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ABSTRACT. In this paper we discuss smooth local trigonometric bases. We present two gener-
alizations of the orthogonal basis of Malvar and Coifman-Meyer: biorthogonal and equal parity
bases. These allow natural representations of constant and, sometimes, linear components. We
study and compare their approximation properties and applicability in data compression. This is
illustrated with numerical examples.

1. Introduction
Many applications in signal and image processing call for the use of basis functions that are

local in time (or space) and frequency. The reason is that most signals have both temporal and
spectral correlation and the use of basis functions that are local in time and frequency results in good
approximation properties. Roughly speaking this means that we can obtain an approximation with a
small error using only a few basis functions. This is the key to applications such as data compression.

One method of constructing such a basis is to use wavelets, which are translates and dilates of
one particular function, the “mother wavelet.” Another, rather trivial, way to construct an orthogonal
basis with time-frequency localization is to divide the real axis into disjoint intervals and use Fourier
series on each interval. We refer to such a basis as a local trigonometric basis. This basis, however,
has several disadvantages.

1. Fourier series converge rapidly when the function is smooth and periodic. Evidently the
restriction of a smooth function to an interval is in general not smooth and periodic. The
convergence will thus be slow and the approximation properties poor.

2. Since each interval is handled separately, the approximations are, in general, discontinuous.

3. It is not immediately clear how to best divide the real axis into intervals.

An improvement was proposed by R. Coifman and Y. Meyer [7] and by H. Malvar [12, 13].
The idea is to use smooth cut-off functions to split the function and to “fold” overlapping parts in
a clever way back into the intervals so that the orthogonality is preserved. Moreover, by choosing
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the right trigonometric basis, rapid convergence in the case of smooth functions is ensured. We
refer to such a basis as a smooth local trigonometric basis. This approach essentially solves the first
two disadvantages described above. An expository paper can be found in [4]. In [3], a connection
between this basis and the Wilson basis of [9] was pointed out. Smooth local trigonometric bases
were used successfully for image compression in [1, 2, 11].

The third disadvantage can be resolved by using an adaptive algorithm where the splitting
locations are allowed to depend on the function. An algorithm was presented by R. Coifman and V.
Wickerhauser in [8, 20]. An improvement was proposed in [10].

The basis of Coifman and Meyer has the disadvantage that the resolution of the constant is
lost; i.e., on each interval the constant function is not a basis function. In this paper we present two
generalizations that preserve the resolution of the constant. The first one is based on a construction
of so-called biorthogonal folding operators, while the second employs equal parity folding (EPF).
We also show how to adapt the construction for bounded domains.

This paper is organized as follows. In the first section we discuss trigonometric bases and their
properties. In §4 we consider the basis of Coifman and Meyer. We present their construction from
a different angle than in the original paper so as to facilitate the presentation of the biorthogonal
construction in §6. We study the connection between smooth local trigonometric bases and wavelets
in §5. In §7 we address the construction on an interval. Section 8 contains a discussion of equal
parity folding. Finally, in §§9 and 10, we consider some implementation issues and give numerical
results.

2. Notation and Terminology
Much of the notation will be presented as needed. The space of square integrable functions,

L2.R/ or L2 for short, is defined as the space of Lebesgue measurable functions for which

‖f ‖2 =
Z +∞

−∞
|f .x/|2 dx < ∞:

The inner product of two functions f; g ∈ L2 is given by

〈 f; g 〉 =
Z +∞

−∞
f .x/ g.x/ dx:

An operator is a linear map from L2 to itself. The norm of an operator T is defined as

‖T ‖ = sup
‖f ‖=1

‖T f ‖:

The adjoint T ∗ of an operator T satisfies

〈 T f ; g 〉 = 〈 f; T ∗ g 〉 ;

for all f and g in L2. The kernel of an operator is given by

ker T = {x ∈ L2 | T x = 0};

and its range by

range T = {T x | x ∈ L2}:
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An operator is invertible if its kernel is equal to {0} and if a bounded operator G exists so that
GF = FG = 1. The condition number of an operator is defined as � = ‖T ‖ · ‖T −1‖. An operator
is selfadjoint in the case T ∗ = T and unitary in the case T −1 = T ∗.

A countable subset {fn} of L2 is a Riesz basis if every element f ∈ L2 can be written uniquely
as f = P

n cn fn and if there are positive constants A and B such that

A ‖f ‖2 ≤
X
n

|cn|2 ≤ B ‖f ‖2:

A Riesz basis is an orthogonal basis in the case the fn are mutually orthogonal. In this case
A = B = 1.

A bounded function f satisfies a Lipschitz condition of order ½ (0 < ½ ≤ 1) on a set S if

|f .x/− f .y/| = O.|x − y|/½/ for x; y ∈ S:

We then say it belongs to the space Lip½.S/. Higher order Lipschitz regularity (½ > 1) can be defined
in a straightforward way by using higher order differences of f .

