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ABSTRACT. Often, the Dyadic Wavelet Transform is performed and implemented with the
Daubechies wavelets, the Battle-Lemarié wavelets, or the splines wavelets, whereas in continuous-
time wavelet decomposition a much larger variety of mother wavelets is used. Maintaining the
dyadic time-frequency sampling and the recursive pyramidal computational structure, we present
various methods for constructing wavelets ψwanted, with some desired shape and properties and
which are associated with semi-orthogonal multiresolution analyses. We explain in detail how to
design any desired wavelet, starting from any given multiresolution analysis. We also explicitly
derive the formulae of the filter bank structure that implements the designed wavelet. We illustrate
these wavelet design techniques with examples that we have programmed with Matlab routines.

1. Introduction and Motivation
The sampled (or dyadic) wavelet transform (SWT) (Wx)(j, k) of a signal x(t) ∈ L2 is defined

to be

(Wx)(j, k) = d(j, k) = 〈
x(t), ψj,k(t)

〉
(1)

where 〈., .〉 is the inner product in L2 and ψj,k(t) = 2−j/2ψ(2−j t − k) are the translates and dilates
of a basic pattern ψ(t) (called the mother wavelet) [17]. In some cases, the SWT is associated with
a multiresolution analysis (MRA) [16, 10]. Specifically, a MRA consists of a sequence of spaces Vj

satisfying the following properties [10, 17, 18, 16].

i.
⋂

j∈Z
Vj = {0}, ⋃

j∈Z
Vj is dense in L2(R).

ii. Vj ⊂ Vj−1.

iii. s(t) ∈ Vj ←→ s(2j t) ∈ V0.

iv. There exists a function φ(t) in V0 such that the collection {φ(t−k), k ∈ Z} is an unconditional
Riesz basis for V0.

The associated wavelet spaces Wj are defined to be the orthogonal complements of the spaces Vj

relative to the larger spaces Vj−1. Thus we have

Wj ⊕ Vj = Vj−1. (2)
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It is well known that each space Wj can be generated by an orthonormal basis {ψj,k(t) = 2−j/2

ψ(2−j t −k), k ∈ Z} generated by dilations and translations of a single orthogonal wavelet function
ψ(t) (ψ(t) is not unique). From property i and (2), it follows that the set {ψj,k(t), (j, k) ∈ Z

2} is an
orthonormal basis of L2 and that any function x(t) ∈ L2 can be recovered from its sampled wavelet
transform by the reconstruction formula

x(t) =
∑

j

∑

k

d(j, k)ψj,k(t). (3)

Moreover, the orthogonal projection PVJ
x of the signal x(t) onto the space VJ is given by

PVJ
x =

J∑

j=−∞

∑

k

d(j, k)ψj,k(t),

and the residual error eJ = PVJ−1x − PVJ
x that we obtain when we approximate x(t) in VJ instead

of the finer resolution space VJ−1 is given by the following orthogonal projection of x(t) on WJ :

eJ = PWJ
x =

∑

k

d(J, k)ψJ,k(t).

For orthogonal wavelets that are associated with MRAs, the existence of a fast pyramidal
algorithm for computing the coefficients d(j, k) in (1) makes the SWT an efficient tool for data
analysis [16]. Thus, the ability to choose or even design the mother wavelets associated with
MRAs is of major interest. For this purpose, we can choose from a set of well-known orthogonal
MRA-type wavelets such as the Haar, Daubechies [9], and Battle–Lemarié–Meyer [15] wavelets.
However, since this wavelet set has a limited number of patterns, we may not be able to find the
wavelet that matches our desired pattern for data processing. Alternatively, we can use one of several
approaches that have been developed to approximate a desired wavelet by one that is related to a MRA
[8, 27, 13, 24, 20]. However, these methods cannot simultaneously control some important properties
of the designed wavelets such as regularity, symmetry, interpolation, and support. Moreover, the
wavelets constructed by these techniques suffer from the drawback that the representation of the data
in the spaces Vj and Wj can no longer be obtained by orthogonal projections [8, 27, 21, 12]. For
instance, the residual error eJ that we obtain when we approximate a signal x(t) in VJ instead of
VJ−1 is not the orthogonal projection of x(t) on WJ as in the case of orthogonal wavelets.

The main purpose of this paper is to describe a general method for constructing a MRA-type
wavelet ψwanted that also has some desired shape and properties (such as symmetry, regularity, and
interpolation property). Unlike the other methods, we keep the orthogonality between the wavelet
spaces by constructing semi-orthogonal wavelets, whose general framework can be found in [3].
Semi-orthogonal wavelets are also called pre-wavelets (see for instance [19, 6]), and a general
overview of the various types of MRAs and wavelet transforms can be found in [14]. In the semi-
orthogonal framework, the orthogonality between wavelet spaces at different scales is kept (i.e., Wj

is orthogonal to Wk if j 
= k) and the set
{
ψj,k(t), (j, k) ∈ Z

2
}

is still a basis of L2. However,
what differentiates the semi-orthogonal case is that the wavelet functions at any given fixed scale
Wj are not orthogonal to each other (i.e.,

〈
ψ(2−j t − k), ψ(2−j t − l)

〉 
= 0 for k 
= l). By relaxing
the orthonormality between a wavelet and its shifts, we are able to design MRA-type wavelets with
various properties while preserving (2), which is an important property for data analysis. We then
explicitly compute the coefficients of the filters used in the fast pyramidal algorithm that implements
the SWT. We have developed Matlab routines to produce examples that illustrate the design of a
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chosen wavelet and to perform data analysis/synthesis with such a wavelet. Although we restrict
ourselves to the semi-orthogonal framework, most of our results can be transposed to the biorthogonal
case.

This paper can be used to design wavelets and their fast algorithms as follows. Starting from
a well-known MRA (equivalently, starting from any scaling function φ or its associated two-scale
sequence {u(k)}k∈Z), one can use any of the proposed techniques of §3 to construct a MRA-type
wavelet ψconstructed designed to match a wavelet ψwanted. One can then compute the filters’ coefficients
of the pyramidal algorithm that performs the SWT. Moreover, the dual function of ψconstructed can be
approximated as closely as desired. This approximation of the dual is of interest when expanding
data according to a given model. The Matlab routines that we have developed are available upon
request.

