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ABSTRACT. The Generalized Multifractional Brownian Motion (GMBM) is a continuous Gaus-
sian process{X(t)}t∈[0,1] that extends the classical Fractional Brownian Motion (FBM) and the
Multifractional Brownian Motion (MBM) [15, 4, 1, 2]. Its main interest is that, its Hölder regu-
larity can change widely from point to point. In this article we introduce the Generalized Multi-
fractional Field (GMF), a continuous Gaussian field{Y (x, y)}

(x,y)∈[0,1] 2 that satisfies for every
t ,X(t) = Y (t, t). Then, we give a wavelet decomposition ofY and using this nice decomposition,
we show thatY is β-Hölder iny, uniformly inx. Generally speaking this result seems to be quite
important for the study of the GMBM. In this article, it will allow us to determine, without any
restriction, its pointwise, almost sure, Hölder exponent and to prove that two GMBM’s with the
same Hölder regularity differ by a “smoother” process.

1. Introduction

The pointwise Hölder exponent of a function allows to measure the local variations
of its irregularity. This notion will be fundamental in this article, so let us recall it precisely.
A complex-valued function defined onR d , is said to satisfy a Hölder condition of exponent
α,m < α ≤ m+ 1,m ∈ N at a pointt0, if there are a polynomialPm of degree at mostm
and a constantc > 0 (that generally depend ont0), such that the inequality

|f (t)− Pm(t − t0)| ≤ c|t − t0|α , (1.1)
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holds when|t − t0| is small enough. The pointwise Hölder exponent off at t0 is defined
to be the supremum of theα that satisfy (1.1) and denotedα(t0). The functions 7→ α(s)

is called the pointwise Hölder exponent off .
K. Daoudi, J. Lévy Véhel and Y. Meyer have completely described the class of point-

wise Hölder exponents of continuous functions over a compact interval. More precisely,
they have shown that this class is that of lower-limits of continuous functions [5]. In [6]
S. Jaffard gives a wavelet proof of this fundamental result. However, the deterministic
continuous functions with the most general Hölder exponent, given in [5] and [6], seems to
be extremely peculiar. Therefore, the problem of constructing continuous stochastic pro-
cesses, with the most general Hölder exponent that extend the FBM has been raised in [7].
Such processes would allow to model random signals with very erratic Hölder exponents
and non-stationary increments, as for instance some signals that occur in finance or in tur-
bulence. A partial answer to this problem is supplied by the GMBM [1, 2]. This continuous
Gaussian process has been introduced by the author and J. Lévy Véhel. Roughly speaking
it is obtained “by substituting” to the Hurst parameter of the FBM a sequence of Hölder
functions. So, at least for this reason, the GMBM is an extension of the FBM and thus
seems to be a good candidate for modeling.

Let us now introduce some notations that will allow us to define precisely the GMBM.
These notations will be used extensively in the sequel (throughout this article, we will be
using non-random as well as random constants. To ease distinction, we use small letters
(e. g.,c) to denote non-random constants and capital letters (e. g.,C = C(ω)) to denote
random constants).

(A) The GMBM will mainly depend of one parameter a sequence(Hn(.))n∈N of
(β, c̃n)-Hölder functions with values in an interval[a, b] ⊂]0,1[, fixed once and
for all. Recall thatf is said to be a(β, c)-Hölder function if

|f (t1)− f (t2)| ≤ c|t1 − t2|β ,
whenever|t1 − t2| is small enough. The admissible sequences(Hn(.))n∈N will
satisfy the condition:

sup
t∈[0,1]

H(t) < β andc̃n = O
(
2n(a−η)

)
, (C)

where the fixed realη > 0 is arbitrarily small and for everyt ,H(t) = lim inf
n→∞ Hn(t).

(B) We will denote(f̂n(.)) a sequence of functions of the Schwartz classS(R), satis-
fying for everyξ

f̂−1(ξ) = f̂−1(−ξ) =
{

1 if |ξ | ≤ 2π
3

0 if |ξ | ≥ π
(1.2)

and for everyn ∈ N,

f̂n(ξ) = f̂−1

(
2−n−1ξ

)
− f̂−1

(
2−nξ

) = f̂0
(
2−nξ

)
. (1.3)

Recall thatS(R) is the space of all infinitely differentiable functionsu(t) which

satisfy for all integersm andn, lim|t |→∞ t
m

(
d

dt

)n
u(t) = 0. Let us mention that

to characterize the classical functional spaces one constructs Littlewood–Paley
Analyses via such functionŝfn.
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(C) The Generalized Multifractional Field (GMF) of parameter(Hn(.))n∈N, or more
simply the GMF, will be the mean-zero Gaussian fieldY = {Y (x, y)}(x,y)∈[0,1]2,
with continuous realizations and the covariance kernel

E
(
Y (x, y)Y

(
x′, y′)) =

∫
R

K(x, y, ξ)K (x′, y′, ξ) dξ , (1.4)

where for every realsx, y andξ we have set

K(x, y, ξ) =
∞∑
n=0

(
eixξ − 1

)
|ξ |Hn(y)+1/2

f̂n−1(ξ) . (1.5)

This definition makes sense. Indeed, for every,(s1, t1), . . . , (sp, tp) ∈ [0,1]2 the
matrix

(∫
R
K(si, ti , ξ)K(sj , tj , ξ) dξ

)
1≤i,j≤p is positively defined: for all complex num-

bersh1, . . . , hp, we have

∑
1≤i,j≤p

hihj

∫
R

K(si, ti , ξ)K(sj , tj , ξ) dξ =
∫

R

∣∣∣∣∣
p∑
k=1

hkK(sk, tk, ξ)

∣∣∣∣∣
2

dξ ≥ 0 .

The existence of a continuous version ofY follows from the Kolmogorov criterion,
since for every(x, y) and(x′, y′)

E
(∣∣Y (x, y)− Y

(
x′, y′)∣∣2) ≤ c

(∣∣x − x′∣∣2 + ∣∣y − y′∣∣2)a . (1.6)

The inequality (1.6) even implies that for anyε > 0, with probability 1, the trajectories
of Y are(a − ε)-Hölder functions (see Lemma 8). At last, it is useful to note thatY can be
represented as the Wiener integral

Y (x, y) =
∫

R

K(x, y, ξ) dW(ξ) . (1.7)

The Brownian measuredW , will be chosen so thatY be real-valued (see for exam-
ple [2]). The GMBM {X(t)}t∈[0,1] can be defined as the restriction of the field{Y (x, y)
}(x,y)∈[0,1]2 to the diagonal: for everyt ∈ [0,1]

X(t) = Y (t, t) . (1.8)

One the main interest of this Gaussian process is that its Hölder exponentαX(.) can be
prescribed via the sequence(Hn(.))n∈N and may differ widely from point to point. Indeed,
it is shown in [1] and [2] that under the conditions(i) and(ii) below, one has for everyt0,
almost surely (a.s. in short),

αX(t0) = lim inf
n→∞ Hn(t0) = H(t0) . (1.9)

(i) For eacht ∈ [0,1] and eachε > 0, there aren0 ∈ N andη > 0 (depending only
on t andε) such that the inequalityHn(t + h) ≥ H(t)− ε holds for every|h| ≤ η

andn ≥ n0.

