for any € {—1, 0, 1} and any
(X,a) € R x [a, b],

lgr(X, )| <c+ X)L,

This inequality will result from Lemma 1 by taking for eatle {—1,0, 1}, (¢) =
fi(€)V (€). Letus now prove (2.13). We will restrict to the cagex 2, the casg = 1 can
be treated similarly. Applying the Mean Value Theorem to the right member of (2.6), we
obtain that for some real €]k, k + 1[ (depending on, y, j, k), we have

X

0
(ﬁ) g-1(c, Ho(y))’ .

i1 0
ls_jxCe, )| = 2@ H“-V”‘(—) g-1(c, Ho(y))‘

< 2-i@-b)
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Thus, itis sufficient to prove that there is a constdnt 0 such that for anyX, o) €

R x [a, b],
0

As (%) g-1(X, ) =i [peXE (%) dg, this last inequality will result from

Lemma 1 by taking:(£) = & f_1(6)¥(5). [

Now we will state two lemmas that allow to bound the sequeagg} ; cz. These
lemmas are similar to that given [14, 3].

<d@+xpt.

Lemma 3.

Let {¢, },en be a Gaussian process such that for every, is an (0, 1) Gaussian
variable. Then, there is a positive random varialdleof finite moment of arbitrary order
such that, almost surely, for evety

len] < C/log(2 +n) .

Proof of Lemma 3. We setforany: € N, n, = log~2(2+ n)e, andC = sup|n,|. If
we show that the random variahlgis finite (a.s.), then its moment of arbitrary order will
be finite as well (see [8, 10]) and the lemma will be proved. To proveGhat co (a.s.)
we will use the Borel-Cantelli Lemma. Let a fixed reat- +/2, for any integer. > 1 we
have,

2 +o0 _ 2/2
Pl =z a) =4/ = e /%dx .
T Ja,/log2+n)

Integration by parts yields

400 219
/ x 1 (xefx / ) dx
a4 /log(2+n)

= [—xile*xz/z]—koo — /+<>0 xzefxz/z dx
ay/log(2+n) a/log(2+n)

< (alog@my) e lou2enr2

<@+n)2,

so that) 2 5 P(In.| > 1) < co. By the Borel-Cantelli Lemmay,| > « occurs almost
surely only for finitely many:. This implies thatC < oo (a.s.). L]

Lemma 4.

Let{enm} ez« be a Gaussian process such that for evetye, is an/N' (0, 1) Gaus-
sian variable. Then, there is a positive random variablef finite moment of arbitrary
order, such that, almost surely, for eash = (mz, ... ,my) € Z9,

d
lem| < C |log (2 +y |m,-|> . (2.14)

i=1
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Proof of Lemma 4. This lemma is essentially a consequence of Lemma 3. We will
suppose thad > 2 and proceed by induction ah Recall that the map:N x N — N
defined for all(p, ¢) as

(p+q)(p+q+1)
¢(p.q) = 5
is a bijection. It was introduced by Cantor and is often used to prove that tfhé se¥
is countable. Thus, the map Z9 2 x N x N — 792 x N defined for allM =
(m1,...,mg_2,mg_1,mg) as

M) = (my, ... ,mg_2, ¢p(mg_1,myq)) , (2.16)

is a bijection. Hence by replaciny by ¢(M), one can view the sequen¢ey, M €
7972 x N2} as a sequence indexed By 2 x N and thus by using the induction hypoth-
esis, we obtain that, aimost surely, fored¢h= (m1, ... , mg_2, mqg_1, mg) € Z9=2xN?2

+p+1, (2.15)

d—2
lem| < C |log (2+ D Imil+ ¢ ma1, md)) : (2.17)

i=2

where C is a positive random variable of finite moment of arbitrary order. Then, as
¢ (mg_1,mg) < c(jmg_1| + |mq|)?, using (2.17), we obtain (2.14). Similarly, one can
view the sequencegy, M € Z972 x (Z_) x N}, {ey, M € Z97% x N x (Z_)} and
{em, M € 2972 x (Z_) x (Z_)} as sequences indexed By 2 x N and thus we can
prove that (2.14) is satisfied for anf € Z<. O

