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Nonlinear Approximation by
Trigonometric Sums

R. A. DeVore and V. N. Temlyakov

ABSTRACT.  We investigate the L ,-error of approximation to a function f € L,(T9) by a
linear combination Zk crex of n exponentials e (x) := ¢'*¥) = l®xi++kixd) on T4 \where the
frequencies k € 74 are allowed to depend on f. We bound this error in terms of the smoothness
and other properties of f and show that our bounds are best possible in the sense of approximation
of certain classes of functions.

1. Introduction

Approximation by trigonometric polynomials is one of the fullest and most complete chapters
of approximation theory. Its importance lies not only in its intrinsic interest but also in that it serves
as a prototype for many other types of approximation. The theory (see, e.g., [N]) usually takes
the form that we approximate a given function f € L,(T¢) (with T¢ the d-dimensional torus) by
functions T € 7, with 7, a linear space of trigonometric polynomials of degree n.

In this article we are interested in a significant variation of this theme; that is, we shall allow
the frequencies of the approximating polynomials to depend on the functions f. Let

(x, ) :==x1y1 + -+ Xaya
denote the Euclidean inner product of two elements x, y € R4, and let
ep(x) 1= ') = rtthed = (kL k) € 29,

denote the complex exponentials. We define ¥, to be the class of all complex trigonometric poly-
nomials of the form

T=ch€k, [A] < n,
keA

with A any subset of Z¢ with at most n elements. The space %, is not linear since adding two
trigonometric polynomials from X, usually results in a new trigonometric polynomial with more
than n terms.

If fe Lp(']I‘d), 1 < p < oo, then

0u(f)y = jnf If =Tl (L.D)

Math Subject Classification. 41A46, 42A10
Acknowledgements and Notes. This research was supported by the Office of Naval Research Contract NO014-91-J1343,
the National Science Foundation Grant EHR 9108772

©1995 CRC Press, Inc.
ISSN 1069-5869



30 R. A. DeVore and V. N. Temlyakov

denotes the L, (T?)-error in approximating f by the elements of ¥,,. Here and throughout this paper,
we let

1/p

ld
et (Gr) [rora) o 1sp<w.

ess sup,.ca | f (%), p =00,

denote the usual L,(T?) norm.

We are interested in the advantages, if any, in approximating a function f by the elements of
the nonlinear spaces X, rather than by the elements of the linear spaces 7,. Several recent results
have shown the advantages of nonlinear approximation in other settings such as approximation by
spline functions with free knots (see Petrushev [P] or Chapter 13 of [DL]) or sums of wavelets (see
[DJP]). These results show that one can achieve a given accuracy of approximation while assuming
less smoothness on the function f in the nonlinear case than is necessary in the corresponding linear
approximation.

We shall show that similar results hold for nonlinear trigonometric approximation. However,
the results for trigonometric approximation are not quite as strong as those for wavelets or splines,
for example. This seems to be due at least in part to the fullness of the support of the exponential
functions.

Our results on nonlinear trigonometric approximation will be derived from certain theorems on
the approximation of vectors in RV by linear combinations of the n coordinate vectors 8 := (8;(j))
with §;(j) the Kronecker delta. Direct theorems (i.e., upper bounds) for this type of approximation
are presented in §2, while inverse theorems (lower bounds) are given in §4.

In §6 we show how these discrete theorems can be used to derive estimates for the nonlin-
ear trigonometric approximation of certain classes of functions. The function classes we consider
will be of two types. In one setting, we consider classical smoothness spaces such as Sobolev and
Besov classes. The main result in this direction is Theorem 6.4, which determines the L, (T9)-
approximation error for the unit ball U (B (L.)) of the Besov class B (L.). Certain special cases
of our results for Besov spaces can be derived from earlier work on trigonometric approximation.
For example, some cases can be derived from estimates for linear trigonometric widths [M, Mk].
Also, Belinskii [B] previously studied nonlinear trigonometric approximation and obtained certain
special cases of our results. Our main contribution is that we can treat the full range of L, (T?)-
approximation, 1 < p < oo, and allow any 0 < s,7 < oo. The previous work mentioned
never treats the case p = oo and has restrictions on the relation between 7 and p. We treat the
case p = oo by using the discrete Theorem 2.3 and are able to handle the full range of p and t
by using the discrete inverse Theorem 4.1. In essence, our main contributions are these discrete
theorems since their application to the approximation of classes of functions is quite straightfor-
ward.

