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ABSTRACT. The aim of this article is to prove the two-dimensional case of Wolfgang Schmidt’s
conjecture for normality with respect to matrices. Specifically we show that if S and T are two
by two almost integer ergodic matrices, then normality with respect to S implies normality with
respect to T if and only if Sp = T q for some positive integers p and q.

1. Introduction

We prove here Wolfgang Schmidt’s Conjecture, [10], concerning normality with
respect to matrices, for the case when the matrices are 2 × 2. Before stating the conjecture,
we recall the one-dimensional situation. A real number is normal with respect to a given
(integer) base r if each digit block in the decimal expansion in base r occurs with the
expected frequency; that is, a digit block of length n recurs with density r−n. This can be
expressed in terms of uniform distribution: x is normal in base r if and only if the sequence
of fractional parts ({rnx}) is uniformly distributed in the unit interval. Borel [2] showed
that almost all real numbers are normal in every base.

In a similar vein, we define, following Schmidt, normality for members of Rn with
respect to an n × n matrix S: x ∈ Rn is S-normal if the sequence (Snx) when considered
modulo 1 in each coordinate is uniformly distributed over the n-torus Tn. It is relatively
easy to see that, at this level of generality, Borel’s theorem is no longer valid: there are
many non-zero (and even non-singular) matrices for which no element of R2 is normal.
We take the opportunity to introduce the notation B(S) to denote the set of members of Rn

which are S-normal. When almost every member of R2 is normal for a matrix S (that is,
when the complement of B(S) has measure zero), we again follow Schmidt in calling the
matrix ergodic.

We are interested in describing when B(S) and B(T ) coincide for two ergodic matrices
S and T . It is relatively straightforward (cf. [10]) to see that, if Sp = T q , for integers p
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and q then B(S) = B(T ). Schmidt’s conjecture concerns the converse of this result. He
restricts attention to rational non-singular matrices all of whose eigenvalues are algebraic
integers which are not roots of unity. These are automatically ergodic (cf. [10]). Indeed
among rational matrices with algebraic integer eigenvalues these are exactly the ergodic
matrices. We follow Schmidt in calling them almost integer ergodic. Schmidt’s conjecture
can now be stated precisely.

Conjecture.
Let S and T be almost integer ergodic n×n matrices. Then, either there are positive

integers p, q such that Sp = T q , or there are uncountably many points in Rn which are
normal in base S but not normal in base T (and conversely).

Schmidt, [9], established his conjecture in one dimension and, in [10], he proved it
in all dimensions under the additional hypotheses that every eigenvalue of T has modulus
strictly greater than one and that the two matrices commute. Brown and Moran [3] removed
the hypothesis on the size of the eigenvalues, and so obtained the result for any pair of
commuting almost integer matrices. Anne Bertrand [1] has proved Schmidt’s conjecture for
some special cases of non-commuting pairs of matrices. She is able to prove the conjecture
if one of the matrices has an eigenvalue which is a PV-number and the other matrix has
a dominant real eigenvalue and no eigenvalue of this second matrix is a rational power of
this PV-number. In this article we describe a method which proves Schmidt’s conjecture in
full generality for the case of 2 by 2 matrices. Our method seems to generalize to higher
dimensions with some considerable complications. We hope to give a full proof of the
conjecture by again applying suitable Riesz products in a subsequent article.

Theorem.
Let S and T be almost integer ergodic 2 × 2 matrices. Either there are positive

integers p, q such that Sp = T q or there are uncountably many points in Rn which are
normal in base S but not normal in base T (and conversely).

The innovation which allowed Brown and Moran to remove the eigenvalue restriction
was the use of Riesz product measures rather than the Cantor-like measures used by Schmidt.
The results of this article also use the Riesz product technique. In addition, we introduce
here some extensions which we have utilized in tackling similar problems for non-integer
bases [4, 7]. We should add that invoking the results of [5] (and in some special cases [1])
would allow simplifications in a few places. We have refrained from doing that, however,
since that articles appeals to Baker’s theorem on linear forms in logarithms in an essential
way. The exposition here is entirely elementary.