Proof of Proposition 2. It follows from Lemmas 2 and 4 that there is a random variable
C > 0 of finite moment of arbitrary order such that, almost surely fotally) € [O, 1)2

Y (x, y)I
SCY ot 27 [(1 +2x — k) P+ @+ Ikl)‘z] log2(2 + j + |k|)
FOY2 R o 277D A+ k)72 logM2(2+ j + [KI) -

. logv2(24 i .
Let us show that the serigs |25 3> 27 W%ll)’ﬂ) is convergent for every

o 00 00 —jalogY?(+j+lkD)

x € [0,1]. One can S|m|larll/)2/ prove that the sengé,j=0 oo 2 =Rz
+00 x+oo  5—j(1-b) log 2+ +IkD i -additivi

ande:1 e o0 2 @z are convergent. Using the sub-additivity of the

functionx — log'/2(2 + x) we obtain that for any € N,
yooo logP@rjtik) _ yoco log"?(2+)+[k-+[2/x]|)
k==00 " (14 |2ix—k|)? k==00 " (14|2/x—[2ix]—k|)?

log"/2(2+[k]) 0 log"?(2++2/)
< o
= Xi=-oo (1+|27x—[27x]—k[)? UPI R (1+]2/x—[2/ x]—k])*

<2elogh?(2+j +27) ,

wheree = 2 SUB¢[0.1] D fe—oo %—i@ < oo and[2/x] denotes the integer part of
2/x. Thus,

o) e8] 1/2 . o0

Z Z 2_ja|09 (2+j+|k|) 5622_m|091/2<2+]+2/)<00 D

=0 k=—o0 (1+12/x - k|)2 =0
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To conclude this subsection, let us mention that following the same ideas as in [3],
one can show that the series (2.2) is almost surely uniformly convergentyn € [0, 1]2.
This result is clearly stronger than Proposition 2. We will not give its proof, since we do
not need it in the present article.

2.2 Proof of Proposition 1

The following estimations of the “wavelet coefficients’s (x, y) will be very useful.

Lemma 5.
Leta, b, B andn be as in paragraphl{A) of Section 1. For any integdr > O, there
is a constant, > 0 (depending only om, b and L) such that the inequalities

4 1 1
- —s; / 2-in2 —y|f (2.18
sjkCe, =5k (x,Y)] < ca {(1+|2jx_k|)L+(1+|k|)L}|y y'|” (2.18)
and
14 j)2—/d=b
|s—jx(x, ) =s—jx (x,¥)] < Gk iy (o y'|° (2.19)

1+ [kDE
hold for all x, y, y' € [0, 1], j € Nandk € Z.

Note that Lemma 5 is to a certain extent, inspired from Proposition 4.1, p. 79 in [4].
To prove this lemma we need the following result.

Lemma 6.
Leta, b be as in paragraphiA) of Section 1 and for angX, @) € R x [a, b], let

i @)
gX,a) = /Re XSW&E,

whereg is a function ofS(R) with support in the domaifé € R, 0 < d < || < D).
Then, for any integeL. > 0, there is a constants > 0 such that the inequalities

1+ j)2-

and
’2ja (g(2x+k a)— gk o)
, . b (2.21)
— 29 (g (27x + k') — g (k, &')) ‘ < CS% o —c|

holdforall j e N,k € Z, a,a’ € [a, b] andx € [0, 1].

Proof of Lemma 6. First we will prove the inequality (2.20). We have for gllie N,
keZ,a,o €la,b]andx € [0, 1].

‘Z_j“g <2jx + k, oz) — Z_j"‘/g <2jx + k, a’)’ < Sjk (x, a, o/) + Tjk (x, o, o/) (2.22)
where

Six (x,a,a') =277¢ (2.23)

g <2jx —i—k,a) —g (ij + k, a’)
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and

Tk (x, a, o/) = ‘Z_j“ _2 Y

¢ (27x +x.a)| . (2.24)

Let us give an ad hoc upper bound$fy (x, &, ’). Using the Mean Value Theorem

we obtain that
9 .
el j
<8a> g (2 x +k, y)

for somey €]a, b[ depending ory, &, x, «, «’. Moreover, since

) _ | ixe (9&)loglé]
(£>g(x’“)_ /Re ( E[oFT2 )ds'

Taking in Lemma sz(s) = ¢(&)log|&|, we obtain that for some constant- 0 and
all (X, a) e R x [a, b],

(52) e
(£>8( , o)

Therefore, it follows from (2.25) that for any < [0, 1], j € N, k € Z anda, o’ € [a, b],

Sik (x,a,0') =277¢ o — o], (2.25)

<c@+|xpt.