(ii) For all t ,H(t) < β andc̃n = O(n) whenn goes to infinity.
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Remarks.

1) The definition of the GMBM is not canonical. It depends on the choice of the
function f̂−1(.) in the Littlewood–Paley construction.

2) The GMBM depends on the whole sequence(Hn(.)) and not only on its lower-
limit H(.). However, we will show that when two admissible sequences(Hn(.))

and(H̃n(.)) satisfy for allt andn, |Hn(t)− H̃n(t)| ≤ c(t)2−nδ(t), then the corre-
sponding GMBM’s differ by “a smoother” process (see Theorem 2).

3) The GMBM is an extension of the FBM. Mainly for the following reasons.

– It is defined “by substituting” to the Hurst parameter, in the harmonizable
representation of the FBM, a sequence of admissible Hölder functions.

– According to Proposition 3 in [1], under some technical condition on(Hn(.)),
the GMBM is Locally Asymptotically Self-Similar in the sense of Benassi,
Jaffard and Roux [4] i. e.,

lim
ρ→0+ law

{
X(t0 + ρu)−X(t0)

ρH(t0)

}
u

= law{BH(t0)(u)}u ,

where the process{BH(t0)(u)}u is an FBM of parameterH(t0). Roughly
speaking this property means that att0, there is an FBM of parameterH(t0)
tangent to the GMBM.

4) The GMBM is an extension of the MBM in the sense that when all theHn(.) are
equal to the same Hölder functionH(.), then the GMBM is an MBM of parameter
H(.). Recall that the MBM has been introduced independently in [15] and in [4].
It is defined by substituting to the Hurst parameter of the FBM a Hölder function.

5) One can construct sequences(Hn(.)) satisfying(i) and(ii) whose lower-limits
H(.) have sets of discontinuities with accumulation points (see [1] Proposition 2).
For instanceH(.) can be equal toa on the Cantor set and tob on its complementary.

6) The condition(i) implies that the functionH(.) is lower-semi-continuous, which
may be restrictive in some situations. In contrast with(i), the conditions(ii) and
(C) are not restrictive at all: any lower-limit of continuous functions on[0,1] can
be written as a lower-limit of a sequence of Lipschitz functions (or even a sequence
of polynomials) satisfying(ii) or satisfying(C) [5, 6]. Observe that(C) is weaker
than (ii). One of the main result of our article will be that the Relation (1.9)
remains true, only under the condition(C).

The goal of our article is to study some local properties of the GMBM (see Section 3).
However, we think that the main point of it, is to introduce{Y (x, y)}(x,y)∈[0,1]2 the GMF
and to show that it isβ-Hölder iny, uniformly in x i. e., it satisfies almost surely for every
x, y, y′ ∈ [0,1],

sup
x∈[0,1]

∣∣Y (x, y)− Y
(
x, y′)∣∣ ≤ C

∣∣y − y′∣∣β .
Indeed, this nice property ofY , turns out to be very useful in some problems on the GMBM,
as for instance the determination or the indentification of its Hölder exponent.

Our article is organized as follows. In Section 2, we introduce a “wavelet decompo-
sition” of the GMF and using this nice decomposition we show that the GMF isβ-Hölder
in y uniformly in x. Then, this important result, allows us, in Section 3 to determine the
pointwise (a.s.) Hölder exponent of the GMBM and to prove that two GMBM’s with the
same Hölder regularity differ by “a smoother” process.
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2. The GMF is β-Hölder in y Uniformly in x

In this section our objective will be to show that

Proposition 1.
LetY be the GMF, then we have almost surely,

sup
x∈[0,1]

∣∣Y (x, y)− Y
(
x, y′)∣∣ ≤ C1

∣∣y − y′∣∣β , (2.1)

whereC1 is a positive random variable of finite moment of arbitrary order.

To prove Proposition 1 we need to introduce “a wavelet decomposition” of the GMF.

2.1 “A Wavelet Decomposition” of the GMF

Let {ψj,k(x)}j,k∈Z be a Lemarié–Meyer orthonormal wavelet basis ofL2(R) [11, 13].
Recall that for everyj, k ∈ Z,

ψj,k(x) = 2j/2ψ
(
2j x − k

)
,

where the mother waveletψ belongs toS(R) and has a Fourier transform̂ψ with a support
in the domain{ξ, 2π/3 ≤ |ξ | ≤ 8π/3}. In this subsection our goal will be to show that.

Proposition 2.
The GMF can be expressed as the random series,

Y (x, y) =
∞∑

j=−∞

∞∑
k=−∞

sj,k(x, y)εj,k , (2.2)

where for every(x, y) ∈ [0,1] 2 and(j, k) ∈ Z
2

sj,k(x, y) =
∫

R

( ∞∑
n=0

(
eixξ − 1

)
|ξ |Hn(y)+1/2

f̂n−1(ξ)

)
ψ̂j,k(ξ) dξ , (2.3)

and {εj,k}j,k∈Z is a sequence ofN (0,1) independent Gaussian variables. This series is
almost surely convergent, for every(x, y) ∈ [0,1]2. The deterministic coefficientssj,k(., .)
will be called “the wavelet coefficients.”

To prove Proposition 2 we need the following results.

Remark 1. Let an arbitrary(x, y) ∈ [0,1]2, the wavelet coefficientssj,k(x, y) can be
expressed as:

• for everyj ∈ N andk ∈ Z,

sj,k(x, y)=
∑2

l=0
2−jHj+l (y)

(
gl−1

(
2j x + k,Hj+l (y)

)
−gl−1(k,Hj+l (y))

)
, (2.4)

• for everyk ∈ Z

s−1,k(x, y)=
∑1

l=0
2Hl(y)

(
gl−1

(
2j x + k,Hl(y)

)
− gl−1(k,Hl(y))

)
, (2.5)
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• for everyj ≥ 2 andk ∈ Z

s−j,k(x, y) = 2jH0(y)
(
g−1

(
2j x + k,H0(y)

)
− g−1(k,H0(y))

)
, (2.6)

where for alll ∈ {−1,0,1},X ∈ R andα ∈ [a, b] ⊂]0,1[, we have set

gl(X, α) =
∫

R

eiXξ

(
f̂l(ξ)ψ̂(ξ)

|ξ |α+1/2

)
dξ . (2.7)

Proof of Remark 1. We will only give the proof of (2.4) that of (2.5) and (2.6) are
quite similar. The intersection of the supports off̂n andψ̂j,k being a negligible set when
j /∈ {n− 1, n, n+ 1}, we get that

sj,k(x, y) =
2∑
l=0

2−j/2
∫

R

(eixξ − 1)

|ξ |Hj+l (y)+1/2
ek2

−j ξ ψ̂
(
2−j ξ

)
f̂j+l−1(ξ) dξ .

Then settingu = 2−j ξ in this last integral and using (1.3) we obtain (2.4).