2. Preliminaries

In this section, we describe some of the basic machinery used in the proof. First we
give some facts about almost integer ergodic matrices. Let S be such a 2 × 2 matrix. Then,
by a result of Schmidt [10], for some positive integer d, dSr is an integer matrix for all
positive integers r . We shall call d the denominator of S. Thus, if we choose t to be of the
form d.w where w is in Z2, then the sequence tSr is in Z2. Note that we think of matrices
as operating on R2 and on the quotient T2 by multiplication on the left. These matrices
operate on the dual groups, and in particular Z2 by multiplication on the right.
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We shall say that S is dissociate if, for each s �= 0 in the dual group T̂2 = Z2 of T2,
the sequence sSn is a dissociate sequence in the sense of Hewitt and Zuckerman (see [5]);
that is,

N∑
r=1

εrsSr �= 0 (2.1)

for all choices of εr ∈ {0, ±1, ±2}, not all equal to 0, and all N . Fix a member t of Zn.
The effect of dissociateness of tT n is that all expressions of the form

r =
N∑

j=1

εj tSj (2.2)

where εj = ±1 or 0 are distinct members of R2.
At this point, we note the following lemma from [3].

Lemma 1.
Let T be an almost integer ergodic matrix. Then there is some positive integer k such

that (tT rk) is dissociate for all t �= 0 in Qn.

In Section 3 we shall define a probability measure to discriminate between S and T

normality, for almost integer ergodic matrices S and T . Specifically, we define µ such that
almost every x ∈ T2 is normal in base S and non-normal in base T . The non-normality will
be forced by our construction. We need to be able to say when x is normal with respect to
S for almost all x with respect to the measure µ. The next result of this section is the key
ingredient in this. It is effectively the lemma of Davenport, Erdős and LeVeque (cf. [8]).

Lemma 2.
Let µ be a probability measure on T2. If, for all s �= 0 in Z2,

∞∑
N=1

1

N3

N∑
k=1

k∑
j=1

∣∣∣µ̂ (
s
(
Sk − Sj

))∣∣∣ < ∞ , (2.3)

then almost every (with respect to ρ) x ∈ R2 is normal in base S.

We will require later the following technical number theoretic lemma.

Lemma 3.
Let α be a positive irrational number, and let (pk/qk) (gcd(pk, qx) = 1) be its

sequence of partial quotients. Write

A =
⋃
k

(qk, 2qk) ∩ (qk, qk+1) . (2.4)

Fix positive constants K and C. Then for R sufficiently large, there are fewer than 2R/2

pairs (u, v) of integers such that


α = u
v

+ δ ,

u ≤ r ≤ K2R , r ∈ A ,

|δ| < e−cR2
.

(2.5)
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Proof. Assume, on the contrary, that there are infinitely many such integers R, and at
least 2R/2 pairs (u, v) satisfying (2.5). It follows that

|δ| ≤ e−C′(log r)2
<

1

r3
<

1

2v2
(2.6)

for sufficiently large u. By Lagrange’s Theorem u/v must be a convergent of α. Conse-
quently, there is some integer d so that u = dpk and v = dqk where

pk

qk

= [a0; a1, . . . , ak] . (2.7)

Moreover,

1

r3
>

∣∣∣∣α − pk

qk

∣∣∣∣ >
1

qk(qk + qk+1)
>

1

2uqk+1
>

1

2rqk+1
(2.8)

(see [6], Theorem 9.9), so that r < qk+1. Since r ∈ A, it is less than 2qk and u < 2qk . It
follows that v ≤ K ′qk for some constant K ′. Now we see that there are at most K ′ times
as many pairs u, v as there are denominators qk from the convergents of α in the interval
of integers [1, 2R]. Since the qk’s increase exponentially, this is at most C′′R for some
constant C′′, and so contradicts the statement there are 2R/2 pairs u, v. The proof of the
lemma is complete.

3. The Riesz Product Equation

In this section, we construct Riesz product measures appropriate for our purposes.
Given any two almost integer ergodic matrices S and T which do not satisfy an equation
like Sp = T q , we shall find a probability measure µ such that µ(B(S)\B(T )) = 0. We do
this by the Riesz product construction for probability measures on the torus T2.

