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ABSTRACT. Let L[ · ] be a nondivergent linear second-order uniformly elliptic partial differ-
ential operator defined on functions with domain �. Consider the question, “When is a function
u a solution of L[u] = 0 on �?” The naive answer, “u is a solution of L[u] = 0 on � if
u ∈ C2(�) and L[u](x) = 0 for all x ∈ �,” is clearly too limited. Indeed, if the coefficients of L

are in W 1,2 ∩ L∞, then L can be rewritten in divergence form for which the notion of a “weak”
solution can be applied. In this case there could be infinitely many functions that are “weak”
but not classical solutions. More importantly, even if the coefficients of L are just bounded and
measurable, the recent results of Krylov permit us to construct “solutions” of L[u] = 0 on �,
and these “solutions” are generally no better than continuous; the “weak” solutions previously
mentioned can be obtained by this construction, too.

The preceding discussion provides us with an adequate extrinsic definition of solution (i.e.,
given a function u we either prove that it is or is not the result of such a construction) that has
been used by several authors, but one that is not particularly satisfying or illuminating. Our major
contribution in this paper is to show the following.

I. There is an intrinsic definition of solution that is equivalent to the extrinsic one.
II. Furthermore, the intrinsic definition is just the (now) well-known Crandall–Lions vis-

cosity solution, modified in a natural way to accommodate measurable coefficients.

1. Introduction
In this paper we examine the properties of and interrelationships between several definitions

for a solution of a nondivergence structure, linear, second-order, uniformly elliptic pde with bounded,
measurable coefficients. To be precise, we consider definitions for a solution of

n∑

i,j=1

aij (x)
∂2u

∂xi∂xj

= g(x) in � (1.1)

under the assumption—implicit throughout this paper—that there exist positive constants K1 and e1

such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|aij (x)| ≤ K1 for all 1 ≤ i, j ≤ n and x ∈ �,

|g(x)| ≤ K1 for all x ∈ �,

e1 ≤
n∑

i,j=1

aij (x)qiqj for all unit vectors q ∈ Sn−1 and x ∈ �,

(1.2)
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where � ⊂ Rn is a bounded domain with smooth boundary ∂� ∈ C2,α , aij : � → R for 1 ≤ i, j ≤ n

are measurable functions, g: � → R is a measurable function, and Sn−1 ⊂ Rn is the (n − 1)-
dimensional unit sphere.

Remark. Our results remain valid with the inclusion of bounded, measurable lower or-
der terms in (1.1). We have excluded such lower order terms from our exposition to minimize
nonessential, technical complications in our proofs. �

Elliptic pdes of the form (1.1) have been studied extensively for almost a century, and the results
pertaining to them are voluminous. However, almost all of these results require significantly stronger
structure than (1.2)—typically, uniform continuity of the coefficients aij for 1 ≤ i, j ≤ n. (This,
of course, is peculiar to the nondivergence structure of (1.1). The dichotomy between divergence
structure and nondivergence structure elliptic pdes is well known; in contrast with the nondivergence
case, research in divergence structure, elliptic pdes with measurable coefficients has been a fertile
field of study.) Still, important progress has been made within the last decade or so, expanding
our understanding of (1.1) under (1.2). One of the most important results in this area is the Hölder
continuity estimate of Krylov, strongly suggesting the existence of some generalized notion of
solution of (1.1). In the pages to follow we shall study four such competing definitions of solution.
It is the fundamental result of this paper (Theorem 1.14), that all four of these definitions are, in fact,
equivalent.

Before turning to these generalized notions of solution, we review the inherent limitations
of the more traditional W2,p solution of (1.1). These limitations supply much of the motivation for
studying the less conventional definitions which we next display. We close this section with Theorem
1.14, delineating the relationships among all five definitions. The remaining sections are devoted to
the proof of Theorem 1.14.

Definition 1.3. For 1 ≤ p ≤ ∞ a W2,p solution of (1.1) is a function w in the Sobolev
space W2,p(�) such that

n∑

i,j=1

aij (x)
∂2w

∂xi∂xj

(x) = g(x) for almost every x ∈ �,

where ∂2w
∂xi∂xj

is the distribution derivative of w. �

While there are advantages to W2,p solutions, the current context also breeds several serious
drawbacks. To demonstrate, consider the function

w(x1, x2) = 1 − 4
√

x1
2 + x2

2 for x1
2 + x2

2 ≤ 1.

We see that w ∈ W2,p(B(0, 1)) for any 1 ≤ p < 4/3, and for every point x in the punctured disk
B(0, 1) \ {(0, 0)} w satisfies

(
1 + x1

2

x1
2 + x2

2

)
∂2w

∂x1
2

+ 2x1x2

x1
2 + x2

2

∂2w

∂x1∂x2
+

(
1 + x2

2

x1
2 + x2

2

)
∂2w

∂x2
2

= 0.

Clearly, w is a W2,p solution of the preceding pde; just as obviously, w fails to satisfy the Hopf
maximum principle. Furthermore, examples like this can be constructed on the unit ball in Rn for
any p < n. To retain the Hopf maximum principle, we are forced to require p ≥ n. Unfortunately,
this leads to another problem. As first exhibited by Safonov, there are linear, elliptic pdes of the form
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(1.1), satisfying (1.2), that do not have solutions in W1,p(�) for any p > n. By the Sobolev Embed-
ding Theorem such pdes do not have solutions in W2,n−δ(�) (for some δ > 0). Consequently, if we
insist on using W2,p solutions, then either we give up the Hopf maximum principle—unappealing,
due to the deep connections with diffusion processes and stochastic differential equations—or we
lose the existence of solutions—equally unpalatable, due to the result of Krylov to which we previ-
ously alluded. Finally, we note that the existence of W2,p solutions of (1.1) is not known even for
p = 1.

Having “bonged” the W2,p solution, we examine our less conventional alternatives. We begin
with a constructive definition for a solution of (1.1). This is a notion favored by several authors,
including Escauriaza, Fabes, Krylov, and Safonov.

Definition 1.4. u ∈ C(�) is an α-solution of (1.1) if there is a sequence of W2,p solutions{
uk

}∞
k=1 for p > n of the linear pdes

n∑

i,j=1

ak
ij (x)

∂2uk

∂xi∂xj

= gk(x) in �, (1.5)

satisfying (1.2) uniformly with respect to k, and such that

ak
ij ∈ C(�) for all 1 ≤ i, j ≤ n and all k ∈ Z+, (1.6)

ak
ij → aij in L1(�) as k → ∞ for all 1 ≤ i, j ≤ n, (1.7)

gk → g in L1(�) as k → ∞, (1.8)

and

uk → u in the sup-norm on C(�) as k → ∞. � (1.9)

The major advantage of this definition is the fact that an α-solution of (1.1) can be approximated
by classical solutions of arbitrarily small perturbations of (1.1). Indeed, using the version of Pucci’s
L∞ estimates found in [4], any W2,p solution of (1.1) with p > n can be approximated by a classical
solution as claimed. By Definition 1.4, the same must be true for α-solutions. As an immediate
consequence:

α-solutions satisfy the Hopf maximum principle.

Additionally, it is not too difficult to prove that given continuous boundary data:

There exists an α-solution of the Dirichlet boundary value problem associated to (1.1).

