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ABSTRACT. We consider Shannon sampling theory for sampling sets which are unions of shifted
lattices. These sets are not necessarily periodic. A function f can be reconstructed from its samples
provided the sampling set and the support of the Fourier transform of f satisfy certain compatibility
conditions. An explicit reconstruction formula is given for sampling sets which are unions of two
shifted lattices. While explicit formulas for unions of more than two lattices are possible, it is more
convenient to use a recursive algorithm. The analysis is presented in the general framework of
locally compact abelian groups, but several specific examples are given, including a numerical
example implemented in MATLAB. Our methods also provide a new tool for designing sampling
sets of minimal density.

1. Introduction

The classical sampling theorem permits reconstruction of a bandlimited function from
its values on a set of equidistant points on the real line R [17, 21, 25]. It has been extended
in many directions; see the reviews [3, 11, 14] as well as the volumes [12, 13, 18, 19,
27]. Kluvánek’s important generalization results from replacing R by an arbitrary locally
compact abelian (LCA) group G [15]. The sampling set is then a coset of a closed subgroup
of G. Periodic sampling, introduced by Kohlenberg [16], is well established and considers
sampling sets which are unions of cosets of one subgroup; see, e. g., [5, 9, 20, 26, 28]. The
present work investigates the case where the sampling set is a union of cosets of possibly
different subgroups. Such sets are not necessarily periodic. Seminal results for this case
have been derived by Walnut [22] and applied in [8, 23, 24]. These theorems were proved
for G = R and extended to higher dimensions by means of tensor products. The approach
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taken here works for general LCA groups G, the sampling sets in case of G = Rn need not
be tensor products of a one-dimensional set, and the support K of the Fourier transform
of f need not be a hypercube. On the other hand, the sampling set and the set K need
to satisfy certain compatibility conditions. If these conditions are satisfied, we obtain a
recursive algorithm for reconstructing f from its samples on cosets of subgroups (lattices)
H1, . . . , HN . Our results do lead in principle to explicit reconstruction formulas, and for
the case of two lattices such a formula is given in Corollary 2. However, for more than two
lattices the formulas tend to become very complicated, while the recursive algorithm is both
convenient to state and easy to program. While the sampling sets we consider here could
also be treated in many cases with the general methods for irregular sampling developed in
the last decade (see, e. g., [2, 6, 7]), our results make explicit use of the structure these sets
possess.

The article is organized as follows: We begin with a review of basic definitions and
facts, leading up to Kluvánek’s general version of the classical sampling theorem. For
a more detailed introduction to sampling theory on LCA groups we refer to the recent
article by Dodson and Beaty [4]. In Section 3 the main results are developed and illustrated
with examples. Theorem 3 provides a method to reduce the original problem to a simpler
one, which can be used to obtain new sampling theorems from known ones. Explicit
reconstruction formulas for sampling sets which are unions of two shifted lattices are given
in Corollary 2. Several examples are given where our techniques yield sampling sets
of minimal density. Applying Theorem 3 repeatedly yields the recursive reconstruction
method of Theorem 4 for sampling on unions of N shifted lattices. The article concludes
with a numerical example implementing the algorithm in MATLAB for the group G = ZL.

2. Standard Definitions and Facts

Let Z, R, C denote the integers, reals, and complex numbers, respectively. Let G

denote a locally compact abelian (LCA) group written additively. The character group Ĝ

consists of the continuous homomorphisms of G into the circle group T = R/Z. The value
of the character ξ ∈ Ĝ at the point x ∈ G is written 〈x, ξ〉. Ĝ has a natural addition and
a natural topology relative to which it is also an LCA group. On every LCA group there
exists a non-negative regular measure mG, the so-called Haar measure of G, which is not
identically zero and translation invariant. The Haar measure is uniquely determined up to
multiplication by a constant. Lp(G) denotes the space of all Borel functions on G such

that ‖ f ‖p= (∫
G

|f (x)|p dmG(x)
)1/p is finite.

The Fourier transform of a function f ∈ L1(G) is the continuous function f̂ on Ĝ

defined by

f̂ (ξ) =
∫

G

f (x)e−2πi〈x,ξ〉 dmG(x) .

We will always normalize the Haar measure on Ĝ such that the following holds.

Theorem 1 (Fourier inversion formula).
If f ∈ L1(G) is continuous and f̂ ∈ L1(Ĝ), then

f (x) =
∫

Ĝ

f̂ (ξ)e2πi〈x,ξ〉 dmĜ(ξ) =
(
f̂

)∧
(−x) . (2.1)
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The Fourier transform can be extended to a linear isomorphism of L2(G) onto L2(Ĝ)

by means of the Plancherel theorem (cf. [10, Sec. 31.18]).
Let H be a closed subgroup of an LCA group G. The annihilator of H is the set

H⊥ ⊂ Ĝ given by H⊥ = {η ∈ Ĝ : 〈y, η〉 = 0 for all y ∈ H }. H⊥ is a closed
subgroup of Ĝ and is isomorphically homeomorphic to the character group of G/H , i. e.,
H⊥ = (G/H)∧. Furthermore we have that (H⊥)⊥ = H , and Ĥ = Ĝ/H⊥.