2-Ja

— < _la—d|. (2.26)
(1+ |27x + k)" | |

Sk (x, o, o/) <

Now let us give an ad hoc upper boundfgf; (x, «, ). Taking in Lemma 1/,3(5) =
(&), we obtain that for some constarit> 0 and all(X, @) € R x [a, b],

lg(X. )| <A+ X" (2.27)
Moreover, using the Mean Value Theorem we get that

‘2—1'“ —277%| < (log2)j2/ |o — | . (2.28)

Thus, it follows from (2.24), (2.27), and (2.28) that for ang [0,1], j e N,k € Z
ando, o’ € [a, b]

. _ja
Tjk (x,(x, o/) < c”#L |a —o/| .
(1+|2/x + k)

Now, let us prove the inequality (2.21). We have forpk N, k € Z, o, o’ € [a, b]
andx € [0, 1]
20 (g (277 x + ko) = gk ) — 2 (g (27 x + ko) — g (K. )|
<Kji(x,a,0)+Ljs(x, .0,
where
Kik(x,a,0/) =2/ (g (27/x + k, &) — g(k, @)

A (2.29)
- (g (2_fx +k, o/) —g (k, o/))

)
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and

Li(x,a,0) = ‘Zj“ _2Jo

¢ (2775 +k0) — gtk )| . (2.30)

Let us give an ad hoc upper boundfof x (x, «, «’). Using the Mean Value Theorem,

we obtain that
d : d
i —J _ (=
(aa>g(2 x+k,5> <aa>g(k,8)

for somes €]a, b[ depending on, k, x, a, «’. Then using again the Mean Value Theorem,
we get that

Kjk(x,a,0) = 2/

lo —o| . (2.31)

Kji(x,a,d) = 27 (1)

82
<m> g(e, d) |oc - o/| x|, (2.32)

for somee €]k, k + 1[ depending omny, k, x, o, @’. Moreover, since

92 _ . ixe (§96)logl§|
<axaa)g(x’“)__’/Re ( E[F12 )ds’

taking in Lemma 1fz(§) = £¢(&)log|&], it follows that for some constant > 0 and all

(X,a) € R x [a, b]
32
‘(axzm)g(x’ )

Therefore, ag € [0, 1] ande €]k, k + 1[, (2.32) implies that for alj € N, k € Z,
x € [0,1] anda, o’ € [a, b],

<r4+1xp7L.

/ 2—j(1-b) /
Kj’k ()C,O[,Ol) Skm ’Ol—()l‘ .

Now, let us give an ad hoc upper boundiof (x, «, o’). It follows from the Mean
Value Theorem that

‘2/'“ —2i'| < (log2)j27* | — | (2.33)

and

‘g (27]')( +k,oz) — g(k, oe)‘ = ’(%) g (e/,oz) ‘Zﬂk‘ , (2.34)

for somee’ €]k, k + 1[ depending o, k, x, o, &’. Moreover, since

0 _ | ixe (596
(8_X>g(x’“)_’fRe (|é|“+l/2> %

taking in Lemma ]fz(éf) = £¢(&), we obtain that for some constant> 0 and all(X, «) €

R x [a, b],
0
‘(ﬁ) g X, a)

<p+1xXp7*t.
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Therefore, as < [0, 1] ande’ €1k, k + 1[, (2.34) implies that

‘g (2‘-’x +k, a) — g(k, a)] =u (2.35)

2/ ,
armr
At last it follows from (2.30), (2.33), and (2.35), that for gl N, k € Z, x € [0, 1]
anda, o’ € [a, b],

2—j(1-b)

=t el -

Ljk (x,oz, o/)

Proof of Lemma 5. Let us first prove the inequality (2.18). It follows from (2.4) that
forall j e N,k € Zandx, y, y" € [0, 1],