Lemma 1.
Leta, b as in paragraph(A) of Section 1 and̃h the function defined for all(X, α) ∈

R × [a, b] as

h̃(X, α) =
∫

R

eiXξ
ĥ(ξ)

|ξ |α+1/2
dξ ,

whereĥ is a function ofS(R), with support in the domain1 = {ξ ∈ R, 0< d ≤ |ξ | ≤ D}.
Then for any integerL ≥ 0, there is a constantc2 > 0, depending only onL, a andb, such
that for all (X, α) ∈ R × [a, b],∣∣∣h̃(X, α)∣∣∣ ≤ c2(2 + |X|)−L . (2.8)

Proof of Lemma 1. We will suppose thatX ≥ 0, the proof is quite similar whenX < 0.

Let us setÛ (ξ) = e−i2ξ ĥ(ξ), Ĥ (ξ, α) = Û (ξ)

|ξ |α+1/2 if (ξ, α) ∈ 1 × [a, b] andĤ (ξ, α) = 0

else. It is clear that for anyα ∈ [a, b] the functionξ 7→ Ĥ (ξ, α) belongs toS(R). Let us
first prove that

c = sup

{∣∣∣∣∣
(
∂

∂ξ

)L
Ĥ (ξ, α)

∣∣∣∣∣ , (ξ, α) ∈ 1× [a, b]
}
< ∞ . (2.9)

Using the Leibniz Formula we obtain that for any(ξ, α) ∈ 1
(
∂

∂ξ

)L
Ĥ (ξ, α) =

L∑
k=0

(−1)kσ(ξ)eL,k(α)
Û (L−k)(ξ)
|ξ |α+1/2+k , (2.10)

whereσ(ξ) = 1 if ξ < 0 andσ(ξ) = 0 else,eL,0(α) = 1 andeL,k(α) =
(
L

k

)∏k
n=1(α +

n− 1/2) else. Then, as for every integers 0≤ k ≤ L and(ξ, α) ∈ 1× [a, b]

|eL,k(α)| ≤
(
L

k

) k∏
n=1

(b + n− 1/2)+ 1 ,
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and∣∣∣Û (L−k)(ξ)
∣∣∣

|ξ |α+1/2+k ≤
∥∥∥Û (L−k)

∥∥∥∞

(
1

|d|a+1/2+k + 1

|d|b+1/2+k + 1

|D|a+1/2+k + 1

|D|b+1/2+k

)

we get (2.9). Now let us prove (2.8), for any(X, α) ∈ R+ × [a, b], we have

h̃(X, α) =
∫

R

ei(2+|X|)ξ Ĥ (ξ, α) dξ .

After L integrations by parts we obtain that

∣∣∣h̃(X, α)∣∣∣ = (2 + |X|)−L
∣∣∣∣∣
∫

R

ei(2+|X|)ξ
(
∂

∂ξ

)L
Ĥ (ξ, α) dξ

∣∣∣∣∣ . (2.11)

At last the support of the functionξ 7→
(
∂
∂ξ

)L
Ĥ (ξ, α)being contained in the domain

1 for anyα ∈ [a, b], it follows from (2.9) and (2.11) that for each(X, α) ∈ R+ × [a, b],
∣∣∣h̃(X, α)∣∣∣ = (2 + |X|)−L

∫
1

∣∣∣∣∣
(
∂

∂ξ

)L
Ĥ (ξ, α)

∣∣∣∣∣ dξ
≤ 2(D − d)c(2 + |X|)−L .

Lemma 2.
Let a andb be as in paragraph(A) of Section 1. For every integerL > 0 there is a

constantc3 > 0 (depending only ona, b andL) such that the inequalities

|sj,k(x, y)| ≤ c32−ja
{(

1 +
∣∣∣2j x + k

∣∣∣)−L + (1 + |k|)−L
}

(2.12)

and

|s−j,k(x, y)| ≤ c32−j (1−b)(1 + |k|)−L , (2.13)

hold for all j ∈ N, k ∈ Z andx, y, y′ ∈ [0,1].
Proof of Lemma 2. First, let us prove (2.12). It follows from Remark 1 that it is
sufficient to show that there is a constantc > 0, such that for anyl ∈ {−1,0,1} and any
(X, α) ∈ R × [a, b],

|gl(X, α)| ≤ c(2 + |X|)−L .
This inequality will result from Lemma 1 by taking for eachl ∈ {−1,0,1}, ĥ(ξ) =

fl(ξ)ψ̂(ξ). Let us now prove (2.13). We will restrict to the case,j ≥ 2, the casej = 1 can
be treated similarly. Applying the Mean Value Theorem to the right member of (2.6), we
obtain that for some realc ∈]k, k + 1[ (depending onx, y, j , k), we have

|s−j,k(x, y)| = 2−j (1−H0(y))

∣∣∣∣
(
∂

∂X

)
g−1(c,H0(y))

∣∣∣∣
≤ 2−j (1−b)

∣∣∣∣
(
∂

∂X

)
g−1(c,H0(y))

∣∣∣∣ .
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Thus, it is sufficient to prove that there is a constantc′ > 0 such that for any(X, α) ∈
R × [a, b], ∣∣∣∣

(
∂

∂X

)
g−1(X, α)

∣∣∣∣ ≤ c′(2 + |X|)−L .

As
(
∂
∂X

)
g−1(X, α) = i

∫
R
eiXξ

(
ξ f̂−1(ξ)ψ̂(ξ)

|ξ |α+1/2

)
dξ , this last inequality will result from

Lemma 1 by takinĝh(ξ) = ξ f̂−1(ξ)ψ̂(ξ).

Now we will state two lemmas that allow to bound the sequence{εj,k}j,k∈Z. These
lemmas are similar to that given [14, 3].

Lemma 3.
Let {εn}n∈N be a Gaussian process such that for everyn, εn is anN (0,1) Gaussian

variable. Then, there is a positive random variableC of finite moment of arbitrary order
such that, almost surely, for everyn

|εn| ≤ C
√

log(2 + n) .

Proof of Lemma 3. We set for anyn ∈ N, ηn = log−1/2(2+n)εn andC = sup|ηn|. If
we show that the random variableC is finite (a.s.), then its moment of arbitrary order will
be finite as well (see [8, 10]) and the lemma will be proved. To prove thatC < ∞ (a.s.)
we will use the Borel–Cantelli Lemma. Let a fixed realα >

√
2, for any integern ≥ 1 we

have,

P(|ηn| ≥ α) =
√

2

π

∫ +∞

α
√

log(2+n)
e−x2/2 dx .

Integration by parts yields

∫ +∞

α
√

log(2+n)
x−1

(
xe−x2/2

)
dx

=
[
−x−1e−x2/2

]+∞
α
√

log(2+n) −
∫ +∞

α
√

log(2+n)
x2e−x2/2 dx

≤
(
α
√

log(2 + n)
)−1

e−α2 log(2+n)/2

≤ (2 + n)−α2/2 ,

so that
∑∞
n=0P(|ηn| > 1) < ∞. By the Borel–Cantelli Lemma,|ηn| > α occurs almost

surely only for finitely manyn. This implies thatC < ∞ (a.s.).