Definition 1. A closed discrete subgroup H of G such that H⊥ is also discrete is called
a lattice. A measurable subset R of Ĝ such that every ξ ∈ Ĝ can be uniquely written as
ξ = ρ + η, where ρ ∈ R and η ∈ H⊥ is called a fundamental domain of H⊥.

Convention 1.
Throughout this article we assume that mG is given and normalize the Haar mea-

sure on Ĝ such that the Fourier inversion formula (2.1) holds. For a lattice H and R a
fundamental domain of H⊥ we normalize the Haar measures on H , H⊥, and Ĝ/H⊥ such
that

(i) mH equals the counting measure,
(ii) mH⊥ equals mĜ(R) times the counting measure, and
(iii) mĜ/H⊥(Ĝ/H⊥) = 1.

We always have 0 < mĜ(R) < ∞ and the above normalizations imply that for every
integrable function F on Ĝ∫

Ĝ

F (ξ)dmĜ(ξ) = mĜ(R)

∫
Ĝ/H⊥

∑
η∈H⊥

F(ξ + η)dmĜ/H⊥(ξ + H⊥) . (2.2)

Let g be a function on Ĝ/H⊥ and let F in (2.2) be given by F(ξ) = g(ξ + H⊥) for
ξ ∈ R, and F(ξ) = 0 otherwise. Then (2.2) allows to identify integration over Ĝ/H⊥ with
integration over R:∫

Ĝ/H⊥
g(ξ + H⊥)dmĜ/H⊥(ξ + H⊥) = 1

mĜ(R)

∫
R

g(ξ + H⊥)dmĜ(ξ) . (2.3)

3. Sampling Theorems

We begin with Kluvánek’s version of the classical sampling theorem. A key ingredient
is the function ϕR defined in the following lemma, proven in Kluvánek’s paper [15].

Lemma 1.
Let H be a lattice and R a fundamental domain of H⊥. Then the function ϕR defined

by

ϕR(x) = 1

mĜ(R)

∫
R

e2πi〈x,ξ〉dmĜ(ξ), x ∈ G , (3.1)

is continuous on G and satisfies ϕR(0) = 1, ϕR(y) = 0 for 0 	= y ∈ H , ‖ ϕR ‖2 =
1/

√
mĜ(R), and ∫

G

ϕR(x) ϕR(x − y) dmG(x) = 0 for 0 	= y ∈ H .
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Kluvánek’s theorem reads as follows.

Theorem 2.
Let H be a lattice and R a fundamental domain of H⊥. Suppose f ∈ L2(G) and

f̂ (ξ) = 0 for almost all ξ 	∈ R. Then f is equal almost everywhere to a continuous function.
If f itself is continuous, then

f (x) =
∑
y∈H

f (y)ϕR(x − y) (3.2)

uniformly on G and in the sense of convergence in L2(G). Furthermore, the L2-norm of f

is given by

‖ f ‖2
2=

1

mĜ(R)

∑
y∈H

|f (y)|2 .

The last equation shows that the restriction of f to the discrete subgroup H gives a
function in L2(H). This property is needed for the reconstruction formula (3.2) to be well-
defined. We would like to apply this formula also to functions whose Fourier transform is
supported in a set K larger than R. The following corollary to Kluvánek’s theorem deals
with this case.

Corollary 1.
Let H be a lattice and R a fundamental domain of H⊥. Let f ∈ L2(G) be continuous

and f̂ (ξ) = 0 a. e. outside a measurable subset K of Ĝ. Assume that there is P < ∞ such
that K ⊆ ⋃P

j=1(ηj + R) with η1, . . . , ηP distinct elements of H⊥. Let M = x0 + H be a
coset of H . Then the function SMf defined by

SMf (x) =
∑
y∈H

f (x0 + y) ϕR (x − x0 − y) (3.3)

is continuous and square integrable on G, and satisfies SMf (z) = f (z) for all z ∈ M .

Proof. We may decompose f as f = ∑P
j=1 fj with continuous functions fj satisfying

f̂j (ξ) = f̂ (ξ) for ξ ∈ ηj + R, and f̂j = 0 a. e. outside ηj + R. Hence

SMf (x) =
P∑

j=1

∑
y∈H

fj (x0 + y) ϕR (x − x0 − y) .

Now Theorem 2 can be applied to the functions gj (x) = fj (x0+x) whose Fourier transform
vanishes a. e. outside Rj = ηj +R, which is also a fundamental domain of H⊥. This gives

fj (x) = gj (x − x0) =
∑
y∈H

fj (x0 + y) ϕRj (x − x0 − y) ,

where the right-hand side converges uniformly and defines a continuous function in L2(G).
Because of ϕRj

(x) = ϕR(x)e2πi〈x,ηj 〉 this implies that the sums
∑

y∈H fj (x0 + y)ϕR(x −
x0 − y) also define continuous functions in L2(G). Hence SMf is continuous and square
integrable. Since ϕR(0) = 1 and ϕR(y) = 0 for 0 	= y ∈ H it follows immediately that
SMf (z) = f (z) for z ∈ M .

