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ABSTRACT. Continuous wavelet transforms arising from the quasiregular representation of a
semidirect product group G = R

k
� H have been studied by various authors. Recently the

attention has shifted from the irreducible case to include more general dilation groups H , for
instance cyclic (more generally: discrete) or one-parameter groups. These groups do not give
rise to irreducible square-integrable representations, yet it is possible (and quite simple) to give
admissibility conditions for a large class of them. We put these results in a theoretical context by
establishing a connection to the Plancherel theory of the semidirect products, and show how the
admissibility conditions relate to abstract admissibility conditions which use Plancherel theory.

Introduction

In one of the initial articles of wavelet analysis [18], Grossmann, Morlet and Paul
proved that the continuous wavelet transform on L2(R) and its inversion formula rests on a
certain representation of the semidirect product R � R

+ acting on L2(R). More precisely,
they showed that the square-integrability (in the sense of [9]) of that representation guaran-
tees the existence of an inverse wavelet transform, and they showed how the admissibility
conditions relate to the so-called Duflo–Moore operators, which are naturally associated to
square-integrable representations. This realization opened the way to analogous construc-
tions in a variety of settings. One class of groups and representations attracting particular
attention are the semidirect products of the type R

k
� H . Here H is a closed matrix group

(the so-called dilation group). G has a natural unitary representation on L2(Rk), which
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is the chief object of study for the construction of wavelet transforms. Concrete higher-
dimensional examples of such transforms were produced by Murenzi [29] and Bohnke [6].
Later the problem was studied in greater generality by Bernier and Taylor [5], who gave
sufficient conditions for the existence of inversion formulas, and also calculated the Duflo–
Moore operators for these cases. The general approach was further pursued in [12, 1].

All the references cited so far restrict attention to the case of irreducible square-
integrable representations (also called discrete series representations). But several authors
produced evidence that inversion formulas could also be obtained for non-irreducible rep-
resentations [19, 21, 28]. All results were given for the semidirect product setting, and they
turned out to be rather simple generalizations of what had been obtained in the irreducible
case. A more general family of dilation groups was studied by Gröchenig, Kaniuth and
Taylor [17], who focused on certain one-parameter groups. Their so-called “projection
generating functions” turn out to be particular admissible vectors. Quite recently, G. Weiss
and collaborators announced in [32] and proved in [26] an almost characterization of those
dilation groups which admit an inversion formula; in particular all of the aforementioned
examples fall under the class described in [26].

One intriguing aspect of the concrete results in [19, 21, 28] (and the initial motiva-
tion for this paper) was that, until recently, no general representation-theoretic framework,
comparable to the characterization for irreducible representations, existed in which the con-
crete admissibility conditions would fit. The theoretical framework has now been provided
in [14], where general admissibility conditions are formulated by use of the Plancherel de-
composition of the regular representation of the underlying group. It is the main purpose of
this paper to exhibit the relationship between the concrete results on semidirect products and
the abstract admissibility conditions, and thus to provide a bridge between [26] and [14].

Our paper has three sections. In the first section, we consider semidirect products
R

k
�H and their quasi-regular representations on L2(Rk). We derive admissibility criteria

for subrepresentations of quasi-regular representations, and give sufficient conditions for the
existence of admissible vectors. The results in that section have to a large extent been proved
in [26]. We include proofs for several reasons: Our results are slightly more general in that
we consider arbitrary subrepresentations of the quasiregular representations. Secondly, the
bulk of our results was obtained independently from [32, 26]. The third and most important
reason is that most of the constructions and objects used in the proof of the concrete results
turn up again in the abstract setting; most notably the dual orbit space R̂k/H and certain
measures on the orbits and the orbit space. Hence including the proofs should facilitate
understanding the relationship between abstract and concrete results.

Section two is devoted to a short review of Plancherel theory and its relation to
admissibility conditions. Section three then connects the results of the previous two sections,
by identifying the Duflo–Moore operators and the Plancherel measure with certain operators
and measures obtained in the concrete setting. We wish to point out, though, that in
the course of our argument the concrete admissibility conditions do not appear as mere
corollaries of the abstract ones. We use the concrete results to show that they are special
cases of the abstract results. Hence the results of the third section might be considered
redundant, but we maintain that it is useful to work out this class of examples and to explicitly
compute the various objects of Plancherel theory, i. e., the Duflo–Moore operators and the
corresponding Plancherel measure.

Apart from serving as an illustration for the results in [14], the discussion in Section 3
also ties in nicely with the results of Kleppner and Lipsman [22] on the Plancherel theory of
semidirect products in general (see the discussion in Section 3 for a more detailed account
of their results). We wish to stress that while the results of Kleppner and Lipsman provide
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an orientation for our arguments in Section 3, our proof does not use their calculation of
Plancherel measure.

In the remainder of the introduction we wish to collect some generalities concerning
wavelet transforms and admissible vectors. For the representation-theoretic notions used
in this paper, confer [11]. All throughout the paper, G denotes a (second countable) locally
compact group and (π, Hπ ) a (strongly continuous, unitary) representation of G on a
separable Hilbert space Hπ . L2(G) denotes the usual L2-space on G with respect to left
Haar measure µG. The left regular representation λG acts on L2(G) by left translations. Ĝ

denotes the dual space of G, i. e., the equivalence classes of irreducible representations of
G. Ĝ carries a natural Borel structure, the so-called Mackey Borel structure. We will not
distinguish explicitly between representations and their equivalence classes.

For a given representation (π, Hπ ), two vectors η, φ ∈ Hπ and x ∈ G define

Vηφ(x) := 〈φ, π(x)η〉 .
Then Vη : φ �→ Vηφ is a bounded operator from Hπ into Cb(G), the space of continuous
bounded functions on G. We call η admissible if Vη is an isometry from Hπ into L2(G).
Note that usually even the well-definedness of Vη : Hπ → L2(G) is a non-trivial issue. The
interest in isometries comes from the fact that in this case there exists—at least formally—an
inversion formula, in the form of the weak operator integral

φ =
∫

G

Vηφ(x) π(x)η dµG(x) .

A further pleasant feature of admissible vectors is that the orthogonal projection onto the
image Vη(Hπ ) ⊂ L2(G) is given by convolution with Vηη, which entails that Vη(Hπ ) is a
reproducing kernel Hilbert space.

A vector η is called weakly admissible if Vη is a bounded one-to-one mapping
into L2(G). Clearly, the condition that Vη be one-to-one is equivalent to cyclicity of η.
We call a representation weakly square-integrable if a weakly admissible vector exists,
and strongly square-integrable if an admissible vector exists. It is well-known that,
for irreducible representations, the notions of weakly admissible and admissible vectors
coincide, and so do the weakly and strongly square-integrable irreducible representations.
But for the general case, the two notions may well differ.

Both notions of square-integrability lead to subrepresentations of the left regular
representations: The wavelet transform clearly intertwines π with the left action of the
group (whichever function space on the group is under consideration). If η is weakly
admissible, then the unitary part of the polar decomposition of Vη is a unitary equivalence
between π and a subrepresentation of λG. Conversely, Losert and Rindler proved [24],
that there exists a cyclic vector η for λG iff G is first countable. Moreover they showed
that the cyclic vector may be chosen continuous with compact support (in particular, in
L1(G)), which implies that it is in fact weakly admissible for λG, by Young’s inequality.
Hence λG is weakly square-integrable iff G is first countable. In order to obtain a weakly
admissible vector for some invariant subspace, we only have to orthogonally project the
weakly admissible vector for λG into the subspace. Thus we see that for first countable
groups (and only for these) weakly square-integrable representations are precisely those
which are equivalent to some subrepresentation of λG.