Let T be an almost integer ergodic matrix. Replacing T by T r if necessary we may
and do assume that (tT n) is a dissociate sequence in Z2 for all t �= 0. We shall make
several different choices of Riesz products at various points of the proof. Each will be
defined in terms of a subset A of N of positive lower density and an element t of Z2 which is
divisible (that is, each of its coordinates is divisible) by the denominator d(T ) of the matrix
T . Consider the trigonometric polynomial

PN(x) =
∏

1≤j≤N
j∈A

(
1 + cos 2π tT j x

)
. (3.1)

This is non-negative and its integral over T2 is equal to 1. It is straightforward to see that,
as a result of the dissociateness of T , the sequence of probability measures PN.m converges
in the weak∗ sense where m is Lebesgue measure on T2. The limit measure which we write
as

µ =
∏
j∈A

(
1 + cos 2π tT j x

)
.m (3.2)

is called a Riesz product. In fact, it is a special case of a somewhat more general construction,
[5]. In our circumstances µ is always singular to Lebesgue measure, and when it is regarded
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as a measure on the 2-torus its Fourier coefficients are given by the formula

µ̂(r) =



(
1
2

)l(r)
if r = ∑

1≤j≤N
j∈A

εj tT j and l(r) = ∑
1≤j≤N

j∈A
|εj |

0 otherwise.
. (3.3)

This formula, which follows from the dissociateness of the sequence, and the fact that µ is
a continuous probability measure, will be all the properties we need of Riesz products.

The next result is a slight strengthening of a proposition which may also be found
in [3]. It is a straightforward consequence of the Weyl criterion for uniform distribution.

Proposition 1.
Let T be dissociate and almost integer ergodic, let A be a subset of N of positive lower

density, and let t be a non-zero element of Z2 divisible by d where d is the denominator
of T . Let µ be the Riesz product measure defined according to (3.2). Then, for µ-almost
every x in T2, x is non-normal with respect to the base T .

Let S be another 2 ×2 almost integer ergodic matrix. We denote the eigenvalues of S

and T by σ 1, σ 2 and τ 1, τ 2, respectively, where we use the convention that, for any 2 × 2
matrices, the first eigenvalue is of larger or equal absolute value. At this point we make no
assumptions as to the diagonalizability of either of the two matrices.

Let d(T ) be the denominator of T . We replace T by an appropriate power of itself, so
that (tT r) is a dissociate sequence for any integer vector t �= 0. We choose t to be divisible
by d(T ) and A to be some subset of N which has positive lower density. At a later stage
we shall be more specific about the nature of t and of A.

Now we construct a Riesz product µ as in (3.2). By Proposition 1, it follows that, for
almost all x ∈ T2 with respect to µ, x is not normal in base T . We make the assumption
that normality in base T implies normality in base S, that is that B(T ) ⊂ B(S), and then
conclude that, for some p and q, Sp = T q . We recall that it follows from Lemma 6 of
Schmidt [10] that the normal set of the matrix S is unchanged by multiplying each vector
in the set by a non-singular rational matrix. Thus in the application of Lemma 2 one can
assume that in the case of almost integer ergodic matrices that the vector s is a multiple of
the denominator of S. This is enough to prove our main theorem under the assumption, by
Lemma 2, we have

∞∑
N=1

1

N3

N∑
n=1

n∑
m=1

µ̂
(
s
(
Sn − Sm

)) = ∞ (3.4)

for some integer vector, s �= 0. This being the case, and because of the form of the Fourier
coefficients of Riesz products given in Equation (3.3), there are infinitely many pairs (m, n)

such that

s
(
Sn − Sm

) = t
∑
j

εjT
j (3.5)

holds, where the sum is a finite sum over j ’s in the set A. We refer to this equation as the
Riesz Product Equation.

To obtain more precise estimates on the density of such pairs, we now follow the
argument in [7]. We write

µ̂


t

∑
j

εjT
j


 = 2−r(n,m) (3.6)
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where r(n, m) is the number of non-zero εj ’s and r(n, m) = ∞ if no equality of the
form (3.5) exists. Thus, if we let t (n) = n/(log n)2 then, under the assumption that the
sum in (3.4) is infinite, ∑

N

1

N3

∑
0≤n≤N

∑
0≤m<n−t (n)

1

2r(n,m)
= ∞ . (3.7)

We will use this fact to derive the following technical result. We use the notation IR

for the dyadic interval [2R, 2R+1) of integers.

Proposition 2.
Assume that B(T ) ⊂ B(S). Then, for infinitely many positive integers R, there is a

matrix WR , which is a polynomial in T −1, such that, for at least 2R−3(log R)
√

R numbers
n ∈ IR

s
(
Sn − Sm

) = tT r(n)(WR + Bn) , (3.8)

where m < n − t (n), r(n) is some integer in A, and

Bn =
∑

j>M+2
√

R

ε′
j T

−j , (3.9)

where M is the degree of the polynomial WR , where ε′
j = 0, ±1 for all j .