Our point of departure for deriving nonperiodic sampling theorems is the following
lemma, which is closely related to Lemma 3.1 in [22]. We consider the case where the
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support of the Fourier transform is no longer contained in a fundamental domain of H⊥,
but is contained in the union of a fundamental domain and one of its translates. A more
general result has been obtained in [1], where K only needs to be contained in the union of
finitely many translates of R. Since this result requires a more technical proof and is not
needed here, we do not present it.

Lemma 2.
Let H be a lattice and R a fundamental domain of H⊥. Let K = R ∪ (η′ + K ′) with

K ′ ⊂ R measurable and 0 	= η′ ∈ H⊥. Assume that f ∈ L2(G) is continuous, vanishes
on the coset x0 + H and that f̂ vanishes a. e. outside K . Then

f (x) = h(x)
(

1 − e2πi〈x−x0,η
′〉)

with h ∈ L2(G) continuous and ĥ vanishing a. e. outside K ′.

Proof. Consider the function g(x) = f (x + x0). Then g is continuous, vanishes on
H , and ĝ vanishes a. e. outside K . Hence ĝ ∈ L1(Ĝ), and therefore the periodization∑

η∈H⊥ ĝ(ξ + η) is in L1(Ĝ/H⊥). Let F in (2.2) be given by F(ξ) = ĝ(ξ)e2πi〈y,ξ〉 with
y a fixed element of H . Because of 〈y, ξ + η〉 = 〈y, ξ〉, the Fourier inversion formula
and (2.2) now give

g(y) =
∫

Ĝ

ĝ(ξ)e2πi〈y,ξ〉dmĜ(ξ)

= mĜ(R)

∫
Ĝ/H⊥

∑
η∈H⊥

ĝ(ξ + η)e2πi〈y,ξ〉dmĜ/H⊥(ξ + H⊥) .

Since g vanishes on H , this means that the Fourier transform (with respect to Ĝ/H⊥) of∑
η∈H⊥ ĝ(ξ + η) vanishes identically. Hence∑

η∈H⊥
ĝ(ξ + η) = 0 a. e. . (3.4)

We now decompose the set K into three disjoint subsets, i. e.,

K = K ′ ∪ (
η′ + K ′) ∪ (

R\K ′) .

Since the translated sets R + η, η ∈ H⊥ are disjoint, we have for ξ ∈ R\K ′ and η ∈ H⊥
that ξ + η ∈ K if and only if η = 0. It now follows from (3.4) that ĝ must vanish a. e. on

R\K ′. Let h̃ ∈ L2(G) be such that ̂̃h(ξ) = ĝ(ξ) for ξ ∈ K ′, and ̂̃
h(ξ) = 0 for a. e. ξ 	∈ K ′.

Since mĜ(K ′) ≤ mĜ(R) < ∞, h̃ can be chosen to be continuous. For ξ ∈ η′ + K ′ we
have that ξ + η ∈ K if and only if η ∈ {0, −η′}. Then (3.4) gives for a. e. ξ ∈ η′ + K ′ that

ĝ(ξ) = −ĝ
(
ξ − η′) = −̂̃

h
(
ξ − η′) .

Since ̂̃
h(ξ − η′) vanishes a. e. outside η′ + K ′ we have for a. e. ξ ∈ Ĝ

ĝ(ξ) = ̂̃
h(ξ) − ̂̃

h
(
ξ − η′) .

An inverse Fourier transform now gives

g(x) = h̃(x)
(

1 − e2πi〈x,η′〉) = f (x0 + x) .
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The lemma now follows by letting h(x) = h̃(x − x0).

The lemma can be used in the following general way to reduce the problem of recon-
structing f to the problem of reconstructing h.

Theorem 3.
Let H be a lattice and R a fundamental domain of H⊥. Let K = R ∪ (η′ + K ′) with

K ′ ⊂ R measurable and 0 	= η′ ∈ H⊥. Assume that f ∈ L2(G) is continuous, and that f̂

vanishes a. e. outside K . Let M ′ ⊂ G be such that continuous functions h ∈ L2(G) whose
Fourier transforms vanish a. e. outside K ′ can be reconstructed from their samples h(z′),
z′ ∈ M ′. Let x0 be such that〈

z′ − x0, η
′〉 	= 0 for all z′ ∈ M ′ . (3.5)

Then f can be reconstructed from its samples f (z), z ∈ M ∪ M ′, where M = x0 + H .

Proof. By Corollary 1 the function g(x) = f (x) − SMf (x) is continuous, square
integrable and vanishes on M . It follows from (3.3) and (3.1) that (SMf )∧(ξ) vanishes
for a. e. ξ outside R. Hence Lemma 2 can be applied to g, yielding a continuous function
h(x) ∈ L2(G) with ĥ vanishing a. e. outside K ′ such that

f (x) = SMf (x) + h(x)
(

1 − e2πi〈x−x0,η
′〉) . (3.6)

Since 〈z′ − x0, η
′〉 	= 0 for z′ ∈ M ′, we can compute the sampled values

h
(
z′) = f

(
z′) − SMf

(
z′)

1 − e2πi〈z′−x0,η
′〉 , z′ ∈ M ′ . (3.7)

By hypothesis, h(x), x ∈ G, can be computed from these samples. Then f (x) is given
by (3.6).