In a second application, we consider classes of functions defined by conditions on their Fourier
transform. Such classes arise in other settings, such as the study of absolute convergence of Fourier
series. Barron [Ba] considered classes analogous to these in the context of nonlinear approxima-
tion. He considered the L,-approximation by n sigmoidal functions. Sigmoidal functions have
significance in the construction of neural networks. Barron’s work was part of the motivation for
this article. However, we consider approximation by linear combinations of exponentials rather
than linear combinations of sigmoidal functions. Also, our results apply in much more generality
in that the approximation can take place in any L, space, and we consider more general classes
of functions than Barron. The discrete results of §52—4 should also find application to neural net-
works.
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2. Discrete Direct Theorems

In this section, we shall develop certain results concerning the approximation of sequences that
will be useful in proving direct theorems for nonlinear trigonometric approximation. We denote by
£ the space RY equipped with the £,,-(quasi-)norm that is defined for x = (x(1), ..., x(N)) € RY
by

N
D@y, 0<p <o,
i=1

SUp; <<, [X (D), p = 0.

lxllp = llxlle, ==

We also denote the unit ball in £) by B
An important tool for the proofs of the theorems developed in this section is the following
result of Gluskin [G] concerning the unit ball Bév . We shall also use the notation

L(x):=(+In"x)!2, x e R,
with

Inx, x>1,

+ =
lnx'_{o, 0<x<I

We shall frequently use, without further mention, the inequality

L(xy) < L(x)L(y),

which holds for any x, y € R,..
We have the following Theorem of Gluskin.

2.1. Theorem
There exist absolute constants C; > 0 and 0 < § < 1 such that for any finite collection V of

M vectors from BY, there is a vector z € RN with |z(i)| =0, 1,i = 1,..., N, and lzller > 8N, and
ma&(|(v, )| < C{L(M/N). 2.1
ve

A simple consequence of Gluskin’s theorem is the following.

2.2. Corollary

There exist absolute constants C; > 0 and 0 < § < 1 such that for any finite collection V
of M vectors from BY, there is a vector z € RN with |z(i))] =0,1,i = 1,..., N, that satisfies the
properties:

i lzlly = 8N,
i. YN, z()| < Ciw/NL(M/N),
iii. maxyey |(v, z)| < C{L(M/N).

Proof. It suffices to apply Theorem 2.1 to the set of vectors V U {vo} with vg(i) := 1/ VN,
i=1,...,N.
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Let Y be a collection of vectors from RY. Then Y induces the (semi-)norm

lIxlly := sup [(x, y)|. (2.2)
yeY
We shall use || - ||y to measure the error in approximating a vector x € R" by linear combinations

of n vectors of the standard basis §; := ((Sj(i))iN:l, with §; (i) :=1,i = j,and §;(i) :=0,i # j. Let
M,, denote the nonlinear manifold consisting of all vectors w € RY such that

w = ZCJ'(SJ'

JEA

with A a set of indices (depending on w) of cardinality at most n, that is, |A| < n. The error of
approximation of x by the elements of M,, is

E Y):= inf — . 2.
n(x’ ) wler.}\/l ||)C w”Y ( 3)

The following theorem bounds the approximation error E,, (x, Y) for vectors x € E{V .

2.3. Theorem
There is an absolute constant Cy > 0 such that for any set Y C BY of M vectors, we have for
eachm=1,2,..., N,
E,(x,Y) < Com™ PL(M/m)|x]lpr,  x €RY. (2.4)

For the proof of this theorem, we shall use the following lemma, which is a special case of
Theorem 2.3. In what follows, for vectors x, y € RY, we define

xy = @y
that is, the vector xy is formed from x and y by taking their coordinatewise product.

24. Lemma
There are absolute constants C3 > 0 and 0 < « < 1 such that for any set Y C BY of M

vectors the following is valid. For eachn = 1,2, ..., N and each x € K{V with
X=ZC]‘5,‘, |Al =n,
JEA

. N . .
there is an x* € £ satisfying

Xt =Y cl;, A* C A, IA*] < (1 —«)n,
JEA*

and

x —x*|ly < Csn~"2L(M/n). (2.5)
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Proof. Let § and C; be the constants of Corollary 2.2. We shall show that the lemma is
valid for x := (6/4)(1 — &/8) and a constant C3 depending only on § and C;. We let n; := [nd/8]
andny :=n —n;. Thenny, > (1 —§/8)n > 7Tn/8.

We first want to show that we can assume that

L(M/ny) < (C7'8/2)n)>. (2.6)
To see this, we note that
ny PL(M/ny) < Can™"2L(M /n)
for some constant C,4 that depends only on 8. Now if (2.6) does not hold we take x* := 0 and find
e = x*lly = llxlly < lIxllgy <1< QC1/8LM/n)n; ' < C42C1/8LM /myn™ "7,

which is the desired inequality (2.5). The other claims about x* are trivially valid.

For the remainder of this proof, we can therefore assume that (2.6) is valid.

We construct first an intermediate approximation x; to x. Let A| be the set of n; indices j € A
for which |c;| is largest (with ties broken in an arbitrary way). Since

nymin |c;] < 3 el <1,
jeA jem

it follows that |¢;| < nfl forall j € A := A\ Ay. Therefore, the vector x; := Y c;d; satisfies

JEAL
2 2 —1 -1
e =il = E lejl” <y E lejl <ny. 2.7
JjeA, JEA
We next approximate r := x — x; by a vector x,; then x* := x; 4+ x, will be our final

approximation to x. Let V be the collection of vectors ry/||7|| .Y € Y. Here, we use our notation

for the coordinatewise product ry of the vectors r and y. Then V C Bév . We apply Corollary 2.2 to
the vectors of V restricted to A to find a vector z € RY satisfying Corollary 2.2 with N replaced by
n, on the right side of the inequalities i—iii. We can also require that z(j) = 0, j ¢ A,. We consider
the sets AL of those indices j for which z(j) = 1. We assume that

