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ABSTRACT. We investigate the Lp-error of approximation to a function f ∈ Lp(Td) by a
linear combination

∑
k
ckek of n exponentials ek(x) := ei〈k,x〉 = ei(k1x1+···+kd xd ) on T

d , where the
frequencies k ∈ Z

d are allowed to depend on f . We bound this error in terms of the smoothness
and other properties of f and show that our bounds are best possible in the sense of approximation
of certain classes of functions.

1. Introduction
Approximation by trigonometric polynomials is one of the fullest and most complete chapters

of approximation theory. Its importance lies not only in its intrinsic interest but also in that it serves
as a prototype for many other types of approximation. The theory (see, e.g., [N]) usually takes
the form that we approximate a given function f ∈ Lp(Td) (with T

d the d-dimensional torus) by
functions T ∈ Tn with Tn a linear space of trigonometric polynomials of degree n.

In this article we are interested in a significant variation of this theme; that is, we shall allow
the frequencies of the approximating polynomials to depend on the functions f . Let

〈x, y〉 := x1y1 + · · · + xdyd

denote the Euclidean inner product of two elements x, y ∈ R
d , and let

ek(x) := ei〈k,x〉 = ei(k1x1+···+kdxd ), k = (k1, . . . , kd) ∈ Z
d ,

denote the complex exponentials. We define �n to be the class of all complex trigonometric poly-
nomials of the form

T =
∑

k∈�

ckek, |�| ≤ n,

with � any subset of Z
d with at most n elements. The space �n is not linear since adding two

trigonometric polynomials from �n usually results in a new trigonometric polynomial with more
than n terms.

If f ∈ Lp(Td), 1 ≤ p ≤ ∞, then

σn(f )p := inf
T ∈�n

‖f − T ‖p (1.1)
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denotes the Lp(Td)-error in approximating f by the elements of �n. Here and throughout this paper,
we let

‖f ‖p :=






((
1

2π

)d ∫

Td

|f (x)|p dx

)1/p

, 1 ≤ p < ∞,

ess supx∈Td |f (x)|, p = ∞,

denote the usual Lp(Td) norm.
We are interested in the advantages, if any, in approximating a function f by the elements of

the nonlinear spaces �n rather than by the elements of the linear spaces Tn. Several recent results
have shown the advantages of nonlinear approximation in other settings such as approximation by
spline functions with free knots (see Petrushev [P] or Chapter 13 of [DL]) or sums of wavelets (see
[DJP]). These results show that one can achieve a given accuracy of approximation while assuming
less smoothness on the function f in the nonlinear case than is necessary in the corresponding linear
approximation.

We shall show that similar results hold for nonlinear trigonometric approximation. However,
the results for trigonometric approximation are not quite as strong as those for wavelets or splines,
for example. This seems to be due at least in part to the fullness of the support of the exponential
functions.

Our results on nonlinear trigonometric approximation will be derived from certain theorems on
the approximation of vectors in R

N by linear combinations of the n coordinate vectors δk := (δk(j))

with δk(j) the Kronecker delta. Direct theorems (i.e., upper bounds) for this type of approximation
are presented in §2, while inverse theorems (lower bounds) are given in §4.

In §6 we show how these discrete theorems can be used to derive estimates for the nonlin-
ear trigonometric approximation of certain classes of functions. The function classes we consider
will be of two types. In one setting, we consider classical smoothness spaces such as Sobolev and
Besov classes. The main result in this direction is Theorem 6.4, which determines the Lp(Td)-
approximation error for the unit ball U(Bα

s (Lτ )) of the Besov class Bα
s (Lτ ). Certain special cases

of our results for Besov spaces can be derived from earlier work on trigonometric approximation.
For example, some cases can be derived from estimates for linear trigonometric widths [M, Mk].
Also, Belinskii [B] previously studied nonlinear trigonometric approximation and obtained certain
special cases of our results. Our main contribution is that we can treat the full range of Lp(Td)-
approximation, 1 ≤ p ≤ ∞, and allow any 0 < s, τ ≤ ∞. The previous work mentioned
never treats the case p = ∞ and has restrictions on the relation between τ and p. We treat the
case p = ∞ by using the discrete Theorem 2.3 and are able to handle the full range of p and τ

by using the discrete inverse Theorem 4.1. In essence, our main contributions are these discrete
theorems since their application to the approximation of classes of functions is quite straightfor-
ward.