The theorem provides a general method to generate new sampling theorems from
known ones. If a sampling theorem for a set K ′ is known, we can obtain one for K =
R ∪ (η′ + K ′) by adding a coset of the subgroup H to the original sampling set M ′. Aside
from the condition (3.5) the primary limitation of this method is the requirement that H

must be sufficiently dense so that K ′ ⊂ R.
The proof above outlines the following reconstruction algorithm:

Algorithm 1.
1) Compute SMf (x), x ∈ G, from the samples f (z), z ∈ M , according to (3.3).
2) Compute the samples h(z′), z′ ∈ M ′, according to (3.7).
3) Reconstruct h(x), x ∈ G, from these samples, which is possible by hypothesis.
4) Compute f (x), x ∈ G, according to (3.6).

As a first illustration we apply the theorem to sampling on the real line when the
support of the Fourier transform has a gap. For such a case, Theorem 3 provides a convenient
way to generate sampling sets of minimal density. Let G = Ĝ = R and K = [0, α) ∪ [α +
1, α+2), α ≥ 2. Observe that with our normalization mG and mĜ are equal to the Lebesgue
measure on R. For any β satisfying α

2 +1 ≤ β ≤ α, K may be partitioned into two subsets so
that the theorem applies. If R = [0, β), η′ = β, and K ′ = [0, α−β)∪[α−β+1, α−β+2),
then K = R∪(η′+K ′). Let H = 1

β
Z, M = x0+H , and let M ′ ⊂ R be such that continuous

functions with Fourier transform supported in K ′ can be reconstructed from their samples
on M ′. Then a function f with Fourier transform supported in K can be reconstructed
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from its samples on M ∪ M ′ if the condition (3.5) is satisfied. We consider two particular
choices of β, i. e., β = α and β = α − 1. First let β = α, so that R = [0, α), η′ = α,
K ′ = [1, 2), and H = 1

α
Z. According to Kluvánek’s theorem, functions with Fourier

transform supported in K ′ can be reconstructed from their samples on a coset of H ′ = Z.
So suitable candidates for sampling sets would be sets of the form (x0 + 1

α
Z) ∪ (x1 + Z),

subject to condition (3.5). This condition requires that (x1 − x0 + l) α 	∈ Z for all l ∈ Z,
which may be written as x1 − x0 	∈ ( 1

α
Z + Z). In this particular case this is equivalent to

the intersection of M = x0 + 1
α
Z and M ′ = x1 + Z being empty. However, in general the

condition M ∩ M ′ = ∅ is only necessary but not sufficient for (3.5) to hold.
If α is irrational, we obtain a genuinely non-periodic sampling set. When sampling on

the group G = Rn one also has to consider stability. In the case of irrational α it is possible
that the reconstruction is unstable, since there is no positive minimum distance between
adjacent sampling points. Hence a numerical implementation would require regularization.
We do not investigate stability considerations here, but refer the reader to [8, 24] for an
investigation of stability and remedies for instability in a similar case.

If α is rational, let α−1 = p/q with p, q mutually prime. Then a sampling set of the
form (x0 + 1

α
Z) ∪ (x1 + Z) is periodic, namely a union of p + q cosets of the group pZ.

However, for p + q large Theorem 3 may be more convenient to apply than the results for
periodic sampling developed in [5] or [9] and the references cited there.

The set M ′ in Theorem 3 does not need to be a coset of one subgroup. E. g., let α > 4
and β = α − 1. Then we can choose R = [0, α − 1), K ′ = [0, 1) ∪ [2, 3), η′ = α − 1, and
H = (α − 1)−1Z. The function h whose Fourier transform is supported in K ′ can now be
reconstructed from its samples on two cosets of Z according to Kohlenberg’s [16] theory.
In this case M ′ is a periodic set of the form M ′ = (x1 + Z) ∪ (x2 + Z).

In the above example with β = α, reconstruction of the function h was furnished by
the classical sampling theorem. The following corollary gives an explicit reconstruction
formula for this case.

Corollary 2.
Let H1, H2 be lattices, and R1 ⊂ R2 fundamental domains of H⊥

1 and H⊥
2 , re-

spectively. Let f ∈ L2(G) be continuous and such that f̂ vanishes a. e. outside the set
K = R2 ∪ (η′ + R1), where 0 	= η′ ∈ H⊥

2 . Let x1, x2 be such that〈
x1 − x2 + y, η′〉 	= 0 for all y ∈ H1 . (3.8)

Then,

f (x) = SM2f (x) +
(

1 − e2πi〈x−x2,η
′〉)

×
∑
y∈H1

f (x1 + y) − SM2f (x1 + y)

1 − e2πi〈x1−x2+y,η′〉 ϕR1 (x − x1 − y) (3.9)

with M2 = x2 + H2,

SM2f (x) =
∑
v∈H2

f (x2 + v)ϕR2 (x − x2 − v) ,

and ϕRj
, j = 1, 2 as defined in (3.1).