Proof. It follows from (3.7) that

∞∑
n=1

1

n2

∑
0≤m<n−t (n)

1

2r(n,m)
= ∞

and hence that ∑
n∈IR

∑
0≤m<n−t (n)

1

2r(n,m)
≥ 22R

R2
,

for infinitely many R. For infinitely many R’s, then

∑
0≤m<n−t (n)

1

2r(n,m)
≥ 2R+1

R2
,

for at least 2R/R2 n’s in IR . Moreover, for each of these n’s, there are at least 2R/R2 m’s
satisfying

0 ≤ m ≤ n − t (n) and r(n, m) ≤ 2 log 2R . (3.10)

Fix a pair (n, m) satisfying these conditions, and suppose that (3.10) holds. Then, some-
where in the sequence

εr(n,m), εr(n,m)−1, . . . , εr(n,m)−s(R) ,

where 2R, there is a block of 2
√

R zeros. Let us write H(n, m) for the smallest i such that
εr(n,m)−i is in a block of 2

√
R zeros. Since r(n, m)−H(n, m) is less than s(R), the number

of possible choices of

εr(n,m), εr(n,m)−1, . . . , εr(n,m)−H(n,m)
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does not exceed τ(R) = (2s(R))log R . It follows that, for some

WR =
M∑

k=0

ε′
kT

−k ,

where ε′
k = 0, ±1, there are at least �(2R/τ(R)R2) n’s in IR and some m = m(n) for

which

s
(
Sn − Sm

) = tT r(n)(WR + Bn) ,

where, because of the gap in the ε’s,

Bn =
∑

j>M+e
√

R

ε′
j T

−j .

This completes the proof.

4. The Diagonalizable Case: Equality of Eigenvalues

Our aim in this section is to prove the following result.

Proposition 3.
If S and T are diagonalizable and are such that B(T ) ⊂ B(S), then S and T have

the same eigenvalues.

Since S and T are diagonalizable, we can find invertible matrices U and V and
diagonal matrices 	 and 
 such that

S = U−1	U and T = V −1
V . (4.1)

Let t′ = tV −1 and s′ = sU−1, so that Equation (3.5) becomes

s′ (	n − 	m
)
UV −1 = t′

r(n)∑
j=1

εj

j , (4.2)

and Equation (3.8) becomes

s′ (	n − 	m
)
UV −1 = t′
r(n)(WR + Bn) . (4.3)

Now substitute

UV −1 =
(

a b

c d

)
, s′ = (s1, s2), t′ = (t1, t2) (4.4)

in (4.2) and (4.3) to obtain

as1
(
σn

1 − σm
1

) + cs2
(
σn

2 − σm
2

) = t1

r(n)∑
j=1

εj τ
j

1

bs1
(
σn

1 − σm
1

) + ds2
(
σn

2 − σm
2

) = t2

r(n)∑
j=1

εj τ
j

2 ,

(4.5)
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and

as1
(
σn

1 − σm
1

) + cs2
(
σn

2 − σm
2

) = t1τ
r(n)
1 (wR(τ1) + βn(τ1))

bs1
(
σn

1 − σm
1

) + ds2
(
σn

2 − σm
2

) = t2τ
r(n)
2 (wR(τ2) + βn(τ2)) ,

(4.6)

where

wR(τ) =
MR∑
i=0

εiτ
−i and βn(τ) =

∑
j=MR+2

√
R

εiτ
−j . (4.7)

Note that the εi’s in the expression for wR(τ) depend only on R, whereas those in βn(τ)

depend on n. Moreover, if |τ | > 3,

|βn(τ)| ≤ Ce−2
√

R

, (4.8)

where C = C(τ).
We first show that n and r(n) are comparable in size. To do this we need to make

sure that when an eigenvalue exceeds 1, it in fact exceeds 3. We do this by replacing both
S and T by an appropriate power. Such a substitution does not affect the statement of the
theorem, though it does change the Riesz product. In any case, we may assume that S and
T have been adjusted once for all in such a way that if |τ2| > 1 or |σ2| > 1, then, in fact,
they are larger than 3.