On the other hand, the extrinsic nature of this definition makes it difficult to verify whether a given
function u ∈ C(�) is an α-solution. It is also frustrating that the superposition principle remains
unresolved for α-solutions—a fact that leaves the uniqueness of α-solutions as an open question too.

The remaining three definitions for a solution of (1.1) are motivated by [9] and the principles on
which the viscosity solutions of M. G. Crandall and P.-L. Lions are based; see [2] for an introduction
to the theory of viscosity solutions. The first of these definitions can be described as a strong
version of such a solution, while the last two are apparently weak versions. We use B(x, ε) to
denote the open ball in Rn with center x and radius ε, [t]+ to denote max{0, t}, and [t]− to denote
max{0, −t}.
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Definition 1.10. Let u ∈ C(�); and for positive parameters e, K , and R set

γe,K,R(η) =
(

ne	n

2

)
·
(

neη

2K[nη + n2R + 1]

)n−1

· η,

where 	n is the volume of the unit ball in Rn.

i. u is a β-subsolution of (1.1) if for e1 and K1 from (1.2)

∫

B(x,ε)

[
n∑

i,j=1

aij (y)

(
∂2φ

∂xi∂xj

(y) + ηδij

)
− g(y)

]+
dy ≥ γe1,K1,R(η)εn

for all η > 0, ε < distance(x, ∂�), and R > ||φ||W 2,∞(�)

whenever x ∈ � and φ ∈ C2(�) are such that

0 = (u − φ)(x) ≥ (u − φ)(y) for all y ∈ �.

ii. u is a β-supersolution of (1.1) if for e1 and K1 from (1.2)

∫

B(x,ε)

[
n∑

i,j=1

aij (y)

(
∂2φ

∂xi∂xj

(y) − ηδij

)
− g(y)

]−
dy ≥ γe1,K1,R(η)εn

for all η > 0, ε < distance(x, ∂�), and R > ||φ||W 2,∞(�)

whenever x ∈ � and φ ∈ C2(�) are such that

0 = (u − φ)(x) ≤ (u − φ)(y) for all y ∈ �.

iii. u is a β-solution of (1.1) if it is both a β-subsolution and a β-supersolution of (1.1). �

Remark. It follows from a careful examination of the arguments appearing later that the
function γe,K,R( · ) must be modified to extend the scope of the preceding definition to include
pdes with lower order terms. However, the qualitative properties of γe,K,R( · ) are preserved; once
modified, the remaining body of the definition remains unchanged. �

An important property of β-solutions is their stability. That is, under very general conditions,
if (1.1) is the “limit” of (1.5) and u is the limit of a sequence of β-solutions

{
uk

}∞
k=1 corresponding

to (1.5), then u is a β-solution of (1.1). Unfortunately, as in the α-solution case, the superposition
principle for β-solutions remains unresolved.

Completing our list, we present the final two definitions for a solution of (1.1).

Definition 1.11. Let u ∈ C(�).

i. u is a γ -subsolution of (1.1) if

lim sup
ε→0+

1

εn

∫

B(x,ε)

[
n∑

i,j=1

aij (y)

(
∂2φ

∂xi∂xj

(x) + ηδij

)
− g(y)

]+
dy > 0 for all η > 0
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whenever x ∈ � and φ ∈ C2(�) are such that

0 = (u − φ)(x) ≥ (u − φ)(y) for all y ∈ �.

ii. u is a γ -supersolution of (1.1) if

lim sup
ε→0+

1

εn

∫

B(x,ε)

[
n∑

i,j=1

aij (y)

(
∂2φ

∂xi∂xj

(x) − ηδij

)
− g(y)

]−
dy > 0 for all η > 0

whenever x ∈ � and φ ∈ C2(�) are such that

0 = (u − φ)(x) ≤ (u − φ)(y) for all y ∈ �.

iii. u is a γ -solution of (1.1) if it is both a γ -subsolution and a γ -supersolution of (1.1). �

Before proceeding to our last definition, we recall the notions of the second-order “superjet”
and “subjet” found in [2]—equivalent with [6, Definition 1.4]. We use S(n) to denote the n×n,
real-valued, symmetric matrices.

Definition 1.12. Let u ∈ C(�) be bounded.

i. The second-order “superjet” of u at x̂ ∈ � is the set

J
2,+
� u(x̂) = { (p, M) ∈ Rn×S(n) : u(x) ≤ u(x̂) + 〈p, x − x̂〉

+ 1
2 〈M(x − x̂), x − x̂〉 + o(|x − x̂|2) as x → x̂

}
.

ii. The second-order “subjet” of u at x̂ ∈ � is the set

J
2,−
� u(x̂) = { (p, M) ∈ Rn×S(n) : u(x) ≥ u(x̂) + 〈p, x − x̂〉

+ 1
2 〈M(x − x̂), x − x̂〉 − o(|x − x̂|2) as x → x̂

}
. �

Definition 1.13. Let u ∈ C(�).

i. u is a δ-subsolution of (1.1) if

lim sup
ε→0+

1

εn

∫

B(x,ε)

[
n∑

i,j=1

aij (y)
(
mij + ηδij

) − g(y)

]+
dy > 0 for all η > 0

whenever x ∈ � and there exists a vector p ∈ Rn such that (p, M) ∈ J
2,+
� u(x) for M =

(mij ).
ii. u is a δ-supersolution of (1.1) if

lim sup
ε→0+

1

εn

∫

B(x,ε)

[
n∑

i,j=1

aij (y)
(
mij − ηδij

) − g(y)

]−
dy > 0 for all η > 0

whenever x ∈ � and there exists a vector p ∈ Rn such that
(p, M) ∈ J

2,−
� u(x) for M = (mij ).

iii. u is a δ-solution of (1.1) if it is both a δ-subsolution and delta-supersolution of
(1.1). �
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Which definition is the proper one? They all are! According to the following theorem, the
four preceding definitions are all equivalent.

1.14. Theorem
The following implications hold.

i. If p > n, then Definition 1.3 �⇒ Definition 1.10—W2,p solutions are β-solutions for p > n.
ii. Definition 1.10 �⇒ Definition 1.11—β-solutions are γ -solutions.

iii. Definition 1.11 �⇒ Definition 1.13—γ -solutions are δ-solutions.
iv. Definition 1.13 �⇒ Definition 1.4—δ-solutions are α-solutions.
v. Definition 1.4 �⇒ Definition 1.10—α-solutions are β-solutions.

In particular, the definitions for α-, β-, γ -, and δ-solutions are equivalent.

This theorem allows us to refer to the α-, β-, γ -, and δ-solutions collectively by a single name.
Furthermore, if aij ∈ C(�) for 1 ≤ i, j ≤ n and g ∈ C(�), then it is not too hard to show that
u is a δ-solution of (1.1) if and only if it is a viscosity solution of (1.1)—in the sense of Crandall
and Lions [2]. Therefore, it makes sense to extend the scope of “viscosity solution” to include
the α-, β-, γ -, and δ-solutions. However, “viscosity solution” is regarded by many (including the
author) as a misleading and undesirable name. In deference to the fundamental contributions made
by M. G. Crandall and P.-L. Lions, we henceforth refer to α-, β-, γ -, and δ-solutions and viscosity
solutions as Crandall–Lions solutions (C-L solutions, for short).