Proof. Apply Theorem 3 and Algorithm 1 with H = H2, R = R2, K ′ = R1, M =
M2 = x2 + H2, and M ′ = x1 + H1. Then (3.5) becomes (3.8), and (3.7) gives the samples
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of h for z′ ∈ x1 + H1, i. e.,

h (x1 + y) = f (x1 + y) − SM2f (x1 + y)

1 − e2πi〈x1−x2+y,η′〉 .

Since ĥ is supported in the fundamental domain R1 of H⊥
1 , we can apply Theorem 2 to the

function h̃(x) = h(x1 + x), whose samples are available on H1. This gives

h(x) =
∑
y∈H1

h (x1 + y) ϕR1 (x − x1 − y) .

Now (3.6) yields (3.9).

We note that neither the requirement that K = R2 ∪ (η′ + R1) nor its generalization
in Definition 2 below exclude the case that K consists of a single interval or hypercube.
For example, let G = R and K = [−W, W). For any W1 such that 0 ≤ W1 < W we have
K = R2 ∪ (η′ + R1) with R2 = [−W, W1), η′ = W + W1, and R1 = [−W, −W1).

As another example, let us consider a bandpass signal whose Fourier transform van-
ishes outside the set K = [−W1 − W, −W1) ∪ [W1, W1 + W). Kohlenberg solved this
case using periodic sampling sets [16]. Now assume that 0 < W1 < W and let H2 =
(W + W1)

−1Z with fundamental domain R2 = [−W1 − W, −W1) ∪ [W, W1 + W). (Note
that a fundamental domain need not be a single interval.) With R1 = [−W, −W1) ⊂ R2 and
η′ = W+W1 we have K = R2∪(η′+R1) and Corollary 2 applies with H1 = (W−W1)

−1Z.
Depending on whether the ratio (W + W1)/(W − W1) is rational or irrational, one obtains
a periodic or nonperiodic sampling set, respectively.

Finally, let K consist of the three intervals K = [−W1 − W, −W1) ∪ [−W0, W0) ∪
[W1, W1 + W) such that 0 < W0 < W1 < W0 + W . We find a sampling set of minimal
density by choosing H2 = (W + W0 + W1)

−1Z with fundamental domain R2 = [−W1 −
W, −W1) ∪ [−W0, W0) ∪ [W0 + W, W1 + W), and H1 = (W + W0 − W1)

−1Z with
fundamental domain R1 = [−W0 − W, −W1). With η2 = W + W0 + W1 we obtain
K = R2 ∪ (η2 + R1). Depending on the values of W, W0 and W1 an optimal periodic
sampling set may not exist or the most efficient periodic sampling set, found by the methods
of [5] or [9], may be given as a union of a large number of cosets of a sparse subgroup.
As mentioned before, this may be inconvenient to process. For this example, our method
always yields a representation using only two shifted lattices. The examples given here, as
well as the one discussed in Section 4 below, show that the methods presented here may
improve on the methods for periodic sampling in some situations. However, they do by
no means replace these methods in general since our conditions on the set K are more
restrictive.

In order to obtain further results we apply Theorem 3 repeatedly. This gives a recursive
algorithm to reconstruct f from its samples on cosets of groups H1, . . . , HN , provided that
the subgroups Hj and the set K satisfy certain compatibility conditions. These conditions
are given in the following definition which presents the structure of the sets K we consider
as support of the Fourier transform f̂ . This structure is a generalization of the structure of
the set K in Lemma 2.

Definition 2. Let H1, . . . , HN be lattices with corresponding fundamental domains Ri

of H⊥
i . We call K ⊂ Ĝ an admissible subset of Ĝ with respect to H1, . . . , HN if there are

subsets K1, . . . , KN of Ĝ such that the following conditions hold:
i) K1 = R1,
ii) Kj ⊂ Rj+1, j = 1, . . . , N − 1,
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iii) Kj+1 = Rj+1 ∪ (ηj+1 + Kj) with 0 	= ηj+1 ∈ H⊥
j+1, j = 1, . . . , N − 1

iv) KN = K .

Observe that because of conditions ii) and iii) each intermediate set Kj+1 has the
structure of the set K in Lemma 2 with R = Rj+1, K ′ = Kj and η′ = ηj+1. The above
conditions imply in particular that R1 ⊂ R2 ⊂ · · · ⊂ RN , so that the subgroups Hj are
ordered by increasing density. In addition it follows that Hj 	= Hk for j 	= k, with the
exception that H1 may be equal to H2. Hence, the theory developed here does not include
periodic sampling where H1 = · · · = HN as a special case. Although some of the sampling
sets we consider are indeed periodic.