D el = Y gl (2.8)

jeA_ JjeEAL

A simple change in the argument that follows handles the case when the opposite of (2.8) is true.
We define

Xy :=r —rz. 2.9)

(If the opposite inequality to (2.8) were true, then we would take x, := r 4+ rz.) We show that
x* := x| + x, satisfies the conclusions of the lemma. First of all,

llx = x*[ly = lIrzlly = max |{rz, y)| = max |(z, ry)|
yeY yeY
< Cilirlly L(M/na) < Ciny LM /na) < Cn™' LM /n),

which is the desired error estimate (2.5).
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To check the other properties of x*, we observe that x* = x — rz and therefore

x(j), r(j)z(j) =0,
x*(j)=1 x() =0, z2(j) =1, (2.10)
2x(j) — x1(j) = 2x(j), z(j) = -1,

where we have used the fact that x;(j) = 0, j € A,. It follows from (2.8) that

N

N
YdI= Y MI+2) ] k(DI Y k(DI < 1.
j=1

r(Hz()=0 jen. =

Therefore, x* € Bl as desired.
Finally, from (2.10), x*(j) = 0 whenever j € A, ; and by Corollary 2.2 parts i and ii, we have

1 1
[Asl=Z (AL UA[+ A= |A_]) = Z(na = Civ/nL(M/n3)) = (8/4)ns.

The last inequality is valid because of assumption (2.6). Since én,/4 > (6/4)(1 — 8/8)n = kn, we
have verified that x* has the desired form. l

Proof of Theorem 2.3.  We can assume thatx € B{'. Letm be a positive integer. We shall
define by induction a sequence of vectors x; € B]N; asequence of sets Ay C Ax—y C {1,2,...,N};

and a sequence of integers ny, k = 0, 1, ..., with the properties that n; = [(1 — k)ng_1], | Ax| = ng;
Xp = ZjeAk ¢j«dj; and

e = Xieqrlly < Cang PL(M/ny),  k=0,1,...,
with C3 the constant of Lemma 2.4.
For k = 0, we define xo := x, Ag := {1, ..., N}, and ny := N. Given that Ay, x;, n; have
been defined, we apply Lemma 2.4 (with x := x;, A := Ay, n := ny in that lemma) to find x4,

Ag+1, and ng; with the desired properties.
We fix k such that ny; < m < ny. Then x4 is in M,,. From Lemma 2.4, we have

k
e = xeilly < >l = xpally < C3 Y ny 2L(M/ny). Q.11)
j=0 j=0

k
Our construction of the sequence n; gives that
n; > (1 —k)*m. (2.12)
From the monotonicity of L(x), x > 0, we have
n; LM /) <m0 — )% DRL(M m), j=0,... k.

Using this in (2.11) and summing give the desired estimate. O

Finally, we remark that the results of this section, while stated for real vectors, hold equally
well for complex vectors with identical proofs.
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3. Direct Theorems

In this section, we shall utilize the discrete results of the previous section to approximate
functions. While our main interest is in the approximation of functions defined on T¢ by linear
combinations of the complex exponentials e¢;, we shall formulate our results in a more general
framework. The exponential functions ¢; are replaced by more general functions ¢, and the set T¢
is replaced by a more general set 2. We shall describe the results of this section for real-valued
functions, but an identical development holds in the case that the functions are complex-valued.

Let ¢y, ..., ¢y be real measurable functions defined on a set 2 C R¢, and let &y denote their
linear span. We shall assume that the following two conditions are satisfied.

1. There is a constant K; such that

lp; (x)] < Ki, xeQ, j=1,...,N. 3.1
2. There is a constant K, and a set of points x; € 2, j =1, ..., M, such that for each function
P € &y we have
[P(x)] = K> max [P (xj)l, x € Q. 3.2)
j=l...,

In this section, ¥, will denote the nonlinear manifold consisting of all functions

o= c(Do;, IAl<n,

JeA

with A depending on ¢. In other sections of this paper ¥, always denotes the special case when
the ¢ are exponential functions. We are interested in the nonlinear approximation of functions f
defined on 2 by the elements of X,,. We begin by estimating the L ,-error in approximating certain
classes of functions. Let

E(f,Zy) = inf || f —o¢llL.@
PYET,

denote the error in approximating f (in the L,-norm) by the elements of %,,.
For a given class JF of functions from L, (£2), we denote the error in approximating this class
by

E(F,Z,) =sup E(f, Z,).
feF

We shall be particularly interested in the class A := A(®y), which consists of all P € ®y
such that

N
P=Y ¢ ()Y, e BY.
j=1

We have the following theorem.