2. α, β-, and γ-Solutions: Existence, Stability, and Other Properties
The stability of β-solutions was claimed in the introduction, and this result will be useful later

in establishing the fifth implication of Theorem 1.14. We therefore find it expedient to begin the
current section with a proof of this claim.

2.1. Theorem
(Stability) Let

{
uk

}∞
k=1 be a sequence of β-solutions corresponding to (1.5), satisfying (1.2)

uniformly in k. If (1.7)–(1.9) hold, then u is a β-solution of (1.1), where u is the function determined
by (1.9), and (1.1) is the pde with coefficients and inhomogeneous term determined by (1.7) and
(1.8).

Proof. We need to show that u is a β-subsolution and β-supersolution, but since the argu-
ments are symmetric, it is sufficient to prove the former. To this end let x0 ∈ � and φ0 ∈ C2(�)

satisfy

0 = (u − φ0)(x0) ≥ (u − φ0)(y) for all y ∈ �.

To ensure that x0 is the only point with the preceding property, we replace φ0 by φν
0 (y) = φ0(y) +

ν|y − x0|2 for ν > 0. Next, we define xk ∈ � and φν
k ∈ C2(�) by the requirements

[
φν

k (y) = φν
0 (y) + dk for some dk ∈ R,

0 = (uk − φν
k )(xk) ≥ (uk − φν

k )(y) for all y ∈ �.

Based on our construction we note that
⎧
⎪⎨

⎪⎩

xk → x0 as k → ∞,

φν
k → φν

0 in W2,∞(�) uniformly in ν as k → ∞,

φν
0 → φ0 in W2,∞(�) as ν → 0+.

(2.2)
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Proceeding to the next stage of our proof, fix values of ε and R such that

ε > distance(x0, ∂�) and R > ||φ0||W 2,∞(�).

By (2.2) there are constants k̂ > 0 and ν̂ > 0 such that

ε > distance(xk, ∂�) and R > ||φν
k ||W 2,∞(�)

for all k > k̂ and 0 < ν < ν̂. It follows from Definition 1.10 that

∫

B(xk,ε)

[
n∑

i,j=1

ak
ij (y)

(
∂2φν

k

∂xi∂xj

(y) + ηδij

)
− gk(y)

]+
dy ≥ γe1,K1,R(η)εn

for all η > 0, k > k̂, and 0 < ν < ν̂. Taking the limit first as k → ∞ and then as ν → 0+, we
complete the proof of this theorem. �

Our next task is to prove the first implication of Theorem 1.14, which will also be used in the
proof of the fifth implication of Theorem 1.14. This will be accomplished with the assistance of a
version of the L∞ estimates of C. Pucci [9]. (These estimates can also be extracted from either [1]
or [4].) The particular version we use is as follows.

2.3. Lemma
If u is a W2,p solution of (1.1) for some p > n, then

i. sup
{
u+(x) : x ∈ �

} ≤ sup
{
u+(x) : x ∈ ∂�

} + ρ

ne1
n
√

	n
||g−||Ln(�),

ii. sup
{
u−(x) : x ∈ �

} ≤ sup
{
u−(x) : x ∈ ∂�

} + ρ

ne1
n
√

	n
||g+||Ln(�),

where, as before, u+(x) = max{u(x), 0} is the positive part of u, u−(x) = max{−u(x), 0} is the
negative part of u, g+(x) = max{g(x), 0} is the positive part of g, g−(x) = max{−g(x), 0} is the
negative part of g, and ρ is the radius of the smallest ball containing �.

With the aid of this lemma we easily prove the following result.

2.4. Theorem
(1.14i) If p > n, then Definition 1.3 �⇒ Definition 1.10.

Proof. Given a W2,p solution u of (1.1) with p > n, assume x ∈ � and φ ∈ C2(�) are such
that

0 = (u − φ)(x) ≥ (u − φ)(y) for all y ∈ �.

Keeping careful track of all constants, apply Lemma 2.3 with û in place of u, ĝ in place of g, and
B(x, ε) in place of � where

ε < distance(x, ∂�),

û(y) = u(y) − φ(y) − η

2
|y − x|2 + ηε2

2
,

and

ĝ(y) = g(y) −
n∑

i,j=1

aij (y)

(
∂2φ

∂xi∂xj

(y) + ηδij

)
.
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Noting that sup
{
û+(y) : y ∈ B(x, ε)

} ≥ ηε2

2 and sup
{
û+(y) : y ∈ ∂B(x, ε)

} = 0, this leads to

∫

B(x,ε)

(
ĝ−(y)

)n
dy ≥ 	n

(ne1ηε

2

)n

.

Using the definition of ĝ and the estimate

||ĝ(y)||L∞(�) ≤ K1(n
2R + nη + 1) for R > ||φ||W 2,∞(�),

this establishes u as a β-subsolution of (1.1). A similar argument proves that u is a β-super-
solution. �

Having acquired the necessary tools, it is now easy to prove the fifth implication of Theo-
rem 1.14.

2.5. Theorem
(1.14v) Definition 1.4 �⇒ Definition 1.10.

Proof. Assume u is an α-solution of (1.1); then u is the limit of a sequence
{
uk

}∞
k=1 of

W2,p solutions corresponding to (1.5), satisfying (1.8), (1.7), (1.6), and (1.2) uniformly in k. By
Theorem 2.4

{
uk

}∞
k=1 is a sequence of β-solutions. An application of Theorem 2.1 now completes

our proof. �

In the introduction we claimed the existence of an α-solution to the Dirichlet boundary value
problem for continuous boundary data. We shall now prove this claim. To do so, we appeal to the
Harnack inequality of Krylov and Safonov; a proof of this may be found at the beginning of [1].

2.6. Theorem
(Existence) Assume h ∈ C(∂�); then there exists an α-solution u of (1.1) such that

u(y) = h(y) for all y ∈ ∂�. (2.7)

Proof. Given (1.1) and h ∈ C(∂�), we construct sequences
{
(ak

ij )
}∞

k=1
⊂ C∞(�; S(n)),

{
gk

}∞
k=1 ⊂ C∞(�), and

{
hk

}∞
k=1 ⊂ C2,α(∂�) such that

{
(ak

ij )
}∞

k=1
and

{
gk

}∞
k=1 satisfy (1.2) uniformly in k,

(ak
ij ) → (aij ) in L1(�; S(n)) as k → ∞,

gk → g in L1(�) as k → ∞,{
hk

}∞
k=1 has a uniform modulus of continuity for all k,

hk → h in the sup-norm on C(∂�) as k → ∞.

It follows from standard theory (see the development found in [4]) that there exists a sequence
of solutions

{
uk

}∞
k=1 ⊂ C2,α(�) for the system of boundary value problems

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i,j=1

ak
ij (x)

∂2uk

∂xi∂xj

= gk(x) in �

uk(x) = hk(x) for x ∈ ∂�
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generated by the sequences above. Lemma 2.3 shows us that
{
uk

}∞
k=1 is uniformly bounded, and

the Harnack inequality of Krylov and Safonov in conjunction with standard barrier arguments at the
boundary implies it is also equicontinuous. As a consequence,

{
uk

}∞
k=1 is precompact and we may

assume without loss of generality that the sequence converges to some function u ∈ C(�) in the
sup-norm on C(�). The function u is obviously an α-solution of (1.1), satisfying (2.7). �

Remark. It is very important to note that we are not able to prove
{
uk

}∞
k=1 has a unique limit.