By contrast, strong square-integrability is more complicated to check, as it will be
seen to depend on the modular function of the group: If G is non-unimodular with type-I
regular representation, the notions strongly and weakly square-integrable coincide, whereas
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the only unimodular groups for which this is true are the discrete ones. In the unimodular
case, the existence of admissible vectors can be characterized by a finite Plancherel measure
condition, at least when λG is type-I (for all these results, see [14]).

1. Admissibility Conditions for Quasiregular
Representations

In this section we consider a well-studied setting, where G = R
k
�H is a semidirect

product of a vector group with a matrix group, and π is the quasiregular representation
of that group acting on L2(Rk). Various articles have been concerned with constructing
irreducible square integrable representations for these groups [18, 29, 6, 5, 12] or with
wavelet transforms obtained from reducible representations [19, 21, 32].

Throughout this section H < GL(k, R) is a closed subgroup. Elements of G are de-
noted by (x, h) with x ∈ R

k and h ∈ H ; the group law is then given by (x0, h0)(x1, h1) =
(x0 + h0x1, h0h1). A left Haar measure of G is given by dµG(x, h) = | det(h)|−1 dx

dµH (h), and the modular function is computed as �G(x, h) = �H (h)| det(h)|−1. For
simplicity we will sometimes write �G(h) instead of �G(0, h). The quasiregular repre-
sentation π of G acts on L2(Rk) by

(π(x, h)f )(y) = | det(h)|−1/2f
(
h−1(y − x)

)
.

The closedness of H in GL(k, R) may seem a somewhat arbitrary condition (Lie
subgroups might also work), but it is in fact not a real restriction, because of the following:

Proposition 1.
LetH be a subgroup of GL(n, R), endowed with some locally compact group topology.

Assume that the semidirect product R
k
�H is a topological semidirect product, and that the

quasiregular representation has a nontrivial subrepresentation with a weakly admissible
vector. Then H is a closed subgroup of GL(n, R), and the topology on H is the relative
topology.

Proof. By the observations made in the Introduction, the subrepresentation having a
weakly admissible vector is also (equivalent to) a subrepresentation of the regular represen-
tation. Since all matrix coefficients of the latter vanish at infinity, we thus obtain a nontrivial
C0 matrix coefficient for π . Now we can proceed as in the proof of [13, Proposition 5] to
conclude that H must be closed.

The dual group R̂k is the character group of R
k , suitably identified with the space

of row vectors. We define the Fourier transform as a mapping F : L2(Rk)→ L2(R̂k) by
letting

F(f ) = f̂ (ω) =
∫

Rk

f (x)e−2πiωx dx ,

on L1(Rk) ∩ L2(Rk). Consequently the Plancherel formula is given by 〈f, g〉 = 〈f̂ , ĝ〉.
Subrepresentations of the quasiregular representation are best described in terms of the dual
action of H on R̂k , which arises by duality from the action on R

k . Under our identification
of R̂k with row vectors, the dual action is matrix multiplication on the right. For any H -
invariant subset U ⊂ R̂k , we denote by U/H the quotient space, endowed with the quotient
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Borel structure. In particular R̂k/H denotes the dual orbit space. For γ ∈ R̂k , we let
Hγ denote the stabilizer of γ in H , also called the little fixed group of γ ; it is a closed
subgroup of H . For the discussion of subrepresentations of π , it is useful to introduce the
representation π̂ obtained by conjugating π with the Fourier transform on R

k . It is readily
seen to operate on L2(R̂k) via

(π̂(x, h)f ) (γ ) = | det(h)|1/2e2πiγ ·xf (γ h) . (1.1)

The action of π̂ allows to identify subrepresentations in a simple way: Every invariant
closed subspace H ⊂ L2(Rk) is of the form

H = HU =
{
g ∈ L2

(
R

k
)
: ĝ vanishes outside of U

}
,

where U ⊂ R̂k is a measurable, H -invariant subset (see [12] for a detailed argument). We
let πU denote the subrepresentation acting on HU . In view of the correspondence between
subrepresentations and invariant subsets of the dual, the dual orbit space becomes a natural
object of study.

Remark 1 (Dual Orbit Space). The structure of the dual orbit space is not only
important for the decomposition of the quasi-regular representation and for the construction
of admissible vectors, but also for the decomposition of the regular representation of G, i. e.,
the Plancherel decomposition. For our discussion, the following two sets will be central

�c =
{
ω ∈ R̂k : Hω is compact

}
, �rc = {ω ∈ �c : ωH is locally closed } .

The set �rc ⊂ �c consists of the “regular” orbits in �c; i. e., it is the “well-behaved” part
of �c. Loosely speaking, �c is the set we have to deal with, and �rc is the set we can
deal with. Put more precisely: While Theorem 1 below shows that subrepresentations with
admissible vectors necessarily correspond to invariant subsets U of �c, the existence result
in Theorem 2 only considers subsets of the smaller set �rc. However, this distinction is not
due to a shortcoming of our approach: As witnessed by Example 3 below, there are subsets
of �c that do not allow admissible vectors for the corresponding subrepresentations.

Let us now collect some measure-theoretic properties of the two sets. �c can be
shown to be measurable; we have included a proof of that statement in the Appendix. But
usually �c is not open, even when it is conull, as is illustrated by the example of SL(2, Z):
It is easy to see that �c consists of all the vectors (ω1, ω2) such that ω1/ω2 is irrational.
This is a conull set with dense complement in R̂2.

By contrast, �rc is always open (cf. the Appendix for a proof). A pleasant conse-
quence of this is that Glimm’s Theorem [16] applies (since �rc is locally compact), which
entails a number of useful properties of the orbit space �rc/H : It is a standard Borel space
having a measurable cross section �rc/H → �rc, and there exists a measurable transversal,
i. e., a Borel subset A ⊂ �rc meeting each orbit in precisely one point.

Unfortunately, the example of SL(2, Z) shows that �rc can be empty even when �c

is conull: Since the complement of �c is dense, �c contains no nonempty open set.

Let us now derive the admissibility condition for the quasiregular representation, or
more generally for subrepresentations. As a matter of fact, the proof of the admissibility
condition does not involve any measure-theoretic subtleties. It is only when we address the
existence of functions fulfilling the condition that we are forced to use more involved argu-
ments. The theorem was derived for certain concrete groups H in [19, 21, 28]; the general
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version given here appears also in [26]. Note that the admissibility condition also figures
as a part of the definition of the notion of “projection generating function” in [17, Defini-
tion 2.1]. Thus the following theorem also answers a question raised in [17, Remark 2.6(b)]:
There the authors observe that taking a projection generating function as wavelet gives rise
to orthogonality relations among the wavelet coefficients which closely resemble those for
irreducible square-integrable representations, even though the representation at hand is not
irreducible. This is readily explained by the isometry property guaranteed by the admissi-
bility condition. That these orthogonality relations also arise in the non-irreducible setting
is due to the fact that the representation can be identified with a subrepresentation of the
Plancherel decomposition of the group. This is precisely the topic of our paper.