3.1. Theorem
If the functions @, . .., ¢y satisfy the conditions 1, 2, then

E(A(Dy), =) < 2K Kom™2L(M/m),  m=1,2,...,N,

with C, the constant of Theorem 2.3.
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Proof. We shall utilize the results of the previous section. Let Y := {y;, ..., yy} with y;
defined by y; (j) := ¢;(x;)/Ky,i=1,...,.M,j=1,...,N. ThenY C BQ’O and we can use Y to
define the norm || - ||y on RV,

Let P € A(®y), P = Z,N:l c(j)¢; with (c(j)) € BYN. We apply Theorem 2.3 to find

(c*(j ))]N:l with ¢*(j) = 0 except for at most m coordinates and with
le —c*lly < Com™" > L(M/m).

Then P* := Z]N:l c*(j)¢; € X,, and from condition 2,

IP = Plloo < KiKzmax|(c =" y)| = KiKalle = 7lly < Co K Kom™ PL(M/m). U]

4. Discrete Inverse Theorems

We shall now consider inverse theorems (i.e., lower bounds) for discrete approximation. The
theorems of this section are companions to the upper bounds of §2.

Suppose that || - || is a norm defined on RY and Bs(x) := {y : |x — y|| < 8} denotes the ball
of radius § about x. For a set S C RV, we let B;(S) denote its § neighborhood, which is the union
of all balls Bs(x) with x € S. We also let B := B;(0) denote the unit ball with respect to || - ||.

We shall make various comparisons between || - || and the Euclidean norm || - || := || - || ey
We shall denote by Us(x) the Euclidean ball about x of radius § and by Us(S) the Euclidean &
neighborhood of the set S. Thus, the notation U is reserved for Euclidean neighborhoods and B for
neighborhoods with respect to the norm || - ||.

We let M,, denote the nonlinear manifold of §2 and let

Ey(x) = inf |lx —w|

be the error in approximating x by the elements of M,, in || - ||. If A C R" is any set, we let

E,(A) :=sup E,(x).

xeA

We shall give lower estimates for E, (A) provided the set A and the norm || - || satisfy certain
assumptions. To describe these, we let £, denote the collection of all m-dimensional linear spaces
L that are spanned by a set {§;}jea, |A| = m, of m coordinate vectors §;. If L € L,,, we denote by
P, the Euclidean projection onto L that takes an element x € R into its best approximation P; x
from L in the Euclidean norm. We shall assume the following conditions on A and || - ||.

1. Foreachm =1,2,...,N;each L € £,,, and each x € A, we have P,x € AN L.

2. There are a constant p := (B) > 1 and elements Ay, ..., hy, M = u”, such that

M
B c|Juimy).
j=1

The following property follows from 2 and trivial properties of the Euclidean norm.

3. Foreach e > § > 0 and each x € R", the ball B.(x) can be covered by C¥(e/8)"
Euclidean balls of radius § with C depending only on .

We use the notation vol,, (S) to denote the Euclidean volume of the set S as a subset of R”.
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4.1. Theorem
Let A and || - || satisfy 1 and 2. For eachm < N /2 and for p := E,,(A), we have

_n Vol (U™N)
A) < CNpN-mPONET ) ANL)NL
voly(A) < C"p vol, (U™ max vol, (Up( )N L)

with UV the unit Euclidean ball in RN, U™ the unit Euclidean ball in R™, and C > 0 a constant
that depends only on the constant |1 of property 2.

Proof. For each ¢ > 0 and each set S ¢ R", let n.(S) denote the smallest number of
Euclidean balls U, (x), x € R", which are a cover for S. Then, clearly

voly(A) < pNvoly(UM)n,(A). @.1)
We next show that

np(A4) < CY max n,(B,(A) N L) 4.2)

with C, here and later in this proof, a constant that depends only on the constant p of property
2. If L € Ly, let {x; .} be a set of n,(B,(A) N L) points from RY such that the Euclidean balls
U,(x;,) form a cover of B,(A) N L. If x € A, then there are an L € £,, and a point y € L such
that |[x — y|| < p. The point y is in B,(A) N L. Hence, y is in one of the balls U, (x; ). If h;,
j=1,..., M, are the points of property 2, then

M M

x € B,(y) C U Upy(y + phj) C U Usp(xi1 + phj).
= =

Hence A is covered by the Euclidean balls Us,(x; 1 + phj), i = 1,...,n,(B,(A) N L), j =
1,...,M, L e L,. Since the cardinality of £,, does not exceed 2 and M < ", there are at most
CYN maxpec, n,(B,(A) N L) of these balls.

We shall next prove that for each L € L,,, we have

n,(B,(A)NL) < C¥n,(U,(ANL)). 4.3)
For the points y; := phj, j =1,..., M, with h; given in property 2, we have
M

B,(A) c U,y + 4.

j=1
Hence,

n,(B,(A)NnL) <V maxr, (U, (; + A) N L), (4.4)

To estimate the right side of (4.4) we fix an arbitrary j and use property 1. We claim that
U,(yi +A)NL CU,(PLyj +ANL). 4.5)

Indeed, if x is an element of the set on the left side of (4.5), then [|x — y; — allg < p for some
a € A. Since the projector Py is linear and has norm one (with respect to the Euclidean norm), we
find that || PLx — Pry; — Prallg < p. Since Prx = x (because x € L) and Pra € AN L (by
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property 1), we arrive at (4.5). Thus, we can replace n,(U,(y; + A) N L) on the right side of (4.4)
by n,(Uy(Pry; + ANL)) =n,(U,(AN L)) and arrive at (4.3).
We next claim that

n,(U,(ANL)) < C¥n,(ANL). (4.6)

Indeed, let x;,i =1,...,n,(A N L), be points from RY such that the Euclidean balls U »(x;) cover
AN L. The balls U, (x;) cover U,(A N L). Since we can cover each of the balls U, (x;) with at
most CV Euclidean balls of radius p, we obtain (4.6).