Indeed, this would be equivalent to proving the uniqueness of α-solutions, a significant conjecture
that is still undecided. The ramifications of this fact become clear in the process of proving that δ-
solutions are α-solutions. Indeed, it becomes apparent that the δ-solution u itself must be be involved
in constructing

{
uk

}∞
k=1, the defining sequence of an α-solution, for there is no guarantee that (1.6),

(1.7), and (1.8) will force the solutions of (1.5) to converge to u. We deal with this difficulty in the
last section. �

We close this section with several easy results. The first two of these are the second and third
implications of Theorem 1.14.

2.8. Theorem
(1.14ii) Definition 1.10 �⇒ Definition 1.11.

Proof. By symmetry it is sufficient to prove that β-subsolutions are γ -subsolutions. To this
end let u be a β-subsolution of (1.1) and let x ∈ � and φ ∈ C2(�) be such that

0 = (u − φ)(x) ≥ (u − φ)(y) for all y ∈ �.

This implies that for η > 0, ε < distance(x, ∂�), and R > ||φ||W 2,∞(�)

1

εn

∫

B(x,ε)

[
n∑

i,j=1

aij (y)

(
∂2φ

∂xi∂xj

(x) + ηδij

)
− g(y)

]+
dy ≥ γe1,K1,R(η) − oε(1)

where e1 and K1 are from (1.2). It is now obvious that u is a γ -subsolution of (1.1). �

2.9. Theorem
(1.14iii) Definition 1.11 �⇒ Definition 1.13.

Proof. This follows immediately from the fact, as noted in [2], that for x̂ ∈ �, (p, M) ∈
J

2,+
� u(x̂) if and only if there exists φ ∈ C2(�) such that

Dφ(x̂) = p, D2φ(x̂) = M

0 = (u − φ)(x̂) ≥ (u − φ)(y) for all y ∈ �.

Our last result indicates the relationship between γ -solutions and the generally accepted defi-
nition of C–L solutions, AKA viscosity solutions. �

2.10. Theorem
Assume u ∈ C(�).

i. If u is a γ -subsolution of (1.1), then

n∑

i,j=1

aij (x)
∂2φ

∂xi∂xj

(x) ≥ g(x)
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whenever x ∈ � is a Lebesgue point of (aij ) and g and φ ∈ C2(�) are such that

0 = (u − φ)(x) ≥ (u − φ)(y) for all y ∈ �.

ii. If u is a γ -supersolution of (1.1), then

n∑

i,j=1

aij (x)
∂2φ

∂xi∂xj

(x) ≤ g(x)

whenever x ∈ � is a Lebesgue point of (aij ) and g and φ ∈ C2(�) are such that

0 = (u − φ)(x) ≤ (u − φ)(y) for all y ∈ �.

Proof. Due to the symmetry in proving conditions i and ii, it will be sufficient to prove i.
To this end let u be a γ -subsolution of (1.1), x ∈ � a Lebesgue point of (aij ) and g, and φ ∈ C2(�).
The definition for a γ -subsolution implies that given η > 0 there exist a constant d > 0, a sequence
{εk}∞k=1, and sets Ek ⊂B(x, εk) such that

εk → 0+ as k → ∞,
n∑

i,j=1

aij (y)

(
∂2φ

∂xi∂xj

(x) + ηδij

)
− g(y) > 0 for all y ∈ Ek,

|Ek| ≥ d|B(x, εk)| for all k.

In conjunction with the assumption that x is a Lebesgue point of both (aij ) and g, the preceding
observation demonstrates

n∑

i,j=1

aij (x)

(
∂2φ

∂xi∂xj

(x) + ηδij

)
− g(x) > 0.

Since η is arbitrary, this proves our theorem. �

Remark. It should be noted that the preceding properties of γ -solutions are too weak to be
used as the basis for another definition of a solution of (1.1). Indeed, these properties hold for the
example we constructed in the introduction when we examined the limitations of W2,p solutions.

�

3. δ-Solutions: Constructing Approximations
To complete our proof of Theorem 1.14 we borrow some tools from the theory of C–L solutions

and convex analysis. The first of these are known as inf- and sup-convolutions.

Definition 3.1. Given a bounded, continuous function w ∈ C(�), define the operators
A+

ε [w] and A−
ε [w] by the formulas

A+
ε [w](x) = sup

{
w(ξ) − 1

2ε
|x − ξ |2 : ξ ∈ �

}
,

A−
ε [w](x) = inf

{
w(ξ) + 1

2ε
|x − ξ |2 : ξ ∈ �

}
. �

With the definition conveniently nearby for reference, we state the fundamental properties of
A+

ε [ · ] and A−
ε [ · ].
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3.2. Lemma
If u ∈ C(�) has modulus of continuity ω( · ) and ε, δ > 0, then for v+ = A+

ε [u] and
v− = A−

ε [u]

i.

A+
ε+δ[u] = A+

δ [A+
ε [u]], i.e., A+

ε [ · ] is a semigroup in ε;

u ≤ v+ ∈ W1,∞(�);

|Dv+(y)| ≤
√

2ω(
√

8ε1/2||v||L∞(�))
1/2

ε1/2
for all y ∈ �;

−1

ε
I ≤ D2v+ in the sense of distributions on �;

(v+ − u)(y) ≤ ω
(√

2ε1/2ω(
√

8ε1/2||v||L∞(�))
1/2

)
for all y ∈ �.

ii.

A−
ε+δ[u] = A−

δ [A−
ε [u]], i.e., A−

ε [ · ] is a semigroup in ε;

u ≥ v− ∈ W1,∞(�);

|Dv−(y)| ≤
√

2ω(
√

8ε1/2||v||L∞(�))
1/2

ε1/2
for all y ∈ �;

1

ε
I ≥ D2v− in the sense of distributions on �;

(u − v−)(y) ≤ ω
(√

2ε1/2ω(
√

8ε1/2||v||L∞(�))
1/2

)
for all y ∈ �.

Proof. These are all standard results that may be verified directly or extracted from sources
such as [6] and [8]. �

We shall also use another pair of regularizing operators, generalizations of the convex hull and
concave hull. First, we introduce special sets of polynomial functions.

Definition 3.3. Given δ > 0 define Q+
δ and Q−

δ by

Q+
δ =

{
p ∈ C(Rn) : p is a quadratic polynomial, and D2p = 1

δ
I
}

,

Q−
δ =

{
p ∈ C(Rn) : p is a quadratic polynomial, and D2p = −1

δ
I
}

. �

We now define what we call the semiconvex and semiconcave hull operators.

Definition 3.4. Given w ∈ C(�), define the operators SC+
δ [w] and SC−

δ [w] by

SC+
δ [w](x) = inf

{
p(x) : p ∈ Q+

δ , and p ≥ w
}

,

SC−
δ [w](x) = sup

{
p(x) : p ∈ Q−

δ , and p ≤ w
}

. �

Again it is convenient to follow the definitions of SC+
δ [ · ] and SC−

δ [ · ] with their fundamental
properties.
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3.5. Lemma
If v ∈ C(�) and δ > 0, then for w+ = SC+

δ [v] and w− = SC−
δ [v]

i.

v ≤ w+ ∈ W1,∞
loc (�);

w+ ≤ A+
δ [v];

1

δ
I ≥ D2w+ in the sense of distributions on �;

D2v ≥ −c0I and c0 > 0 �⇒ D2w+ ≥ −c0I in the sense of distributions on �.

ii.

v ≥ w− ∈ W1,∞
loc (�);

w− ≥ A−
δ [v];

−1

δ
I ≤ D2w− in the sense of distributions on �;

D2v ≤ c0I and c0 > 0 �⇒ D2w− ≤ c0I in the sense of distributions on �.