The Fourier transform of a function f ∈ L2 is defined as

bf .!/ =
Z +∞

−∞
f .x/ e−i!x dx:

3. Trigonometric Bases

Consider the interval I = [0; 1] for simplicity. The basis functions of a Fourier series are
given by

ek.x/ = exp.i2³kx/;

and we know that the set {ek} is an orthonormal basis for L2.[0; 1]/. The Fourier series of a function
is given by

f =
X
k

ck ek; with ck =
Z 1

0
f .x/ ek.x/ dx:

The decay of the coefficients, and thus the convergence rate, depends on the smoothness of f when
I is identified with the torus − (i.e. the smoothness of the periodic extension of f ). More precisely,
if f ∈ Lip½.− /, then

ck = O.|k|−½/; (1)

see [21]. This property is fundamental. It tells us that if the function is smooth, the convergence will
be rapid. By truncating the series we thus obtain accurate approximations.

However, as we already hinted in the introduction, the restriction to an interval of a smooth
function defined on the real line is not necessarily a smooth function when extended periodically.
Obviously, the behavior of a function on the left end of the interval does not necessarily match the
behavior on the right end. The convergence can thus be slow and the approximation properties
poor.

Other orthonormal bases that only have sines or cosines as basis functions exist. One of them
is the sine IV basis where
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sk.x/ = sin
2k + 1

2
³x;

and the set {√2 sk | k ∈ N} is an orthonormal basis for L2.[0; 1]/. It is called the sine IV basis
because it uses basis functions that have quarter wavelengths as compared to the Fourier series. The
functions sk are odd and smooth around the left endpoint and even and smooth around the right
endpoint. Other basis functions and their parity are: sine II (odd and odd),

Sk.x/ = sin k³x;

cosine II (even and even),

Ck.x/ = cos k³x;

and cosine IV (even and odd),

ck.x/ = cos
2k + 1

2
³x:

For each basis a discrete transform and a fast (linear) algorithm, inspired by the Fast Fourier Trans-
form (FFT), exist; see [16, 18, 20]. Whenever the data shows some special behavior such as period-
icity or parity around an endpoint, it is important to pick the basis that reflects this property in order
to obtain the rapid decay of the coefficients (cf. (1)).

4. Local Trigonometric Bases of Coifman and Meyer

4.1. The Folding Operator
The mirror operator MÞ around a point Þ is defined as

MÞ f .x/ = f .2Þ − x/:

It essentially flips the function around Þ. Note that it is selfadjoint and unitary. Consider an interval
of length 2žÞ around Þ and a continuous left cut-off function l so that

lÞ.x/ =
8<
:

1 if x < Þ − žÞ;

0 if x > Þ + žÞ;

and let the right cut-off function be rÞ = MÞ lÞ . Also let �lÞ = �.−∞;Þ] and �rÞ = �[Þ;∞/. The
following preposition lists some of the commutation properties of the mirror operator and cut-off
functions.

1. Preposition
The mirror operator and cut-off functions satisfy

MÞ lÞ = rÞ MÞ; MÞ rÞ = lÞ MÞ;

MÞ �
l
Þ = �rÞ MÞ; MÞ �

r
Þ = �lÞ MÞ:
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Note that we use the same symbol for a function and for the operator defined as multiplication
with that function. We now define the folding operator.

Definition 2. The folding operator around a point Þ is defined as

FÞ = �lÞ .1 + MÞ/ lÞ + �rÞ .1 − MÞ/ rÞ: �

Using simple algebraic manipulations and Preposition , it is easily checked that the adjoint of
the folding operator is given by

F∗
Þ = lÞ .1 + MÞ/ �

l
Þ + rÞ .1 − MÞ/ �

r
Þ

= �lÞ .1 − MÞ/ lÞ + �rÞ .1 + MÞ/ rÞ:

3. Lemma
The folding operator is unitary if and only if l2Þ + r2

Þ = 1.

Proof. This follows from the fact that

F∗
Þ FÞ = lÞ .1 + MÞ/ �

l
Þ .1 + MÞ/ lÞ + rÞ .1 − MÞ/ �

r
Þ .1 − MÞ/ rÞ

= l2Þ �
l
Þ + l2Þ �

r
Þ + lÞ �

r
Þ rÞMÞ + lÞ �

l
Þ rÞMÞ

+ r2
Þ �

r
Þ + r2

Þ �
l
Þ − lÞ �

r
Þ rÞMÞ − lÞ �

l
Þ rÞMÞ

= l2Þ + r2
Þ = FÞ F∗

Þ : �

For the remainder of §4 we assume that this condition is satisfied.
Let us try to understand how the folding operator behaves. Multiplication with lÞ lets a function

die off smoothly to the left of Þ + žÞ . The operator 1 + MÞ then adds this function to its mirrored
version. This results in a function even around Þ. This function is now cut off by �lÞ . The right part
is similar and creates an odd function. Consequently, if f is smooth, then �lÞ FÞ f is a function that
is smooth when extended “even” to the right and �rÞ FÞ f is a function that is smooth when extended
“odd” to the left. By extending as an even (resp., odd) function we mean applying the operator
1 + M (resp., 1 − M).

Note that even when f is smooth, FÞ f , in general, is discontinuous at Þ. The adjoint operator
(which is also the inverse) does exactly the same but switches even and odd. Figure 1 shows the
folding of a function around Þ = 0.