37460690 = 53 (8 3) | = Tk (3, ) + T (0.9 5)
where
Tix (5 0y) = 52 |27/ Hi+1 D gy 4 (27x 4+ k, Hj1(y))
—27 i3t gy (2 4k, Hys ()] -

Let us give an ad hoc upper bound Bf(x, y, y'). Taking in (2.20), for each
1€{0,1,2}, g =g-1,a = Hjy(y) ande’ = H;;(y"), we obtain that

14 j)2-Je ,
At D2 gy —Ha (). (@236)

2
Tj,k ()c7 v, y/) < 2c5 21:0 m

Then, since the sequencH,, (.)) satisfies the conditioC) (see paragrapbA) of
Section 1), it follows from (2.36) that

2 (142774 B
Tir(x,y, y' < 2c —_— |y -
i ) 5210 (1+ [2/x + &))" |
ZZ (L4 jH2-JepU+hla=m
c
=0 (14 [27x +k|)"
2—in/2

ly —y'1

4y =y’
(1+|2/x + k)

Now, let us prove the inequality (2.19). We will only deal with the case 2, the
casej = 1, can be studied similarly. It follows from (2.6) that for dll> 2, k € Z and
x,y,y €[0,1]

ls—jr(x, y) —s—jk (x,¥)]| < ‘2fH°(>’) (g-1(27/x + k, Ho(y)) — g-1(k, Ho(y))

— 210" (g1 (277 + k. Ho (+')) = g-1 (k. Ho (v)) |
Taking in (2.21)g = g_1, « = Hp(y) anda’ = Hp(y"), it follows that,

(1+ j)2=/d=D

AT |Ho(y) — Ho (y')] . (2.37)

ls_jkCxe.y) —s_jx (x.Y)] < cs
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Then sinceHy(.) is a(B, ¢g)-Hdblder function, (2.37) implies that

1+ )2 /P

e ly =" . 1 (2.38)

|S—./,k(x, Y) —S_jk (x, y/)| <cy

As a conclusion, let us give the proof Proposition 1, the main result of this section.

Proof of Proposition 1. Using (2.2), Lemma 4, and Lemma 5 with= 2, there is a
positive random variable of finite moment of arbitrary order, such that, almost surely, for
anyx, y,y €[0,1]

Y(x,y) = Y (x,)| < C(R&x) + RO)+ B) |y —y'|” (2.39)
where
+00 +00 ) ) _2
R =YY 2772 (1+ ‘ZJx —k‘) log2(2 + j + [k|)
Jj=0k=—00
and

o o
B=4>" > @+ )2/ D+ k) ~2logh? (2+ 2f) log™2(2 + [k]) .
j=0k=—00

Clearly, this last series is convergent. Moreover, following the same lines as in the
proof of Proposition 2, one can show that there is a congtantO, such that for every
x € [0, 1],

400
R(x) < e 27712 |0g!2 (2+j n 21') < o0,
j=0

which completes the Proof of Proposition 1. []

3. Some Local Properties of the GMBM
3.1 Pointwise Holder Regularity of the GMBM

The aim of this subsection is to show the following result.

Theorem 1.
Let X = {X(#)}/e0,1 be @ GMBM of parameter an arbitrary admissible sequence
(H,(.)). Then at anyp, the pointwise Holder exponent &fsatisfies almost surely,

ax (o) = Iinligof H, (t0) . (3.1)

To prove Theorem 1, we need the following results. First, we will give a lemma that
allows to bound above, the pointwise, almost sure, Holder exponent of an arbitrary second
order stochastic process. For the shake of generality, we have not restricted to Gaussian
processes.
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Lemma?.
Let {S(#)}/¢[0,1) be a real-valued, second order and mean-zero stochastic process
satisfying

B 2
lim E('S(S+h") SG)I >=+oo, (3.2)

n—00 |hn|2M

wheres is some point of0, 1], u a fixed positive exponent arid,) a sequence of non-

vanishing reals that converges @ For every integen, we setZ, = 1 + W

an = E(Z,%) andy, = g—’: Then a subsequence @f,) converges in distribution to a
non-negative, square integrable, random variableMoreover, wherP (Y = 0) = 0, the
Holder exponent of at s, satisfies almost surely,

as(s) < p. (3.3)