Theorem 1.
Let (πU , HU) be a subrepresentation of π corresponding to some invariant measur-

able subset U . Then

g ∈ HU is weakly admissible ⇔ the mapping γ �→
∫

H

|̂g(γ h)|2 dµH (h) is positive

and essentially bounded on U ,

g ∈ HU is admissible ⇔
∫

H

|̂g(γ h)|2 dµH (h) = 1 (for almost every γ ∈ U).

In particular, if πU has a weakly admissible vector, then U ⊂ �c (up to a null set).

Proof. We start by explicitly calculating the L2-norm of Vgf , for f, g ∈ HU . The
following computations are standard, see also [5, 12, 32]; we include them for convenience.∥∥Vgf

∥∥2
L2(G)

=
∫

G

|〈f, π(x, h)g〉|2 dµG(x, h)

=
∫

G

∣∣〈f̂ , (π(x, h)g)∧
〉∣∣2

dµG(x, h)

=
∫

G

∣∣∣∣∫
R̂k

f̂ (γ )| det(h)|1/2e−2πiγ x ĝ(γ h) dλ(γ )

∣∣∣∣2

dµG(x, h)

=
∫

H

∫
Rk

∣∣∣∣∫
R̂k

f̂ (γ )e−2πiγ x ĝ(γ h) dλ(γ )

∣∣∣∣2

dλ(x) dµH (h)

=
∫

H

∫
Rk

|F(φh)(x)|2 dλ(x) dµH (h) .

Here φh(γ ) = f̂ (γ )ĝ(γ h), and F denotes the Fourier transform on L1(R̂k). An application
of Plancherel’s formula to the last expression yields∫

H

∫
R̂k

|φh(γ )|2 dλ(γ ) dµH (h) =
∫

H

∫
R̂k

∣∣f̂ (γ )
∣∣2 |̂g(γ h)|2 dλ(γ ) dµH (h)

=
∫

R̂k

∣∣f̂ (γ )
∣∣2

(∫
H

|̂g(γ h)|2 dµH (h)

)
dλ(γ ) .

Now the admissibility criteria are obvious. Moreover, it is easily seen that whenever the
stabilizer Hγ is noncompact, we have∫

H

|̂g(γ h)|2 dµH (h) ∈ {0,∞} ,
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(cf. also the proof of [12, Theorem 10]), hence Vgf ∈ L2(G) entails that the pointwise
product f̂ ĝ vanishes a.e. outside of �c. In particular, a weakly admissible vector vanishes
almost everywhere outside of �c, hence we obtain in such a case that U ⊂ �c (up to a null
set).

For the construction of admissible vectors we need to decompose Lebesgue-measure
λ on �rc into certain measures on the orbits and a measure on �rc/H . Then we address
the relationship of the measures on the orbits to the Haar measure of H .

Lemma 1.

(a) There exists a measure λ on �rc/H and on each orbit γH a measure βγH such
that for every measurable A ⊂ �rc the mapping

γH �→
∫

γH

χA(ω) dβγH (ω)

is λ-measurable, and in addition

λ(A) =
∫

R̂k/H

∫
γH

χA(ω) dβγH (ω) dλ(γH) .

(b) Let (λ, (βγH )γH∈�rc/H ) be as in (a). For γ ∈ �rc define µγH as the im-
age measure of µH under the projection map pγ : h �→ γ h. µγH is a σ -
finite measure, and its definition is independent of the choice of representative γ .
Then, for almost all γ ∈ �rc, the µγH and βγH are equivalent, with globally
Lebesgue-measurable Radon–Nikodym-derivatives: There exists an (essentially
unique) Lebesgue-measurable function κ : �rc → R

+ such that for ω ∈ γH ,

dβγH

dµγH

(ω) = κ(ω) .

(c) The function κ fulfills the semi-invariance relation

κ(ωh) = κ(ω)�G(h)−1 . (1.2)

In particular, κ is H -invariant iff G is unimodular. In that case, we can in fact
assume that κ = 1 almost everywhere. This choice determines the measure λ

uniquely.

Proof. Statement (a) is a classical result from measure theory; see for instance [22,
Theorem 2.1]. The standardness of �rc/H is decisive.

In order to prove part (b), well-definedness and σ -finiteness of µγH follow from
compactness of Hγ . The independence of the representative γ of the orbit follows from the
fact that µH is left-invariant, whereas the dual action is on the right. To compute the Radon–
Nikodym derivative κ , we first introduce an auxiliary function 
 : �rc → R

+
0 : Fix a Borel-

measurable transversal A ⊂ �rc of the H -orbits. Then the mapping τ : A × H → �rc,
τ(ω, h) = ωh is bijective and continuous, hence, since A × H is a standard Borel space,
τ−1 : �rc → A × H is Borel as well, by [3, Theorem 3.3.2]. If we let τ−1(γ )H denote
the H -valued coordinate of τ−1(γ ), then 
(γ ) := �G(τ−1(γ )H ) is a Borel-measurable
mapping. Since �G is constant on every compact subgroup (in particular on all the little
fixed groups of elements in �rc), a straightforward calculation shows that 
 satisfies the
semi-invariance relation 
(ωh) = 
(ω)�G(h)−1.
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Next fix an orbit γH and let us compare the measures βγH and 
µγH : Since

dµγH (ωh) = �H (h) dµγH (ω) and dβγH (ωh) = | det(h)| dβγH (ω) ,

the definition of 
 ensures that 
µγH and βγH behave identically under the action of H .
Moreover, they are σ -finite and quasi-invariant, hence equivalent. Since they have the same
behavior under the operation of H , the Radon–Nikodym derivative turns out to be a positive
constant on the orbit. Summarizing, we find for ω ∈ γH that

dβγH

dµγH

(ω) = 
(ω)cγH ,

with 
, cγH > 0, and it remains to show that cγH depends measurably on the orbit.
For this purpose pick a relatively compact open neighborhood B ⊂ H of the identity.

Then AB = τ(A × B) ⊂ �rc is Borel-measurable, as a continuous image of a standard
space, hence χAB , the indicator function of AB, is a Borel-measurable function. Both

φ1 : γH �→
∫

γH

χAB(ω) dβγH (ω)

and

φ2 : γH �→
∫

γH

χAB(ω)
(ω) dµγH (ω)

are measurable functions: The first one is by choice of the βγH , see part (a). The second
one is measurable by Fubini’s theorem, applied to the mapping (ω, h) �→ χAB(ωh)
(ωh)

on R̂k ×H (recall the definition of µγH ).
In addition, both functions are finite and positive on �rc. We have

φ2(γH) =
∫

γH

χAB(ω)
(ω) dµγH (ω) =
∫

p−1
γ (AB)

�G(h) dµH (h) ,

and p−1
γ (AB) is relatively compact and open, hence it has finite and positive Haar measure.

Since in addition �G is positive and bounded on p−1
γ (AB), we find 0 < φ2(γH) < ∞.

Hence

φ1(γH) = cγH φ2(γH)

can be solved for cγH , which thus turns out to depend measurably upon γH . Hence

κ(ω) = dβγH

dµγH

= 
(ω)cγH

is a Lebesgue-measurable function.
The remaining part (c) is simple to prove: The semi-invariance relation of 
 entails

the relation for κ . The normalization is easily obtained: If κ is constant on the orbits, it
defines a measurable mapping κ on �rc/H . If we replace each βγH by µγH , we can make
up for it by taking κ(γH) dλ(γH) as the new measure on the orbit space. The new choice
has the desired properties. The uniqueness of λ follows from the usual Radon–Nikodym
arguments.
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Remark 2. Let us for the rest of the paper fix a choice of λ. Note that this also uniquely
determines the function κ . In the unimodular case we take κ to be 1, which in turn determines
λ uniquely.