4.2. The Total Folding Operator
Consider a partition of the real line R into disjoint set of intervals I = .Þ; þ], so that

R =
[
I

I;

and

þ − Þ ≥ žÞ + žþ:

The operators FÞ and Fþ commute because FÞ ≡ 1 on R \ .Þ− žÞ; Þ+ žÞ/. This allows us to give
the following definition.
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FIGURE 1. The folding of a function where Þ = 0 and žÞ = 0:5.

Definition 4. The total folding operator is defined as

T =
Y
Þ

FÞ;

where the ordering in the product is arbitrary. �

Being a product of unitary operators, T too is unitary.
Next we rewrite the total folding operator as a sum of operators GI , each valid on the interval

I , as

T =
X
I

�I GI :

One can understand that GI is given by

GI = .1 − MÞ + Mþ/ bI ;

where bI is the bell function associated with the interval I ,

bI = rÞ lþ :

This follows from the fact that in both representations of T we have

T =

8>><
>>:

1 on .Þ + žÞ; þ − žþ/;

.1 − MÞ/ rÞ on .Þ; Þ + žÞ];

.1 + Mþ/ lþ on [þ − žþ; þ]:
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Note that

G∗
I = bI .1 − MÞ + Mþ/

and X
I

b2
I = 1:

We next study the properties of GI .

Definition 5. A function f is locally even (resp., odd) around a point Þ if f .x/ = MÞf .x/

(resp., −MÞf .x/) for x ∈ [Þ − žÞ; Þ + žÞ]. �

6. Lemma
The function GI f is locally odd around Þ and locally even around þ.

Proof. On the interval [Þ−žÞ; Þ+žÞ], GI f = .1−MÞ/ rÞ f , so that MÞ GI f = −GI f .
On the interval [þ − žþ; þ + žþ], GI f = .1 + Mþ/ lþ f , so that Mþ GI f = GI f . �

7. Lemma
If a function s is locally odd around Þ and locally even around þ, then

�I GI bI s = �I s and G∗
I �I s = bI s:

Proof. We prove the first equation. On the interval .Þ+žÞ; þ−žþ/, the left- and right-hand
sides are equal to s. On the interval .Þ; Þ+ žÞ], the left-hand side is equal to .1−MÞ/ r

2
Þ s, which is

equal to s because s is locally odd and r2
Þ + l2Þ = 1. The interval [þ− žþ; þ] and the second equation

may be handled similarly. �

4.3. Splitting Into Subspaces
Our basic goal is to split L2 into subspaces so that each subspace contains functions localized

around one of the intervals I . Moreover, we want a basis that is suited for representation of smooth
functions on that interval. The easiest would be to let

L2.R/ =
M
I

L2.I /:

This obviously is an orthogonal decomposition and multiplication with�I is the orthogonal projection
associated with it. Unfortunately, the trigonometric basis on each interval has, in general, poor
approximation properties; cf. the discussion in §3. The total folding operator, however, transforms a
smooth function into a function with specific parity properties at the endpoints of each interval. If we
then use a trigonometric basis that reflects these parities, we again get good approximation properties.
The orthogonality is preserved because the total folding operator is unitary. The orthogonal projection
operator associated with an interval is given by

PI = T ∗ �I T :

We decompose L2.R/ into orthogonal subspaces as

L2.R/ =
M
I

VI with VI = PI L2.R/:
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It is immediately clear that

T VI = L2.I / and T ∗ L2.I / = VI :

Using folding operators associated with an interval, we can also write the projection operator as

PI = G∗
I �I GI :

8. Lemma
Each element of VI is of the form bI s, where s is locally odd around Þ and locally even around

þ, and every function of this form belongs to VI .

Proof. The first part follows from Lemma 6 and the fact that

PI = bI GI ;

which, in turn, is a consequence of Lemma 6 and the second part of Lemma 7.
The second part follows from the fact that if s is locally odd around Þ and locally even around

þ, then

PI bI s = G∗
I �I GI bI s = bI s;

which is a consequence of Lemma 7 (first and second parts). �

The fact that the projection operators are orthogonal can also be understood as follows. Let
I and J be two intervals. In the case they are not neighbors, the supports of PI f and PJ g do not
intersect. In the case that I and J meet at a point Þ, PI f PJ g is only supported on [Þ− žÞ; Þ+ žÞ],
where it is equal to bI s bJ t = lÞ rÞ s t . Here s is locally odd and t is locally even around Þ. Since
lÞ rÞ is locally even, the integral vanishes.

The previous lemma tells us which trigonometric basis is the right one to use. The orthonormal
basis for L2.I / that matches the parity is given by

�I sI;k;

where

sI;k =
s

2

|I | sin
2k + 1

2

³

|I | .x − Þ/:

This immediately corresponds to an orthogonal basis for VI given by

T ∗ �I sI;k = G∗
I �I sI;k = bI sI;k; with k ∈ N:

Consequently,

f =
X
I

PI f =
X
I;k

cI;k bI sI;k;

where the coefficients are given by

cI;k = 〈 f; bI sI;k 〉 = 〈 T f ; �I sI;k 〉 : (2)
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If we look at the operators from a practical point of view, we see that FÞ (and thus T ), �I , and their
adjoints are easy to discretize and to implement. This means we always use the second expression
of (2) for the coefficients of a function. In addition, the machinery for local trigonometric bases on
an interval then becomes readily available.