Lemma 4.
If both S and T are diagonalizable and t is not an eigenvector of T , then, for some

positive real number α,

nα − C ≤ r(n) ≤ nα + C . (4.9)

Proof. First we deal with the case when |τ2| > 1. Note that, in this case, both |βn(τ1)|
and |βn(τ2)| do not exceed Ce−2

√
R

.
We solve (4.6) for s1(σ

n
1 −σm

1 ), which we can do since UV −1 is invertible. If s1 �= 0
we immediately obtain nα < r(n)+C, where α = log |σ1|/ log |τ1|. The reverse inequality
is an immediate consequence of (4.6) in this case. If s1 = 0, set α = log |σ2|/ log |τ1| and
the full inequality follows immediately.

Now we deal with the case when |τ2| ≤ 1. Note that it follows that |τ1| > 1 as we
have argued above. Moreover, the eigenvalue condition implies that t1.t2 �= 0. In this case
we turn to Equations (4.5). First we see quickly that r(n) ≤ nα + C. Then we solve for
s1(σ

n
1 − σm

1 ) in terms of the right sides of those equations. A simple estimate gives the
inequality nα − C ≤ r(n), where α = log |σ1|/ log |τ1|, unless s1 = 0. If s1 = 0, we look
again at Equations (4.5) and obtain the inequality with σ2 in place of σ1.

We now continue the proof of Proposition 3. We choose t not to be an eigenvector of
T . Using the fact that m < n − t (n) in (4.6), we can incorporate the m terms in the “error”
term, thus:

as1σ
n
1 + cs2σ

n
2 = t1τ

r(n)
1

(
wR(τ1) + β(1)

n

)
bs1σ

n
1 + ds2σ

n
2 = t2τ

r(n)
2

(
wR(τ2) + β(2)

n

)
,

(4.10)
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where the β
(1)
n < C exp(−2

√
R) and, if τ2 > 1, then β

(2)
n < C exp(−2

√
R) [cf. (4.8)].

Suppose, for the moment, that s1 �= 0. Recall that there are 2R−4
√

R such n’s in
the dyadic interval IR . It follows by a simple counting argument that, for infinitely many
R, there is some k and 4C2R/2 pairs (n, n′) of elements of JR such that n − n′ = k. By
inequality (4.9), as (n, n′) varies over all such pairs , r(n) − r(n′) can take at most 4C

different values. Accordingly, for 2R/2 pairs (n, n′), we have

n − n′ = k and r(n) − r
(
n′) = l (4.11)

say.
We pick two such pairs (n, n + k) and (n′, n′ + k) and, if as1 �= 0, we write down

the equations in (4.10) for n and n′. This gives us the following four equations:

as1σ
n
1 + cs2σ

n
2 = t1τ

r(n)
1

(
wR(τ1) + β(1)

n

)
as1σ

n′
1 + cs2σ

n′
2 = t1τ

r(n′)
1

(
wR(τ1) + β

(1)

n′
)

.

as1σ
n+k
1 + cs2σ

n+k
2 = t1τ

r(n)+l
1

(
wR(τ1) + β

(1)
n+k

)
as1σ

n′+k
1 + cs2σ

n′+k
2 = t1τ

r(n′)+l
1

(
wR(τ1) + β

()

n′+k

)
.

(4.12)

We multiply the first two equations by σk
2 and subtract from the last two equations to

obtain

as1σ
n
1

(
σk

1 − σk
2

)
= t1τ

r(n)
1

(
τ l

1 − σk
2

)
(wR(τ1) + δn)

as1σ
n′
1

(
σk

1 − σk
2

)
= t1τ

r(n′)
1

(
τ l

1 − σk
2

)
(wR(τ1) + δn′) ,

(4.13)

where |δn| ≤ Ce−2
√

R
and |δ′

n| ≤ Ce−e
√

R
. If either of the equations

σk
2 = σk

1

or

σk
2 = τ k

1

is true, then so is the other. Failing that, we may divide the first of the Equations (4.13) by
the other and, after taking logs obtain,(

n − n′) log σ1 = (
r(n) − r

(
n′)) log τ1 + νn,n′ + 2Mπi , (4.14)

where |νn,n′ | ≤ Ce−2
√

R
for some integer M . Taking real parts, we have(

n − n′) log |σ1| = (
r(n) − r

(
n′)) log |τ1| + � (

νn,n′
)

. (4.15)

Note that this is true for C2R/2 values of n and n′. At this point we shall argue as in [7],
using Lemma 3, to obtain that α = log |σ1|/ log |τ1| is rational. To this end we need to
make a choice of A which depends on the continued fraction expansion of α.