As an example, let G = R2, and H1, H2 and H3 be lattices of the form Hi = WiZ
2,

with matrices

Wi =
(

ri 0
0 di

)
such that ri, di ∈ R+. Furthermore, assume that r3 < r2 < r1 and d3 < d2 < d1 such that
1
d1

+ 1
d2

≤ 1
d3

. Let fundamental domains Ri of H⊥
i be given by

Ri =
{
(ξ1, ξ2) ∈ R2 : 0 ≤ ξ1 < 1/ri, 0 ≤ ξ2 < 1/di

}
, i = 1, 2, 3 ,

as illustrated in the left part of Figure 1.

1/d1

1/r1

1/d2

1/r2

R1

1/d3

1/r3

R2

R3

K2

R3

FIGURE 1 R1 ⊂ R2 ⊂ R3 with K1 = R1 and K2 ⊂ R3.

Let η2 ∈ H⊥
2 and η3 ∈ H⊥

3 be given by

η2 =
(

0
1/d2

)
, η3 =

(
1/r3

0

)
.

The set K2 = R2 ∪ (η2 + R1) ⊂ R3 is shown in the right part of Figure 1. The complete
set K = K3 is given by

K = R3 ∪ (η3 + K2)

= R3 ∪ (η3 + R2) ∪ (η3 + η2 + R1)

= R3 ∪
((

1/r3
0

)
+ R2

)
∪

((
1/r3
1/d2

)
+ R1

)

and shown in Figure 2.
The following theorem is our main result:
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K R3

η3 + R2

η3 + η2 + R1

FIGURE 2 K = R3 ∪ (η3 + R2) ∪ ((η3 + η2) + R1).

Theorem 4.
Suppose that K is an admissible subset of G with respect to the lattices H1, . . . , HN ,

with Rj , Kj , ηj , j = 1, . . . , N as in Definition 2. Let Mj = xj + Hj , j = 1, . . . , N be
such that if N > 1

〈
z − xj , ηj

〉 	= 0 for z ∈
j−1⋃
k=1

Mk, j = 2, . . . , N . (3.10)

Let f ∈ L2(G) be continuous and such that f̂ vanishes a. e. outside K . Then there are
continuous functions fj ∈ L2(G) such that f̂j vanishes outside Kj , and for all x ∈ G:

f1(x) = SM1f1(x) ,

fj (x) − SMj
fj (x) = fj−1(x)

(
1 − e2πi〈x−xj ,ηj 〉) , j = 2, . . . , N ,

fN(x) = f (x) .

Using this recursion, the function f can be reconstructed from sampled values f (z), z ∈⋃N
k=1 Mk .

Proof. The proof is by induction on N . If N = 1, then K = K1 = R1 and f = SM1f by
Kluvánek’s theorem. Hence f can be reconstructed from its samples on M1. Now assume
N > 1 and that the theorem holds with N replaced by N − 1. Let fN = f and consider the
function g(x) = fN(x) − SMN

fN(x). By Corollary 1 g is continuous, square-integrable,
and vanishes on MN . Since ŜMN

f vanishes outside RN ⊆ K , ĝ vanishes a. e. outside K .
Since K = RN ∪ (ηN +KN−1) and KN−1 ⊆ RN , we can apply Lemma 2 to g, with R, K ′,
x0 and η′ replaced by RN , KN−1, xN , and ηN , respectively. Hence there is a continuous,
square-integrable function fN−1 such that

g(x) = fN(x) − SMN
fN(x) = fN−1(x)

(
1 − e2πi〈x−xN ,ηN 〉) ,

and f̂N−1 vanishes a. e. outside KN−1. Because of (3.10) the values

fN−1(z) = f (z) − SMN
f (z)

1 − e2πi〈z−xN ,ηN 〉 , z ∈
N−1⋃
k=1

Mk ,

can be computed. Now the hypothesis of the theorem is satisfied if f , K , and N are replaced
by fN−1, KN−1, and N −1, respectively. By induction hypothesis the theorem holds in this
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case, yielding the functions fj , j = 1, . . . , N − 2, and the reconstructed function fN−1(x)

for all x ∈ G. Now f is reconstructed via

f (x) =
(

1 − e2πi〈x−xN ,ηN 〉) fN−1(x) + SMN
f (x), x ∈ G .

The theorem establishes the following recursive algorithm for reconstruction of f

from sampled values f (z), z ∈ ⋃N
k=1 Mk:

Algorithm 2.
IF N = 1 THEN f (x) = SM1f (x).

ELSE

Compute

g(z) = f (z) − SMN
f (z)

1 − e2πi〈z−xN ,ηN 〉 , z ∈
N−1⋃
k=1

Mk .

Invoke the algorithm to compute g(x), x ∈ G from the computed values
g(z), z ∈ ⋃N−1

k=1 Mk .

f (x) = g(x)
(
1 − e2πi〈x−xN ,ηN 〉) + SMN

f (x), x ∈ G.
END

Clearly, Theorem 4 also gives rise to explicit formulas generalizing the case N = 2 treated
in Corollary 2; but as N increases these formulas seem to become too complicated to be
useful. On the other hand, Algorithm 2 is very easy to program if the programming language
allows for recursive function calls; see, e. g., the MATLAB M-file bfmethod.m in the next
section.