In a second application, we consider classes of functions defined by conditions on their Fourier
transform. Such classes arise in other settings, such as the study of absolute convergence of Fourier
series. Barron [Ba] considered classes analogous to these in the context of nonlinear approxima-
tion. He considered the L2-approximation by n sigmoidal functions. Sigmoidal functions have
significance in the construction of neural networks. Barron’s work was part of the motivation for
this article. However, we consider approximation by linear combinations of exponentials rather
than linear combinations of sigmoidal functions. Also, our results apply in much more generality
in that the approximation can take place in any Lp space, and we consider more general classes
of functions than Barron. The discrete results of §§2–4 should also find application to neural net-
works.
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2. Discrete Direct Theorems
In this section, we shall develop certain results concerning the approximation of sequences that

will be useful in proving direct theorems for nonlinear trigonometric approximation. We denote by
�N
p the space R

N equipped with the �p-(quasi-)norm that is defined for x = (x(1), . . . , x(N)) ∈ R
N

by

‖x‖p := ‖x‖�p
:=






{
N∑

i=1

|x(i)|p}1/p, 0 < p < ∞,

sup1≤i≤n |x(i)|, p = ∞.

We also denote the unit ball in �N
p by BN

p .
An important tool for the proofs of the theorems developed in this section is the following

result of Gluskin [G] concerning the unit ball BN
2 . We shall also use the notation

L(x) := (1 + ln+ x)1/2, x ∈ R+,

with

ln+ x :=
{

ln x, x ≥ 1,

0, 0 ≤ x ≤ 1.

We shall frequently use, without further mention, the inequality

L(xy) ≤ L(x)L(y),

which holds for any x, y ∈ R+.
We have the following Theorem of Gluskin.

2.1. Theorem
There exist absolute constants C1 > 0 and 0 < δ < 1 such that for any finite collection V of

M vectors from BN
2 , there is a vector z ∈ R

N with |z(i)| = 0, 1, i = 1, . . . , N , and ‖z‖�n
1
≥ δN , and

max
v∈V

|〈v, z〉| ≤ C1L(M/N). (2.1)

A simple consequence of Gluskin’s theorem is the following.

2.2. Corollary
There exist absolute constants C1 > 0 and 0 < δ < 1 such that for any finite collection V

of M vectors from BN
2 , there is a vector z ∈ R

N with |z(i)| = 0, 1, i = 1, . . . , N , that satisfies the
properties:

i. ‖z‖�N
1

≥ δN,

ii. | ∑N
i=1 z(i)| ≤ C1

√
NL(M/N),

iii. maxv∈V |〈v, z〉| ≤ C1L(M/N).

Proof. It suffices to apply Theorem 2.1 to the set of vectors V ∪ {v0} with v0(i) := 1/
√

N ,
i = 1, . . . , N . �
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Let Y be a collection of vectors from R
N . Then Y induces the (semi-)norm

‖x‖Y := sup
y∈Y

|〈x, y〉|. (2.2)

We shall use ‖ · ‖Y to measure the error in approximating a vector x ∈ R
N by linear combinations

of n vectors of the standard basis δj := (δj (i))
N
i=1, with δj (i) := 1, i = j , and δj (i) := 0, i �= j . Let

Mn denote the nonlinear manifold consisting of all vectors w ∈ R
N such that

w =
∑

j∈�

cj δj

with � a set of indices (depending on w) of cardinality at most n, that is, |�| ≤ n. The error of
approximation of x by the elements of Mn is

En(x, Y ) := inf
w∈Mn

‖x − w‖Y . (2.3)

The following theorem bounds the approximation error Em(x, Y ) for vectors x ∈ �N
1 .

2.3. Theorem
There is an absolute constant C2 > 0 such that for any set Y ⊂ BN

∞ of M vectors, we have for
each m = 1, 2, . . . , N ,

Em(x, Y ) ≤ C2m
−1/2L(M/m)‖x‖�N

1
, x ∈ R

N. (2.4)

For the proof of this theorem, we shall use the following lemma, which is a special case of
Theorem 2.3. In what follows, for vectors x, y ∈ R

N , we define

xy := (x(i)y(i))Ni=1;

that is, the vector xy is formed from x and y by taking their coordinatewise product.