As we shall later see, the choice of a pair (λ, κ) corresponds exactly to a choice of
Plancherel measure and the associated family of Duflo–Moore operators (at least on a subset
of Ĝ).

Before we turn to the construction of admissible vectors, we introduce some notation
to help clarify the construction: To a function ĝ on U we associate two auxiliary H -invariant
functions TH (ĝ) and SH (ĝ) such that admissibility of g translates to a condition on TH (ĝ)

and square-integrability of g to a condition on SH (ĝ).

Definition 1. For a measurable function ĝ on �rc, let TH (ĝ) denote the function

TH (ĝ) (ω) :=
(∫

ωH

|̂g(γ )|2 dµωH (γ )

)1/2

=
(∫

ωH

∣∣∣κ(γ )−1/2ĝ(γ )

∣∣∣2
dβωH (γ )

)1/2

.

TH (ĝ) is a measurable, H -invariant mapping�rc → R
+
0 ∪{∞}. The admissibility condition

can then be reformulated:

g ∈ L2(U) is admissible ⇔ TH (ĝ) ≡ 1 ( a.e. on U) . (1.3)

Similarly, weak admissibility is equivalent to the requirement that TH (ĝ) ∈ L∞(U) and
TH (ĝ) > 0 almost everywhere. We can also define

SH (ĝ)(ω) :=
(∫

ωH

|̂g(γ )|2 dβωH (γ )

)1/2

.

By our choice of measures, SH and TH coincide iff G is unimodular. Both TH (ĝ) and
SH (ĝ) may (and will) be regarded as functions on the quotient space U/H . By the choice
of the βωH , ∫

U

|̂g(ω)|2 dω =
∫

U/H

|SH (ĝ) (ωH)|2 dλ(ωH) , (1.4)

so that ĝ is square-integrable iff SH (ĝ) is a square-integrable function on U/H .

Now we can address the existence of admissible vectors. The following theorem is
essentially the same as [26, Theorem 1.8].

Theorem 2.
Let U ⊂ �rc be measurable and H -invariant. Then πU has a weakly admissible

vector. It has an admissible vector iff either

(i) G is unimodular and λ(U/H) <∞.

(ii) G is non-unimodular.

Note that the strategy for the construction of admissible vectors in the following proof
is similar to the arguments in [26], but also to the construction in [14]. It amounts to treating
the admissibility condition—involving TH —first, and then adjusting the construction to
fulfill the square-integrability condition (involving SH ) as well.

Proof. Recall that by the last remark we have for each admissible vector g that TH (ĝ)

is constant almost everywhere. At the same time, in the unimodular case it is square-
integrable as a function on U/H , because of SH = TH . This shows the necessity of (i) in
the unimodular case.
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To prove the existence of admissible vectors, we first construct a function ĝ on U

fulfilling the admissibility condition (1.3), and then modify the construction to provide for
square-integrability.

For this purpose we recycle the sets A ⊂ �rc and B ⊂ H from the proof of Lemma 1.
We already observed there that f̂ = χAB is Lebesgue-measurable, and thatTH (f̂ ) is positive
and finite almost everywhere on U . Hence we may define ĝ = f̂ /TH (f̂ ), which fulfills
the admissibility criterion. In the unimodular case, Equation (1.4) together with SH = TH

shows that ĝ ∈ L2(U).
In the non-unimodular case, we modify g as follows: For every γ ∈ U , the compact-

ness of p−1
γ (AB) entails that �G is bounded on that set. Thus SH (ĝ) is positive and finite

almost everywhere. Since λ is σ -finite, we can write U/H =⋃
n∈N Vn, with disjoint Vn of

finite measure, such that in addition SH (ĝ) is bounded on each Vn (here we regard SH (ĝ) as
a function on the quotient). In particular, SH (ĝ) ·χVn is square-integrable on U/H . Now let
Un ⊂ U be the inverse image of Vn under the quotient map, and for h0 ∈ H and n, kn ∈ N,
denote by

ĝn(ω) := �H (h0)
kn/2f̂2

(
ωh

kn

0

)
· χUn(ω) .

Then the normalization ensures that ĝn has the following properties:

TH (ĝn) = χUn (1.5)

and

SH (ĝn) = �H (h0)
kn/2| det(h0)|−kn/2SH (ĝ) · χUn = �G(h0)

kn/2SH (ĝ) · χUn . (1.6)

Hence the following construction gives an admissible vector: Choose h0 ∈ H such that
�G(h0) < 1/2, pick kn ∈ N satisfying

2−kn
∥∥SH (ĝ) · χUn

∥∥2
2 < 2−n (1.7)

and let ̂̃g(ω) := �H (h0)
kn/2f̂2(ωh

kn

0 ), for ω ∈ Un. Then (1.5) implies that TH (̂g̃) = 1 a.e.,
whereas (1.6) and (1.7) ensure that SH (̂g̃) ∈ L2(U/H, λ).

A weakly admissible vector for πU (which is missing in the unimodular case) can be
obtained by similar (somewhat simpler) methods.

Remark 3. In Theorem 1 we cannot replace �rc by the bigger set �c. To give a non-
unimodular example, let H = {2kh : k ∈ Z, h ∈ SL(2, Z)}, which is a discrete subgroup of
GL(2, R). Whenever (γ1, γ2) ∈ R̂2 is such that γ1/γ2 is irrational, the stabilizer of (γ1, γ2)

in H is finite. Hence the set �c is a conull subset in R̂2, whereas (as we already noted) �rc

is empty. H operates ergodically on R̂2 (already SL(2, Z) does, [33, 2.2.9]), and hence π

is an irreducible representation. But it has been shown that for discrete dilation groups π

is never irreducible and square-integrable, see [12, Remark 12].

Let us now give a short summary of the steps which have to be carried out for the
construction of wavelet transforms from semidirect products:

1. Compute the H -orbits in R̂k , possibly by giving a parametrization of R̂k/H .

2. Determine the set �rc. If λ(�rc) = 0, stop.

3. Parametrize each orbit in �rc and determine the image µγH of Haar measure under
the projection map h �→ γ h.
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4. Compute the measure decomposition dλ(γ ) = dβωH (γ )dλ(ωH).

5. Compute the Radon–Nikodym derivative κ .

6. The admissibility condition can then be formulated for subsets of �rc just as in
Theorem 1. Theorem 2 ensures the existence of admissible vectors.

Since the final step—the actual construction of admissible vectors—is missing, the
description is somewhat incomplete. Clearly the construction given in the proof of Theo-
rem 2 is not very practical, but it seems doubtful to us that a more explicit method is available
which works in full generality. However, in many concrete cases where parametrizations
of orbits and orbit spaces are possible, they can be given differentiably. Then computing
the various measures and Radon–Nikodym derivatives reduces to computing the Jacobians
of those parametrizations. We expect that in such a setting the construction of admissible
vectors should also be facilitated.

For the remainder of this section we want to focus on the case that G is unimodular.
The main motivation for the following proposition is to show that certain subrepresentations
of π do not have admissible vectors. In the light of Theorem 2, this amounts to proving
that λ(U/H) is infinite, for the H -invariant set U ⊂ �rc under consideration.

The argument proving the following proposition employs the action of the scalars on
the orbit space �rc/H . The group of scalars could be replaced by any group A ⊂ GL(k, R)

which normalizes H . Symmetry arguments of this type could also simplify the steps 1.
through 6. sketched above.