Lemma 4.
Let{εM}M∈Z d be a Gaussian process such that for everyM, εM is anN (0,1)Gaus-

sian variable. Then, there is a positive random variableC of finite moment of arbitrary
order, such that, almost surely, for eachM = (m1, . . . , md) ∈ Z

d ,

|εM | ≤ C

√√√√log

(
2 +

d∑
i=1

|mi |
)
. (2.14)
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Proof of Lemma 4. This lemma is essentially a consequence of Lemma 3. We will
suppose thatd ≥ 2 and proceed by induction ond. Recall that the mapφ:N × N −→ N

defined for all(p, q) as

φ(p, q) = (p + q)(p + q + 1)

2
+ p + 1 , (2.15)

is a bijection. It was introduced by Cantor and is often used to prove that the setN × N

is countable. Thus, the mapϕ: Z
d−2 × N × N → Z

d−2 × N defined for allM =
(m1, . . . , md−2, md−1, md) as

ϕ(M) = (m1, . . . , md−2, φ(md−1, md)) , (2.16)

is a bijection. Hence by replacingM by ϕ(M), one can view the sequence{εM, M ∈
Z
d−2 × N

2} as a sequence indexed byZ
d−2 × N and thus by using the induction hypoth-

esis, we obtain that, almost surely, for eachM = (m1, . . . , md−2, md−1, md) ∈ Z
d−2×N

2

|εM | ≤ C̃

√√√√log

(
2 +

d−2∑
i=2

|mi | + φ(md−1, md)

)
, (2.17)

where C̃ is a positive random variable of finite moment of arbitrary order. Then, as
φ(md−1, md) ≤ c(|md−1| + |md |)2, using (2.17), we obtain (2.14). Similarly, one can
view the sequences{εM, M ∈ Z

d−2 × (Z−) × N}, {εM, M ∈ Z
d−2 × N × (Z−)} and

{εM, M ∈ Z
d−2 × (Z−) × (Z−)} as sequences indexed byZ

d−2 × N and thus we can
prove that (2.14) is satisfied for anyM ∈ Z

d .

Proof of Proposition 2. It follows from Lemmas 2 and 4 that there is a random variable
C > 0 of finite moment of arbitrary order such that, almost surely for all(x, y) ∈ [0,1]2

|Y (x, y)|
≤ C

∑∞
j=0

∑∞
k=−∞ 2−ja

[(
1 + ∣∣2j x − k

∣∣)−2 + (1 + |k|)−2
]

log1/2(2 + j + |k|)
+ C

∑∞
j=1

∑∞
k=−∞ 2−j (1−b)(1 + |k|)−2 log1/2(2 + j + |k|) .

Let us show that the series
∑+∞
j=0

∑+∞
k=−∞ 2−ja log1/2(2+j+|k|)

(1+|2j x−k|)2 , is convergent for every

x ∈ [0,1]. One can similarly prove that the series
∑+∞
j=0

∑+∞
k=−∞ 2−ja log1/2(2+j+|k|)

(1+|k|)2
and

∑+∞
j=1

∑+∞
k=−∞ 2−j (1−b) log1/2(2+j+|k|)

(1+|k|)2 are convergent. Using the sub-additivity of the

functionx 7→ log1/2(2 + x) we obtain that for anyj ∈ N,

∑∞
k=−∞

log1/2(2+j+|k|)
(1+|2j x−k|)2 = ∑∞

k=−∞
log1/2(2+j+∣∣k+[2j x]∣∣)
(1+|2j x−[2j x]−k|)2

≤ ∑∞
k=−∞

log1/2(2+|k|)
(1+|2j x−[2j x]−k|)2 +∑∞

k=−∞
log1/2(2+j+2j

)
(1+|2j x−[2j x]−k|)2 ,

≤ 2e log1/2 (2 + j + 2j
)
,

wheree = 2 supX∈[0,1]
∑∞
k=−∞

log1/2(2+|k|)
(1+|X−k|)2 < ∞ and [2j x] denotes the integer part of

2j x. Thus,
∞∑
j=0

∞∑
k=−∞

2−ja log1/2(2 + j + |k|)(
1 + |2j x − k|)2 ≤ e

∞∑
j=0

2−ja log1/2
(
2 + j + 2j

)
< ∞ .
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To conclude this subsection, let us mention that following the same ideas as in [3],
one can show that the series (2.2) is almost surely uniformly convergent in(x, y) ∈ [0,1]2.
This result is clearly stronger than Proposition 2. We will not give its proof, since we do
not need it in the present article.

2.2 Proof of Proposition 1

The following estimations of the “wavelet coefficients”sj,k(x, y)will be very useful.

Lemma 5.
Leta, b, β andη be as in paragraph(A) of Section 1. For any integerL > 0, there

is a constantc4 > 0 (depending only ona, b andL) such that the inequalities

∣∣sj,k(x, y)−sj,k (x, y′)∣∣ ≤ c42−jη/2
{

1(
1 + ∣∣2j x − k

∣∣)L + 1

(1 + |k|)L
} ∣∣y − y′∣∣β (2.18)

and

∣∣s−j,k(x, y)− s−j,k
(
x, y′)∣∣ ≤ c4

(1 + j)2−j (1−b)

(1 + |k|)L
∣∣y − y′∣∣β (2.19)

hold for all x, y, y′ ∈ [0,1], j ∈ N andk ∈ Z.

Note that Lemma 5 is to a certain extent, inspired from Proposition 4.1, p. 79 in [4].
To prove this lemma we need the following result.

Lemma 6.
Leta, b be as in paragraph(A) of Section 1 and for any(X, α) ∈ R × [a, b], let

g(X, α) =
∫

R

eiXξ
ϕ̂(ξ)

|ξ |α+1/2
dξ ,

whereϕ̂ is a function ofS(R) with support in the domain{ξ ∈ R, 0 < d ≤ |ξ | ≤ D}.
Then, for any integerL > 0, there is a constantc5 > 0 such that the inequalities∣∣∣2−jαg

(
2j x + k, α

)
− 2−jα′

g
(
2j x + k, α′)∣∣∣ ≤ c5

(1 + j)2−ja(
1 + ∣∣2j x + k

∣∣)L
∣∣α − α′∣∣ (2.20)

and ∣∣∣2jα (g (2−j x + k, α
)− g(k, α)

)
− 2jα

′ (
g
(
2−j x + k, α′)− g

(
k, α′)) ∣∣∣ ≤ c5

(1+j)2−j (1−b)
(1+|k|)L

∣∣α − α′∣∣ (2.21)

hold for all j ∈ N, k ∈ Z, α, α′ ∈ [a, b] andx ∈ [0,1].
Proof of Lemma 6. First we will prove the inequality (2.20). We have for allj ∈ N,
k ∈ Z, α, α′ ∈ [a, b] andx ∈ [0,1].∣∣∣2−jαg

(
2j x + k, α

)
− 2−jα′

g
(
2j x + k, α′)∣∣∣ ≤ Sj,k

(
x, α, α′)+ Tj,k

(
x, α, α′) (2.22)

where

Sj,k
(
x, α, α′) = 2−jα′ ∣∣∣g (2j x + k, α

)
− g

(
2j x + k, α′)∣∣∣ (2.23)
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and

Tj,k
(
x, α, α′) =

∣∣∣2−jα − 2−jα′ ∣∣∣ ∣∣∣g (2j x + k, α
)∣∣∣ . (2.24)

Let us give an ad hoc upper bound ofSj,k(x, α, α′). Using the Mean Value Theorem
we obtain that

Sj,k
(
x, α, α′) = 2−jα′

∣∣∣∣
(
∂

∂α

)
g
(
2j x + k, γ

)∣∣∣∣ ∣∣α − α′∣∣ , (2.25)

for someγ ∈]a, b[ depending onj , k, x, α, α′. Moreover, since(
∂

∂α

)
g(X, α) = −

∫
R

eiXξ
(
ϕ̂(ξ) log |ξ |
|ξ |α+1/2

)
dξ .