2. Review, Definitions, and Notation

2.1. MRA and SWT
For a semi-orthogonal wavelet ψ(t) that is associated with some given MRA

{
Vj

}
j∈Z

, the
reconstruction formula (3) becomes

x(t) =
∑

j

∑

k

d(j, k)
◦
ψj,k(t) (4)

where
◦
ψj,k = 2−j/2

◦
ψ(2−j t − k) are the dilations and translations of a dual wavelet

◦
ψ(t) whose

explicit form can be found in [2, 3]. In fact, the set { ◦
ψj,k(t) = 2−j/2

◦
ψ(2−j t − k), k ∈ Z} is also a

Riesz basis for Wj .
From ii, iii, and iv of the definition of a MRA, we immediately obtain the well-known two-scale

equation (also called the refinement equation) [16, 9, 6, 19, 3]

φ1(t) = 2−1/2φ

(
t

2

)
=

∑

k

u(k)φ(t − k) = (u ∗ φ)(t) (5)

where the sequence {u(k)}k∈Z is called the generating sequence. Moreover, since ψ(t/2) ∈ W1 ⊂ V0,
there exits a sequence {v(k)}k∈Z such that

ψ1(t) = 2−1/2ψ

(
t

2

)
=

∑

k

v(k)φ(t − k) = (v ∗ φ)(t). (6)

The two sequences {u(k)}k∈Z and {v(k)}k∈Z play key roles in the computational algorithm for calcu-
lating the SWT. The coefficients d(j, k) in 1 can be obtained as the output of a recursive pyramidal
structure as shown in Figure 1. The coefficients h1(n) and g1(n) of the low-pass and high-pass filters
are derived from φ and ψ . The coefficients c(j, k), also computed in the pyramidal algorithm (see
Figure 1), result from projections onto the spaces Vj : c(j, k) = 〈x, φj,k〉 where φj,k are the dilations
and translations of the function φ(t).

As indicated by (4), x(t) can be exactly recovered by weighting the elementary atoms
◦
ψj,k(t)

by the values d(j, k) of the SWT in (1). This is depicted in the analysis-synthesis block diagram,
sketched in Figure 2, where two new filters h2 and g2 are also determined given knowledge of φ

and ψ . Starting from the two sequences {u(k)}k∈Z and {v(k)}k∈Z, §4 will explicitly show how to
calculate the four sets of coefficients {h1(n), h2(n), g1(n), g2(n)}n∈Z.
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FIGURE 1. The coefficients d(j, k) of a SWT can be computed from a recursive pyramidal filter-
bank structure involving two analyzing filters h1 and g1, whose coefficients depend on φ and ψ . (The
↓2 operator stands for a decimation by a factor 2, and h∨

1 (resp., g∨
1 ) means that the convolution is to

be performed with a flipped version of the filter h1 (resp., g1)).
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FIGURE 2. Analysis-Synthesis block diagram: the original sequence cl can be exactly
reconstructed from the approximation sequence cl+1 and the detail sequence dl+1 of the
next coarsest resolution by using two synthesis filters h2 and g2, which are dual filters
of the analyzing filters h1 and g1. (The ↑2 operator stands for an expansion by factor 2
obtained by intertwining zeros between samples).

2.2. Notation
In this section, we list some useful notation (which are coherent with that in [3]). The signals

that we consider are real valued and belong to L2(R). Thus, all the scaling and wavelet functions
that we consider are real valued. The symbol ∗ stands for three different types of convolutions. For
two signals x and y of L2(R), ∗ denotes the usual convolution

(x ∗ y)(t) =
∫

x(u)y(t − u) du.

The symbol ∗ can also refer to the convolution between some signal x(t) and a sequence {pk}k∈Z

(p ∗ x)(t) =
∑

k

pkx(t − k).

Finally, the discrete convolution between two sequences {pk}k∈Z and {qk}k∈Z is denoted by

(p ∗ q)(k) =
∑

n

pnqk−n.
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The reflection of a signal x (resp., a sequence b) is the signal x∨ (resp., the sequence b∨) given
by

x∨(t) = x(−t), t ∈ R,

b∨(k) = b(−k), k ∈ Z.

The modulation b̃ of a sequence b is defined to be

b̃(k) = (−1)kb(k), k ∈ Z.

Whenever it exists, the inverse b−1 of a sequence b is defined by

b−1(k) ∗ b(k) = δ0(k), k ∈ Z,

δn(k) being the unit impulse response located at k = n.
The downsampling (or decimation) operator ↓2 assigns to a sequence p, the following sequence

↓2 [p], which consists of the even samples of p only:

↓2 [p] (k) = p(2k) ∀k ∈ Z.

The upsampling operator ↑2 assigns to a sequence p, the following sequence ↑2 [p] in which a zero
has been inserted between two successive samples:

↑2 [p] (2k) = p(k)
↑2 [p] (2k + 1) = 0

}
∀k ∈ Z.

The symbol PU will denote the orthogonal projector onto the subspace U of L2(R) . The
orthogonal projection y(t) of x(t) onto the space U is denoted by

y(t) = (PUx)(t).

The Fourier transform of a signal x(t) (resp., a sequence b(k)) is denoted by x̂(f ) (resp., b̂(f )

and is given by

x̂(f ) =
∫

R

x(t)e−i2πf t dt, (7)

b̂(f ) =
∑

k∈Z

b(k)e−i2πf k. (8)

3. Designing the Analyzing Wavelet
The aim of this section is to describe a general method for constructing a chosen analyzing

wavelet ψwanted. The method is based on several theorems that can be found in [3].

3.1. Principle of the Method
There are several tools that can be used to construct scaling and wavelet functions of various

shapes and properties, namely:
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• Admissible linear combinations (or composite convolution) of scaling and wavelet functions,

• Reflection with respect to the vertical axis,

• Projection onto multiresolution and wavelet subspaces,

• Convolution of scaling functions,

• The use of limit theorems.

3.1.1. Linear Combination. As described in [3], if φ is a scaling function generating
V0, then it is possible to construct another scaling function φ≈(t) = ∑

p(k)φ(t − k) as long as the
real sequence p(k) satisfies the conditions of the following theorem.

1. Theorem
The function φ≈(t) = ∑

p(k)φ(t −k) is a scaling function if and only if the Fourier transform
p̂(f ) of p(k) satisfies

A ≤ ess inf
f ∈[0,1/2]

|p̂(f )| ≤ ess sup
f ∈[0,1/2]

|p̂(f )| ≤ B (9)

where A, B are two strictly positive constants.