Finally, we claim that

vol, (U,(ANL)N L)
Vol (U™)

n,(ANL)y<CVp™ 4.7)

To see this, weletm , (ANL) be the maximum number of points x; from ANL suchthat ||x;—x;| g > p,
J # i. Then clearly the Euclidean balls U, (x;) form a cover for A N L and so

n,(ANL) <m,(ANL).

On the other hand, the Euclidean balls U, /> (x;) are disjoint and U,,>(x;) "L C U,(AN L) N L.
Hence,

vol,,(U,(ANLYNL)
UOlm(Up/z N L)

n,(ANL)<m,(ANL) =<

Since vol,, (U, N L) = volm(U;”/z) = (p/2)"vol,,(U™), we have proved (4.7).
The theorem follows from inequalities (4.1), (4.2), (4.3), (4.6), and (4.7). O

5. Approximation of Classes of Trigonometric Polynomials

The remainder of this paper will show how the results of the previous sections can be used to
determine the nonlinear approximation order of certain classes of functions. In this section, we begin
by considering the approximation of certain classes of trigonometric polynomials. These results can
then be applied in a rather routine way to determine the nonlinear approximation error for smoothness
classes as will be done in the following section.

In what follows in this paper, X, will always denote the nonlinear manifold of all functions P
that can be expressed as a linear combination of at most 7 of the complex exponentials e, k € Z9.
Thus, P € %, if and only if

P = Z c(k)ey

kel

withA CZ?and [A| <n.If f € L,,(Td), then

O-n(f)p = Plg)g ”f_ P”p

denotes its nonlinear trigonometric approximation error in the L, (T)-norm. For a class of functions
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F, we define

O—n(j:)p = ?ugall(f)p‘

Let 7, denote the space of trigonometric polynomials of coordinate degree n. That is, 7,
consists of the trigonometric polynomials

T = Z T (k)ex

|k|<n

where |k| := max{|ki|, ..., |kq|} fork = (ki, ..., kq) € Z?. If 0 < g < oo, we denote by A, (7,)
the set of all trigonometric polynomials T € 7, such that

1T N,z == T G))lle, < 1.

The main results of this section estimate the nonlinear approximation error of these classes in
the LP(Td)—norm, 1 <p<oo.

To establish direct theorems (i.e., upper estimates) for o,, (A, (7,,)) ,, we first note that the space
7, with its usual basis e, |k| < n, satisfies the assumptions of §3. Assumption (3.1) is obvious,
while (3.2) follows from the classical Marcinkiewicz theorem (see Chapter 10 of Zygmund [Z]).
Namely, let A, be the set of j € 74 Awith |jl <2nand jiy # —2n,k =1,...,d. We consider the
equally spaced points x; := x;, := %,j € A,. Then, foreach T € 7,

1T lloo < Crmax T (x;)], (5.1)
JEAR
IT N, ey = Gy~ > 1T ()1 (5.2)
JEA,
and
CallT Ny = 0™ Y IT (7)1, (5.3)
JE€A,

with the constants C;, C, > 0 depending only on d. The inequality (5.1) shows that property (3.2)
holds for 7, with M = (4n)?.
We shall now derive the following corollary to Theorem 3.1.

5.1. Corollary

Foreach() < q <oo,eachn=1,..,andeach1 <m < 2n + 14, we have
on(Ay(T)oe < Cm'> LM% /m),  0<gq =<1, (5.4)
and
on(Ag(T))oo < Cn™m ™" PL(n/m),  1<gq < o0, (5.5)

with C depending only on g and d.
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Proof.  We first prove (5.4). Since o, is decreasing, it will be enough to show that (5.4
holds with m replaced by 2m. If T € A,(7,), we let A be the set of m indices k such that |T (k)]

is largest (with ties broken in an arbitrary way) and define P; := )", _, f(k)ek and T, =T — Py.
Then

in |7 (k)|9 < T(k)|? < 1.
mmin [T()|7 < D 1T R)I" <

[kl<n

Therefore,

Z |f(k)| = Z |]A"(k)|<I|f*(k)|1*q <m\~Va Z |f(k)|q <m!-Va,

kgA keA k|<n

Hence, m~'*1/4 T, is in A, (7,). We let P, be an approximation to T; with m terms that satisfies the
estimate of Theorem 3.1. Then P := P; + P, isin X»,, and