R
+ operates on R̂k/H by multiplication, i. e., if a ∈ R

+ then a · (γH) = (aγ )H is
an operation. Obviously �rc is invariant, so that we obtain an operation on �rc/H . The
next proposition gives the behavior of λ under this action.

Proposition 2.
Assume that G is unimodular. Let the measures λ and µγH be as in Lemma 1. For

a ∈ R
+ and γ ∈ R̂k let a∗(µγH ) denote the image measure of µγH on γHa, i. e., for

measurable B ⊂ γHa let a∗(µγH )(B) := µγH (Ba−1). Moreover let the measure λa

be given by λa(B) := λ(Ba) (B ⊂ R̂k/H measurable). Then on �rc/H the following
relations hold:

µaγH = a∗(µγH ) ,

λa = akλ .

Proof. The first equality is immediate from the definitions of µγH and µaγH . For the
second equation let us introduce the following notation: If f : �rc → R is a positive,
measurable function, let q(f ) denote the function on �rc/H defined by

q(f )(γH) :=
∫

γH

f (ω) dµγH (ω) .

Moreover let fa(ω) := f (ωa−1), for all ω ∈ �rc and a ∈ R
+. From the first equation we

obtain

q(fa)(γH) =
∫

γH

f
(
ωa−1

)
dµγH (ω)

=
∫

γHa−1
f (ω) dµγHa−1(ω)

= q(f )
(
γHa−1

)
.
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Using this equation, we compute

∫
�rc/H

q(f )(γH) dλ(γH) = a−n

∫
�rc

fa(ω) dλ(ω)

= a−n

∫
�rc/H

q(fa)(γH) dλ(γH)

= a−n

∫
�rc/H

q(f )(γHa−1) dλ(γH)

= a−n

∫
�rc/H

q(f )(γH) dλa(γH) .

Using arguments similar to the one used in the proof of Theorem 2, it is readily seen that for
each measurable A ⊂ �rc/H there exists a positive measurable f on �rc with q(f ) = χA.
Hence we have shown the second equation.

As a first consequence we obtain that admissible vectors exist only for proper subsets
of �rc. This was already noted (in the special case where �rc is conull in R̂k) in [26],
Theorem 1.8.

Corollary 1.

Assume that G is unimodular, and that U := �rc is not a nullset. Then the subrep-
resentation πU is not strongly square integrable.

Proof. By assumption we have λ(�rc/H) > 0, and we need to show that λ(�rc/H)

= ∞. But for all a ∈ R
+, a�rc = �rc, and Proposition 2 yields λ(�rc/H) = λ(a ·

�rc/H) = |a|−kλ(�rc/H).

It is well known that, given a square integrable representation σ of a locally compact
group G, every vector in Hσ is admissible iff σ is irreducible and G is unimodular. Hence
irreducible representations would be particularly useful, having no restrictions at all on
admissible vectors. But the following corollary excludes irreducible representations from
our setting. The statement was proved first in [15] by a technique employing the Fell
topology on Ĝ.

Corollary 2.

Let G be unimodular. Then the quasiregular representation π does not contain any
irreducible square-integrable subrepresentations.

Proof. Assume the contrary and let πU be an irreducible square integrable subrep-
resentation. Here U denotes the corresponding H -invariant subset of R̂k . Then, by [2,
Theorem 1.1], U is (up to a null set) an orbit of positive measure, hence open (by Sard’s
Theorem). In particular U ⊂ �rc, and λ({U}) > 0.

From the fact that HU has admissible vectors we conclude that λ({U}) < ∞. On
the other hand, an easy connectedness argument shows that for each γ ∈ U , the ray R

+γ

is contained in the open orbit U . Hence the same argument which proved the previous
corollary shows that λ({U}) = ∞, which yields the desired contradiction.
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2. Plancherel Measure and Admissibility

This section is devoted to a short review of Plancherel theory and its relations to
generalized wavelet transforms. For a more detailed (yet still short) account of Plancherel
theory, consult [11, Section 7.5]. Unfortunately, there does not seem to exist a widely
accessible exposition of Plancherel theory that covers non-unimodular groups in sufficient
detail; a good source for the unimodular case is [8]. For the non-unimodular theory, the
original articles [22, 30, 9] are probably still the best sources (though rather technical at
times).

All throughout this section, G is a second countable locally compact group. The
starting point for the definition of the Plancherel transform is the operator valued Fourier
transform on L1(G). Given f ∈ L1(G) and σ ∈ Ĝ, we define

F(f )(σ ) := σ(f ) :=
∫

G

f (x)σ (x) dµG(x) ,

where the integral is taken in the weak operator sense. As direct consequences of the
definition we have ‖σ(f )‖∞ ≤ ‖f ‖1 and σ(f ∗ g) = σ(f ) ◦ σ(g).

The Plancherel transform is obtained by extending the Fourier transform from L1(G)∩
L2(G) to L2(G). The non-unimodular part of the following Plancherel theorem is due to
Duflo and Moore [9, Theorem 5], whereas the unimodular version may be found in [8].

Theorem 3.
Let G be a second countable locally compact group having a type-I regular represen-

tation. Then there exists a measure νG on Ĝ and a measurable field (Kσ )
σ∈Ĝ of selfadjoint

positive operators with densely defined inverses, with the following properties:

(i) For f ∈ L1(G) ∩ L2(G) and νG-almost all σ ∈ Ĝ, the closure of the operator
σ(f )K

1/2
σ is a Hilbert–Schmidt operator on Hπ .

(ii) The map L1(G) ∩ L2(G) � f �→ ([σ(f )K
1/2
σ ])σ∈Ĝ extends to a unitary equiva-

lence

P : L2(G)→ B⊕2 :=
∫ ⊕

Ĝ

B2(Hσ ) dνG(σ) .

This unitary operator is called the Plancherel transform of G. It intertwines the
two-sided representation λG × ρG with

∫ ⊕
Ĝ

σ ⊗ σ dνG(σ).

(iii) G is unimodular iff almost all Kσ are scalar multiples of the identity operator. In
this case we fix Kσ = IdHσ

.

(iv) Once a measurable choice (Kσ )σ∈Ĝ of Duflo–Moore operators is made, the Plan-
cherel measure νG is uniquely determined. This applies in particular to the uni-
modular case, where Kσ = IdHσ

leads to a unique definition of νG.

In the following f̂ denotes the Plancherel transform of the L2-function f ; in particular
in the non-unimodular case it should not be confused with the Fourier transform.

A further important feature of the Plancherel transform is the decomposition of in-
tertwining operators: If T : L2(G)→ L2(G) is a bounded operator which commutes with
left translations, then there exists a measurable field of bounded operators (Tσ )σ∈Ĝ with
‖Tσ‖∞ uniformly bounded, such that

T =
∫ ⊕

Ĝ

IdHσ
⊗Tσ dνG(σ) .
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This applies in particular to projections onto invariant subspaces. The obvious analogue for
the right action of G holds as well. This decomposition property is the key feature from the
point of view of generalized wavelet transforms. First of all it provides systematic access
to the subrepresentations of the regular representations, and by the discussion at the end of
the Introduction, those subrepresentations exhaust all situations of interest. Moreover, for a
given admissible vector η, there are two Plancherel transforms to consider: The Plancherel
transform of η as L2-function, and the decomposition of the intertwining operator Vη. Re-
lating those two objects enables us to formulate admissibility conditions and to construct
vectors which fulfill them. The following theorem summarizes the results of [14]. Note
that [14] uses the operators Cσ = K

−1/2
σ . Note also that the admissibility conditions in

part (b) are only sufficient, though we expect them to be necessary as well. The admissi-
bility conditions are not explicitly stated in [14], but they are simple consequences of [14,
Lemma 1.4].