2.4. Lemma
There are absolute constants C3 > 0 and 0 < κ < 1 such that for any set Y ⊂ BN

∞ of M

vectors the following is valid. For each n = 1, 2, . . . , N and each x ∈ �N
1 with

x =
∑

j∈�

cj δj , |�| = n,

there is an x∗ ∈ �N
1 satisfying

x∗ =
∑

j∈�∗
c∗
j δj , �∗ ⊂ �, |�∗| ≤ (1 − κ)n,

and

‖x − x∗‖Y ≤ C3n
−1/2L(M/n). (2.5)
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Proof. Let δ and C1 be the constants of Corollary 2.2. We shall show that the lemma is
valid for κ := (δ/4)(1 − δ/8) and a constant C3 depending only on δ and C1. We let n1 := [nδ/8]
and n2 := n − n1. Then n2 ≥ (1 − δ/8)n ≥ 7n/8.

We first want to show that we can assume that

L(M/n2) ≤ (C−1
1 δ/2)n

1/2
2 . (2.6)

To see this, we note that

n
−1/2
2 L(M/n2) ≤ C4n

−1/2L(M/n)

for some constant C4 that depends only on δ. Now if (2.6) does not hold we take x∗ := 0 and find

‖x − x∗‖Y = ‖x‖Y ≤ ‖x‖�N
1

≤ 1 ≤ (2C1/δ)L(M/n2)n
−1/2
2 ≤ C4(2C1/δ)L(M/n)n−1/2,

which is the desired inequality (2.5). The other claims about x∗ are trivially valid.
For the remainder of this proof, we can therefore assume that (2.6) is valid.
We construct first an intermediate approximation x1 to x. Let �1 be the set of n1 indices j ∈ �

for which |cj | is largest (with ties broken in an arbitrary way). Since

n1 min
j∈�1

|cj | ≤
∑

j∈�1

|cj | ≤ 1,

it follows that |cj | ≤ n−1
1 for all j ∈ �2 := � \ �1. Therefore, the vector x1 := ∑

j∈�1
cj δj satisfies

‖x − x1‖2
�N

2
=

∑

j∈�2

|cj |2 ≤ n−1
1

∑

j∈�1

|cj | ≤ n−1
1 . (2.7)

We next approximate r := x − x1 by a vector x2; then x∗ := x1 + x2 will be our final
approximation to x. Let V be the collection of vectors ry/‖r‖�N

2
, y ∈ Y . Here, we use our notation

for the coordinatewise product ry of the vectors r and y. Then V ⊂ BN
2 . We apply Corollary 2.2 to

the vectors of V restricted to �2 to find a vector z ∈ R
N satisfying Corollary 2.2 with N replaced by

n2 on the right side of the inequalities i–iii. We can also require that z(j) = 0, j /∈ �2. We consider
the sets �± of those indices j for which z(j) = ±1. We assume that

∑

j∈�−

|cj | ≤
∑

j∈�+

|cj |. (2.8)

A simple change in the argument that follows handles the case when the opposite of (2.8) is true.
We define

x2 := r − rz. (2.9)

(If the opposite inequality to (2.8) were true, then we would take x2 := r + rz.) We show that
x∗ := x1 + x2 satisfies the conclusions of the lemma. First of all,

‖x − x∗‖Y = ‖rz‖Y = max
y∈Y

|〈rz, y〉| = max
y∈Y

|〈z, ry〉|

≤ C1‖r‖�N
2
L(M/n2) ≤ C1n

−1/2
1 L(M/n2) ≤ Cn−1/2L(M/n),

which is the desired error estimate (2.5).
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To check the other properties of x∗, we observe that x∗ = x − rz and therefore

x∗(j) =





x(j), r(j)z(j) = 0,

x1(j) = 0, z(j) = 1,

2x(j) − x1(j) = 2x(j), z(j) = −1,

(2.10)

where we have used the fact that x1(j) = 0, j ∈ �2. It follows from (2.8) that

N∑

j=1

|x∗(j)| =
∑

r(j)z(j)=0

|x(j)| + 2
∑

j∈�−

|x(j)| ≤
N∑

j=1

|x(j)| ≤ 1.

Therefore, x∗ ∈ BN
1 as desired.

Finally, from (2.10), x∗(j) = 0 whenever j ∈ �+; and by Corollary 2.2 parts i and ii, we have

|�+| = 1

2
(|�+ ∪ �−| + |�+| − |�−|) ≥ 1

2
(δn2 − C1

√
n2L(M/n2)) ≥ (δ/4)n2.