IT — Pl < Cm'>" 4L 40" /m) < C2m)' > V4L (n? /2m),

which proves (5.4).
Ifl] <qg <ocoand T € A (7,), then

1T KN leyerey < Cr= (T WD) e, vy
and therefore (5.5) also follows from Theorem 3.1. O
Remark. In certain cases of L ,-approximation with p < oo, the estimates (5.4) and (5.5)
are known (or can easily be proved) to hold with the term L(n¢/m) deleted from the right side and

with the constant C depending on ¢, d, and p (see, e.g., [B]). ]

We can also give alower bound for o, (A, (7)), by changing to a discrete norm approximation
problem and then applying the results of §4. Let RN with N := (2n + 1)? be indexed by k € Z¢

with |k| < n. For the norm || - || on RV, we define for a € RV,
lall := 1Tz, Ti= ) ak)e. (5.6)
|k|<n

It is known that this norm satisfies condition 2 of §4 (see [T]).

We use the notation of §4 for M,,, (the nonlinear manifold obtained by linear combinations of
m coordinate sequences &) and its induced error E,,.

There is an obvious connection between E,, and nonlinear approximation by exponentials. To
bring out this connection, we define

Su(Pri= inf |If = Pli; (5:7)

that is, o, indicates the further restriction that the approximation P should have frequencies |k| < n.
Then if a := (a(k)) e RY and T := Z‘k a(k)ey, we have

|<n

E,(a) = Em(T)l' (58)
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We shall now show how we can use ¢, to estimate o,,.
We fix our value of n (and hence N) and let K,, denote the multivariate Fejer kernel

d
K=Y bk.mer,  blk,n) =[] = lki1/(n + D).

|kl<n j=1

Then K, is the tensor product of the univariate Fejer kernels. Hence convolution with K, is a
norm-one operator on L, (Td), 1<p<oo,

If % Kally < I fll,,  f € Lp(T%.

Let A, , denote the class of trigonometric polynomials S = T * K,,, T € A,(7,). We claim
that

Om (Aq (7;;))17 = Em(-An,q)pa m=12.... (5.9
Indeed, if T € A,(7,) and P is any element in X,,, then
”T - P”p = ”T * Kn — P Kn||p~

Since P * K, has frequencies k with |k| < n, (5.9) follows by taking an infimum over all P € X,
and then a supremum over all T € A, (7,).

To complete our conversion to a discrete problem on RV, we let A = A, 4 be the set of all
sequences ¢ € R" of the form c(k) = b(k, n)a(k) with a in the unit ball of Ly (RYM). Such sequences
are precisely the coefficient sequences of the T’ € A, ,. Hence, using (5.8) and (5.9) we find that

Um(Aq(,];z))l = Em(An,q)l- (510)
5.2. Theorem

For each 0 < g < oo, each1 < p < o0, eachn = 1,2,..., m = (N — 1)/2, and
N := (2n + 1)4, we have

on(Ag(T)p = 0u(Ag(T)1 = T (Aug)r = Cm' /2711, (5.11)
with C a constant that depends only on d.

Proof.  Since || - ||, > || - |1, the first inequality in (5.11) is valid. The second inequality in
(5.11) follows from (5.9). To prove the last inequality, we first consider the case ¢ = co. The class
A = A,  clearly satisfies condition 1 of §4. Therefore, we can apply Theorem 4.1 to estimate
p:=E,(A) =7, (A, ). For this, we need to estimate the various Euclidean volumes that appear
in the statement of that theorem. First of all, it is well known that the volume of the Euclidean unit
ball U* in R¥ satisfies

CH % < woli (US) < Chk™2, (5.12)

with C; and C, absolute constants.
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From Stirling’s formula, we have

voly(A) = ]_[ 2b(k,n) > CV, (5.13)

[k|<n

with C > 0 an absolute constant.
We next consider any of the linear spaces L of dimension m (spanned by m coordinate vectors
8r). Forany a € AN L, we have

lalle, < Vmlalle, < /m.
Therefore, it follows from (5.12) that
volu(Up(AN L) N L) < vol (U}, ) < C3' (1 + p//m)". (5.14)

If we use (5.12), (5.13), (5.14) in Theorem 4.1, we arrive at the inequality

m m m+1 —m
Pt = ™ (1 + p /)

It follows that
p = Co/m(l + p//m) .

From this, it follows easily that p > C./m with C an absolute constant. This is (5.11) in our special
case g = 00.
If g < oo, then by Holder’s inequality

N~V A(T,) C Ay(T),

and therefore, the general case of (5.11) follows from what we have already proved. O

6. Approximation of Smoothness Classes

In this section, we shall indicate how the results of the previous sections can be used to
determine the nonlinear trigonometric approximation order of certain classes of functions. We
shall consider two types of classes: the first are described by conditions on their Fourier coeffi-
cients, and the second are described by classical smoothness conditions. We begin with the first
class.

For0 <o <ocoand 0 < g < oo, let ]—"j;‘ denote the class of those functions in L;(T%) such
that

|Flze = Ik ) Dz lley 2oy < 1.