Proof of Lemma 7. The unitball ofL?(2) being weakly compact, one can extract from
the sequencé’,) a subsequendad,, ) converging in distribution to a non-negative, square
integrable random variablg. Let a realp > 0 and an integem be arbitrary and fixed.
Sincekﬂgno o, = +00, we have fork big enough{%n < L, which entails that,

m’
1 1
1>P <n = P|Z, > -
Zn, n

1 1
P\Y, > >P Yy >—
O M m
and consequently that

1 o 1 1
<n ) =Iliminf P <n|=P|Y>—].
Zy, k—>00 Zy, m

By lettingm goes to infinity, since® (Y > 0) = 1 we obtamk lim P(Z < n) =1
ni

1> limsupP (

k—> 00

— 00
This means tha{z—ik}k converges in probability to 0 and therefore a subsequence of it
converges almost surely to 0. This clearly implies thats) < u (a.s.). ]
Remark 2. When a real-valued and mean-zero Gaussian pratessisfies (3.2), the
inequalityas(s) < u holds almost surely.
Proof of Remark 2. We take the same notations as in Lemma 7. To proveRIli#t=
0) = 0, let us setf (x) = \/%e*xz/z and for every integen, t2 = E (w)

lin |2
Observe that IJirm on/t, = 1. We have for any real > 1 and integer. big enough
n—+oo

_ IS(s + hy) — S(s)] _
PY,>n = P( TAG > oun 1)

2 [ X
= — fl— ) dx
Tn opn—1 Tn

= Zf”}il f(x)dx ,

n
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and this last equality implies that

+00
P(Y>n)=k|im P(Yy, >77)=2/ f(x)dx .
—00 "

Therefore, we get tha? (¥ = 0) = 0. L]

To bound below the pointwise Holder exponent of a continuous Gaussian field, we
will use Remark 3. This remark is a straightforward consequence of the following lemma.

Lemma 8.
LetG = {G(u)}, (0,71« b€ @ mean-zero real-valued Gaussian field such that for all
u, u' €[0,T]¢

E(}G(u)—G(b/)!z) §c|u—u’|2v , (3.4)

wherec > 0 andv €]0, 1] are two constants. Then, the trajectories of some versi@n, of
are, with probabilityl, (v — €)-Holder functions, witke > 0 arbitrarily small.

Remark 3. LetG = {G(u)},¢0,r¢ be a mean-zero real-valued continuous Gaussian
field that satisfies (3.4) and; its Holder exponent. Then, at any pointone has, almost
surely,

ag(s)>v. (3.5)

Proof of Lemma 8. We will only give the main lines of this proof (see [2] for the
details). Lets, u’ € [0, T1¢ be arbitrary, as the random varialdigu) — G (1) is Gaussian,
it follows that

£ (0w -6 w1 = (£low - )™

where the constant > 0, only depends od. Then using (3.4) and a strong version of
the Kolmogorov criterion (see for example Chapter 2 of [9], or [2]) we obtain Lemma 8.
L]

Lemma 9.

Let us fix an arbitraryg € [0, 1] and let{Y (x, )}, 1)€[0,1]2 be a GMF of parameter
an arbitrary admissible sequencéi, (.)). Then the Hélder exponent of the Gaussian
processY (s, f0)}sefo.17, atto, is almost surely equal tél (rg) = Iinrr_1)ig10f H, (10).

Proof of Lemma 9. Step 1:Let us show that the Holder exponent@bf the process
{Y (s, t0)}sef0,17 1S (a.s.) bounded above Wy (rg) + €, with € > 0 arbitrarily small. It
follows from Remark 2 that it sufficient to prove that

2
. |Y (to+27", 10) — Y (t0, 10) |
nILmoo E < 2—2n(H(ip)+¢€) =+. (3.6)
Since H(tp) = liminf H,(t0), one can extract from the sequendé,(70)),cN @
n—>oo

subsequencéH,, (t0));en satisfying for every,

Hy, (to) < H(tg) +€/2. (3.7)
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For simplicity, we sez = n; in the sequel. The functiomﬁl being equal to 1, on
2"+277