We can summarize the results from this section in the following theorem.

9. Theorem
Using the notation of this section, and assuming that l2Þ + r2

Þ = 1, the functions {bI sI;k} form
an orthogonal basis for L2. Moreover, if f and the cut-off functions belong to Lip½[Þ − žÞ; þ + žþ]
with I = .Þ; þ], the coefficients of f decay as

cI;k = O.k−½/:

Note that the decay of the coefficients associated with the interval I only depends on the
smoothness of f in the neighborhood of I .

5. Connection with Wavelets
There is a close connection between local trigonometric bases and wavelets. To understand

this, we take a look at the following example. Consider the multiresolution analysis formed by the
Shannon wavelet. Let

 .x/ = sin.2³x/− sin.³x/

³x

and

 j;l.x/ = 2j=2  .2j x − l/:

Define

Wj = clos span { j;l | l ∈ Z}:

Then
M
j

Wj = L2.R/;

and the { j;l} form an orthogonal basis for L2.
Since

b .!/ = �I .!/ with I = [−2³;−³ ] ∪ [³; 2³ ];

we see that

Wj = {f ∈ L2 | supp bf ⊂ 2j I }:

The splitting of L2 into the wavelet spaces thus corresponds to splitting the frequency axis into
logarithmic intervals and letting

L2 =
M

L2.2j I /:
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If we look at the Fourier transform of the wavelets,

b j;l =
√

2−j e−i!l2
−j
�2j I ;

we see that they form a (nonsmooth) local trigonometric basis. These wavelets are not very useful
in practice since they have slow decay. Remember that decay in the spatial domain corresponds to
smoothness in the frequency domain. As we see, their Fourier transform has discontinuities.

It immediately follows that using the smooth local trigonometric basis on these intervals in
the frequency domain leads to wavelets with rapid decay in the spatial domain. In case the cut-off
functions belong to C∞, the wavelets have faster than polynomial decay. The Meyer wavelet [15] was
constructed in this way, and its generalization was one of the motivations for the work of Coifman and
Meyer. These wavelets have an infinite number of vanishing moments since their Fourier transform
vanishes in a neighborhood of the origin. Note that a splitting into intervals of equal size corresponds
to a certain set of wavelet packets [10].

6. Biorthogonal Local Trigonometric Bases
An important property of a basis concerns how constant functions are represented. We say that

a basis has a resolution of the constant if, on a finite domain, the constant is represented with a finite
number of basis functions. Since a smooth function locally resembles a constant, it is important
to represent a constant on each interval with as few coefficients as possible in order to get good
approximation properties. For example, suppose we have an image with a constant background.
Surely, we do not want to spend many coefficients in the representation of the background.

We adapt the construction so that the constant is one of the basis functions. From the previous
section we see that

�I GI 1 =

8>>><
>>>:

rÞ − lÞ on .Þ; Þ + žÞ];

1 on .Þ + žÞ; þ − žþ/;

rþ + lþ on [þ − žþ; þ]:

We want cut-off functions so that this function coincides with the first basis function sI;0. This is
clearly only possible if Þ + žÞ = þ − žþ . From now on, we therefore only work with intervals of
equal size and let ž = |I |=2. To achieve a resolution of the constant and still have an orthogonal
basis, the cut-off function needs to be chosen as lÞ = l..x − Þ/=ž/, where

l.x/ =

8>>>>><
>>>>>:

1 for x < −1;

cos.³x=4/− sin.³x=4/√
2

for x ∈ [−1; 1];

0 for 1 < x:

This cut-off function is continuous but not differentiable. Consequently, the folding operator intro-
duces discontinuities in derivatives that ruin the approximation properties (i.e., ruin the decay given
in (1)). What we need is a resolution of the constant with smoother cut-off functions.

To solve this problem, we add some flexibility to the construction, by abandoning the orthog-
onality requirement. In the remainder of this paper we let lÞ and rÞ = MÞlÞ be continuous cut-off
functions that do not necessarily satisfy l2Þ + r2

Þ = 1.
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10. Lemma
In the case l2Þ + r2

Þ is bounded from below and above, the folding operator is bounded and
invertible. More precisely,

A ‖f ‖ ≤ ‖FÞf ‖ ≤ B ‖f ‖;

where

A = min
x

q
l2Þ + r2

Þ and B = max
x

q
l2Þ + r2

Þ;

and these constants are sharp.

Proof. The lemma follows from the fact that

Z +∞

−∞
|FÞf |2 dx =

Z +∞

−∞
.l2Þ + r2

Þ/ |f |2 dx;

which is the result from simple algebraic manipulations similar to those in the previous
section. �

11. Lemma
The inverse of an invertible folding operator FÞ is again a folding operator.

Proof. The equation g = FÞf can be written in matrix form as

�lÞ

�
g

MÞ g

½
=

�
lÞ rÞ

−rÞ lÞ

½
�lÞ

�
f

MÞ f

½
:

From this we see immediately that the inverse of FÞ is given by fFÞ

∗
, where

fFÞ = �lÞ .1 + MÞ/ l̃Þ + �rÞ .1 − MÞ/ r̃Þ;

l̃Þ = lÞ

l2Þ + r2
Þ

; and r̃Þ = rÞ

l2Þ + r2
Þ

: �

Note that

lÞ l̃Þ + rÞ r̃Þ = 1:

We call FÞ and fFÞ biorthogonal folding operators and refer to fFÞ more specifically as the dual
folding operator.