Here, we continue to use the notation |k| = max{|k|, ..., |ks|} but remark that we could just as
easily work with any other norm on Z¢. If « is a positive integer, then F* is a set of functions whose
ath partial derivatives have absolutely convergent Fourier series. When ¢ = 2, 77 is equivalent
(modulo constants) to the unit ball of the Sobolev class W5'.
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We shall determine the nonlinear approximation order of the classes F;'. For this, we shall
use the decomposition

f=Y " fn 6.1)
m=0

where fiu := Y pn 1 <o f(kyex,m > 1,and fo := f(0)ey. We note that
2V e A(Ty), m=1.2.... ©.2)

6.1. Theorem
Ifa >0and ) :=a/d+1/q —1/2, thenforall1 < p <ocoandall) < g < o0,

Cin™" <0y (Fy)p < Con™*, a>d(l—1/q)4, (6.3)
with Cy, Cy > 0 constants depending only on d, «, q.

Proof. We shall prove (6.3) in the case ¢ < 1. A similar proof applies in the case

1 < g < oo. Foreach N = 1,2, ..., we shall create an approximation to f with approximately 2V¢

terms. If k < N, we define P := fi. If k > N, we define my, := [(k — N)~22V] (with [x] denoting
the greatest integer in x); and whenever m; > 1, we let P to be an element of %, that satisfies

I fi = Pill, < Cm> 9L fmy)2~e, (6.4)

with C here and later in this proof depending at most on «, g, d. The estimate (6.4) follows from
(6.2) and (5.4). Let Ny be the largest integer k such that m; > 1. Then, P := Z;ivio Py is a linear
combination of at most

Ny
Q- 2V + D + Z (k — N) 22Nd < goNd
k=N+1

exponentials e; with a depending only on d. Hence, P is in ¥ ,v. We also have

N(J oo
If=Ply< S Whi—Plpt+ 3 Il = Si+ 5. 6.5)
k=N+1 k=No+1

We estimate the first sum S in (6.5). Since [x] > x/2,ifx > 1, wehavem; > (k— N)~2pNd=1
for N < k < Ny. Hence from (6.4), we obtain

Sl < C Z (k _ N)Z(l/q—l/z)z—Nd(l/q—l/Z)(k _ N)22—kol < C2_N(a+d/q_d/2). (66)
k=N+1

To estimate S,, we note that from (6.2)

1 fillp < Wfidlloo < D 1F kDI < NAFR(ID e, < 27470
J
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Hence,

o0
SZ < ¢ Z 27/(0{ < (1 _ 27&)71271\70(!.
k=No+1

Now, from the definition of Ny, we have Ny > N + 2¥4/2 — 1. It follows that if N is sufficiently
large (depending only on d, «, g), « Ng > (@ +d/q — d/2)N. Hence,

SZ < C27N(Ot+d/q7d/2)-

Using this and (6.6) in (6.5), we find that
Gai(f)p < I f = P, < 27N+ tla=d/2),

Therefore, the upper estimate in (6.3) follows from the monotonicity of o,,.
We next prove the lower inequality in (6.3). For each n, n™*A,(7,) C f;‘. Therefore, from
(5.11),

O_m(f;l) > Cn—o(ml/Z—l/q > Cm—ot/d—l/q+l/2

form = 2n+1)?/2 —1andeachn = 1, 2, .... The lower estimate in (6.3) follows from this and
the monotonicity of o,,. O

Remark 6.2. ILetra > 0,1 < p <00, and0 < g < oo. It follows from the proof of
Theorem 6.1 that whenever a function f has the decomposition (6.1) with the functions f,, satisfying
(6.2), then for each a > d(1/2 — 1/q) . we have

Gm(f)pfcm_)\v m=1,2,...,
with A := a/d + 1/q — 1/2 and C depending only on «, d, and q. [

Our next application will be to the Besov spaces BY (L) := BY (L(T*), > 0,0 < 1,5 <
0o. There are many definitions and equivalent characterizations of these spaces (see, e.g., [DP]).
We use the following characterization, which follows from linear approximation by trigonometric
polynomials as our definition of the Besov spaces. A function f is in the unit ball U (B (L)) of the
Besov space BY (L) if and only if there exist trigonometric polynomials 7, of coordinate degree 2"
such that f =Y >, T, and

1" T ll)nolle,zy < 1. (6.7)

Inthecase 1 < v < oo, wecantake 7, := f, with f, the functions in (6.1). We define the seminorm
| f1B(z,) as the infimum over all the decompositions (6.7) and denote by U (B (L)) the unit ball
with respect to this seminorm.

In preparation for the following theorem, we consider the following problem of approximation
of trigonometric polynomials. Let B be the set of all trigonometric polynomials T € 7,, such that

Tl = 1.
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6.3. Lemma
Foreachn =1,2,...andm < nd/2, we have for each 1 < p < o0

om(BL), = C (6.8)
with C > 0 depending only on d.

Proof. We fix n and m as in the lemma and let § := 0,,(BZ)1. According to (5.11) and the
monotonicity of &,,, there is a T € A, (7,) such that ,(T); > Cm~'/? with C here and later a
positive constant depending only on d. Hence, for any 7} € 7, N %, and a suitably chosen 75 € %,,,
we have

Cm™? <o (T < IT = Ti = Talls < 81T = Ti . ©

Acccording to (5.4), we can choose T so that |T — Tj ||, < Cm~!/?

lemma. O

. Using this in (6.9) proves the

We can now prove our main result about the nonlinear trigonometric approximation of the
Besov classes.