[2"7, =57], it follows from (1.7) and (3.7) that

. 2
. 5 214273 |26 — 1‘
E(‘Y(IO-FZ ,to) - Y(to, [0)| ) = A Wdé

"

\

io—n 2
24273 |€l2"E — 1‘
/; |,<;:|2H(10)+l+6 d§

4

; 2
o—2n(H (t0)+¢/2) / w3 e 1" u
lu |2H (to)+1+€
and we obtain (3.6).
Step 2:Let us show that the Holder exponent@bf the processY (s, f0) }sero,17 IS
(a.s.) bounded below k¥ (zp) — €, with ¢ > 0 arbitrarily small. It follows from Lemma 8
that it is sufficient to prove that for evesys + i € [0, 1], one has

E(1YG+h10) = Y (s, 10)[2) = el (3.8)
SinceH (fp) = lim ionof H,(t0), there is an integeN, such that for every > N + 1,

Hy(to) > H(to) — €/2. (3.9)
Then it follows from (1.7), (3.9), (1.2), and (1.3) that

oihE _ 1)2 (Zj; Iélj;z%y dt .
2 [ E'T;;#ﬁ'z (0 fa®) s
2|h|2/]R (ZLJ&FHE&%)Z dt

e 1]’
|u |2H(to)+lfe

E<|Y(s+h,to)—Y(s,t0)|2) = /
R

IA

IA

du ,

+ 2| AH =€/ /
R

and we obtain (3.9). L[]

Proof of Theorem 1. Let {Y(x, y)} yej0,12 b€ @ GMF of parameter an arbitrary
admissible sequenddd, (.)) and let{X (¢)};c[0,17 be the corresponding GMBM. We will
denoteg an arbitrary fixed point ofo, 1]. As for everyr € [0, 1], X (t) = Y (¢, t), it follows
from Proposition 1, that with probability 1, for aij + & < [0, 1]

|Y (to + h, to) — Y (t0, to)| — C1|h|P
< |X(to+h) — X(t0)| < |Y (10 + h, to) — Y (t0, 10)| + C1|h|F .

Then asg > H(t) (see conditiorC in paragraph(A) of Section 1), (3.10), and
Lemma 9 imply thatwx (f0) = H (tp) almost surely. L]

(3.10)



598 Antoine Ayache

3.2 On the Difference of Two GMBM'’s with the Same Hélder Regularity

The aim of this subsection is to show the following result.

Theorem 2.

Let{X (*)}ief0.1) and{f((t)},e[o’lj be two GMBM'’s of parameters, respectivély,
(Dnen @nd(Hy ()nen- LEYR(1)}ie(0,1) be the difference dfX (1)}:cj0,1) and{X (1) }rejo.1)
i. e., the Gaussian process defined for eveag R(r) = X () — X (z). Suppose that for
somerg € [0, 1] and all integem > 0,

H, (to) — Ha(to)| < c27 (3.11)

wherec > 0ands$ > 0 are two constants (that generally dependsgn Then, the Holder
exponent oR at 7 satisfies almost surely,

ag(to) > H(tg) = ax(to) = ag(to) . (3.12)

Proof of Theorem 2. Let {Y (x, )} ,.,)ef0.12 @NA{Y (x, 1)} (1. ,)cf0.172 be the GMF's
that satisfyX (r) = Y (¢, 1) andX (r) = Y (z, t). We will denote{T (r)};¢[0.1] the Gaussian
process defined for evenyas,

T(t)=Y(t.10) — Y(t.10) . (3.13)
Let us first show that the Holder exponentloft 7o, satisfies, almost surely,
ar (1) > H(to) . (3.14)

Thanks to Remark 3 and Lemma 8, it is sufficient to show that for spme0 and
¢ > 0 the inequality

E(IT(+h) = TMR) < cxln? 0+, (3.15)

holds for everyr,r + h € [0, 1]. It follows from (1.7), (1.5) the Mean Value Theorem
and (3.11) that

2
B 2\ SiP(h€/2) [ 11 .
E (IT(t +h) =T @)l ) = 4/R T <Z (|$|Hn(to) |é|ﬁn(t0)> fn—l(é)) dé§ ,

n=0

(log&)? sint(h£/2) [
4 Y
<4f (}0 F— a®

€]

| 2sir?(he)2) (=27 4 2

< [ COEISTONE (S 2 fiae)) ae, (3.16)
8 £l PAGE

~ 2
Hy(t0) = Aa(t0)| ) .