4. A Numerical Example

In this section we illustrate Theorem 4 and Algorithm 2 with an example implemented
in MATLAB.

Let G = Z/(LZ) = {0, . . . , L − 1} with addition modulo L. Then Ĝ = {ν/L, ν =
0, . . . , L − 1} with addition modulo 1. Let mG be the counting measure. According to
Convention 1 mĜ equals 1/L times the counting measure. We characterize subgroups H

of G by specifying an element h ∈ G such that h divides L and generates H . Hence H =
{hl, l = 0, . . . , L/h−1}. We will use the notation H = 〈h〉 indicating that H is generated
by h. The annihilator H⊥ equals H⊥ = {ν/h, ν = 0, . . . , h − 1}, and a fundamental
domain is given by R = {ν/L, ν = 0, . . . , L/h − 1}. Hence mĜ(R) = (L/h)/L = 1/h.

The MATLAB code given below implements Algorithm 2 for this setting. The param-
eters are specified and explained in the driver routine bfdriver.m. This routine also generates
the function to be reconstructed by randomly specifying its non-zero Fourier coefficients,
cf. [6]. The recursive algorithm is implemented in the function M-file bfmethod.m. The
function M-file SM.m computes SMf . In order to keep the code readable the simplifying
assumption was made that all fundamental domains Rj are of the form given above, i. e.,
Rj = {ν/L, ν = 0, . . . , L/hj − 1}; more general code is available from the authors.

In the code below the parameters to be specified by the user are set as follows:
We specified L = 2520 which leads to a rich collection of subgroups. As the set K
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we consider the union of the two contiguous sets {0, . . . , 71}/L and {1224, . . . , 1274}/L,
giving a total of 123 points. Now choose H1 = 〈280〉, H2 = 〈60〉, and H3 = 〈35〉, with
R1 = {0, . . . , 8}/L, R2 = {0, . . . , 41}/L, and R3 = {0, . . . , 71}/L. With η2 = 42/L and
η3 = 1224/L we have K = R3 ∪ (η3 + R2) ∪ ((η2 + η3) + R1), and the sets K1 = R1,
K2 = R2 ∪(η2 +R1), and K3 = K = R3 ∪(η3 +K2) satisfy the conditions of Definition 2.
The shifts xj have to be chosen such that the sampling conditions (3.10) are satisfied. Let
〈η〉 denote the subgroup of H⊥ generated by η ∈ H⊥. Then the annihilator 〈η〉⊥ is a
subgroup of G containing H . If 〈ηj 〉⊥ = Hj , then the condition

〈
z − xj , ηj

〉 	= 0 for z ∈
j−1⋃
k=1

Mk ,

reduces to the requirement that the coset Mj = xj + Hj does not intersect the union of the
cosets Mk , k = 1, . . . , j − 1. Since in the present example we do have that 〈ηj 〉⊥ = Hj ,
j = 2, 3, the sampling condition (3.10) is equivalent to the cosets M1, M2, M3 being
mutually disjoint. Two cosets xi + 〈hi〉 and xj + 〈hj 〉 will intersect if and only if the
difference xi −xj is an integer multiple of the greatest common divisor of hi and hj . Hence
the conditions (3.10) require in this particular example that x1 −x2 should not be a multiple
of 20, x1 − x3 should not be a multiple of 35, and x2 − x3 should not be a multiple of 5. An
admissible choice is x1 = 3, x2 = 1, and x3 = 0. The relative errors in our numerical tests
varied with the random signal, but stayed below 1.e − 12. In order to assess the stability
of the algorithm we computed as a comparison the relative error resulting from taking the
FFT of the signal f and then reconstructing by an inverse FFT. The relative error resulting
from this very stable procedure was about 2.e − 13, indicating that our algorithm is stable
in this case. This indication was confirmed by tests where noise was added to the signal.

Each sampled value yields a linear equation for the unknown Fourier coefficients of f .
The condition number of this linear system is an indication if the problem of reconstructing
f from its samples is well conditioned or not, independent of the algorithm used to perform
the reconstruction. In this case the condition number is about 40, so the problem is fairly
well conditioned.

The sampling set above has minimal density in the sense that there are as many
sampling points as there are points in the set K , i. e., 123. We may define the Nyquist
distance as the ratio between the size L of the group G and the size of the spectrum K .
The average spacing of our sampling set is equal to the Nyquist distance, which equals
2520/123 � 20.49. This can be compared to the optimal regular sampling distance, i. e.,
the spacing of the smallest subgroup H such that the set K is a subset of a fundamental
domain of H⊥ and Theorem 2 can be applied. For this example the smallest feasible
subgroup has 280 elements and a spacing of 9.

We also used the standard frame method for irregular sampling as described by Fe-
ichtinger and Gröchenig [6] to solve the present example. Even with a near optimal relax-
ation parameter convergence was very slow, requiring thousands of iterations to obtain the
same accuracy which our method achieved quickly. The reason is that iterative methods
for general irregular sampling sets may not work well if the sampling set has gaps larger
than the Nyquist distance, see [6]. In this example, the largest gap is equal to the spacing
of the largest subgroup, i. e., 35, hence significantly larger than the Nyquist distance. Our
method can deal with such gaps because it makes explicit use of the specific structure of
the sampling set.