Proof. The statements are clearly symmetrical, so it is sufficient to prove i. Setting w+ =
SC+

δ [v], it is clear that v ≤ w+. Nor is it too difficult to see that w+ ∈ W1,∞
loc (�) and 1

δ
I ≥ D2w+

in the sense of distributions. To prove the remaining two properties we claim

w+ = SC+
∞[v − p0] + p0, (3.6)

where p0(y) = 1
2δ

|y|2 and (by a mild abuse of notation) SC+
∞[ · ] denotes the usual concave hull

operator. Indeed, if p ∈ Q+
δ , then l = p − p0 is a linear function; p ≥ v if and only if l ≥ (v − p0).

Our claim follows immediately from this.
Continuing from (3.6), for any x0 ∈ � there are positive numbers {α1, . . . , αk} and points

{x1, . . . , xk} ⊂ � for some k ≤ (n + 1) and a linear function l0 ≥ (v − p0) such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑

j=1

αj = 1,

k∑

j=1

αjxj = x0,

(w+ − p0)(x0) = l0(x0),

l0(xj ) = (v − p0)(xj ) for all 1 ≤ j ≤ k.

(3.7)

We claim w+ ≤ v+ = A+
δ [v]. For the sake of contradiction, suppose x0 ∈ � is a point for

which

w+(x0) > v+(x0) = A+
δ [v](x0). (3.8)

As demonstrated by (3.6), there are positive numbers {α1, . . . , αk} and points {x1, . . . , xk} ⊂ � for
some k ≤ (n + 1) and a linear function l0 satisfying (3.7). In particular, for p̂ = l0 + p0

v ≤ p̂, w+(x0) = p̂(x0) , and p̂(xj ) = v(xj ) for all 1 ≤ j ≤ k.



Uniformly Elliptic PDEs 249

Based on the definitions of v+ and p̂, for all 1 ≤ j ≤ k

w+(x0) > v+(x0) ≥ v(xj ) − 1

2δ
|x0 − xj |2 = p̂(xj ) − 1

2δ
|x0 − xj |2

= l0(xj ) + 1

δ
〈xj , x0〉 − 1

2δ
|x0|2.

Multiplying by the corresponding αj and summing yield

w+(x0) >

k∑

j=1

αj l0(xj ) +
k∑

j=1

αj

δ
〈xj , x0〉 − 1

2δ
|x0|2

= l0(x0) + 1

δ
|x0|2 − 1

2δ
|x0|2 = p̂(x0) = w+(x0).

This contradiction denies (3.8) and establishes our claim.
The last statement to prove is

D2v ≥ −c0I and c0 > 0 �⇒ D2w+ ≥ −c0I
in the sense of distributions.

Keeping (3.6) in mind, we see that it is sufficient to prove

D2v ≥ −c0I and c0 > 0 �⇒ D2(SC+
∞[v − p0] + p0) ≥ −c0I

in the sense of distributions.

This in turn is equivalent to proving that if D2v ≥ −c0I in the sense of distributions with c0 > 0,
then for each x0 ∈ � there is a quadratic function p̂ ∈ Q−

δ/(1+c0δ)
such that

p̂ ≤ SC+
∞[v − p0] and p̂(x0) = SC+

∞[v − p0](x0). (3.9)

Given x0 we note that this is trivial if v(x0) = w+(x0). On the other hand, if v(x0) < w+(x0),
then (3.6) implies the existence of positive numbers {α1, . . . , αk} and points {x1, . . . , xk} ⊂ � for
some k ≤ (n+1) and of a linear function l0 ≥ (v−p0) satisfying (3.7). From the assumption D2v ≥
−c0I in the sense of distributions and c0 > 0, there is a set of functions {p1, . . . , pk} ⊂ Q−

δ/(1+c1δ)

such that

pj (xj ) = (v − p0) (xj ) and pj ≤ (v − p0) in � for 1 ≤ j ≤ k.

Due to the concavity of SC+
∞[v − p0], we may construct p̂ satisfying (3.9) by the formula

p̂(x) =
k∑

j=1

αjpj (x − x0 + xj ),

completing the proof of the lemma. �

The previously defined operators are regularizing approximations to the identity. They will be
used to construct “smooth” approximates of δ-solutions of (1.1). However, due to the fact that these
operators do not commute with either differential operators or products of functions, they invariably
perturb the approximates from true solutions of (1.1). Given a function v ∈ W2,∞(�) we define
mappings T +

ρ [v] and T −
ρ [v] from � to Rn. These maps will be used to correct the errors introduced

by the previous approximations.
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Definition 3.10. Given a continuous function v ∈ W2,∞(�), define the mappings T +
ρ [v]

and T −
ρ [v] by

T +
ρ [v](x) = x + ρDv(x), T −

ρ [v](x) = x − ρDv(x). �

An elementary corollary exposes a basic property of the preceding maps.

3.11. Corollary
Let u ∈ C(�), and set T +

ε = T +
ε [A+

ε [u]] and T −
ε = T −

ε [A−
ε [u]]. There exists a constant

C = C(u) such that for any subdomain �∗ ⊂ � with distance(�∗, ∂�) ≥ Cε1/2, T ±
ε

(
�∗) ⊂ �.

Proof. This is obvious from the estimates in Lemma 3.2 on |D(A+
ε [u])| and

|D(A−
ε [u])|. �

Finally, for the last of our definitions we present the Pucci extremal operators. Given an n×n,
real-valued, symmetric matrix M ∈ S(n) we let �+[M] and �−[M] be the sets of positive and
negative eigenvalues of M, respectively (including repetitions).

Definition 3.12. Given � > θ > 0 we define functions P +
�,θ and P −

�,θ from the n×n,
real-valued, symmetric matrices to the reals by

P +(M) = P +
�,θ (M) = � ·

∑

λ∈�+[M]

λ + θ ·
∑

λ∈�−[M]

λ,

P −(M) = P −
�,θ (M) = � ·

∑

λ∈�−[M]

λ + θ ·
∑

λ∈�+[M]

λ. �

Using P + and P −, the next lemma establishes two differential inequalities satisfied by solutions
of (1.1).

3.13. Lemma
If u is a δ-solution of (1.1), then there exist constants C0 > 0 and �0 > θ0 > 0 such that with

P + = P +
�0,θ0

and P − = P −
�0,θ0

i. P +(M) + C0 ≥ 0 for all (p, M) ∈ J
2,+
� u(x) for all x ∈ �,

ii. P −(M) − C0 ≤ 0 for all (p, M) ∈ J
2,−
� u(x) for all x ∈ �.