We shall assume that α = log |σ 1|/ log |τ1| is irrational to obtain a contradiction. We
let

pr

qr

= [a0; a1, a2, . . . , ar ] (4.16)
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denote the rth partial quotient of α. Now we define

A =
⋃
r

(qr , 2qr) ∩ (qr , qr+1) , (4.17)

where (a, b) denotes the interval of integers d such that a < d < b. Observe that the
sequence (qr) increases at least exponentially, and that the upper density of A is positive, in
fact, at least 1/2. This is sufficient to guarantee the almost everywhere (µ) non-normality
of x with respect to T . Now we use Lemma 3 to deduce that α is rational.

Thus we can and do replace S and T by appropriate powers so that |σ1| = |τ1|.
In (4.15) we now see that n − n′ = r(n) − r(n′). So that, in the imaginary part

of (4.14), we obtain (
n − n′) (arg σ1 − arg τ1) = 2πM + � (

νn,n′
)

.

Writing γ = (arg σ1 − arg τ1)/2π we have∣∣∣∣γ − M

n − n′

∣∣∣∣ < C exp
(

2−√
R
)

(4.18)

for at least C′2R/2 pairs M and n−n′ with n and n′ in A∩IR . Lemma 3 now applies to show
that arg σ1 − arg τ1 is a rational multiple of 2π . We may replace S and T by appropriate
powers so that σ1 = τ1. It follows that, if σ1 is irrational then σ2 = τ2. If σ1 is rational it is
integral as are σ2, τ1 and τ2. Now we choose t so that t1 = 0 and use the second equation
in (4.10) to show that either σ1 or σ2 equals τ2. Size considerations yield that σ2 = τ2.

The remaining case when as1 �= 0 entails

σk
1 = σk

2 = τ l
1 . (4.19)

After taking powers of S and T we may assume that σ1 = σ2 = τ1. This implies that
they are integers, as is τ2. Now we use the second equation in (4.10) and repeat the above
argument to show that some power of τ2 is a power of σ1. Size considerations again show
that τ2 = τ1. This completes the proof Proposition 3 when as1 �= 0.

If as1 = 0 but bs1 �= 0 then we may do the entire argument using the second equation
of (4.10). If both as1 and bs1 are zero then s1 = 0.

In this case we use the first equation and repeat the arguments to obtain, after taking
powers, that σ2 = τ1. In the irrational case again this implies σ1 = τ2 and indeed that
|σ1| = |σ2| = |τ1| = |τ2|. In the rational case we argue as above using a choice of t with
t2 = 0 to obtain σ2 = τ1, and again |σ1| = |σ2| = |τ1| = |τ2|.

This completes the proof of Proposition 3.

5. The Diagonalizable Case: Proof of the Theorem

We assume now that S and T are diagonalizable and have the same eigenvalues. Our
aim is to show that S = T . This will complete the proof of the theorem in the diagonalizable
case.

At this point we again split the argument into two cases:

1. |σ1| > |σ2| and by replacing each of S and T by a power of themselves, if necessary,
|σ1| > 3|σ2|;
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2. |σ1| = |σ2|.
Each of these case will in turn be split into integral and non-integral eigenvalue cases.

First we consider case (1). We refer back to Equations (4.5),

as1
(
σn

1 − σm
1

) + cs2
(
σn

2 − σm
2

) = t1

r(n)∑
j=1

εjσ
j

1 ,

bs1
(
σn

1 − σm
1

) + ds2
(
σn

2 − σm
2

) = t2

r(n)∑
j=1

εjσ
j

2 ,

(5.1)

where first t has been chosen so that neither coordinate is zero. Recall that m is much
smaller than n. Then as1 = t1 and so b = 0. In the non-integer eigenvalue case we may
conjugate (5.1) and apply the same argument to obtain c = 0. For the integer eigenvalue
case we again choose t to be an eigenvector for the smaller eigenvalue, that is, t1 = 0. The
Equations (5.1) then force s1 = 0 and so c = 0.

In either case UV −1 is diagonal. Hence

ST −1 = U−1	UV −1
−1V = U−1	UV −1	−1V = I . (5.2)

This completes the proof in the case when |σ1| and |σ2| are unequal.
In case (2), when the absolute values are equal, σ1 and σ2 are complex conjugates,

or, without loss of generality, are equal integers. First we deal with the latter. In this case
both S and T are multiples, by σ1, of the identity matrix and so are identical.