6.4. Theorem
Let1 < p <00,0 < 1,5 < 00; and define

d(1/t —1/p)4, O<t<p<2and 1<p<t<00,
max{d/t,d/2}, otherwise.

a(p, 1) = {
Then for o > a(p, 1), we have
Clmfot/d#»(l/ffmax{l/p,1/2})+ <o, (Bot (L‘r))p < szf(l/d+(1/t7max{l/p,1/2})+ (6 10)
with Cy, Cy > 0 depending only on «, p, T, and d.

Proof. We shall consider only the case T > 1; similar arguments apply for T < 1. We shall
first prove the upper estimates in (6.10). We begin with two special cases. If p = oo, T = 2, and
s = o0 in the: definition of the Besov space, we can take T,, = f,,, with f,, as in (6.1). Then, since
I fnll2 = I1(fm(k))lle,, the definition of the Besov space gives

2me f;n € -AZ (%”’)
Hence, from Remark 6.2, we have

om(U(B%(L2))oo < Cm™/%  provided a > d/2. 6.11)

Our second special case is p = 1, s = co. Well-known results on linear approximation by trigono-
metric polynomials (see [N, Chapter 5]) give

om(U(B% (L)), < Cm™/ a > 0. (6.12)
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Now to prove the upper estimates in (6.10), we shall use the two special cases and various
well-known embeddings for Besov spaces. We consider the following possibilities.

Case2 <7 < p <o00. Since |||, < || loo and U (B (L;)) C U(BZ (L)), this case follows
from (6.11).

Case 0 < 7 <2 < p < oco. This case follows from (6.11) and the (Sobolev-) embedding
U(BX(Ly)) C U(B% T (Ly)).

Case 0 < 7 < p < 2. This case follows from (6.12) and the embedding U (B (L.)) C
U(B;X*(d/ffd/m-ﬁ— (Lp))

Case 1 < p < v < oco. This case follows from (6.12) and the embedding U (BY(L;)) C
U(BZ,(Ly)).

This completes the proof of the direct estimates.

To prove the lower estimates of (6.10), we first consider the special case p = 1 and T = oo.
Foreachn =1, 2, ..., we have from the definition of the Besov spaces that

27" B2 C BY(Lo).
Hence, from Lemma 6.3,
om(BX(Loo))1 = C27" = Cm /1 (6.13)

for m := 2"?~!. By the monotonicity of o, this holds for all m.
Now, for any 0 < 7, s < oo and @ > 0 we have that

U(B{ (L)) C U(BJ(Ly)).
Hence, from (6.13), we have forany 1 < p < oo
Ow(BY(Lo))p = 0m(BE(L)) = 0(B (Loo))1 = Cm™4 m=1,2,.... (6.14)

This proves the lower estimates in (6.10) inthe cases 1 < p <t <ocand2 <7 < p < c0.

To prove the lower bound in the remaining cases, we shall use the de la Valleé Poussin kernel
V. of coordinate degree 2n. It is obtained as a tensor product of the univariate de la Valleé Pouisson
kernels (see [DL, p. 273]). The simple properties of V,, that we need are that ||V, ||; < 3¢ and the
Fourier coefficients V (k) = 1 if |k| < n. It is well known and easy to prove that

1Valle < Cr¥0=10,

Hence, from the definition of the Besov spaces, we have for a constant C; > 0 depending only on
d, o, and 7 that

Cin~ /=Dy ¢ U(B*(L,)). (6.15)
In the proof of (5.9), we showed that forany 1 < p < co

Um(Vn)p = Em(vn * Kn)p (616)



Nonlinear Approximation by Trigonometric Sums 47

with K, the Fejer kernel of §5. We have V, x K, = K,, and any Fourier coefficient b(k, n) of K,
with |k| < n/2 satisfies

bk, n)| > 274

Hence, ,,(K,)> > Cn?? whenever m < n¢ /2. From the Nikol’skii inequality for trigonometric
polynomials (see [DL, p. 102]), for any 1 < p < oo and any 7 in 7, N X,, we have

IKy =Tl < CIK, = T|n?/P=12.
Hence, 5, (K,)2 < Cn?/P=1/2%, (K,),. We use this in (6.16) to obtain
om(Va)p = Tu(Ky), = Cn?=10),
Therefore from (6.15), we have
ow(U(BE(Ly)), = Cn~ 110 m <n?/2.

We take m = [n¢ /2] and obtain the lower estimate in (6.10) in the case T < p < 2 for these m. By
the monotonicity of o,,, we obtain (6.10) for this case for all m.

Finally, the remaining case 1 < 7 <2 < p < oo follows from the case we have just proved

for p =2 because || - ||, > || - ||2; that is,

On(U(BY (Le))p = 0y (U (B (Ly))y = Cm~HW/T=12 ]
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