Proof. Define the constants appearing in the lemma as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = ||g||L∞(�),

�0 = sup

{
||

n∑

i,j=1

aij qiqj ||L∞(�) : q ∈ Sn−1

}
,

θ0 = inf

{
||

n∑

i,j=1

aij qiqj ||L∞(�) : q ∈ Sn−1

}
,

which are positive and finite by (1.2). Given (p, M) ∈ J
2,+
� u(x) for some x ∈ �, Definition 1.13

implies the existence of a set E ⊂ � of positive measure such that

n∑

i,j=1

aij (y)
(
mij + ηδij

) − g(y) > 0 for all y ∈ E.
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Based on our choices of C0, �0, and θ0 it follows that the first statement of the lemma is true. In
as much as the second statement is a mirror image of the first (and can be proved by an argument
symmetric with the preceding one), this completes the proof of our lemma. �

As an immediate corollary, we obtain the following result.

3.14. Corollary
If u is a δ-solution of (1.1), then there exist constants C0 > 0 and �0 > θ0 > 0 such that with

P + = P +
�0,θ0

and P − = P −
�0,θ0

i. u is a C–L subsolution of

P +(D2u) + C0 = 0 in �; (3.15)

ii. u is a C–L supersolution of

P −(D2u) − C0 = 0 in �. (3.16)

Proof. Apply Lemma 3.13. �

At this point we begin the technical work necessary to complete the proof of Theorem 1.14.

3.17. Lemma
Let u be a δ-solution of (1.1), and let �∗ ⊂⊂ � denote a compactly contained subdomain.

Set v+ = A+
ε [u] and v− = A−

ε [u] for 0 < ε < ε0 where ε0 is determined from Corollary 3.11 by
ε0 = (distance(�∗, ∂�)/C)2. Then D2v±(x) exists for almost every point x ∈ �∗ (in the sense of a
quadratic approximation [5, Lemma 3.15]), and there exists a constant β ∈ (0, 1) independent of ε

such that

i. at every point x where D2v+(x) exists

−β

ε
I ≤ D2v+(x) and det

∣∣I + εD2v+(x)
∣∣ ≥ (1 − β)n,

ii. at every point x where D2v−(x) exists

D2v−(x) ≤ β

ε
I and det

∣∣I − εD2v−(x)
∣∣ ≥ (1 − β)n.

Proof. As noted previously, by symmetry the proof of i is sufficient. The almost everywhere
existence of D2v+(x) as a quadratic approximation to v+ follows from [5, Lemmas 3.3 and 3.15].
To prove the existence of β we use Corollary 3.14 and [6, Lemma 2.14]. Specifically, let x ∈ �∗ be
a point at which M0 = D2v+(x) exists. Using [6, Lemma 2.14], we conclude that for any δ > 0

(
p0, Mδ − εMδ(I + εMδ)

−1Mδ

) ∈ J
2,+
� u

(
T +

ε (x)
)
,

where p0 = Dv+(x), Mδ = M0 + δI, and T +
ε is the map defined in Corollary 3.11. According to

Corollary 3.14, u is a C–L subsolution of (3.15); so the definition of J
2,+
� u

(
T +

ε (x)
)

implies

P +(Mδ − εMδ(I + εMδ)
−1Mδ) + C ≥ 0.
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Calculating the left-hand side of the previous inequality by the definition of P + we obtain

�0 ·
∑

λ∈�+[Mδ ]

λ

1 + ελ
+ θ0 ·

∑

λ∈�−[Mδ ]

λ

1 + ελ
≥ −C.

After some modest manipulation, the previous inequality gives rise to

θ0 ·
∑

λ∈�−[Mδ ]

ελ

1 + ελ
≥ −C · ε − n�0,

which reveals the existence of β ∈ (0, 1) independent of δ such that

λ ≥ −β

ε
for all λ ∈ �−[Mδ].

Passing to the limit as δ → 0+ we conclude that the preceding inequality remains valid for δ = 0,
which proves i. �

A couple of important corollaries are immediately evident from the preceding lemma.

3.18. Corollary
Let u be a δ-solution of (1.1), and let �∗ ⊂⊂ � (as in the Lemma 3.17). Set w+ = SC+

δ [A+
ε [u]]

and w− = SC−
δ [A−

ε [u]] for 0 < ε < ε0 and 0 < δ < ε where ε0 is the same constant as determined
in Lemma 3.17. Then D2w±(x) exist for almost every x ∈ �∗ (simultaneously, in both the classical
sense and as a distribution in Lp(�∗; S(n)) ), and for the same constant β ∈ (0, 1) as appearing in
Lemma 3.17

i. at every point x where D2w+(x) exists

−β

ε
I ≤ D2w+(x) ≤ 1

δ
I and det

∣∣I + εD2w+(x)
∣∣ ≥ (1 − β)n,

ii. at every point x where D2w−(x) exists

−1

δ
I ≤ D2w−(x) ≤ β

ε
I and det

∣∣I − εD2w−(x)
∣∣ ≥ (1 − β)n.

Proof. Apply Lemmas 3.17 and 3.5 to obtain the distribution estimates. Now simply appeal
to standard results on Sobolev spaces. �

3.19. Corollary
Let u be a δ-solution of (1.1), and let �∗ ⊂⊂ �. Set w+ = SC+

δ [A+
ε [u]] and w− =

SC−
δ [A−

ε [u]] for 0 < ε < ε0 and 0 < δ < ε where ε0 is the same constant as determined in
Lemma 3.17. Set T +

ε,δ = T +
ε [w+] and T −

ε,δ = T −
ε [w−]. Then for the same constant β ∈ (0, 1) as

appearing in Lemma 3.17

|T +
ε,δ(x) − T +

ε,δ(y)| ≥ (1 − β)|x − y| for all x, y ∈ � ∗ ,

det
∣∣DT +

ε,δ

∣∣ (x) ≥ (1 − β)n for almost every x ∈ � ∗ ,

|T −
ε,δ(x) − T −

ε,δ(y)| ≥ (1 − β)|x − y| for all x, y ∈ � ∗ ,

det
∣∣DT −

ε,δ

∣∣ (x) ≥ (1 − β)n for almost every x ∈ � ∗ .
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Proof. Use Corollary 3.18 and standard results in analysis from, for example, [3]. �

Our next lemma is a technical observation to be applied later.

3.20. Lemma
Let u be a δ-solution of (1.1). Set v+ = A+

ε [u], v− = A−
ε [u], w+ = SC+

δ [A+
ε [u]], and

w− = SC−
δ [A−

ε [u]] for 0 < δ < ε. Then there exists a constant μ ∈ (0, 1) independent of ε and δ

such that when 0 < δ ≤ με

i.

n∑

i,j=1

aij (y)
∂2w+

∂xi∂xj

(x) − g(y) ≥ 0 for all y ∈ �

for any point x ∈ � at which both D2w+(x) exists and w+(x) > v+(x),
ii.

n∑

i,j=1

aij (y)
∂2w−

∂xi∂xj

(x) − g(y) ≤ 0 for all y ∈ �

for any point x ∈ � at which both D2w−(x) exists and w−(x) < v−(x).

Proof. Again, it will suffice to prove i. Assuming D2w+(x) exists and w+(x) > v+(x) we
claim that

there exists λ0 ∈ �+[D2w+(x)] such that λ = 1

δ
. (3.21)

Indeed, by (3.6) w+ = SC+
∞[v+ − p0] + p0, and the preceding is equivalent to claiming that

SC+
∞[v+ − p0] has an eigenvalue of zero. This, of course, is well known; our claim is established.