The proof of Theorem 1 can be found in [3, 4]. A sequence p(k) that satisfies (9) will be called
admissible. This condition essentially means that |p̂(f )| (see (8)) must be bounded above and below
by positive constants A and B. The generating sequence that corresponds to φ≈ = p ∗ φ is given
by

u≈ =↑2 [p] ∗ u ∗ p−1

where the sequence p−1 is simply the inverse Fourier transform of 1/p̂(f ). It should also be noted
that any two scaling functions φ1 and φ2 generating the same multiresolution spaces Vj are related
by an admissible sequence p(k): φ1 = ∑

p(k)φ2(t − k) [3].
Similarly, if ψ is a wavelet generating W0, then ψ≈(t) = ∑

q(k)ψ(t − k) is a wavelet for W0

if and only if the sequence q(k) is admissible. The corresponding new sequence v≈ (see (6)) is given
by

v≈ =↑2 [q] ∗ v (10)

where v is the sequence associated with the wavelet ψ . Moreover any two wavelets ψ1, ψ2 for W0

must be related by an admissible sequence q(k) (i.e., ψ1 = ∑
q(k)ψ2(t − k)).

Using these facts, it is possible to construct infinitely many scaling and wavelet functions of
various shapes by simply choosing various admissible sequences.

3.1.2. Reflection. It is not difficult to see that if φ(t) satisfies a two-scale equation (5),
then its reflection φ∨(t) = φ(−t) also satisfies (5) with u(k) replaced by u∨(k). Thus, φ∨(t) is a
scaling function generating a multiresolution Vj (φ

∨). An associated wavelet is given by ψ∨(t). It
should be noted that the multiresolution Vj (φ

∨) generated by φ∨ is not necessarily the same as the
multiresolution Vj (φ) generated by φ.

3.1.3. Projection onto V0 and W0. Let λ(t) be a function that is not a scaling function
in the sense that it does not satisfy a two-scale equation (5). Let λa = PV0λ be the orthogonal
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projection of λ onto the level zero of the MRA Vj (φ) generated by the scaling function φ. Clearly,
λa(t) = ∑

pλ(k)φ(t − k) is in V0. If the sequence pλ(k) is admissible (see 3.1.1), then the function
λa(t) is also a scaling function generating the MRA Vj (φ). Moreover, the scaling function λa is a
good approximation of λ since it is the least squares approximation of λ in V0. Thus, the orthogonal
projection onto V0 allows us to obtain scaling functions that are close to a desired prescribed shape.
Again, the generating sequence associated with the scaling function λa is given by

uλa
=↑2 [pλ] ∗ u ∗ p−1

λ .

This design technique is illustrated in Figure 3. Figures 3(a), (b) show, respectively, the desired
scaling function and the starting scaling function (spline of order 1). The scaling function and its
related basic wavelet (see (20) are plotted in Figures 3(c), (d).

The same arguments also hold if we use projection onto the wavelet space W0. This allows us
to construct wavelets with some desired shape.

Similar to [20], we can estimate the error

ej,k = 〈
g, 2−j/2ψa(2

−j x − k)
〉 − 〈

g, 2−j/2ψ(2−j x − k)
〉

obtained when computing the SWT of the function g using ψa = PW0ψ instead of ψ (note that the
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FIGURE 3. Example showing a (n asymmetric) scaling function obtained by
the method of projection. (a) The desired scaling function. (b) The B-spline
scaling function of order 1. (c) The approximation of the desired scaling function
by the projection method in the spline space of order 1. (d) The basic wavelet
related to this new scaling function.
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factor 2−j/2 is the usual normalization factor). Without loss of generality, we will assume that the
desired wavelet ψ has norm one. As expected, the error does not grow as the scale becomes coarser.

2. Proposition
For j ≥ 0 we have ||ej,k||∞ ≤ ||g||L2 .

Proof of Proposition 2. We have that

|ej,k| =
∣∣∣∣∣∣

∫

R

g(x)�j,k(x) dx

∣∣∣∣∣∣
(11)

where �j,k(x) = 2−j/2
(
ψa(2−j x − k) − ψ(2−j x − k)

)
. Using the Schwarz inequality and a change

of variable we get

|ej,k| ≤ ‖g‖L2

∥∥�0,k

∥∥
L2

. (12)

The proof of the proposition then follows from this last inequality and the facts that ||ψa−ψ || ≤ ||ψ ||
and that ||ψ || = 1. �

3.1.4. Convolution and Limit Theorems. Often, it is important to have scaling and
wavelet functions with a certain degree of regularity (or smoothness) [9]. A simple way of obtaining
scaling functions that are as regular as we wish is to start from any appropriate scaling function φ(t)

and use the n-fold convolution to obtain a scaling function

φn(t) = φ ∗ φ ∗ · · · ∗ φ ((n − 1) convolutions) (13)

that is n times more regular. The appropriate conditions on the starting function φ are given in [3].

3. Theorem
Let u(k) be a real sequence such that u(k) = O(k−2), and let û(f ) = ∑

k∈Z
u(k)e−i2πkf

denote its Fourier transform. If û(f ) satisfies the conditions

2−1/2
∣∣û(0)

∣∣ = 1, (14)

û(f ) 
= 0 ∀f ∈
[
−1

4
,

1

4

]
, (15)

and if

φ̂(f ) :=
∞∏

i=1

2−1/2û

(
f

2i

)
= O(|f |−r ), r >

1

2
, (16)

is such that φ̂(f ) ∈ C2(R), D(i)φ̂(f ) = O(|f |−s), i = 0, 1, 2, with s > 2 (D(i) is the derivative of
order i), then φ is a scaling function generating the multiresolution V(j)(φ).

These conditions are almost always satisfied. For example, the conditions hold for any
Daubechies and for the Battle/Lemarié wavelet of any order. The new generating sequence as-
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sociated with φn(t) is given by [3]

un = 2−(n−1)/2 u ∗ · · · ∗ u ((n − 1) convolutions).

Remark. Since all the functions and discrete sequences we consider are real valued, the
modulus of their Fourier transforms are always symmetrical with respect to the vertical axis. Thus,
condition (15) can be replaced by û(f ) 
= 0 ∀f ∈ [0, 1/4]. For the same reason, the Fourier
transform φ̂(f ) of any scaling function we consider must satisfy |φ̂(−f )| = |φ̂(f )|.

It is not true in general that the n-fold convolution of a wavelet associated with a MRA
gives a wavelet that is associated with a MRA. Nevertheless, any wavelet ψn associated with
φn (generated by (20), for example) is n times more regular than the wavelet ψ associated
with φ. Thus, regularity on the wavelet can be achieved by increasing the regularity of the MRA
by using the n-fold convolution on the scaling function. The n-fold convolution together with the
limit theorems in [3] are used together to obtain scaling and wavelet functions with some speci-
fiable properties as will be further developed in §3.3. For completeness, we restate some of the
limit theorems in [3] that are useful for our constructions. From the constructed scaling functions
φn in (13), we construct the orthogonal scaling functions φn

o [3] (i.e., 〈φn
o (x), φn

o (x − k)〉 = 0 for
k 
= 0). The sequence of functions φ̂n

o(f ) tends to a characteristic function as n goes to infin-
ity.