This does not solve the problem completely. Indeed, if the cut-off functions belong to C1, the
folded constant has derivative zero at Þ + ž and thus never coincides with the first basis function
sI;0. We therefore generalize the construction further by allowing different parities. We want to
have a folding operator that takes a smooth function into a function that is either odd at the left and
right endpoints of an interval or even at both endpoints. One way to do so would be to use folding
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operators with the same parity left and right of the folding point. Unfortunately, we show in the next
lemma that these operators are not invertible.

12. Lemma
A folding operator with the same parity left and right of the folding point is not invertible.

Proof. Consider the even–even case, and let

FÞ = �lÞ .1 + MÞ/ lÞ + �rÞ .1 + MÞ/ rÞ:

The matrix representation leads to a matrix with determinant l2Þ − r2
Þ , which vanishes at the folding

point. �

This basically tells us that the only way to get the same parity at both endpoints of an interval
is to alternate the parity of folding operators. In other words, we need to change the parity from : : :

(odd–even) (odd–even) (odd–even) : : : to : : : (even–even) (odd–odd) (even–even) (odd–odd) : : : :
This implies defining the total folding operator by alternating FÞ and F∗

Þ . In the intervals with
(even–even) parity we use the cosine II basis, and in the intervals with (odd–odd) parity the sine II
basis. To write this in more detail we let

Þl = l |I |;

and to simplify notation, we replace every subscript Þl , or I , by the integer subscript l. The total
folding operator is now given by

T =
Y
l

F2l F∗
2l+1;

where the factors commute. Again this operator is invertible, and since the individual folding
operators do not interact spatially, it also satisfies

A ‖f ‖ ≤ ‖T f ‖ ≤ B ‖f ‖;

with the same constants as above. The dual total folding operator is defined similarly (just add the
tildes) and again T −1 = eT ∗. The condition number of the total folding operator is B=A.

Following a reasoning similar to the orthogonal case, we see that the total folding operator can
also be written as a sum of folding operators associated with an interval,

T =
X
l

�l Gl :

where

G2l = .1 − MÞ − Mþ/ b2l

and

G2l+1 = .1 + MÞ + Mþ/ b2l+1:
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The projection operator associated with an interval is given by

Pl = eT ∗ �l T :

We decompose L2.R/ into subspaces,

L2.R/ =
M
l

Vl with Vl = Pl L2.R/;

where

T Vl = L2.I / and eT ∗ L2.I / = Vl:

Again the projection operator can also be written as

Pl = eG∗
l �l Gl = b̃l Gl :

If l is odd (resp., even), an element of Vl can be written as b̃l times a function that is locally even
(resp. odd) around Þ and þ.

We use the basis functions with the right parity on each interval:

t2l;k =
s

2

|I | sin.k + 1/
³

|I | .x − 2l/; k ≥ 0;

t2l+1;k =
s

2

|I | cos k
³

|I | .x − 2l − 1/; k ≥ 1;

and

t2l+1;0 = 1√|I | :

Obviously, the tl;k with l ∈ Z and k ∈ N form an orthonormal basis for L2. This implies that the
basis formed by the eT ∗ �l tl;k is a Riesz basis for L2. These functions are given by

eT ∗ �l tl;k = eG∗
l �l tl;k = b̃l tl;k:

Consequently,

f =
X
l

Plf =
X
l;k

cl;k b̃l tl;k;

where the coefficients are given by

cl;k = 〈 T f ; �l tl;k 〉 = 〈 f; T ∗ �l tl;k 〉 = 〈 f; bl tl;k 〉 ; (3)

and

A ‖f ‖ ≤
sX

l;k

c2
l;k ≤ B ‖f ‖;
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with the same constants as above. We say that {bl tl;k} is the dual basis corresponding to the basis
{b̃l tl;k}. The first expression of (3) for the coefficients is the easiest to implement. We summarize
the results in a theorem.

13. Theorem
With the notation of this section, the sets of functions {bl tl;k} and {b̃l tl;k} are dual Riesz bases

of L2. More precisely, they are biorthogonal in the sense that

〈 bl tl;k; b̃l′ tl′;k′ 〉 = Žl−l′ Žk−k′ :

If f and the cut-off functions belong to Lip½[Þ − žÞ; þ + žþ] with I = .Þ; þ], the coefficients of f
decay as

cI;k = O.k−½/:

Note that these bases still have some orthogonality. More precisely, two basis functions
associated with different intervals are still orthogonal. This can be understood using a reasoning
similar to that following Lemma 8. The splitting of L2 into subspaces thus still is an orthogonal
splitting.