Using (3.21), the constant C0 and function P −( · ) defined in Lemma 3.13 are such that

n∑

i,j=1

aij (y)
∂2w+

∂xi∂xj

(x) − g(y) ≥ P −(D2w+(x)) − C ≥ θ0

δ
− (n − 1)

�0

ε
− C.

The existence of μ now follows easily from this last inequality. �

With our preparation the following important lemma is easily established.

3.22. Lemma
Let u be a δ-solution of (1.1), and let �∗ ⊂⊂ �. Set w+ = SC+

δ [A+
ε [u]] and w− =

SC−
δ [A−

ε [u]] for 0 < ε < ε0 and δ = με where ε0 is the same constant as determined in Lemma 3.17
and μ is the constant from Lemma 3.20. Set T +

ε = T +
ε,δ and T −

ε = T −
ε,δ where T ±

ε,δ are from
Corollary 3.19. Then

i.

n∑

i,j=1

aij (T
+
ε (x))

∂2w+

∂xi∂xj

(x) − g(T +
ε (x)) ≥ 0

for any point x ∈ �∗ such that T +
ε (x) is a Lebesgue point of both (aij ) and g and at which

D2w+(x) exists,
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ii.

n∑

i,j=1

aij (T
−
ε (x))

∂2w−

∂xi∂xj

(x) − g(T −
ε (x)) ≤ 0

for any point x ∈ �∗ such that T −
ε (x) is a Lebesgue point of both (aij ) and g and at which

D2w−(x) exists.

Proof. To prove i, let x ∈ �∗ be a point such that T +
ε (x) is a Lebesgue point of both (aij )

and g and D2w+(x) exists. If w+(x) > v+(x), then Lemma 3.20 proves the validity of i. On the
other hand, if w+(x) = v+(x), then (Dw+(x), D2w+(x)) ∈ J

2,+
� v+(x). By [6, Lemma 2.14],this in

turn implies

(Dw+(x), D2w+(x)) ∈ J
2,+
� u(T +

ε (x)).

The proof of Theorem 2.10 applies to δ-solutions with virtually no modifications and implies

n∑

i,j=1

aij (T
+
ε (x))

∂2w+

∂xi∂xj

(x) ≥ g(T +
ε (x)).

A similar argument establishes ii, completing our proof. �

Our next lemma shows that the preceding one is actually valid almost everywhere.

3.23. Lemma
Let u be a δ-solution of (1.1), and let �∗ ⊂⊂ �. Set w+ = SC+

δ [A+
ε [u]] and w− =

SC−
δ [A−

ε [u]] for 0 < ε < ε0 and δ = με where ε0 is the same constant as determined in Lemma 3.17
and μ is the constant from Lemma 3.20. Set T +

ε = T +
ε,δ and T −

ε = T −
ε,δ where T ±

ε,δ are from
Corollary 3.19. Then for almost every x ∈ �∗

i. T +
ε (x) is a Lebesgue point of both (aij ) and g,

ii. T −
ε (x) is a Lebesgue point of both (aij ) and g,

iii. D2w+(x) and D2w−(x) both exist.

Proof. Since iii follows from standard results on Sobolev spaces, by symmetry it is once
again sufficient to prove i. To this end let E be the measurable set given by

E = {
y ∈ �∗ : y is not a Lebesgue point of either (aij ) or g

}
.

Due to Corollary 3.19, we see that

0 = |E| =
∫

E

dy =
∫

(T +
ε )−1(E)

det
∣∣DT +

ε

∣∣ (x) dx

≥
∫

(T +
ε )−1(E)

(1 − β)n dx = (1 − β)n
∣∣(T +

ε )−1(E)
∣∣ ,

which clearly implies the desired result. �

Combining the two preceding lemmas, we have the following result.
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3.24. Corollary
Let u be a δ-solution of (1.1), and let �∗ ⊂⊂ �. Set w+ = SC+

δ [A+
ε [u]] and w− =

SC−
δ [A−

ε [u]] for 0 < ε < ε0 and δ = με where ε0 is the same constant as determined in Lemma 3.17
and μ is the constant from Lemma 3.20. Set T +

ε = T +
ε,δ and T −

ε = T −
ε,δ where T ±

ε,δ are from
Corollary 3.19. Then for almost every point x ∈ �∗

n∑

i,j=1

aij (T
+
ε (x))

∂2w+

∂xi∂xj

(x) − g(T +
ε (x)) ≥ 0

and

n∑

i,j=1

aij (T
−
ε (x))

∂2w−

∂xi∂xj

(x) − g(T −
ε (x)) ≤ 0.

Our next step is to bracket a δ-solution by a W2,∞ subsolution and supersolution with appro-
priate properties.

3.25. Theorem
(Approximation) Let u be a δ-solution of (1.1), and let �∗ ⊂⊂ �. Given ν > 0 there exist

functions wν+ > wν− in W2,∞(�∗), aν+
ij and aν−

ij in L∞(�∗) for 1 ≤ i, j ≤ n, and gν+ and gν− in
L∞(�∗) such that

i. wν+ is a W2,∞ supersolution of

n∑

i,j=1

aν+
ij (x)

∂2u

∂xi∂xj

= gν+(x) in �∗, (3.26)

which satisfies (1.2) with the same constants as (1.1);

ii. wν− is a W2,∞ subsolution of

n∑

i,j=1

aν−
ij (x)

∂2u

∂xi∂xj

= gν−(x) in �∗, (3.27)

which satisfies (1.2) with the same constants as (1.1);

iii.
{ ||aij − aν±

ij ||Ln(�∗) ≤ ν for 1 ≤ i, j ≤ n

||g − gν±||Ln(�∗) ≤ ν;
(3.28)

iv.

u + ν

2
≥ wν+ − ν

2
≥ u ≥ wν− + ν

2
≥ u − ν

2
. (3.29)

Proof. We prove the preceding statements in reverse order. To start, take ε0 as the constant as
determined in Lemma 3.17 and μ as the constant from Lemma 3.20. Set δ = με, w+ = SC+

δ [A+
ε [u]],
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and w− = SC−
δ [A−

ε [u]]. We claim there exists 0 < ε1 < ε0 such that for any 0 < ε < ε1 iv is
satisfied with

wν+ = w− + 3ν

4
and wν− = w+ − 3ν

4
.

Indeed, by Lemmas 3.2 and 3.5 we can choose ε1 so that

|w± − u| ≤ ν

4
for all 0 < ε < ε1,

which establishes our claim.
Fix ε0, ε1, μ, wν+, and wν− as just defined. Set T +

ε = T +
ε,δ and T −

ε = T −
ε,δ where T ±

ε,δ are from
Corollary 3.19. We claim there exists 0 < ε2 < ε1 such that for any 0 < ε < ε2 iii is satisfied with

aν+
ij (x) = aij (T

+
ε (x)) for 1 ≤ i, j ≤ n,

aν−
ij (x) = aij (T

−
ε (x)) for 1 ≤ i, j ≤ n,

gν+(x) = g(T +
ε (x)), and gν−(x) = g(T −

ε (x)).

Indeed (once again) by Lemmas 3.2 and 3.5 T ±
ε → I as ε → 0+. Approximating (aij ) and g by

continuous functions, the claim is clearly true.
Closing out, i and ii now follow easily by Corollary 3.24. �

Now let us approximate a δ-solution with a W2,p solution with p > n.