4. Theorem
If φ is a scaling function satisfying the conditions of Theorem 3, and if its Fourier transform

φ̂(f ) satisfies

min
f ∈I

∣∣∣φ̂(f )

∣∣∣ >

∣∣∣φ̂(f )

∣∣∣ ∀ f /∈ I =
[
−1

2
,

1

2

]
, (17)

then the modulus |φ̂n
o(f )| of the Fourier transforms of the orthogonal functions and their duals

◦
φn

o = (φn
o )∨ converge pointwise a.e. and in Lp-norms, p ∈ [1, ∞), to the ideal low-pass filter as

the order n tends to infinity:

Lp − lim
n→∞

∣∣∣φ̂n
o(f )

∣∣∣ = rect(f ). (18)

Here, rect(f ) is the characteristic function on the interval [− 1
2 , 1

2 ], i.e., rect(f ) = 1 ∀f ∈ [− 1
2 , 1

2 ]
and rect(f ) = 0 elsewhere.

The associated orthogonal wavelets ψn
o satisfying 〈ψn

o (x), ψn
o (x − k)〉 = 0 for k 
= 0 tend to

an ideal bandpass filter:

5. Theorem
The orthogonal wavelet sequence

∣∣∣ψ̂n
o(f )

∣∣∣ associated with a scaling function satisfying con-

dition (17) of Theorem 3 converges pointwise and in Lp, 1 ≤ p < ∞, to the ideal bandpass filter
BP(f ) = rect(2f − 1.5) + rect(2f + 1.5) as the order n tends to infinity:

Lp − lim
n→∞

∣∣∣ψ̂n
o(f )

∣∣∣ = BP(f ). (19)
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3.2. Designing ψ by Making Changes on φ
Any wavelet ψ(t) associated with the multiresolution Vj (φ) is related to φ by (6). If we choose

the sequence v to be

v = δ1 ∗ ũ∨ ∗ ã (20)

where a stands for the sampled autocorrelation function of the scaling function

a(k) ≡ (φ ∗ φ∨)(k),

we obtain the basic semi-orthogonal wavelet ψb(t) [2, 3], which is the generalization of the B-spline
wavelet [25, 26, 7] (the operators “∼” and “∨” are defined in §2.2). This choice allows us to control
some of the properties of ψb by choosing φ appropriately. For instance, the three following properties
are easily controlled by this method:

1. The smoothness (regularity) of ψb,

2. Axial symmetry,

3. The support of the wavelet ψb.

3.2.1. Regularity. In [3], it is shown that it is possible to obtain a new scaling function
φnew by convolving existing scaling functions: φnew ≡ φ1 ∗φ2, generating a new MRA. Specifically,
we have the following result.

6. Proposition
If φ1 and φ2 are two scaling functions satisfying the conditions of Theorem 3, then φnew = φ1∗φ2

is also a scaling function.

The new generating sequence is then given by unew ≡ 1/
√

2u1 ∗ u2. As we have seen in the
previous section, we can start from an arbitrary scaling function φ and construct scaling functions
φn that are as regular as we wish. The corresponding basic wavelets ψn

b obtained from (6) and (20)
have more and more regularity as the degree n increases. This regularity property is also true for all
the equivalent wavelets ψn

≈ = q≈ ∗ψn
b that are obtained using admissible sequences q≈ as described

in 3.1.1.

3.2.2. Wavelets with Compact Support. Clearly if u is a finite sequence, then φ has
compact support [9]. This implies that a(k) is a finite sequence. Thus, from (20) and (6), ψb will
also have compact support. Hence, we can always obtain wavelets with compact support by starting
from a finite generating sequence u (equivalently from a compactly supported scaling function φ)
and obtain a compactly supported wavelet ψb from (20). Clearly all other equivalent compactly
supported wavelets (i.e., generating the same space W0) can be generated by linear combination with
admissible sequences q(k) that are finite. Although these equivalent wavelets generate the same
space W0, they will have different shapes that depend on the choice of the sequence q.

3.2.3. Symmetrical Wavelets. It should be noted that if the sequence u in (20) is
symmetric, then so is φ. Moreover, the sampled autocorrelation function a is always symmetric.
From the form of (20), we then immediately conclude that ψb has axial symmetry. Thus, it is always
possible to construct wavelets that have axial symmetry by starting from a symmetrical generating
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sequence (equivalently by starting from a symmetrical scaling function φ) and by constructing the
wavelet ψb. Clearly, other symmetrical wavelets can be constructed by using admissible symmetrical
sequences q and constructing the equivalent symmetrical wavelets ψ≈ = q ∗ ψb. The associated
sequence v≈ for ψ≈ is related to the sequence v of ψb through v≈ =↑2 [q] ∗ v. Although the two
symmetrical wavelets generate the same wavelet spaces Wj , they do not necessarily have the same
shape or properties.

Another simple way of obtaining symmetrical scaling functions (and therefore symmetrical
wavelets by the method described above) is to start from any asymmetric scaling function and then
convolve it with its time-reversed version:

φs ≡ φ ∗ φ∨.

From our discussion on reflection in §3.1 and Proposition 6, we know that φs is a scaling function.
The corresponding generating sequence us is obtained from the generating sequence u of φ by simple
convolution:

us = 2−1/2 u ∗ u∨.

Figure 4 illustrates the method of producing symmetrical wavelets. We chose a Daubechies 6
scaling function, plotted in Figure 4(a), as a starting function (Figure 4(b) shows the corresponding
wavelet). Figures 4(c, d) show the scaling and wavelet functions obtained using the two equations
above and from (6) and (20). Moreover, this basic wavelet has compact support as we showed
in §3.2.2. In this particular case, one can check that the designed wavelet is exactly equal to the
autocorrelation of the original wavelet. Such a choice was made by Saito and Beylkin [23] in which
the mother wavelet is chosen to be the autocorrelation of a compactly supported wavelet. However,
it is proved [3] that the convolution of two wavelets associated with MRAs does not, in general,
result into a wavelet associated with a MRA even though this statement is valid for scaling functions
(see 3.2.1). Thus, the production of symmetrical MRA-type wavelets based on the autocorrelation
of the scaling functions rather than the autocorrelation of the wavelet itself is the procedure needed
to construct symmetrical MRA-type wavelets.

3.3. Modeling the Analyzing Wavelet

3.3.1. Projections onto W0. Once a scaling function φ is chosen, a basic wavelet ψb

can be selected by (20). As stated in detail in §3.1.1, one can modify ψb by linear combination with
an admissible sequence q: ψ≈ ≡ q ∗ ψb. This technique was used in [3] to get orthonormal or
interpolating wavelets. But, it can also be used to obtain a wavelet that is closer to some desired
function ψwanted. A first approximation ψconstructed of ψwanted can be obtained by projection of ψwanted

onto the wavelet space W0 as described in §3.1.3:

ψconstructed = PW0ψwanted = q ∗ ψ (21)

where

q(k) =
〈
ψwanted(.),

◦
ψ(. − k)

〉
.