Theorem 4.
Assume that λG is type-I. Let H ⊂ B⊕2 be an invariant subspace and denote by P the

projection onto H. Then there exists a measurable family of projections (Pσ )σ∈Ĝ such that

P =
∫ ⊕

Ĝ

IdHσ
⊗Pσ dνG(σ) .

(a) Assume that G is unimodular. Then η ∈ H is

weakly admissible iff η̂(σ ) is injective on νG-a.e. Pσ (Hσ ) ,

and σ �→ ‖η̂(σ )‖∞ is in L∞
(
Ĝ

)
.

admissible iff η̂(σ ) is an isometry on Pσ (Hσ )

for νG-a.e. σ .

HU has admissible vectors iff
∫

Ĝ

dim(Pσ (Hσ )) dνG(σ) <∞

λG has an admissible vector iff G is discrete.

(b) Assume that G is non-unimodular. Assume that η ∈ H is such that η̂(σ )∗K−1/2
σ

extends to a bounded operator on Hσ , for νG-almost every σ ∈ Ĝ. Then η ∈ H
is

weakly admissible if η̂(σ ) is injective on νG-a.e. Pσ (Hσ ) ,

and σ �→
∥∥∥ [

η̂(σ )∗K−1/2
σ

] ∥∥∥∞ is in L∞
(
Ĝ

)
.

admissible if
[
η̂(σ )∗K−1/2

σ

]∗
is an isometry on Pσ (Hσ ) ,

for νG-a.e. σ .

There exists a vector η ∈ B⊕2 fulfilling the admissibility condition for H = B⊕2 .
Hence λG—and thus every subrepresentation thereof—has an admissible vector.

The statements somewhat simplify when we consider multiplicity-free representa-
tions. Since the quasi-regular representation will turn out to be multiplicity-free, we find it
useful to work out this particular case in some detail:
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Theorem 5.
Assume that λG is type-I. Let π be a multiplicity-free weakly square-integrable rep-

resentation of G. Then there exists a νG-measurable set � ⊂ Ĝ such that

π �
∫

�

σ dνG(σ) .

For the following, we assume that π is in fact realized as the direct integral.

(a) Assume that G is unimodular. η = (ησ )σ∈� ∈ Hπ is admissible iff ‖ησ‖ = 1 for
νG-every σ ∈ �. π is strongly square-integrable iff νG(σ) <∞.

(b) Assume that G is non-unimodular. Let η = (ησ )σ∈� be such that for νG-a.e.
σ ∈ �, ησ ∈ dom(K

−1/2
σ ), with ‖K−1/2

σ ησ‖ = 1. Then η is admissible. There
exist vectors η ∈ Hπ fulfilling this admissibility condition.

A consequence of the theorem is the following proposition, which shows that Plan-
cherel measure is in fact characterized by the admissibility condition. This observation will
allow us to identify the quotient measure λ obtained in Section 1 with Plancherel measure.

Proposition 3.
Assume that λG is type-I. Let (Kσ )σ∈Ĝ be a measurable choice of Duflo–Moore

operators—for G unimodular, Kσ = IdHσ
—and let νG be the corresponding Plancherel

measure. Let π, � be as in Theorem 5, and assume in addition that there exists an admissible
vector for π ; i. e., assume in the unimodular case that νG(�) < ∞ . Let ν̃ be a Borel
measure on � which is equivalent to νG, and consider the representation

π̃ =
∫ ⊕

�

σ dν̃(σ ) .

Assume that for all measurable vector fields η = (ησ )σ∈� ∈ Hπ̃ fulfilling ησ ∈ dom(K
−1/2
σ )

ν̃-a. e., the admissibility criterion

η admissible for π̃ ⇐⇒
∥∥∥K
−1/2
σ ησ

∥∥∥ = 1 ν̃-almost everywhere

is valid. Then ν̃ = νG on �.

Proof. Denote by T : ∫ ⊕
�

σ dνG(σ) → ∫ ⊕
�

σ dν̃(σ ) the unitary intertwining operator
obtained by

T ((φσ )σ∈�) =
√

dν̃

dνG

(σ )φσ


σ∈�

.

Clearly, a unitary equivalence maps admissible vectors onto admissible vectors. Moreover,
if η = (ησ )σ∈� fulfills ησ ∈ dom (K

−1/2
σ ) νG-almost everywhere, then T η does as well.

Hence, if we let η ∈ Hπ be any vector fulfilling the admissibility criterion from Theorem 5,
the necessary admissibility criterion for π̃ gives

∥∥∥K−1/2
σ ησ

∥∥∥ = 1 =
∥∥∥∥∥∥
√

dν̃

dνG

(σ )K−1/2
σ ησ

∥∥∥∥∥∥ almost everywhere .

Hence the Radon–Nikodym-derivative is 1 almost everywhere.
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3. Concrete and Abstract Admissibility Conditions

Now we are in a position to establish the connection between the results in Sections 1
and 2. In order to apply the theorems from Section 2, let us assume that the semidirect
product has a type-I regular representation. In addition, we restrict attention to the case that
R̂k/H is standard.

The first and crucial step consists in writing π as the direct integral of monomial
representations, as described in the following result (which is [23, Theorem 2.1]). The
direct integral decomposition is obtained by looking at the dual representation (1.1) in the
light of the measure decomposition from Lemma 1 (a). Note that if R̂k/H is standard, the
measure disintegration described in Lemma 1 (a) can be given for all of R̂k instead of �rc,
i. e., λ is given on R̂k/H , and the βγH exist also for orbits γH without compact stabilizer.

Lemma 2.
The quasiregular representation π is the direct integral

π �
∫ ⊕

R̂k/H

(
IndG

Gγ
γ × 1

)
dλ(γH) ,

of irreducible representations, where Gγ = R
k

� Hγ . In particular π is multiplicity-free.

Proof. The disintegration dλ(ω) = dβγH (ω)dλ(γH) allows us to interpret the conju-

gated representation π̂ as a direct integral over R̂k/H of representations acting on the spaces
L2(γH, µγH ), by identifying each f̂ with the family of restrictions (f̂ |γH )

γH∈R̂k/H
. The

representations over the orbits are easily seen to be induced in the indicated manner, using a
concrete realization of IndG

Gγ
γ×1 on L2(γH, µγH ) via cross sections. The representations

are irreducible and pairwise inequivalent by Mackey’s theory.