3.30. Theorem
Let u be a δ-solution of (1.1), and let �∗ ⊂⊂ � with smooth boundary ∂�∗ ∈ C2,α . Given

ν > 0 and p > n there exist functions wν in W2,p(�∗), aν
ij in C(�∗) for 1 ≤ i, j ≤ n, and gν in

C(�∗) such that

i. wν is a W2,p solution of

n∑

i,j=1

aν
ij (x)

∂2u

∂xi∂xj

= gν(x) in �∗, (3.31)

which satisfies (1.2) with the same constants as (1.1);
ii.

{ ||aij − aν
ij ||Ln(�∗) ≤ 4ν for 1 ≤ i, j ≤ n

||g − gν ||Ln(�∗) ≤ 4ν;
(3.32)

iii.

u + 2ν ≥ wν ≥ u − 2ν. (3.33)

Proof. The trick is to construct a special quasi-linear pde. To this end let wν±, (aν±
ij ), and

gν± be the functions produced by Theorem 3.25. Given δ > 0 there exists an open set Gδ ⊂ �∗

such that
{ |Gδ| < δ,

(aν±
ij ) and gν± are continuous on �∗ \ Gδ .

(3.34)
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Construct continuous extensions of (ãν±
ij ) of (aν±

ij ) and g̃ν± of gν± satisfying (1.2) with the same
constants as for (1.1). Using this, we see that

{ ||ãν±
ij − aν±

ij ||Ln(�∗) ≤ 2K1
n
√

δ for 1 ≤ i, j ≤ n

||g̃ν± − gν±||Ln(�∗) ≤ 2K1
n
√

δ.

Clearly, there exists δ0 > 0 such that 2K1
n
√

δ < ν if 0 < δ < δ0, which by (3.28) implies

{ ||ãν±
ij − aij ||Ln(�∗) ≤ 2ν for 1 ≤ i, j ≤ n if 0 < δ < δ0

||g̃ν± − g||Ln(�∗) ≤ 2ν if 0 < δ < δ0.
(3.35)

By (3.29) it is possible to find a function ψ ∈ C∞(�∗×R) such that

0 ≤ ψ( · , · ) ≤ 1,

ψ(x, t) = 1 if t ≥ wν+,

ψ(x, t) = 0 if t ≤ wν−.

From this we construct the coefficients and nonhomogeneous term of a quasi-linear pde. Namely,

âij (x, t) =
(
ψ(x, t)ãν+

ij (x) + (1 − ψ(x, t))ãν−
ij (x)

)
for 1 ≤ i, j ≤ n,

ĝ(x, t) = (
ψ(x, t)g̃ν+ + (1 − ψ(x, t))g̃ν−)

.

This leads to the pde

n∑

i,j=1

âij (x, u)
∂2u

∂xi∂xj

− ĝ(x, u) = 0 in �∗. (3.36)

Finally let h ∈ C2,α(∂�∗) be a function such that

u
∣∣
∂�∗ + ν ≥ h ≥ u

∣∣
∂�∗ − ν. (3.37)

Define a mapping � : C(�∗) → C(�∗) by setting �[v] = u where u is the solution of

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i,j=1

âij (x, v)
∂2u

∂xi∂xj

− ĝ(x, v) = 0 in �∗,

u
∣∣
∂�∗ = h.

The Compact Mapping Theorem guarantees the existence of a fixed point of �. Let wν denote one
such fixed point. Then wν ∈ W2,p is a W2,p solution of (3.36) satisfying the boundary condition
wν

∣∣
∂�∗ = h. Using wν , we define (aν

ij ) and gν by

aν
ij (x) = âij (x, wν(x)) for 1 ≤ i, j ≤ n

gν(x) = ĝ(x, wν(x)).

A careful examination of our construction allows us to conclude the validity of i, and establishing
the inequalities of ii follows from (3.35) and the construction of (âij ) and ĝ.
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To complete our proof, we need to establish iii. We begin by setting

�+ = {
x ∈ �∗ : wν(x) > wν+(x)

}
.

From our construction it follows that wν − wν+ is a W2,p subsolution of

n∑

i,j=1

aν
ij (x)

∂2u

∂xi∂xj

= −2K1(1 + n2||wν+||W 2,∞)XGδ
in �+.

As such the L∞ estimates of Lemma 2.3 apply. If ρ0 is the radius of the smallest ball containing �,
then

sup
{
(wν − wν+)+(x) : x ∈ �+} ≤ ρ0

ne1
n
√

	n

2K1(1 + n2||wν+||W 2,∞) n
√

|Gδ|.

From this it is obvious that there exists a 0 < δ1 < δ0 so that if 0 < δ < δ1, then wν+ + ν ≥ wν ;
and by a similar argument wν ≥ wν− − ν. In conjunction with (3.29) this proves iii. �

We may now prove the following result.

3.38. Theorem
(1.14iv) Definition 1.13 �⇒ Definition 1.4.

Proof. Let u be a δ-solution of (1.1). It will be sufficient to prove that given ν > 0 there
exists a W2,p solution ŵ of

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i,j=1

âij (x)
∂2ŵ

∂xi∂xj

= ĝ(x) in �,

ŵ
∣∣
∂�

= u
∣∣
∂�

(3.39)

such that âij and ĝ satisfy (1.2), and

ŵ ∈ W2,p(�) for some p > n,

âij ∈ C(�) for all 1 ≤ i, j ≤ n,

ĝ ∈ C(�),

sup
x∈�

| (u − ŵ)(x)| ≤ 3ν,

‖aij − âij‖Ln(�) ≤ 5ν for all 1 ≤ i, j ≤ n,

‖g − ĝ‖Ln(�) ≤ 5ν.

We begin by defining a pseudodistance function d(�, �∗) where �∗ ⊂ � is an arbitrary
subdomain of �:

d(�, �∗) = sup
{
inf{|x − y| : x ∈ Rn \ �} : y ∈ � \ �∗} .

Assuming âij and ĝ satisfy (1.2), standard barrier arguments and elementary measure theory establish
the existence of a number μ > 0 such that for any W2,p solution ŵ of (3.39)
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| u(x) − ŵ(x)| ≤ ν for all x ∈ � \ �∗; (3.40)

| � \ �∗| ≤ (ν/(2K1))
n . (3.41)

Fixing a subdomain �∗ ⊂ � with d(�, �∗) < μ and ∂�∗ ∈ C2,α , let wν ,
(
aν

ij

)
, and gν be the

functions produced by Theorem 3.30 for this subdomain (with ν as given). We construct
(
âij

)
and

ĝ by extending
(
aν

ij

)
and gν continuously to � so that (1.2) remains satisfied. Standard modern pde

theory now produces a W2,p solution ŵ of (3.39) with p > n. By the maximum principle for W2,p

solutions with p > n in conjunction with (3.40) it follows that

‖wν(x) − ŵ(x)‖ ≤ ν for all x ∈ �∗.

Consequently, by (3.40) and Theorem 3.30

sup
x∈�

| (u − ŵ)(x)| ≤ 3ν.

Due to (3.41) and Theorem 3.30 we also have

‖aij − âij‖Ln(�) ≤ 5ν for all 1 ≤ i, j ≤ n,

‖g − ĝ‖Ln(�) ≤ 5ν.

This completes the proof of the theorem. �
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