The sequence q(k) is obtained by direct computation of the inner products between ψwanted and
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FIGURE 4. A sample construction of a symmetrical scaling and wavelet function.
(a) The Daubechies 6 scaling function. (b) The corresponding Daubechies 6
wavelet. (c) The scaling function obtained as the autocorrelation of a Daubechies
6 scaling function. (d) The corresponding symmetrical basic wavelet.

shifted versions of
◦
ψ , which is the dual wavelet of ψ . These dual functions in turn can be obtained

as proposed in §4.5. The sequence vconstructed related to this new wavelet is given by

vconstructed =↑2 [q] ∗ v

and, therefore,

vconstructed =↑2 [q] ∗ δ1 ∗ ũ∨ ∗ ã.

Instead of the sequences u and v, one has to start with the sequences u and vconstructed in order to
derive the filters involved in performing the SWT associated to this new wavelet.

In what follows, we illustrate this wavelet design technique on two examples. By definition of
the SWT, the mother wavelet and its shifted versions generate the wavelet space labeled W0. In fact, it
is the data sampling frequency that gives the physical meaning of the space W0 (see [1]). In particular,
the Fourier transform of the mother wavelet has to spread mostly within the normalized frequency
band

[−1, − 1
2

]∪[
1
2 , 1

]
. Therefore, in all the examples proposed below, we will try to obtain wavelets

ψwanted whose central frequency are close to 3
4 and whose quality factor is not too small compared to

( 3
4 )/( 1

2 ) = 3
2 . For our first example, we approximate the Mexican Hat function (MHF). This function



Designing Multiresolution Analysis-type Wavelets and Their Fast Algorithms 147

is often used in conjunction with a continuous-time wavelet and is given by the second derivative of
the Gaussian function: mh(t) = (2πσ 2)−1/2(1 − ( t

σ
)2) exp(−( 1

2 )( t
σ
)2). The standard deviation of

the Gaussian function has been set to σ = ( 3
4 )/(

√
2π) to ensure that the maximum of the Fourier

transform of the MHF occurs at f0 = 3
4 . Since the MHF only presents one free parameter, one cannot

simultaneously control its quality factor, which in this case is significantly smaller than 3
2 . Indeed,

the Fourier transform of the MHF spreads widely apart from the band
[−1, − 1

2

] ∪ [
1
2 , 1

]
. Thus, if

we seek a wavelet ψconstructed, which has good time-shape approximation of the MHF, we should start
with wavelets that are poorly localized in frequency. Figure 5 displays the wavelets ψconstructed that
we obtain by projecting the MHF on spline wavelets of orders 1 and 3.

Our second example consists of wavelets constructed from the famous Altes signal [5]. Such
signals consist of hyperbolic frequency modulations (Hyperbolic chirp). These signals play key
roles in some biological applications as well as in active sonar applications. To approximate such
signals, the basic idea is to make use of time-reversed versions (reflections) of Daubechies wavelet,
with a high degree of regularity [10], from 6 to 10. Indeed, the Daubechies wavelets already present
this chirp behavior [11, p. 84]. For some well-chosen set of parameters characterizing the Altes
signal, the chirp signal and the Daubechies wavelet could even have a very similar time-shape
(up to a time reversal). Figure 6 shows some approximations of Altes signals (with parameters:
duration �T = 15s, starting frequency ν1 = 0.18Hz, finishing frequency: ν2 = 2Hz) that uses the
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FIGURE 5. Example of a wavelet obtained by the methods of approximation.
(a) The desired wavelet ψwanted is the Mexican Hat function. (b) The B-spline
wavelets of order 1 (dashed line) and 3 (solid line). (c) The approximation
ψconstructed of the Mexican Hat function by the projection method in the spline
space of order 1. (d) The approximation ψconstructed of the Mexican Hat function
on the cubic spline.
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FIGURE 6. Construction of Altes-type wavelets. (a) ψwanted is a hyperbolic chirp
Altes signal (hyperbolic frequency modulation). (b) (Time-reversed) Daubechies
10 wavelets. (c) ψconstructed of the Altes signal by the projection method using
a Daubechies 6 wavelet. (d) ψconstructed of the Altes signal using Daubechies 10
wavelet.

Daubechies 6 and Daubechies 10 wavelets as bases for the construction. The wavelet thus obtained
can be seen to be very close to the original pattern.

3.3.2. The Use of Limit Theorems. A more sophisticated approach for constructing
the desired wavelets consists of making use of the limit theorems 4 and 5. Indeed, starting from
any scaling function and convolving it a large number of times with itself, one can derive wavelets
whose Fourier transform converges to the ideal bandpass filter. Then, by projecting ψwanted onto
the space generated by these almost ideal bandpass wavelets, we obtain a wavelet ψconstructed whose
Fourier transform is as close as desired to that of ψwanted in the limited frequency domain

[−1, − 1
2

]∪[
1
2 , 1

]
. The projection techniques to be used are the ones discussed in §3.3.1. These operations are

summarized as follows.

• Choose a starting MRA; that is, choose the two-scale sequence u (or compute it from the
chosen scaling function φ; see §4.5).

• Compute the two-scale sequence uo associated with φo, the orthonormalized version of φ:

uo = ↑2
[
a−1/2

] ∗ u ∗ a1/2
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where a is the sampled autocorrelation sequence of φ. Its derivation from the sequence u is
discussed in §4.5. This step is not strictly necessary and can be skipped, but performing it
often ensures a better computational conditioning.

• Compute the sequence un associated with (φo)
n (the nth convolution of φo) (see [3]):

un = 2−(n−1)/2 uo ∗ · · · ∗ uo.

• Derive the generating sequence vn
b associated with the corresponding wavelet (ψn)b (as in

(20)):

vn
b = δ1 ∗ ũn∨ ∗ ãn

where an is the autocorrelation sequence of (φo)
n. To derive this sequence from un, see §4.5.

• Compute the sequence q(k) = 〈ψwanted(.),
◦
ψn(. − k)〉 defined in §3.3.1. This step requires

the knowledge of the time-shape of
◦
ψn(t), which is detailed in §4.5. Let us note that to

produce the time-shape of
◦
ψn we need to compute the coefficients of the filter g2 (see (29)).