For the complex case, we assume that ρ = σ2/σ1 is not a root of unity, otherwise we
could take a power and make σ1 = σ2 and be back in the former case. We reinitialize the
process with a Riesz product where A is now defined in terms of the partial quotients in the
continued fraction expansion of the argument of σ2/σ1. Equation (4.10) becomes

(as1 − t1wR(σ1))σ
n
1 + cs2σ̄1

n = t1σ
n
1 β(1)

n(
bs1σ

n
1 + (ds2 − t2wR(σ2)

)
σ̄1

n = t2σ̄1
nβ(2)

n .
(5.3)

Note that as1 = t1wR(σ1) if and only if cs2 = 0 and ds2 = t2wR(σ̄1) if and only if
bs1 = 0. Assume, in order to achieve a contradiction, that one of these fails and choose the
corresponding equation. Without loss of generality we assume that as1 �= t1wR(σ1) and
use the first of the equations. Otherwise we would use the second.

Rewrite the first equation as

(as1 − t1wR(σ1)) + cs2ρ
n = t1β

(1)
n , (5.4)

and again as

cs2ρ
n = (t1wR(σ1) − as1)

(
1 + β ′

n

)
(5.5)

where

β ′
n = β

(1)
n

t1wr(σ1) − as1
.

We take two such equations, for n and n′ and divide the former by the latter to obtain

ρn−n′ = 1 + γn,n′ , (5.6)
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where again |γn,n′ | ≤ e−2
√

R
. Using Lemma 3 again, we find that ρ is a root of unity, giving

the required contradiction. It follows that

as1 = t1, bs1 = 0, cs2 = 0, and ds2 = t2 . (5.7)

Now we argue as in the previous case to show that S = T .

6. The Non-Diagonalizable Case

Finally in this section we deal with the case when one of S and T is not diagonalizable.
First we suppose that T is not diagonalizable but that S is. Then the eigenvalues of T are
integers and its (one-dimensional) eigenspace contains integer vectors which are divisible
by the denominator. Initially, we choose one of these for t. Note that we may replace 
 in
Equation (4.1), by


 =
(

τ 1
0 τ

)
. (6.1)

Then the Equations (4.5) become

as1
(
σn

1 − σm
1

) + cs2
(
σn

2 − σm
2

) = 0

bs1
(
σn

1 − σm
1

) + ds2
(
σn

2 − σm
2

) = t2
∑
j

εj τ
j . (6.2)

Suppose first that |σ1| > |σ2|. This forces as1 and cs2 to equal zero. Since both a and c

cannot be zero, either s1 or s2 equals zero and one of a and c equals zero. If s1 equals zero,
then arguing as in the diagonalizable case, we may assume σ2 = τ and, if not, then σ1 = τ .

Now we may choose a vector t so that

t′
n =
(
τn, nτn−1

)
. (6.3)

Then we have the following equations:

as1
(
σn

1 − σm
1

) + cs2
(
σn

2 − σm
2

) =
∑
j

εj τ
j

bs1
(
σn

1 − σm
1

) + ds2
(
σn

2 − σm
2

) =
∑
j

εj jτ j−1 .
(6.4)

It is easily seen from size considerations that these are incompatible with σj = τ and so
we arrive at a contradiction.

Now suppose that S is diagonalizable with eigenvalues both equal to σ . Then S is a
multiple of the identity. The choice of t as an eigenvector of T gives

(as1 + cs2)
(
σn − σm

) = 0

(bs1 + ds2)
(
σn − σm

) =
∑
j

εj τ
j−1 . (6.5)

These give (as1 + cs2) = 0 and using the methods of the diagonalizable case we see that
σ = τ . The remainder of the argument is as that following Equation (6.4) and yields a
contradiction.
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It follows that S too cannot be diagonalizable and so we may assume that 	 is of the
form

	 =
(

σ 1
0 σ

)
. (6.6)

This gives equations

(as1 + cs2)
(
σn − σm

) + cs1

(
nσn−1 − mσm−1

)
= t1

∑
j

εj τ
j

(bs1 + ds2)
(
σn − σm

) + ds1

(
nσn−1 − mσm−1

)
= t1

∑
j

εj jτ j

+ t2
∑
j

εj τ
j .