Taking in Lemma 1̂h(ξ) = ϕ̂(ξ) log |ξ |, we obtain that for some constantc > 0 and
all (X, α) ∈ R × [a, b], ∣∣∣∣

(
∂

∂α

)
g(X, α)

∣∣∣∣ ≤ c(2 + |X|)−L .

Therefore, it follows from (2.25) that for anyx ∈ [0,1], j ∈ N, k ∈ Z andα, α′ ∈ [a, b],

Sj,k
(
x, α, α′) ≤ c

2−ja(
1 + ∣∣2j x + k

∣∣)L
∣∣α − α′∣∣ . (2.26)

Now let us give an ad hoc upper bound ofTj,k(x, α, α
′). Taking in Lemma 1,̂h(ξ) =

ϕ̂(ξ), we obtain that for some constantc′ > 0 and all(X, α) ∈ R × [a, b],
|g(X, α)| ≤ c′(1 + |X|)−L . (2.27)

Moreover, using the Mean Value Theorem we get that∣∣∣2−jα − 2−jα′ ∣∣∣ ≤ (log 2)j2−ja ∣∣α − α′∣∣ . (2.28)

Thus, it follows from (2.24), (2.27), and (2.28) that for anyx ∈ [0,1], j ∈ N, k ∈ Z

andα, α′ ∈ [a, b]

Tj,k
(
x, α, α′) ≤ c′′ j2−ja(

1 + ∣∣2j x + k
∣∣)L

∣∣α − α′∣∣ .
Now, let us prove the inequality (2.21). We have for allj ∈ N, k ∈ Z, α, α′ ∈ [a, b]

andx ∈ [0,1]∣∣∣2jα (g (2−j x + k, α
)− g(k, α)

)− 2jα
′ (
g
(
2−j x + k, α′)− g

(
k, α′))∣∣∣

≤ Kj,k
(
x, α, α′)+ Lj,k

(
x, α, α′) ,

where

Kj,k
(
x, α, α′) = 2jα

′ ∣∣(g (2−j x + k, α
)− g(k, α)

)
− (

g
(
2−j x + k, α′)− g

(
k, α′))∣∣ , (2.29)
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and

Lj,k
(
x, α, α′) =

∣∣∣2jα − 2jα
′ ∣∣∣ ∣∣∣g (2−j x + k, α

)
− g(k, α)

∣∣∣ . (2.30)

Let us give an ad hoc upper bound ofKj,k(x, α, α′). Using the Mean Value Theorem,
we obtain that

Kj,k
(
x, α, α′) = 2jα

′
∣∣∣∣
(
∂

∂α

)
g
(
2−j x + k, δ

)
−
(
∂

∂α

)
g(k, δ)

∣∣∣∣ ∣∣α − α′∣∣ , (2.31)

for someδ ∈]a, b[ depending onj , k, x, α, α′. Then using again the Mean Value Theorem,
we get that

Kj,k
(
x, α, α′) = 2−j (1−α′)

∣∣∣∣
(

∂2

∂X∂α

)
g(e, δ)

∣∣∣∣ ∣∣α − α′∣∣ |x| , (2.32)

for somee ∈]k, k + 1[ depending onj , k, x, α, α′. Moreover, since(
∂2

∂X∂α

)
g(X, α) = −i

∫
R

eiXξ
(
ξ ϕ̂(ξ) log |ξ |

|ξ |α+1/2

)
dξ ,

taking in Lemma 1,̂h(ξ) = ξ ϕ̂(ξ) log |ξ |, it follows that for some constantλ > 0 and all
(X, α) ∈ R × [a, b] ∣∣∣∣

(
∂2

∂X∂α

)
g(X, α)

∣∣∣∣ ≤ λ(2 + |X|)−L .

Therefore, asx ∈ [0,1] ande ∈]k, k + 1[, (2.32) implies that for allj ∈ N, k ∈ Z,
x ∈ [0,1] andα, α′ ∈ [a, b],

Kj,k
(
x, α, α′) ≤ λ

2−j (1−b)

(1 + |k|)L
∣∣α − α′∣∣ .

Now, let us give an ad hoc upper bound ofLj,k(x, α, α′). It follows from the Mean
Value Theorem that ∣∣∣2jα − 2jα

′ ∣∣∣ ≤ (log 2)j2jb
∣∣α − α′∣∣ (2.33)

and ∣∣∣g (2−j x + k, α
)

− g(k, α)

∣∣∣ =
∣∣∣∣
(
∂

∂X

)
g
(
e′, α

)∣∣∣∣ ∣∣∣2−j x
∣∣∣ , (2.34)

for somee′ ∈]k, k + 1[ depending onj , k, x, α, α′. Moreover, since(
∂

∂X

)
g(X, α) = i

∫
R

eiXξ
(
ξ ϕ̂(ξ)

|ξ |α+1/2

)
dξ ,

taking in Lemma 1̂h(ξ) = ξ ϕ̂(ξ), we obtain that for some constantµ > 0 and all(X, α) ∈
R × [a, b], ∣∣∣∣

(
∂

∂X

)
g(X, α)

∣∣∣∣ ≤ µ(2 + |X|)−L .
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Therefore, asx ∈ [0,1] ande′ ∈]k, k + 1[, (2.34) implies that

∣∣∣g (2−j x + k, α
)

− g(k, α)

∣∣∣ ≤ µ
2−j

(1 + |k|)L
∣∣α − α′∣∣ . (2.35)

At last it follows from (2.30), (2.33), and (2.35), that for allj ∈ N, k ∈ Z, x ∈ [0,1]
andα, α′ ∈ [a, b],

Lj,k
(
x, α, α′) ≤ µ

2−j (1−b)

(1 + |k|)L
∣∣α − α′∣∣ .

Proof of Lemma 5. Let us first prove the inequality (2.18). It follows from (2.4) that
for all j ∈ N, k ∈ Z andx, y, y′ ∈ [0,1],∣∣sj,k(x, y)− sj,k

(
x, y′)∣∣ ≤ Tj,k

(
x, y, y′)+ Tj,k

(
0, y, y′) ,

where

Tj,k
(
x, y, y′) = ∑2

l=0

∣∣2−jHj+l (y)gl−1
(
2j x + k,Hj+l (y)

)
−2−jHj+l (y′)gl−1

(
2j x + k,Hj+l

(
y′))∣∣ .