Let us also emphasize that the filters computed at this stage are the set of filters corresponding
to a SWT whose mother wavelet is (ψn)b. They are not yet the filters corresponding to the
SWT associated with ψwanted. Once the sequence q(k) is computed, the sequence vconstructed

associated with ψconstructed, which is the best approximation of ψwanted, is given by

vconstructed = ↑2 [q] ∗ vn
b .

• Compute the coefficients of the four filters involved in the filter bank structure from the two
generating sequences un and vconstructed (see (29)).

To illustrate the above technique, we approximated the MHF. In Figure 7, one sees that the
time-shape approximation of the MHF constructed by the above technique is not better than the one
obtained by the previous approximations of Figure 5. The approximation shown in Figure 7 has
more oscillations or ringing, which is a Gibbs phenomenon. This is due to the fact that we tried to
approximate a function that is widely spread in frequency (the MHF) with one that is an almost ideal
bandpass function. Yet, as we have predicted, Figure 7 shows that the Fourier transform of this new
function ψconstructed is much closer to that of the MHF, within the limited-band

[−1, − 1
2

] ∪ [
1
2 , 1

]
,

than the two previous approximations proposed in §3.3.1. This confirms the fact that increasing the
number of convolutions allow us to approximate ψ̂wanted(f ) (the Fourier transform of ψwanted) as
close as we wish in the frequency band

[−1, − 1
2

] ∪ [
1
2 , 1

]
.

The next example is displayed in Figure 8 and consists of the celebrated time-continuous
Morlet wavelet. The frequency of the Gaussian modulated cosine waveform has been set to 3

4 and
the quality factor is close to 3

2 , ensuring a good localization in the frequency domain. With such
parameters, the approximation is so good (see Figure 8) that one could hardly recognize the original
pattern from its approximation if superimposed.

The last example is borrowed from speech processing. To synthesize and analyze spoken
language, X. Rodet proposed [22] the use of the formant-wave-function (FWF), which consists of a
single frequency modulated by a sharp exponential attack of short duration. This is then followed by
an exponentially decaying tail; see top plot in Figure 9. The approximation of a FWF (of parameters:
central frequency f0 = 3

4 , attack duration: 5s, growth rate: 0.2π ) obtained as a projection onto the
6th convolution of the cubic spline is plotted beneath.
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FIGURE 7. Top: Approximation of a Mexican Hat function by projection onto
the wavelet space resulting from the 6th convolution of the cubic spline. Bottom:
(a) The Fourier Transforms of the Mexican Hat function; (b) FT of the projection
on the spline 1 wavelet; (c) FT of the projection on the spline 3 wavelet; (d) FT of
the above pattern (projection on the 6th convolution of the cubic spline). One sees
that this last approximation is a much better approximation to the Fourier transform
of the Mexican hat in the limited band

[
−1, − 1

2

]
∪

[
1
2 , 1

]
.

3.4. Switching φ and ψ with Their Dual Basis, Unit Power Wavelets
Once the sequence of approximation spaces and the associated set of basis functions are chosen,

the expansion of a signal x(t) in terms of the wavelets can be performed in two theoretically equivalent
ways:

x(t) =
∑

j

∑

k

〈
x(t),

◦
ψj,k(t)

〉
ψj,k(t) (22)

or

x(t) =
∑

j

∑

k

〈
x(t), ψj,k(t)

〉 ◦
ψj,k(t). (23)

Expansion (22) is relevant in cases where it is important to expand the data in terms of time-
shifted and dilated versions of a single particular function (e.g., Doppler signals and Submarine
acoustics). In these situations, the ability of approximating the dual function of the basic pattern
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FIGURE 8. Construction of Morlet-type wavelet. Top: ψwanted is the continuous
Morlet wavelet, the standard deviation of the modulated Gaussian function is such
that the Fourier Transform is mostly within the

[
−1, − 1

2

]
∪
[

1
2 , 1

]
frequency band

(the quality factor is close to 3
2 ). Bottom: ψconstructed belongs to the wavelet space

associated with the 6th convolution of the cubic spline. Superimposing both plots
would show that it is hardly possible to recognize one from another.

is of importance; see §4.5. In contrast, when performing a SWT to analyze data, one is mostly
interested in the correlation values (matching) between the signal x(t) and the templates ψj,k(t).
These correlation coefficients are given by d(j, k) = 〈x(t), ψj,k(t)〉. Thus, to analyze a signal with a
desired wavelet ψ , expansion (23) is needed for signal representation. In §4, the calculations leading
to the filters in the filter-bank structure will be made assuming this last choice.

Furthermore, physicists often like to impose the normalizing condition

||φj,k|| = ||φ|| = ||ψj,k|| = ||ψ || = 1 , ∀(j, k) ∈ Z
2.

Obviously, (5) shows that the sequence u verifies
∑

k u(k) = √
2. This automatically ensures that

||φj,k|| = ||φ||, ∀(j, k) ∈ Z
2. To obtain unit power scaling functions, we can rescale the sequence

a in such a way that a(0) = 1. We then find that (u∨ ∗ a ∗ u)(k = 0) = a(0) = 1. This
relation replaces the well-known relation

∑
k u2(k) = (u∨ ∗ u)(0) = 1 for the orthonormal case.

Furthermore, one has || ◦
φ|| = a−1(0). In general, a−1(0) 
= 1; therefore, it is generally not possible

to ensure simultaneously that ||φ|| = 1 and || ◦
φ|| = 1. In the same way, (5) and (6) ensure that

||ψj,k|| = ||ψ || ∀(j, k) ∈ Z
2. We want to impose the equality ||ψ || = ||φ|| = 1. To do this, we
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FIGURE 9. Top: ψwanted is a formant-wave-function. Bottom: ψconstructed belongs
to the wavelet space associated with the 6th convolution of the cubic spline.

prove that this is equivalent to the identity

(v∨ ∗ a ∗ v)(k = 0) = 1.

This last constraint can easily be satisfied by multiplying v with an appropriate constant (which is a
particular case of linear combination, see §3.1.1). We get

vnew = ((v∨ ∗ a ∗ v)(0))−1/2v.

Again, the above relation will automatically give || ◦
ψ || = (↓2

[
v∨

new ∗ a ∗ vnew
]
)−1(0), which implies

that, in general, it is not possible to impose simultaneously ||ψ || = 1 and || ◦
ψ || = 1.