(6.7)

First we choose t1 = 0 and use the diagonalizable arguments on the second equation to
obtain σ = τ . Order of magnitude arguments now show that ds1 = 0. If s1 = 0 then so is
cs2 which forces c = 0 and then as1 = t1, for every choice of t1.

Now we choose t so that t2 = 0. Then d = 0 gives a contradiction, by order of
magnitude estimates, on the second equation. This yields ds1 = t1 and so a = d but then
UV −1 commutes with 	 and this gives S = T .

Finally we deal with the case when T is diagonalizable but S is not. We refer back
to Equation (3.8) and let U, V be as in Equation (4.1) where now

	 =
(

σ 1
0 σ

)
and 
 =

(
τ1 0
0 τ2

)
. (6.8)

The resulting equations now become

(c(s1n + s2) + as1)σ
n − (c(s1m + s2) + as1)σ

m

= t1τ
r(n)
1 (wR(τ1) + βn(τ1))

(d(s1n + s2) + bs1)σ
n − (d(s1m + s2) + as1)σ

m

= t2τ
r(n)
2 (wR(τ2) + βn(τ2)) .

(6.9)

The inequality (4.9) is replaced by

αn − C ≤ r(n) ≤ αn + β log n

for n ∈ IR . Using a counting argument which is a minor refinement of that given in the proof
of Proposition 3, we obtain 2R/2 pairs (n, n′) in IR such that n−n′ = k and r(n)−r(n′) = l,
for some k and l. For such pairs, the first equations are of the form,

(An + B)σn = t1τ
r(n)
1

(
wR(τ1) + β ′

n(τ1)
)

(A(n + k) + B)σn+k = t1τ
r(n)+l
1

(
wR(τ1) + β ′

n(τ1)
) (6.10)

after absorbing the terms involving σm into the error term β ′
n. We multiply the first equation

by σk and subtract to obtain

Akσn+k = t1τ
r(n)
1 wR(τ1)

(
τ l

1 − σk
)

+ τ
r(n)
1 γn,n′
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where |γn,n′ | < C exp(−2
√

R). This equation for these values of n may be used, as in the
diagonalizable case, to show that some power of σ is a power of τ1. Replacing the matrices
S and T by suitable powers of themselves we may assume τ1 = σ . This means that τ1 is an
integer and so we can choose t so that t1 = 0. This forces some power of τ2 to be a power
of σ and so by size considerations τ2 = τ1 = σ . Moreover, using (6.9) we can show that

n − C ≤ r(n) ≤ n + C

for some constant C > 0. Returning to Equations (6.9) we see that cs1 = ds1 = 0. It
follows that s1 = 0. Now we have the equations

cs2
(
σn − σm

) = t1σ
r(n) (wR(σ) + βn(σ ))

ds2
(
σn − σm

) = t2σ
r(n)(wR(σ) + βn(σ )) .

(6.11)

This forces

c

d
= t1

t2
(6.12)

for any t, and so a contradiction.
Finally we deal with the case where neither S nor T is diagonalizable. In this case

Equation (3.8) becomes

(as1 + cs2)
(
σn − σm

) + cs1
(
nσn−1 − mσm−1)

= t1τ
r(n)
1 (wR(τ1) + βn(τ1))

(bs1 + ds2)
(
σn − σm

) + ds1
(
nσn−1 − mσm−1)

= t1τ(n)τ
r(n)
1

(
w′

R(τ1) + β ′
n(τ1)

) + t2τ
r(n)
2 (wr(τ2) + βn(τ2)) ,

(6.13)

where wR and βn are as before and

w′
R(τ) =

M∑
j=0

εj

r(n) − j

r(n)
τ−j and β ′

n(τ ) =
∑

j=M+2
√

R

εj

r(n) − j

r(n)
τ−j . (6.14)

First we choose t so that t1 = 0. This forces first cs1 = 0 and then as1 + cs2 = 0.
Together these yield c = 0. We then use familiar arguments with the first of the equations
in (6.13) to obtain σ = τ and

n − C ≤ r(n) ≤ n + C , (6.15)

for the n’s and r(n)’s in (6.13), at least after replacing S and T by appropriate powers.
Without loss of generality, we may assume r(n) = n.

Now we choose t so that t2 = 0. Dividing the first of these two equations by the
second and taking n large, we find that

a

d
= 1 . (6.16)

Thus

UV −1 =
(

a b

0 a

)
, (6.17)

which commutes with 	 = 
, so that S = T . This completes the proof of the theorem.
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