Let us give an ad hoc upper bound ofTj,k(x, y, y′). Taking in (2.20), for each
l ∈ {0,1,2}, g = gl−1, α = Hj+l (y) andα′ = Hj+l (y′), we obtain that

Tj,k
(
x, y, y′) ≤ 2c5

∑2

l=0

(1 + j)2−ja(
1 + ∣∣2j x + k

∣∣)L
∣∣Hj+l (y)−Hj+l

(
y′)∣∣ . (2.36)

Then, since the sequence(Hn(.)) satisfies the condition(C) (see paragraph(A) of
Section 1), it follows from (2.36) that

Tj,k
(
x, y, y′) ≤ 2c5

∑2

l=0

(1 + j)2−jac̃j+l(
1 + ∣∣2j x + k

∣∣)L
∣∣y − y′∣∣β

≤ c
∑2

l=0

(1 + j)2−ja2(j+l)(a−η)(
1 + ∣∣2j x + k

∣∣)L |y − y′|β

≤ c4
2−jη/2(

1 + ∣∣2j x + k
∣∣)L

∣∣y − y′∣∣β .
Now, let us prove the inequality (2.19). We will only deal with the casej ≥ 2, the

casej = 1, can be studied similarly. It follows from (2.6) that for allj ≥ 2, k ∈ Z and
x, y, y′ ∈ [0,1]
∣∣s−j,k(x, y)− s−j,k

(
x, y′)∣∣ ≤

∣∣∣2jH0(y)
(
g−1

(
2−j x + k,H0(y)

)− g−1(k,H0(y)
)

− 2jH0(y
′) (g−1

(
2−j x + k,H0

(
y′))− g−1

(
k,H0

(
y′)) ∣∣∣ .

Taking in (2.21)g = g−1, α = H0(y) andα′ = H0(y
′), it follows that,

∣∣s−j,k(x, y)− s−j,k
(
x, y′)∣∣ ≤ c5

(1 + j)2−j (1−b)

(1 + |k|)L
∣∣H0(y)−H0

(
y′)∣∣ . (2.37)



594 Antoine Ayache

Then sinceH0(.) is a(β, c̃0)-Hölder function, (2.37) implies that

∣∣s−j,k(x, y)− s−j,k
(
x, y′)∣∣ ≤ c4

(1 + j)2−j (1−b)

(1 + |k|)L
∣∣y − y′∣∣β . (2.38)

As a conclusion, let us give the proof Proposition 1, the main result of this section.

Proof of Proposition 1. Using (2.2), Lemma 4, and Lemma 5 withL = 2, there is a
positive random variable of finite moment of arbitrary order, such that, almost surely, for
anyx, y, y′ ∈ [0,1]

∣∣Y (x, y)− Y
(
x, y′)∣∣ ≤ C(R(x)+ R(0)+ B)

∣∣y − y′∣∣β , (2.39)

where

R(x) =
+∞∑
j=0

+∞∑
k=−∞

2−jη/2 (1 +
∣∣∣2j x − k

∣∣∣)−2
log1/2(2 + j + |k|)

and

B = 4
∞∑
j=0

∞∑
k=−∞

(1 + j)2−j (1−b)(1 + |k|)−2 log1/2
(
2 + 2j

)
log1/2(2 + |k|) .

Clearly, this last series is convergent. Moreover, following the same lines as in the
proof of Proposition 2, one can show that there is a constante > 0, such that for every
x ∈ [0,1],

R(x) ≤ e

+∞∑
j=0

2−jη/2 log1/2
(
2 + j + 2j

)
< ∞ ,

which completes the Proof of Proposition 1.

3. Some Local Properties of the GMBM

3.1 Pointwise Hölder Regularity of the GMBM

The aim of this subsection is to show the following result.

Theorem 1.
LetX = {X(t)}t∈[0,1] be a GMBM of parameter an arbitrary admissible sequence

(Hn(.)). Then at anyt0, the pointwise Hölder exponent ofX satisfies almost surely,

αX(t0) = lim inf
n→∞ Hn(t0) . (3.1)

To prove Theorem 1, we need the following results. First, we will give a lemma that
allows to bound above, the pointwise, almost sure, Hölder exponent of an arbitrary second
order stochastic process. For the shake of generality, we have not restricted to Gaussian
processes.
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Lemma 7.
Let {S(t)}t∈[0,1] be a real-valued, second order and mean-zero stochastic process

satisfying

lim
n→∞E

( |S(s + hn)− S(s)|2
|hn|2µ

)
= +∞ , (3.2)

wheres is some point of[0,1], µ a fixed positive exponent and(hn) a sequence of non-
vanishing reals that converges to0. For every integern, we setZn = 1 + |S(s+hn)−S(s)||hn|µ ,

σ 2
n = E(Z2

n) andYn = Zn
σn

. Then a subsequence of(Yn) converges in distribution to a
non-negative, square integrable, random variableY . Moreover, whenP(Y = 0) = 0, the
Hölder exponent ofS at s, satisfies almost surely,

αS(s) ≤ µ . (3.3)

Proof of Lemma 7. The unit ball ofL2(�) being weakly compact, one can extract from
the sequence(Yn) a subsequence(Ynk ) converging in distribution to a non-negative, square
integrable random variableY . Let a realη > 0 and an integerm be arbitrary and fixed.
Since lim

k→∞ σnk = +∞, we have fork big enough 1
σnk η

≤ 1
m

, which entails that,

1 ≥ P

(
1

Znk
< η

)
= P

(
Znk >

1

η

)

= P

(
Ynk >

1

σnkη

)
≥ P

(
Ynk >

1

m

)

and consequently that

1 ≥ lim sup
k−→∞

P

(
1

Znk
< η

)
≥ lim inf

k−→∞ P

(
1

Znk
< η

)
≥ P

(
Y >

1

m

)
.

By lettingm goes to infinity, sinceP(Y > 0) = 1 we obtain lim
k→∞P

(
1

Znk
< η

)
= 1.

This means that
{

1
Znk

}
k

converges in probability to 0 and therefore a subsequence of it

converges almost surely to 0. This clearly implies thatαS(s) ≤ µ (a.s.).

Remark 2. When a real-valued and mean-zero Gaussian processS satisfies (3.2), the
inequalityαS(s) ≤ µ holds almost surely.

Proof of Remark 2. We take the same notations as in Lemma 7. To prove thatP(Y =
0) = 0, let us setf (x) = 1√

2π
e−x2/2 and for every integern, τ2

n = E
( |S(s+hn)−S(s)|2

|hn|2µ
)
.

Observe that lim
n→+∞ σn/τn = 1. We have for any realη > 1 and integern big enough

P(Yn > η) = P

( |S(s + hn)− S(s)|
|hn|µ > σnη − 1

)

= 2

τn

∫ ∞

σnη−1
f

(
x

τn

)
dx

= 2
∫ ∞
σnη−1
τn

f (x) dx ,
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and this last equality implies that

P(Y > η) = lim
k→∞P(Ynk > η) = 2

∫ +∞

η

f (x) dx .