An algorithm for the construction of Plancherel measures for semidirect products was
provided by Kleppner and Lipsman in the fundamental articles [22] I, II. Let us give an
outline: By Mackey’s theory, the dual of G may be described by

Ĝ =
⋃

γH∈R̂k/H

{
IndG

Gγ
γ × σ : σ ∈ Ĥγ

}
,

whenever R̂k/H is standard. An intuitive interpretation is that Ĝ may be considered as
a “fibred space,” with base space R̂k/H and the fibre over γH is (identified with) Ĥγ ,
and it is the central result of [22] (see part II, Theorem 2.3) that the Plancherel measure is
obtained as a “fibred measure” as well: Take any pseudo-image λν of standard Lebesgue
measure, choose Plancherel measures νγH of the little groups Hγ which exist if we assume
that almost every Hγ has a type-I regular representation. Then the measure ν defined by

ν(A) =
∫

R̂k/H

∫
Ĥγ

χA

(
IndG

Gγ
γ × σ

)
dνγH (σ ) dλν(γH) (3.1)

is equivalent to the Plancherel measure. This determines the measure class. If G is uni-
modular, the proof of [22, II, Theorem 2.3] in fact gives a recipe how to obtain the correct
normalization; whereas in the non-unimodular case the results of [22] only give the measure
class, and no access to the Duflo–Moore operators.
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The “fibred measure”-view of Plancherel measure provides a neat interpretation of
the set �c. As calculated in the previous lemma, the quasi-regular representation is a direct
integral, and the measure defining it is supported on a subset of Ĝ which meets each fibre
in precisely one point, that is in IndG

Gγ
γ ×1, which corresponds to the trivial representation

in Ĥγ . The Plancherel measure of the trivial representation in Ĥγ is positive if and only if
the Hγ is compact. Hence the inner integral in (3.1) vanishes except for γ ∈ �c. It follows
that the part of the support corresponding to the complement of �c is a Plancherel-null
set. On the other hand, the construction of Plancherel measure shows that on the part of
the support corresponding to �c, Plancherel measure and λ are equivalent. Indeed, we are
free to take λν = λ, and the inner integral in (3.1) is positive if Hγ is compact. In short,

R̂k/H = �c/H ∪ (R̂k \�c)/H gives the decomposition of λ into a part which is absolutely
continuous with respect to Plancherel measure, and a part which is singular. This yields an
abstract explanation of the role of �c, in particular of the necessary condition in Theorem 1.

Before we describe the relationship between concrete and abstract admissibility con-
ditions, it is useful to relate the Borel space �rc/H to a suitable subset of Ĝ.

Proposition 4.
There exists a conull, Borel subset U0 ⊂ �rc, such that the mapping

� : U0/H � γH �→ IndG
Gγ

γ × 1

is a Borel isomorphism onto a standard measurable subset � ⊂ Ĝ.

Proof. We just noted that πU is multiplicity-free with

πU �
∫ ⊕

U/H

(
IndG

Gγ
γ × 1

)
dλ(γH) .

On the other hand, the existence of a weakly admissible vector for πU implies that πU is
equivalent to a subrepresentation of the regular representation. This gives the alternative
decomposition

πU �
∫ ⊕

�1

σ dνG(σ) .

Hence we may invoke [27, Theorem, p. 117] to see that T arises from an isomorphism of the
underlying Borel spaces: There exist conull subsets � ⊂ �1, U0 ⊂ �rc/H , a Borel iso-
morphism � : U0 → �, a measurable field of unitary operators TγH : L2(γH, dβγH )→
H�(γH) and a Radon–Nikodym derivative � : U0/H → R

+
0 such that T decomposes into

(�(γH)TγH )γH . Since T is an intertwining operator, so is almost every TγH , and thus
�(γH) = IndG

Gγ
(γ × 1).

Let us now summarize the transfer between concrete and abstract admissibility con-
ditions.

Theorem 6.
Let �, U0 and �0 be as in Proposition 4. For γH ⊂ U0 let KγH denote the

operator on L2(γH, dβγH ) given by pointwise multiplication with κ|γH . � gives rise to
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the following correspondences between the objects in Section 1 and those in Section 2:

U0/H ←→ �0 ,

γH ←→ σ ,

L2(γH, dβγH ) ←→ Hσ ,

f̂ |γH ←→ ησ ,

SH

(
f̂

)
(γH) ←→ ‖ησ‖ ,

λ ←→ νG ,

KγH ←→ Kσ ,

TH

(
f̂

)
(γH) ←→

∥∥∥K−1/2
σ ησ

∥∥∥ .

These correspondences exhibit Theorems 1 and 2 as special instances of Theorem 5.

Proof. It remains to check that the Duflo–Moore Kσ corresponds to KγH , and that
the Plancherel measure νG belonging to this particular choice of Duflo–Moore operators
corresponds to λ. Straightforward calculation, using relation (1.2) from Lemma 1, shows
that KγH satisfies the quasi-invariance relation(

IndG
Gγ

(γ × 1)(x, h)
)

KγH

(
IndG

Gγ
(γ × 1)(x, h)

)∗ = �G(x, h)−1KγH .

By [9, Corollary 1 to Theorem 5], the same relation has to be fulfilled by the Duflo–Moore
operators; in fact by [9, Lemma 1], the relation characterizes the Duflo–Moore operators up
to a scalar multiple. Since in addition, the measurability of κ ensures that (KγH )γH∈U0/H is
measurable, we may take this operator field as a realization of the Duflo–Moore operators.

Then it remains to prove that, given this particular choice of Duflo–Moore operators,
the measure λ is the corresponding Plancherel measure. But this is provided by the concrete
admissibility condition in Theorem 1 together with Proposition 3.

Concluding Remarks

The use of discrete dilation groups can be seen as a first discretization step; for
a fully discrete wavelet transform we would have to discretize the translations as well.
Recent publications [4, 31, 25] document the increasing interest in the use of direct integral
decompositions for the study and construction of fully discrete wavelet (or wavelet-like)
systems. We expect that a connection between our results and the results contained in these
articles would provide a better understanding of the discretization problem.

Our main motivation was to study admissibility conditions both by more or less
elementary methods and in connection with Plancherel theory. Our paper can be seen as
a natural continuation of the article by Bernier and Taylor. Our construction of Duflo–
Moore operators is entirely analogous to what is done in [5] for the case of open free orbits.
Irreducible square-integrable subrepresentations of π correspond to open orbits, which
appear as atoms in the quotient space �rc/H . Passing from irreducible representations (or
a finite direct sum of irreducibles) to the general case thus corresponds to the transition
from counting measure on a finite set of open orbits to a certain measure on the orbit space.
The additional technical cost consists mainly in keeping track of the various measures and
their respective normalizations.
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As we mentioned in the Introduction, Plancherel theory did not help establish admis-
sibility conditions or construct admissible vectors for the quasi-regular representation. It
was rather the other way round: The close connection between the admissibility conditions
and Plancherel measure, as observed in Proposition 3, turned out to be a useful tool for the
explicit calculation of Plancherel measure and the Duflo–Moore operators. Nevertheless,
given an arbitrary reducible representation, the connection to Plancherel theory can provide
an orientation and a possible strategy for the construction of admissible vectors. We believe
that the semidirect products studied in this paper are very well suited to explicitly see these
aspects of Plancherel theory at work.

The results given here and in [14] could probably be generalized to hold for the
type-I part of λG. Duflo and Moore devised their Plancherel theory for this more general
setting, and we believe that the proofs in [14] should go through as well. Similarly, the
requirement that R̂k/H be standard could probably be replaced by something weaker.
Generally speaking, the type-I requirement is not needed for the existence of admissible
vectors. For instance, admissible vectors exist for the regular representation of an arbitrary
discrete group (simply take the Kronecker-δ at the origin), but only very few of these
groups have a type-I regular representation; confer [20]. Also, as examples in the literature
illustrate, Plancherel measure can exist in the non-type-I setting, but it is no longer unique.
This will probably have consequences for the necessary condition in Theorem 4(a) for the
existence of admissible vectors. However, for the construction of admissible vectors for
the regular representation of a non-unimodular group, it is conceivable that any Plancherel
decomposition might work. (Note however that the construction in [14] rests on the concrete
description of the Duflo–Moore operators in [9], which is valid only for the type-I setting.)