The only thing left is to find cut-off functions so that �l T 1 coincides (up to a constant factor)
with �l tl;0. This can be done by letting lÞ = l..x − Þ/=žÞ/ where

l.x/ = 1 − sin.³x=2/

2
for x ∈ [−1; 1]:

This cut-off function belongs to C1.
It is easy to check that on I ,

G2l 1 = sin

�
x − 2l

|I |
�

and G2l+1 1 = 1:

In this case the constants A and B, used in the comparison of norms, are 1=
√

2 and 1, respectively.
The condition number of the folding operator is thus

√
2. We have chosen this normalization because

it is natural for the cut-off functions to have the value 1
2 at Þ. This means that the even side of the

folded function coincides with the original function at the folding point. The cut-off functions are
shown in Figure 2 and the biorthogonal total folding of an exponential function is shown in Figure
3. The folded function on each interval closely resembles the first basis function. Figure 4 shows
two basis functions,eb2 t2;4 andeb5 t5;9, where |I | = 1. The shape of the bell function is dotted. Note
the parity of the basis functions at the endpoints.

7. Folding Operators on an Interval
So far we have only discussed functions defined on the real line. In this section, we focus on

folding operators on an interval. Since we can treat each boundary point independently, we consider
the case of the interval I = [Þ;∞/. We introduce an extension operator S that takes a function
from L2.I / to a function of L2.R/ and a restriction operator R = �I that does the opposite. We
want them to satisfy R S = 1 on L2.I /. Also, in the case f is smooth, we want Sf to have some
smoothness too. For notational simplicity, we omit the subscript Þ and introduce a superscript b for
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FIGURE 2. The biorthogonal cutoff functions.
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FIGURE 3. The biorthogonal folding.

cut-off functions and operators associated with the boundary of the interval. We define the folding
operator at the boundary as Fb = R F S: Let lb = R l (similarly for r), and let Mb be the operator
that maps a function of L2.I / to its mirror in L2.R \ I /. Now,

Fb f = R [�l .1 + M/ l + �r .1 − M/ r] S

= R .1 − M/ r S = rb f − lb R M S f:

The second term has a plus sign in the case of F∗b = R F∗ S (i.e., the even case).
Assuming that f is continuous, we choose the extension operator in the odd case as

S f = 2f .Þ/− Mb f on R \ I:
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FIGURE 4. Biorthogonal basis functions.

This guarantees that if f ∈ C1, so is S f . The folding operator is then given by

Fb f = .lb + rb/ f − 2f .Þ/ lb:

We can thus retrieve f from Fb f by

f = Fb f + 2f .Þ/ lb

lb + rb
:

This shows that we need Fb f and the value f .Þ/ to find f again, which is no surprise because
the folding operator can never “grasp” the value of f at Þ since Fbf .Þ/ = 0 in the case f is
continuous. We thus need to “store” separately the value f .Þ/. The reconstruction step is stable
since the denominator does not vanish.

If we use the same extension operator in the even case, the reconstruction becomes unstable
since it has lb − rb in the denominator. We therefore introduce the following extension operator in
the even case:

S f = Mb f + 2f ′.Þ/ .x − Þ/ on R \ I;

where we assume that f ∈ C1. Then Sf ∈ C1 as well. The folding operator is given by

F∗b = .lb + rb/ f + 2f ′.Þ/ .x − Þ/ lb;

from which we see that the inverse operator again is stable. Here we need to “store” the value f ′.Þ/
separately.

The construction on the right boundary of an interval is analogous. Also, it is possible to
construct extension operators that preserve more smoothness at a cost of having to store more
information separately.

8. Equal Parity Folding
In this section we take a closer look at the folding operator that takes a smooth function into a

function with the same parity left and right of the folding point. We call such a folding operator an
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equal parity folding (EPF) operator. In §6 we proved that they are not invertible in L2; see Lemma
12. Nevertheless, they have been used successfully for image compression; see [1]. In this section,
we study their behavior more carefully and try to understand why they sometimes are useful.

We start by introducing two new operators E and D by

E = 1 + M and D = 1 − M;

which map any function into an even (resp., odd) function and satisfy

E + D
2

= 1:

Note that they are both selfadjoint and provide an orthogonal splitting of L2 into E L2 ⊕ D L2. We
again take Þ = 0 and omit the subscript Þ. We assume the cut-off functions to be continuous and
satisfy

lim
x→−∞ l.x/ = 1; lim

x→+∞ l.x/ = 0; (4)

and r = M l. The EPF operator with (even–even) parity can now be written as

F = �l E l + �r E r: (5)

We immediately see that the EPF operator is selfadjoint. Also, it commutes with M and maps even
(resp., odd) functions into even (resp., odd) functions. Next we study how the EPF operator behaves
on the subspaces of even or odd functions.

14. Lemma
On E L2, F coincides with l + r . On D L2, F coincides with .�l − �r/ .l − r/.

Proof. If f ∈ E L2, we see that

F f = �l E l f + �r E rM f = �l E l f + �r E M l f = E l f:

If f ∈ D L2, we have

F f = �l E l f − �r E rM f = �l E l f − �r E l f = .�l − �r/ .l − r/ f: �

We introduce two new functions e and d by

e = E l and d = D l:

The lemma implies that we can write F as

F = e E + d .�l − �r/D: (6)

This helps us to formulate the following lemmas.