Therefore, we get thatP(Y = 0) = 0.

To bound below the pointwise Hölder exponent of a continuous Gaussian field, we
will use Remark 3. This remark is a straightforward consequence of the following lemma.

Lemma 8.
LetG = {G(u)}u∈[0,T ] d be a mean-zero real-valued Gaussian field such that for all

u, u′ ∈ [0, T ] d

E
(∣∣G(u)−G

(
u′)∣∣2) ≤ c

∣∣u− u′∣∣2ν , (3.4)

wherec > 0 andν ∈]0,1[ are two constants. Then, the trajectories of some version ofG,
are, with probability1, (ν − ε)-Hölder functions, withε > 0 arbitrarily small.

Remark 3. Let G = {G(u)}u∈[0,T ] d be a mean-zero real-valued continuous Gaussian
field that satisfies (3.4) andαG its Hölder exponent. Then, at any points, one has, almost
surely,

αG(s) ≥ ν . (3.5)

Proof of Lemma 8. We will only give the main lines of this proof (see [2] for the
details). Letu, u′ ∈ [0, T ] d be arbitrary, as the random variableG(u)−G(u′) is Gaussian,
it follows that

E
(∣∣G(u)−G

(
u′)∣∣d) = c′

(
E
∣∣G(u)−G

(
u′)∣∣2)d/2

where the constantc′ > 0, only depends ond. Then using (3.4) and a strong version of
the Kolmogorov criterion (see for example Chapter 2 of [9], or [2]) we obtain Lemma 8.

Lemma 9.
Let us fix an arbitraryt0 ∈ [0,1] and let{Y (x, y)}(x,y)∈[0,1]2 be a GMF of parameter

an arbitrary admissible sequence(Hn(.)). Then the Hölder exponent of the Gaussian
process{Y (s, t0)}s∈[0,1], at t0, is almost surely equal toH(t0) = lim inf

n→∞ Hn(t0).

Proof of Lemma 9. Step 1:Let us show that the Hölder exponent att0 of the process
{Y (s, t0)}s∈[0,1] is (a.s.) bounded above byH(t0) + ε, with ε > 0 arbitrarily small. It
follows from Remark 2 that it sufficient to prove that

lim
n→∞E

(∣∣Y (t0 + 2−n, t0
)− Y (t0, t0)

∣∣2
2−2n(H(t0)+ε)

)
= +∞ . (3.6)

SinceH(t0) = lim inf
n→∞ Hn(t0), one can extract from the sequence(Hn(t0))n∈N a

subsequence(Hnl (t0))l∈N satisfying for everyl,

Hnl (t0) ≤ H(t0)+ ε/2 . (3.7)
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For simplicity, we setn = nl in the sequel. The function̂fn being equal to 1, on

[2nπ, 2n+2π
3 ], it follows from (1.7) and (3.7) that

E
(∣∣Y (t0 + 2−n, t0

)− Y (t0, t0)
∣∣2) ≥

∫ 2n+2π/3

2nπ

∣∣∣ei2−nξ − 1
∣∣∣2

|ξ |2Hn(t0)+1
dξ

≥
∫ 2n+2π/3

2nπ

∣∣∣ei2−nξ − 1
∣∣∣2

|ξ |2H(t0)+1+ε dξ

= 2−2n(H(t0)+ε/2)
∫ 4π/3

π

∣∣eiu − 1
∣∣2

|u|2H(t0)+1+ε du

and we obtain (3.6).
Step 2:Let us show that the Hölder exponent att0 of the process{Y (s, t0)}s∈[0,1] is

(a.s.) bounded below byH(t0)− ε, with ε > 0 arbitrarily small. It follows from Lemma 8
that it is sufficient to prove that for everys, s + h ∈ [0,1], one has

E
(
|Y (s + h, t0)− Y (s, t0)|2

)
≤ c|h|2H(t0)−ε . (3.8)

SinceH(t0) = lim inf
n→∞ Hn(t0), there is an integerN , such that for everyn ≥ N + 1,

Hn(t0) ≥ H(t0)− ε/2 . (3.9)

Then it follows from (1.7), (3.9), (1.2), and (1.3) that

E
(
|Y (s + h, t0)− Y (s, t0)|2

)
=

∫
R

∣∣∣eihξ − 1
∣∣∣2
(∑+∞

n=0

f̂n−1(ξ)

|ξ |Hn(t0)+1/2

)2

dξ .

≤ 2
∫

R

∣∣∣eihξ − 1
∣∣∣2
(∑N

n=0

f̂n−1(ξ)

|ξ |Hn(t0)+1/2

)2

dξ

+ 2
∫

R

∣∣eihξ − 1
∣∣2

|ξ |2H(t0)+1−ε
(∑+∞

n=N+1
f̂n−1(ξ)

)2
dξ

≤ 2|h|2
∫

R

(∑N

n=0
|ξ |2 f̂n−1(ξ)

|ξ |Hn(t0)+1/2

)2

dξ

+ 2|h|2(H(t0)−ε/2)
∫

R

∣∣eiu − 1
∣∣2

|u|2H(t0)+1−ε du ,

and we obtain (3.9).

Proof of Theorem 1. Let {Y (x, y)}(x,y)∈[0,1]2 be a GMF of parameter an arbitrary
admissible sequence(Hn(.)) and let{X(t)}t∈[0,1] be the corresponding GMBM. We will
denotet0 an arbitrary fixed point of[0,1]. As for everyt ∈ [0,1],X(t) = Y (t, t), it follows
from Proposition 1, that with probability 1, for allt0 + h ∈ [0,1]

|Y (t0 + h, t0)− Y (t0, t0)| − C1|h|β
≤ |X(t0 + h)−X(t0)| ≤ |Y (t0 + h, t0)− Y (t0, t0)| + C1|h|β .

(3.10)

Then asβ > H(t0) (see conditionC in paragraph(A) of Section 1), (3.10), and
Lemma 9 imply that,αX(t0) = H(t0) almost surely.
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3.2 On the Difference of Two GMBM’s with the Same Hölder Regularity

The aim of this subsection is to show the following result.