The sampling set of our example is periodic with period 840 and can be obtained
as a union of 41 cosets of the group H = 〈840〉. Hence the algorithm described in [5]
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could be used. However, this algorithm is most efficient and convenient when the number
of cosets is much smaller than the number of elements in H , while the opposite is true
in this example, since H = 〈840〉 has only 3 elements. We can construct a non-periodic
example by replacing H1 above by H1 = 〈 360 〉 and reducing the set K by two points
by replacing {1224, . . . , 1274}/L with {1224, . . . , 1272}/L. The fundamental domain R1
now equals {0, . . . , 6}/L. Again x1 = 3, x2 = 1, and x3 = 0 is an admissible choice of
shifts. The resulting sampling set and spectrum K now both contain 121 points. Since
121 and L = 2520 are mutually prime the sampling set has no period smaller than L. The
relative errors in our tests where larger than in the previous example and came out between
1.e-12 and 1.e-11. This is explained by the fact that the condition number of the linear
system for the unknown Fourier coefficients is now about 487, i. e., the problem itself is
more ill-conditioned than before.

One can also reconstruct f in this setting by solving the linear system for the unknown
Fourier coefficients directly, and then find f by an inverse FFT. When compared with a
direct solution of the linear system by means of a generic solver (MATLAB’s \ command),
our algorithm achieves the same accuracy but is usually faster. As implemented here, its
complexity is dominated by the 2N Fast Fourier Transforms of length up to L, hence of
order O(NL log L). This compares to O(P 3) + O(L log L) for the direct solution of the
linear system followed by an inverse FFT. Here P is the number of points in the spectrum
K . In the examples above, our algorithm is only about three times faster since P is small
compared to L. For larger P this advantage becomes more pronounced.

% bfdriver.m : Driver for nonperiodic sampling on the group
% G = Z_L = {0,...,L-1} with addition modulo L.
% Explanation of input parameters:
% L: number elements in G
% h: h(k) is the divisor of L which generates the
% subgroup H_k, i.e., H_k = {0,h(k),2h(k),...,L-h(k)}
% x: vector with shifts. M_k = x(k) + H_k
% eta: eta(k) corresponds to eta_{k+1} in Theorem 4.
% filt: characteristic function of spectrum. filt(k)=1 if
% the point (k-1)/L lies in the spectrum. Otherwise
% filt(k)=0.

% Input parameters:
L=2520; % Length of group G.
filt = zeros(1,L); % DO NOT CHANGE!
filt(1:72) = 1; filt(1225:1275)=1; % Set filt(k)=1 if the

% point (k-1)/L lies
% in the spectrum

h=[280,60,35]; % Specify subgroups
x=[3,1,0]; % Specify shifts
eta = [42,1224]/L; % Specify eta_{k+1}
% End of input section

% Compute signal to be sampled and reconstructed
N = max(size(h)); % Number of subgroups
fhat = complex(rand(1,L),rand(1,L)); % Generate random
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% spectrum
fhat = fhat.*filt; % Set frequencies

% outside of spectrum
% to zero

fexact = ifft(fhat);
fexact = fexact/norm(fexact); % Normalize signal

% Compute sampled values
f = zeros(1,L);
for k=1:N
Mk = x(k)+[0:h(k):L-h(k)]; % Co-set M_k = x(k)

% + H_k
f(1+Mk) = fexact(1+Mk); % Sampled values

% on M_k
end

% Reconstruct signal
F = bfmethod(f,L,h,eta,x);

% Compute the l2 relative reconstruction error
relerr = norm(fexact-F)
%----------------------------------------

function F=bfmethod(f,L,h,eta,x)

N = max(size(h));
MN = x(N) + [0:h(N):L-h(N)]; % Co-set M_N = x(N)

% + H_N
fH = f(1+MN); % Sampled values

% on M_N
SMf = SM(fH,L,h(N),x(N));
if N==1

F = SMf;
else

tmp = 1-exp(2*pi*i*([0:L-1]-x(N))*eta(N-1));
tmp1=tmp;
tmp1(find(abs(tmp < 1.e-14)))=1; % Avoid zero divisions
f1 = (f-SMf)./tmp1;
fN1 = bfmethod(f1,L,h(1:N-1),eta(1:N-2),x(1:N-1));
F = fN1.*tmp + SMf;

end
%----------------------------------------

function S = SM(f,L,h,x)
% Computes S_Mf(z) for z in G (cf. equation (3.3))
% G = {0,1,...,L-1} with addition mod L, M = x + H
% H = {0,h,2h,...,L-h}, R = {0,...,L/h-1}/L
% f = row vector of length L/h containing sampled values
% on M.
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% x = shift. Need x in {0,...,h-1}

chi = zeros(1,L);
chi(1:L/h) = fft(f);
S = h*ifft(chi);
if x > 0

tmp = S(L-x+1:L);
S(x+1:L)=S(1:L-x);
S(1:x) = tmp;

end
%----------------------------------------
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