Despite the discussion for the general case, the existence of admissible vectors for
the quasiregular representation (or some subrepresentation) seems to be tied more closely
to a regularity condition on the orbit space, which in turn is related to the type of the
regular representation. In this context there is essentially one open question left, and that
regards the role of the set �c, or rather, �c \ �rc. As we have seen in Remark 3, the
existence of admissible vectors corresponding to subsets of the latter set is not guaranteed.
The following conjecture, which is a sharpening of a statement from Theorem 1, would
neatly resolve the question; unfortunately discrete dilation groups acting ergodically (such
as in Remark 3) are so far our only evidence for its truth. However, in the observations
following [26, Proposition 2.8] the authors make a conjecture similar to the one we give
here.

Conjecture: If πU has an admissible vector, then U ⊂ �rc.

Appendix

A. The Sets �c and �rc

In this Appendix we prove the measurability of �c and the openness of �rc. The
proof for the first result uses the subgroup space of H , as introduced by Fell [10].

Definition and Remark A.1. Let G be a locally compact group. The subgroup space
of G is the set K(G) := {L < G : L is closed }, endowed with the topology generat-
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ed by the sets

U(V1, . . . , Vn;C) := {L ∈ K(G) : L ∩ Vi �= ∅,∀1 ≤ i ≤ n, L ∩ C = ∅} ,
where V1, . . . , Vn denotes any finite family of open subsets of G and C ⊂ G is compact.
With this topology K(G) is a compact Hausdorff space.

The next few results are probably well known, but we were not able to find references
for them:

Proposition A.2.
If G is second countable, then so is K(G).

Proof. Clearly it suffices to consider only U(V1, . . . , Vn;C) with Vi belonging to a
countable base of the topology on G, hence we are done when we show that for each
C ⊂ G compact we have U(G;C) = ⋃

n∈N U(G;Cn), with the Cn belonging to a fixed
countable collection of compact sets. For this purpose, let A ⊂ G be countable and dense
and let U be a countable neighborhood base of unity consisting of compact sets. Then, for a
given compact C and a closed subgroup H with H ∈ U(G;C) there exist a1, . . . , am ∈ A

and U1, . . . , Um ∈ U with C ⊂ ⋃m
i=1 aiUi ⊂ G \ H . Hence H ∈ U(G;⋃m

i=1 aiUi) ⊂
U(G;C), which shows the claim.

Proposition A.3.
Let G be a Lie group and H < G be closed. Then the intersection mapping

I : K(G)→ K(H), L �→ L ∩H

is Borel.

Proof. Since H is second countable, the sets of the type U(V ; ∅) (V ⊂ H open) and
U(H ;C) (C ⊂ H compact) generate the Borel structure of K(H), hence we need only
take care of these. Clearly I−1(U(H ;C)) = {L ∈ K(G) : L ∩ C = ∅} is open. Now
let V ⊂ H be open, V = Ṽ ∩ H for some open set Ṽ ⊂ G. Since G is a Lie group,
Ṽ = ⋃

i∈N Fi with closed subset Fi . Furthermore H = ⋃
j∈N Cj with compact sets Cj .

Hence,

I−1(U(V ; ∅)) =
{
L ∈ K(G) : L ∩H ∩ Ṽ �= ∅

}
=

⋃
i,j∈N
{L ∈ K(G) : L ∩ Cj ∩ Fi �= ∅}

is a countable union of closed sets, since the sets Cj ∩ Fi are compact.

Now we can consider the stabilizer mapping γ �→ Hγ :

Proposition A.4.
Let H < GL(k, R) be closed. Then the stabilizer mapping R̂k � γ �→ Hγ ∈ K(H)

is a Borel mapping. The set �c is a Borel subset of R̂k .

Proof. By Proposition A.3 it is sufficient to consider H = GL(k, R). For this case
fix γ1 ∈ R̂k \ {0} and let ρ : R̂k \ {0} → H be any measurable cross section, i. e., ρ

fulfills γ1ρ(ω) = ω for all ω ∈ R̂k \ {0}. Then we have Hω = ρ(ω)Hγ1ρ(ω)−1, hence the
stabilizer mapping equals c ◦ ρ, with c(x) := xHγ1x

−1. The mapping c : H → K(H) is
easily seen to be continuous, hence the stabilizer mapping is measurable.
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For the last statement it suffices to show that Kc(H) := {L ∈ K(H) : L is compact}
is a Borel subset of K(H). For this purpose let (Cn)n∈N be a countable family of compact
subsets of H with the property that for each K ⊂ H compact there exists an n ∈ N with
K ⊂ Cn. Such a family was constructed in the proof of Proposition A.2. We then have

Kc(H) =
⋃
n∈N
{L ∈ K(H) : L ∩ (H \ Cn) = ∅} ,

whence we see that Kc(H) is the countable union of closed sets.

The proof of the following proposition uses ideas from [26].

Proposition A.5.
�rc is open.

Proof. Define the ε-stabilizer

Hε
ω = {h ∈ H : |ωh− ω| ≤ ε} ,

where | · | denotes the Euclidean norm on R̂k . If Hε
ω is compact for some ε > 0, then

Bε(ω)∩ ωH = ωHε
ω is compact. (Here Bε(x) denotes the closed ε-ball around x.) Hence

the orbit ωH is locally closed. Conversely, assume that Bε(ω) ∩ ωH is compact for some
ε > 0 and that Hω is compact. There exists a measurable cross-section τ : ωH → H which
maps compact sets in ωH to relatively compact sets in H . Hence Hε

ω ⊂ Hωτ(Bε(ω)) is
relatively compact and closed, hence compact. In short, we have shown

ω ∈ �rc ⇐⇒ ∃ε > 0 : Hε
ω is compact ,

and we are going to use this characterization to prove the openness of �rc.
If the origin is in �rc, then H is compact, and �rc = R̂k . In the other case, pick ω

in �rc and ε > 0 with Hε
ω compact. Since GL(k, R) acts transitively on R̂k \ {0}, we may

(possibly after passing to a smaller ε) assume that there exists a continuous cross-section
σ : Bε(ω)→ GL(k, R) with relatively compact image, i. e., ωσ(γ ) = γ , for all γ ∈ Bε(ω),
and σ(Bε(γ )) ⊂ U , where U is a compact neighborhood of the identity in GL(k, R). We
are going to show that Bε(ω) ⊂ �rc. For this purpose let γ ∈ Bε(ω). Clearly it is enough
to prove that

C := {h ∈ H : γ h ∈ Bε(ω)} = {h ∈ GL(k, R) : γ h ∈ Bε(ω)} ∩H

is relatively compact. By assumption,

Hε
ω = {h ∈ GL(k, R) : ωh ∈ Bε(ω)} ∩H

is compact. Hence

C = {h ∈ GL(k, R) : ωσ(γ )h ∈ Bε(ω)} ∩H

= σ(γ )−1{h ∈ GL(k, R) : ωh ∈ Bε(ω)} ∩H

⊂ U−1({h ∈ GL(k, R) : ωh ∈ Bε(ω)} ∩H)

i. e., C is contained in the product of two compact sets, and thus relatively compact. (Note
that we used here that H is a closed subgroup of GL(k, R), hence compactness in H is the
same as compactness in GL(k, R).)
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