Theorem 2.
Let {X(t)}t∈[0,1] and {X̃(t)}t∈[0,1] be two GMBM’s of parameters, respectively(Hn

(.))n∈N and(H̃n(.))n∈N. Let{R(t)}t∈[0,1] be the difference of{X(t)}t∈[0,1] and{X̃(t)}t∈[0,1]
i. e., the Gaussian process defined for everyt asR(t) = X(t) − X̃(t). Suppose that for
somet0 ∈ [0,1] and all integern ≥ 0,∣∣∣Hn(t0)− H̃n(t0)

∣∣∣ ≤ c2−nδ , (3.11)

wherec > 0 andδ > 0 are two constants (that generally depend ont0). Then, the Hölder
exponent ofR at t0 satisfies almost surely,

αR(t0) > H(t0) = αX(t0) = α
X̃
(t0) . (3.12)

Proof of Theorem 2. Let {Y (x, y)}(x,y)∈[0,1]2 and{Ỹ (x, y)}(x,y)∈[0,1]2 be the GMF’s

that satisfyX(t) = Y (t, t) andX̃(t) = Ỹ (t, t). We will denote{T (t)}t∈[0,1] the Gaussian
process defined for everyt as,

T (t) = Y (t, t0)− Ỹ (t, t0) . (3.13)

Let us first show that the Hölder exponent ofT at t0, satisfies, almost surely,

αT (t0) > H(t0) . (3.14)

Thanks to Remark 3 and Lemma 8, it is sufficient to show that for someη > 0 and
c > 0 the inequality

E
(
|T (t + h)− T (t)|2

)
≤ c1|h|2H(t0)+η , (3.15)

holds for everyt, t + h ∈ [0,1]. It follows from (1.7), (1.5) the Mean Value Theorem
and (3.11) that

E
(
|T (t + h)− T (t)|2

)
= 4

∫
R

sin2(hξ/2)

|ξ |

( ∞∑
n=0

(
1

|ξ |Hn(t0) − 1

|ξ |H̃n(t0)

)
f̂n−1(ξ)

)2

dξ ,

≤ 4
∫

R

(log |ξ |)2 sin2(hξ/2)

|ξ |


 ∞∑
n=0

∣∣∣Hn(t0)− H̃n(t0)

∣∣∣
|ξ |θn f̂n−1(ξ)




2

dξ

≤ c2

∫
R

(log |ξ |)2 sin2(hξ/2)

|ξ |

( ∞∑
n=0

2−nδ

|ξ |θn f̂n−1(ξ)

)2

dξ , (3.16)

where for everyn ∈ N, θn ∈ [min(Hn(t0), H̃n(t0)),max(Hn(t0), H̃n(t0))].
Now, as

H(t0) = lim inf
n→∞ Hn(t0) = lim inf

n→∞ H̃n(t0) ,
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for all ε > 0 arbitrarily small, there is an integern0 such that for anyn ≥ n0 + 1,

θn ≥ H(t0)− ε/2 . (3.17)

Thus, it follows from (3.16), (1.2), and (1.3) that

E
(
|T (t + h)− T (t)|2

)
≤ c3(I1(h)+ I2(h)) , (3.18)

where

I1(h) =
∫

R

(log |ξ |)2 sin2(hξ/2)

|ξ |

(
n0∑
n=0

2−nδ

|ξ |θn f̂n−1(ξ)

)2

dξ , (3.19)

and

I2(h) =
∫

R

sin2(hξ/2)

|ξ |2H(t0)+1−2ε

( ∞∑
n=0

2−nδf̂n−1(ξ)

)2

dξ . (3.20)

It is clear that

I1(h) ≤ |h|2
∫

R

|ξ |(log |ξ |)2
(
n0∑
n=0

2−nδ

|ξ |θn f̂n−1(ξ)

)2

dξ . (3.21)

Let us give an ad hoc upper bound ofI2(h). We will suppose thath 6= 0 andn1 will
be the integer such that

2−n1−1 < |h| ≤ 2−n1 . (3.22)

We have

I2(h) ≤ 2(J2(h)+ L2(h)) , (3.23)

where

J2(h) = |h|2
∫

R

|ξ |−2H(t0)+1+2ε

(
n1∑
n=0

2−nδf̂n−1(ξ)

)2

dξ (3.24)

and

L2(h) = 2−2(n1+1)δ
∫

R

sin2(hξ/2)

|ξ |2H(t0)+1−2ε


 ∞∑
n=n1+1

f̂n−1(ξ)




2

dξ . (3.25)

It follows from (1.2) and (1.3) that supp̂f−1 ⊂ [−4π
3 ,

4π
3 ], that for everyn ∈ N,

suppf̂n ⊂ {ξ, 2n+1π
3 ≤ |ξ | ≤ 2n+3π

3 } and that the functionŝfn are with values in[0,1].



600 Antoine Ayache

Therefore, using (3.24) and (3.22), we obtain that

J2(h) ≤ (n1 + 1)2−2n1
∑n1

n=0
2−2nδ

∫
R

f̂ 2
n−1(ξ)|ξ |−2H(t0)+1+2ε dξ

≤ 2(n1 + 1)2−2n1

(∫ 4π/3

0

dξ

ξ2H(t0)−1−2ε

+
∑n1

n=1
2−2nδ

∫ 2n+2π/3

2nπ/3

dξ

ξ2H(t0)−1−2ε

)

≤ c4(n1 + 1)2−2n1

(∑n1

n=0
2−2nδ

(
2n+2π

3

)2(1−H(t0)+ε))

≤ c5(n1 + 1)2−2n122n1(1−H(t0)−δ+ε)

≤ c6|h|2(H(t0)+δ−2ε) .

(3.26)

As for every realξ ,
∑∞
n=0 f̂n−1(ξ) = 1, it follows from (3.25) and (3.22) that

L2(h) ≤ |h|2δ
∫

R

sin2(hξ/2)

|ξ |2H(t0)+1−2ε
dξ

and settingu = hξ in this last integral, we obtain that

L2(h) ≤ c7|h|2(H(t0)+δ−ε) . (3.27)

Thus if we takeη = 2δ − 4ε, then (3.15) follows from (3.18), (3.21), (3.23), (3.26),
and (3.27). At last, let us show that (3.14) and Proposition 1, imply that, almost surely

αR(t0) > H(t0) . (3.28)

Using (3.13), we obtain that

R(t0 + h)− R(t0) =
(
Y (t0 + h, t0 + h)− Ỹ (t0 + h, t0 + h)

)
−
(
Y (t0, t0)− Ỹ (t0, t0)

)
= (Y (t0 + h, t0 + h)− Y (t0 + h, t0))−

(
Ỹ (t0 + h, t0 + h)− Ỹ (t0 + h, t0)

)
+ (Y (t0 + h, t0)− Y (t0, t0))−

(
Ỹ (t0 + h, t0)− Ỹ (t0, t0)

)
= (Y (t0 + h, t0 + h)− Y (t0 + h, t0))−

(
Ỹ (t0 + h, t0 + h)− Ỹ (t0 + h, t0)

)
+ (T (t0 + h)− T (t0)) ,

which entails that

|R(t0 + h)− R(t0)| ≤ |T (t0 + h)− T (t0)|
+ sup
x∈[0,1]

|Y (x, t0 + h)− Y (x, t0)| + sup
x∈[0,1]

∣∣∣Ỹ (x, t0 + h)− Ỹ (x, t0)

∣∣∣ .
Then it follows from these inequalities and Proposition 1, that almost surely, for every

|h| small enough

|R(t0 + h)− R(t0)| ≤ C8|h|β + |T (t0 + h)− T (t0)| , (3.29)

whereC8 is a positive random variable. This last, inequality and (3.14) imply that almost
surely

αR(t0) ≥ min(αT (t0), β) > H(t0) .
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