15. Lemma
The EPF operator is bounded.
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Proof. This follows immediately from the representation (6), the fact that the cut-off
functions are continuous, and their limit conditions (4). �

16. Lemma
ker f = {0}.

Proof. From (5) we see that F f = 0 implies that both lf and rf are odd. Consequently,
ef and d f are odd. The former implies that f is odd, the latter that f is even. Thus f = 0. �

We know that the kernel and the closure of the range of a selfadjoint operator form an orthogonal
splitting of L2. The former two lemmas thus imply that the range of F is dense in L2. We show later
that the range of F is actually a true subset of L2.

17. Lemma
The EPF operator is not invertible on its range.

Proof. Remember that an operator is invertible when its inverse exists and when the inverse
is bounded. We prove that F is not invertible by constructing an odd function w with norm 1 so that
F w can have arbitrarily small norm. Let

w = 1

2
√
Ž

�
�[−Ž;0] − �[0;Ž]

�
:

Then

‖F w‖ = ‖d w‖ ≤ max
x∈[−Ž;Ž]

d:

Since the cut-off functions are continuous, this can be made arbitrarily small. �

It is easy to see what the inverse operator, at least formally, looks like. It again is an EPF
operator with the parity (even–even). We denote it by eF where

eF = ẽ E + d̃ .�l − �r/D;

with

ẽ = 1

e
and d̃ = 1

d
:

It immediately follows that formally eF F = 1. The inverse operator can also be written in a form
similar to (5), where

eF = �l E l̃ + �r E r̃ ;

with

l̃ = l

l2 − r2
and r̃ = r

r2 − l2
:

The fact that F is not invertible shows up here in the fact that d̃ has a singularity at x = 0. This also
tells us that eF can take a function out of L2, since this singularity is not necessarily square integrable.
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We observe that F is bounded and invertible on the subspace of even functions in the case e is
bounded away from 0 and ∞. For the odd functions we cannot make a similar statement as d always
vanishes in the origin.

We can characterize the range of F by

range F = {f ∈ L2 | f=d ∈ L2}:

If we also assume that the cut-off functions belong to C1, we see that d̃ = O.1=x/. This means that
a function belongs to the range of F in the case it behaves like O.x1=2−Ž/ in a neighborhood of the
origin. A typical function that does not belong to the range of F is a function with a discontinuity
at the folding point. Similarly we can describe the range of eF by

range eF = {f ∈ L2 | d f ∈ L2};

and we note that L2 ⊂ range eF . Again, a function that eF typically takes out of L2 is a function with
a discontinuity across the folding point. Under the assumption that the cut-off functions belong to
C1, a function of the range of eF behaves like O.x−3=2−Ž/ in a neighborhood of the origin.

We also note that F has some smoothing properties, i.e., it maps a function with a discontinuity
at the origin into a continuous function since

F �l = l:

However, it does not smooth out discontinuities in the derivative because

F x �l = |x| l:

Let us discuss how these operators can be used for function approximation. The idea is to
construct a total folding operator and then use a trigonometric basis with the right parity on each
interval. In this case the right basis is the cosine II basis. We can find a nonlinear approximation by
setting a fixed number of small coefficients to zero and applying the inverse total folding operator. If
we think of F as a kind of smoothing operator and of eF as an operator that can blow up discontinuous
functions, it makes sense to use eF to construct the total folding operator and F for its inverse. This
has the following advantages.

• Since F is bounded, the error introduced by the approximation in the trigonometric basis
cannot get magnified.

• Discontinuities across the folding points get smoothed by F . In other words, the approxi-
mation has some smoothness.

We note that the idea to switch the two operators around was first suggested in [1].
This approach works well as long as the function is smooth at the folding point. This can be

understood as follows. If a function is smooth, we can write a local first-order approximation as

f .x/ ≈ f .0/+ f ′.0/ x + O.x2/:

The first term is even and thus does not pose a problem as the folding operators are bounded and
invertible on the space of even functions. The second term is odd but (locally) belongs to the range of
F and thus does not cause any trouble. Problems, however, occur when the function is discontinuous
at a folding point. We illustrate this with an example in the next section.
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The construction of the total folding operators is analogous to the biorthogonal case, and we
adopt the same notation (i.e., the integer subscripts). Evidently, there is no need to alternate the
parities. On each interval we use the cosine II basis or the functions �l Cl;k where

Cl;k =
s

2

|I | cos k
³

|I | .x − 2l − 1/:

It should be clear from the discussion above that the F �l Cl;k cannot generate a basis for L2 but
merely form a set whose linear span is dense. We remark that we still have

F �l Ck;l = bl Ck;l;

where bl is the usual bell function. So formally we can use this transform, but there is no guarantee
that the coefficients will be bounded.