where for every: € N, 6, € [min(H,(t0), Hy (t0)), max(H, (t0), H,(t0))].
Now, as
H (1) = liminf H,(10) = liminf H,(t0) ,
n—oo n—oo
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for all ¢ > 0 arbitrarily small, there is an integeg such that for any. > ng + 1,
6, > H(tg) —€/2. (3.17)

Thus, it follows from (3.16), (1.2), and (1.3) that

E(1T¢+m) = TOP) < calath) + L2h) (3.18)

where

| 2si?(hg/2) [~ 27" ’
iy = [ COESTEE (S 2 )| de (3.19)
R €] — Jg|fn
and
SIP(hE2) [ s 2 2

o) = | oo 22 foer®) ) dt . (3.20)

It is clear that

0 H—ns

2
2 N
Ii(h) < |h|? /R |£1(og])? (Z—fn_1@>> dt . (3.21)

0,
2 e[

Let us give an ad hoc upper boundlefs). We will suppose thak # 0 andn will
be the integer such that

27l g <27, (3.22)
We have
I2(h) < 2(J2(h) + La(h)) , (3.23)
where
ny 2
To(h) = |hf? f || 72 0142 <Z 2—"5ﬁ,_1<s)) dg (3.24)
R n=0
and
n2 2
o sif(hg/2) [ < »
Lo(h) = 27 1+1>5/RW ( Z+1f”_l(é)) d§ . (3.25)
n=njp

It follows fr?m (1.2) and (§.3) that supp1 C [—%, %, that for everyn € N,
suppfy C (&, 257 < |g| < 57} and that the functiong), are with values iro, 1].
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Therefore, using (3.24) and (3.22), we obtain that

n A
Ja(h) < (n1 4 12721 Z too-2n8 /R F2 1 (6))E | 2H 0126 g

n=0
47 /3 df
—2
<2+ D27 (A £2H (10)—1-2¢
2”+271/3
M os de
+ Z":l 2 /2”7[/3 %-ZH(tO)lZe) (326)

2n+2 2(1-H (to)+e€)
< ca(ng+ 1272 (Z::l:o 28 (Tn)

< c5(nq + 1)2~212211-Hi)—d+e)
< cg|h|2H0)+5-2¢)
As for every reak, Y- f,_1(£) = 1, it follows from (3.25) and (3.22) that

25 [ _SIP(hE/2)
La(h) < |h| P 3
and setting: = A& in this last integral, we obtain that

La(h) < cq|h|2H0+6=€) (3.27)

Thus if we taken = 25 — 4¢, then (3.15) follows from (3.18), (3.21), (3.23), (3.26),
and (3.27). At last, let us show that (3.14) and Proposition 1, imply that, almost surely

ag(to) > H(to) . (3.28)
Using (3.13), we obtain that
R(to+h) — R(to) = (Y(to +h.io+h)—Y(o+h, 1o+ h)) - (Y(to, 10) — Y (1o, to))

= (Y(to+h.to+h) — Y(to+ h. 10)) — (17(;0 +hoto+h) — Y (to+ h, to))

+ (Y 1o+ h, 10) = ¥ (10, 10)) — (P (t0 + . 10) = ¥ (10, 10)
= (Y(to+h,to+h) — Y(to+h, 10)) — (?(to +hto+h) —Y(to+h, to))

+ (T'(to+ h) — T (10)) ,

which entails that
[R(to +h) — R(t0)| < |T(to + h) — T (t0)|

+ sup |Y(x,t0+h) —Y(x,10)| + sup ’?(x,to+h)—17(x,to)’ )
x€[0,1] x€[0,1]

Then it follows from these inequalities and Proposition 1, that almost surely, for every
|h| small enough

|R(t0 + h) — R(t0)] < Cglh|” +|T (1o + h) — T (t0)] , (3.29)

whereCsg is a positive random variable. This last, inequality and (3.14) imply that almost
surely

ag(f0) > min(ar(to), B) > H(to) . U
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