4. Computing the Filter Bank
Once a suitable MRA-type wavelet ψconstructed has been obtained using the methods of the pre-

vious sections, fast analysis/synthesis algorithms are needed. For orthogonal MRA-type wavelets
the algorithm is described by the well-known QMF filter bank [16]. Conversely there is a large class
of perfect reconstruction filter banks that are fast algorithms for some biorthogonal wavelets that are
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associated with MRAs [12, 8, 27, 21]. In contrast, our goal is to find explicitly the filter bank starting
from the semi-orthogonal wavelet ψconstructed. Therefore, in this section, we will derive explicit
formulae for the fast implementation of the wavelet transform associated with the semi-orthogonal
wavelet ψconstructed. In our derivations, we use the sequences uconstructed and vconstructed associated with
ψconstructed, which, from now on, we relabel as u and v. As with all the wavelets that are associated
with multiresolutions, the fast algorithm for the implementation of the semi-orthogonal wavelet
transform consists of the repetitive application of a single procedure. The same is true for the inverse
wavelet transform. The analysis and synthesis algorithms form a filter-bank structure as in Fig-
ure 2. The filters h1, h2, g1, and g2 are derived in the next sections. The reader who is only interested
in the expressions of h1, h2, g1, and g2 as functions of u and v but is not interested in the derivation
may skip to §4.3.

4.1. Analysis Filters

4.1.1. The Low-Pass Analysis Filter h1. The key idea of the fast pyramidal algorithm
is that the projections of the data x(t) onto Vj and Wj can be obtained directly from its projection
in the finer spaces Vj−1. Let us assume that the c(0, k) = 〈x, φ0,k〉 are known (i.e., x0(t) = PV0x

is given by x0(t) = ∑
c(0, k)

◦
φ(t − k), where

◦
φ is the dual of φ as in [3, 4]). Let us insist on the

importance of performing a correct and efficient initialization of the c(0, k) when applying a SWT
to analyze real sampled data {xn}n∈Z (see for instance [1], [26]). Now, from the coefficients c(0, k)

at level zero (in V0), we want to get the coefficients c(1, k) and d(1, k) at the next coarser resolution.
By projecting x0(t) ∈ V0 onto V1 and using the facts that the projection operator is selfadjoint and
that PV0φ1 = φ1, we obtain

(PV1x)(t) =
∑

k

c(1, k)
◦
φ1(t − 2k)

=
∑

k

〈x0(.), φ1(t − 2k)〉 ◦
φ1(t − 2k)

=
∑

k

(↓2
[
x0 ∗ φ∨

1

]
(k))

◦
φ1(t − 2k).

Using the sampled autocorrelation function a(k) ≡ (φ ∗ φ∨)(k), we can write the dual scaling

function
◦
φ in terms of φ as [3]

◦
φ = a−1 ∗ φ. (24)

By substituting
∑

c(0, k)
◦
φ(x − k) for x0(t) and by combining (5) with (24), we get

c(1, k) = ↓2
[
x0 ∗ φ∨

1

]
(k)

= ↓2
[
c(0, .) ∗ (a)−1 ∗ φ ∗ u∨ ∗ φ∨]

(k)

= ↓2
[
c(0, .) ∗ u∨]

(k).

Hence the expression for the filter h1 is

h∨
1 = u∨. (25)
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4.1.2. The High-Pass Analysis Filter g1. The projection of x(t) onto W1 is given by

(PW1x)(t) =
∑

k

d(1, k)
◦
ψ1(t − 2k)

=
∑

k

〈x0, ψ1(. − 2k)〉 ◦
ψ1(t − 2k)

=
∑

k

(↓2
[
x0 ∗ ψ∨

1

]
(k))

◦
ψ1(t − 2k).

The very same calculations as that of the previous section yield

d(1, k) =↓2
[
(c(0, .) ∗ v∨)

]
(k).

It immediately follows that

g∨
1 = v∨. (26)

4.2. Synthesis Filters

4.2.1. The Low-Pass Synthesis Filter h2. Since V1 ⊂ V0, we can write the function

PV1x ∈ V1 in terms of the dual basis
{ ◦
φ(t − k)

}

k∈Z

of V0. This yields

PV1x = (↑2 [c(1, .)]) ∗ ◦
φ1 = c1→0(0, .) ∗ ◦

φ

where c1→0(0, .) are the coordinates of PV1x in the basis
{ ◦
φ(t − k)

}

k∈Z

of V0. Furthermore, from

(24), we find that

◦
φ1(t) = 2−1/2 ◦

φ

(
t

2

)
=

∑

k

(a)−1(k)φ1(t − 2k) = (↑2
[
a−1

] ∗ φ1
)
(t).

Thus

(PV1x) = ↑2 [c(1, .)] ∗ ◦
φ1

= ↑2 [c(1, .)] ∗ ↑2
[
a−1

] ∗ u ∗ φ

= c1→0(0, .) ∗ ◦
φ.

By inspection of the calculation above we immediately obtain that

c1→0(0, k) = (↑2 [c(1, .)] ∗ ↑2
[
a−1

] ∗ a ∗ u
)
(k).

From the above equation we conclude that the filter h2 is given by

h2 =↑2
[
a−1

] ∗ a ∗ u. (27)
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4.2.2. The Synthesis High-Pass Filter g2. Similar to the case of the scaling function,

the dual wavelet
◦
ψ is given by

◦
ψ = (aψ)−1 ∗ ψ where aψ(k) = (ψ ∗ ψ∨)(k) is the sampled

autocorrelation function of ψ . A direct calculation using (20) shows that

◦
ψ = (↓2

[
v∨ ∗ a ∗ v

]
)−1 ∗ ψ.

Therefore, we have that

◦
ψ1 =↑2

[
(↓2

[
v∨ ∗ a ∗ v

]
)−1

] ∗ ψ1.

By writing PW1x in the basis
{ ◦
φ(t − k)

}

k∈Z

of V0 we obtain

(PW1x) = ↑2 [d(1, .)] ∗ ◦
ψ1

= ↑2 [d(1, .)] ∗ (↑2
[
(↓2

[
v∨ ∗ a ∗ v

]
)−1

]
) ∗ v ∗ φ

= d1→0(0, .) ∗ ◦
φ.

Hence,

d1→0(0, k) =↑2 [d(1, .)] ∗ ↑2
[
(↓2

[
v∨ ∗ a ∗ v

]
)−1

] ∗ v ∗ a,

from which we get that the filter g2 is given by

g2 = a ∗ (↑2
[
(↓2

[
v∨ ∗ a ∗ v

]
)−1

]) ∗ v. (28)

4.3. Filter-Bank Pyramidal Structure
The relation between the filters and the two sequences u and v that we calculated in the previous

sections are summarized in the following set of equations (29). From the two generating sequences
u and v associated with some chosen or constructed scaling function and wavelet (as in §3), one can
implement a semi-orthogonal SWT with the filter-bank pyramidal structure as in Figure 1. The four
filters involved are

h∨
1 = u∨,

g∨
1 = v∨,

h2 = a∗ ↑2
[
a−1

] ∗ u,

g2 = a∗ ↑2
[
(↓2

[
v∨ ∗ a ∗ v

]
)−1

] ∗ v.