It is easy to see that we get a resolution of the constant in the case e = 1. But, unlike in the
biorthogonal case, one degree of freedom is left after fixing the resolution of the constant, namely,
the choice of d . We can use this to also obtain a resolution of the linear, i.e., a representation of each
linear function by two basis functions on an interval. To do so we need to choose d so that

d.ž x/ = x

1 − 2=³ cos.³x=2/
for x ∈ [−1; 1];

and, consequently,

l = 1 + d

2
and r = 1 − d

2
:

The function d is smooth and satisfies the right boundary conditions. Then, with ž = 1,

F̃ x = ẽ E x + d̃ .�l − �r/D x

= d̃ x = 1 − 2

³
cos

�³x
2

�
:

Figure 5 shows the l, r , and d functions in this case. Figure 6 shows the equal parity folding of the
function x with folding points 0 and 1 and ž = 0:5. We see that on the interval [0,1] it coincides
with a function of the form A+ B cos.³x/ (dashed).

9. Implementation and Results
So far the discussion has only concerned functions of a continuous variable. In applications

the construction needs to be discretized. A function f is then given as a sequence {fn} where the
“samples” fn can be seen as pointwise evaluations on a regular grid in the case f is continuous or as
average values of f in a neighborhood of the grid point if not. For each local trigonometric basis, a
discrete implementation of the transform is available, which is based on the FFT. The implementation
of the FFT is most straightforward in case the number of samples is a power of two.

We first need to decide whether we want to use a staggered or nonstaggered discretization. In
a nonstaggered discretization, the boundaries of the interval coincide with a grid point, while in a
staggered discretization, the boundaries of the interval fall between grid points.
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FIGURE 5. Equal parity folding functions: l (full), r (dashed), d (dotted).
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FIGURE 6. Equal parity folding of a linear function.

In the orthogonal construction both discretizations are possible. The fact that a folded function
is discontinuous at the folding point does not pose a problem in the nonstaggered discretization.
At the folding point we only need the value of the “even” part since we know that the “odd” part
vanishes. In the biorthogonal case both options can still be used. In this case the nonstaggered
has the disadvantage that the “even–even” intervals contain two more samples than the “odd–odd”
intervals. This makes implementation harder.

In the EPF case one has to use the staggered implementation since some of the cut-off functions
have a singularity at the folding point. This makes it possible to implement operators that in the
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L2 sense are unbounded or not invertible. The fact that the range of F is dense in L2 ensures that
these discrete operators are invertible. However, this unavoidably results in ill-conditioned discrete
operators. The smaller the grid size, the worse the condition will be.

We next include some numerical examples. Each time we take a function, calculate its trans-
form coefficients, set a certain percentage of the coefficients to zero (the smallest ones), and obtain
an approximation by calculating the inverse transform. The errors are measured with the `2 norm.
We always use the staggered discretization.

The first example involves a function that has discontinuities at the folding points. We work
on the interval [0; 1] where we assume that the functions are extended periodically to the real line.
Consider the function

f = 2 ∗ �[1=4;3=4/ − 1;

which generates a square wave. We take 1
4 and 3

4 as folding points, each with ž = 1
4 . We use the

staggered discretization with grid size h = 1
100 . After the appropriate local trigonometric transform

on each interval, we retain the largest 15% of the coefficients and set the others to zero. We then
perform the inverse trigonometric transform and unfolding. Figures 7 and 8 show the folding of f
in the biorthogonal and EPF cases and these functions after setting the coefficients to zero (dashed).
Figures 9 and 10 then show the unfolding of these functions versus the original function (dashed).
As we predicted, the EPF performs poorly in this case.

In a second example we consider a smooth function,

f .x/ = e−.4x−2/4 ;

and use the same folding points. Figure 11 gives the norm of the difference between the the original
function and the approximation as a function of the percentage of the coefficients that were retained.
As we expected, the EPF behaves better here. If the percentage of coefficients kept is less than 15,
its error is about 10 times smaller than in the biorthogonal case.
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FIGURE 7. Biorthogonal folding of the block and approximation (dashed).
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FIGURE 8. Equal parity folding of the block and approximation (dashed).
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FIGURE 9. Approximation of block wave (biorthogonal case).

10. Image Compression

One of the major applications of smooth local trigonometric bases is image compression. The
idea of a transform coding scheme is to take the transform of the image, set the small coefficients to
zero, and quantize and encode the other ones. The transform has to be chosen such that it reflects the
correlation present in the image. Since images have both spatial and spectral correlation, the basis
functions need to be local in space and frequency. A standard still-image compression algorithm is
JPEG [19]. The image here is divided into blocks of eight-by-eight pixels, after which the discrete
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FIGURE 10. Approximation of block wave (EPF case).
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FIGURE 11. Error (logarithmic) as a function of percentage of coefficients. (biorthog-
onal = full, EPF = dashed).

cosine transform is used on each block. It thus uses a (nonsmooth) local trigonometric basis. One
of its disadvantages is that at high compression ratios, the compressed image reveals the splitting
location: the so-called blocking effect. This is caused by the fact that the approximations are
discontinuous. In [1, 2] smooth local trigonometric bases are used for image compression and it
is shown that they outperform JPEG. In [11] a comparison between the biorthogonal and the EPF
cases is made. The conclusion is that for a fixed compression ratio, EPF has a better SNR but the
biorthogonal basis gives better visual image quality.
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