(29)

The derivation of the autocorrelation sequence a from the generating sequence u will be discussed
in §4.5.

If (22) is chosen instead of expansion (23), the very same kind of calculations yields the
following set of filters:

h∨
1 = a∗ ↑2

[
a−1

] ∗ u∨,

g∨
1 = a∗ ↑2

[
(↓2

[
v∨ ∗ a ∗ v

]
)−1

]
) ∗ v∨,

h2 = u,

g2 = v.

(30)
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4.4. The Orthonormal Case
As a test, we apply our results to the well-known orthonormal SWT starting from Quadrature

Mirror Filters sequences u and v. The QMF sequences must satisfy (see [9, 3] and (20)).
∑

k

u(k) = √
2,

∑

k

u(k)u(k + 2p) = δ0(p),

v = δ1 ∗ ũ∨.

(31)

Since QMF filters always generate orthogonal scaling and wavelet functions, we have that a ≡ δ0.
This fact, together with the fact that

↓2
[
v ∗ v∨]

(n) =↓2
[
ũ∨ ∗ ũ

]
(n) = (−1)2n

∑

k

u(k)u(k + 2n) = δ0(n),

allow us to obtain the well-known Mallat algorithm for the orthonormal wavelet transform which is
given by

h∨
1 = u∨,

g∨
1 = v∨,

h2 = u,

g2 = v.

(32)

4.5. Computation of a, φ, ψ Starting From a Generating Sequence u
The aim of this section is to show how to obtain the scaling function φ from the generating

sequence u and vice versa. Let us first assume that the successive nested approximation spaces
Vj (equivalently, the scaling function φ) are chosen; one then needs the sequence {u(k)}k∈Z. The

sequence u(k) can be obtained by the inner products u(k) = 〈φ1(.),
◦
φ(. − k)〉, but one can avoid the

search for the dual basis by computing: u′
k = 〈φ1(.), φ(. − k)〉. Then one can easily show that

u(k) = (a−1 ∗ u′)(k) (33)

where a(k) results from a direct computation that uses the shape of φ: 〈φ(.), φ∨(. − k)〉.
Instead of starting from a scaling function φ, we can start from any appropriate generating

sequence u as in Theorem 3 (see also [3]). From u, we can find the scaling function φ and its shape
and then compute its sampled autocorrelation function. Specifically, to generate an initial scaling
function φ(t) we can use any sequence u(k) satisfying the conditions of Theorem 3 (u need not
satisfy a QMF condition, see (31)). A function generated by such a sequence satisfying Theorem
3 always generates a MRA. However, {φ(t − k)}k∈Z are not necessarily orthogonal (clearly, it is
possible to orthogonalize these basis functions [3] ). The Fourier transform φ̂ of the scaling function
φ is given by the infinite product

φ̂(f ) =
∞∏

i=1

2−1/2û(2−if ). (34)

An approximation to φ̂ can be obtained by taking a finite product and then multiplying by a window
function:

φ̂approx(f ) = χ2N (f )

N∏

i=1

2−1/2û(2−if ) (35)
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where χ2N is the characteristic function on [2−(N−1), 2(N−1)] (i.e., χ2N (f ) = 1 in the interval
[2−(N−1), 2(N−1)] and zero elsewhere). Using Shannon’s sampling theorem, the inverse Fourier
transform of φ̂approx is given by

φapprox(t) =
∑

k
φapprox(2

−Nk)sinc(2Nt − k). (36)

From this relation and (35), we conclude that the samples φapprox(k/2N) are simply obtained by the
convolution equation

φapprox(k/2N) = 2−N/2u∗ ↑2 [u] ∗ ·∗ ↑2N−1 [u]. (37)

Clearly, as N becomes larger and larger, the samples thus obtained become those of the scaling
function φ, which are taken at a finer and finer mesh. From a practical point of view, this approxi-
mation simply results from applying n-time the pyramidal synthesis algorithm, starting with a Dirac
impulse sequence for the coarsest approximation and setting all the detail sequences to zero. For
this case, the set of (30) (h2 = u) is used. The computation of the sampled autocorrelation function
a of φ from the above approximation is used to estimate numerically the inner products defining a.
Clearly, this numerical approximation will tend to the exact value as N tends to infinity. Numerical
experimentations showed that this method to compute a converges quickly.

The same argument holds for the calculation of the inner products defining the sequence

q(k) = 〈ψwanted(.),
◦
ψ(. − k)〉. The samples of

◦
ψ can be obtained from the discrete convolution

◦
ψapprox(2

−Nk) = 2−N/2h2∗ ↑2 [h2] ∗ · · · ∗ ↑2N−2 [h2]∗ ↑2N−1 [g2].

Practically, this can also be computed by iterating the pyramidal synthesis algorithm starting with a
dirac impulse for the coarsest detail sequence and sequences of zeros for the coarsest approximation
and all the other details. Figure 10 shows the dual functions of the wavelets resulting from the
approximation of the Altes signal in Figure 6 and of the FWF in Figure 9.

In a similar way, approximations of ψ and
◦
φ are given by

ψapprox(k/2N) = 2−N/2u∗ ↑2 [u] ∗ · · · ∗ ↑2N−2 [u]∗ ↑2N−1 [v]

and
◦
φapprox(k/2N) = 2−N/2h2∗ ↑2 [h2] ∗ · · · ∗ ↑2N−1 [h2].

We have used the above techniques to plot the time-shapes of the wavelets/scaling functions
in the different figures illustrating this paper.

5. Conclusion
The semi-orthogonal approach studied in this paper offers an intermediate solution between the

orthogonal and the biorthogonal methods. Relaxing the constraint of an orthonormal basis enables
us to use a large variety of mother wavelets, whereas preserving orthogonal projections ensures no
correlation between elementary cells or atoms located at different scales.

The wavelet/scaling function design methods that we have described allow us to create an
almost infinite number of wavelets and also to compute the corresponding analysis-synthesis filters
for the fast filter-bank algorithm. The wavelets/scaling functions can be constructed to have various
shapes and properties while keeping the least squares approximation property and the fast algorithms
(O(N) for signals of length N ). As far as choosing the wavelet shape and properties are concerned,
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FIGURE 10. Top: The dual function of the approximation of the Altes signal.
Bottom: The dual function of the formant-wave-function.

the design techniques make of the SWT a tool that is as flexible as the continuous-time wavelet
transform. Moreover, this freedom in choosing the mother wavelet allows us to concentrate our
research efforts on how to perform a relevant wavelet choice, given a set of data and a processing
task.
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