The last inequality is valid because of assumption (2.6). Since δn2/4 ≥ (δ/4)(1 − δ/8)n = κn, we
have verified that x∗ has the desired form. �

Proof of Theorem 2.3. We can assume that x ∈ BN
1 . Let m be a positive integer. We shall

define by induction a sequence of vectors xk ∈ BN
1 ; a sequence of sets �k ⊂ �k−1 ⊂ {1, 2, . . . , N};

and a sequence of integers nk , k = 0, 1, . . . , with the properties that nk = [(1 − κ)nk−1], |�k| = nk;
xk = ∑

j∈�k
cj,kδj ; and

‖xk − xk+1‖Y ≤ C3n
−1/2
k L(M/nk), k = 0, 1, . . . ,

with C3 the constant of Lemma 2.4.
For k = 0, we define x0 := x, �0 := {1, . . . , N}, and n0 := N . Given that �k , xk , nk have

been defined, we apply Lemma 2.4 (with x := xk , � := �k , n := nk in that lemma) to find xk+1,
�k+1, and nk+1 with the desired properties.

We fix k such that nk+1 ≤ m < nk . Then xk+1 is in Mm. From Lemma 2.4, we have

‖x − xk+1‖Y ≤
k∑

j=0

‖xj − xj+1‖Y ≤ C3

k∑

j=0

n
−1/2
j L(M/nj ). (2.11)

Our construction of the sequence nj gives that

nj ≥ (1 − κ)j−km. (2.12)

From the monotonicity of L(x), x > 0, we have

n
−1/2
j L(M/nj ) ≤ m−1/2(1 − κ)(k−j)/2L(M/m), j = 0, . . . , k.

Using this in (2.11) and summing give the desired estimate. �

Finally, we remark that the results of this section, while stated for real vectors, hold equally
well for complex vectors with identical proofs.
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3. Direct Theorems
In this section, we shall utilize the discrete results of the previous section to approximate

functions. While our main interest is in the approximation of functions defined on T
d by linear

combinations of the complex exponentials ek , we shall formulate our results in a more general
framework. The exponential functions ek are replaced by more general functions φk , and the set T

d

is replaced by a more general set �. We shall describe the results of this section for real-valued
functions, but an identical development holds in the case that the functions are complex-valued.

Let φ1, . . . , φN be real measurable functions defined on a set � ⊂ R
d , and let �N denote their

linear span. We shall assume that the following two conditions are satisfied.
1. There is a constant K1 such that

|φj (x)| ≤ K1, x ∈ �, j = 1, . . . , N. (3.1)

2. There is a constant K2 and a set of points xj ∈ �, j = 1, . . . , M , such that for each function
P ∈ �N we have

|P(x)| ≤ K2 max
j=1,...,M

|P(xj )|, x ∈ �. (3.2)

In this section, �n will denote the nonlinear manifold consisting of all functions

ϕ =
∑

j∈�

c(j)φj , |�| ≤ n,

with � depending on ϕ. In other sections of this paper �n always denotes the special case when
the φk are exponential functions. We are interested in the nonlinear approximation of functions f

defined on � by the elements of �n. We begin by estimating the L∞-error in approximating certain
classes of functions. Let

E(f, �n) := inf
ϕ∈�n

‖f − ϕ‖L∞(�)

denote the error in approximating f (in the L∞-norm) by the elements of �n.
For a given class F of functions from L∞(�), we denote the error in approximating this class

by

E(F, �n) := sup
f ∈F

E(f, �n).

We shall be particularly interested in the class A := A(�N), which consists of all P ∈ �N

such that

P =
N∑

j=1

c(j)φj , (c(j))Nj=1 ∈ BN
1 .

We have the following theorem.

3.1. Theorem
If the functions φ1 . . . , φN satisfy the conditions 1, 2, then

E(A(�N), �m) ≤ C2K1K2m
−1/2L(M/m), m = 1, 2, . . . , N,

with C2 the constant of Theorem 2.3.
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Proof. We shall utilize the results of the previous section. Let Y := {y1, . . . , yM} with yi

defined by yi(j) := φj (xi)/K1, i = 1, . . . , M , j = 1, . . . , N . Then Y ⊂ BN
∞ and we can use Y to

define the norm ‖ · ‖Y on R
N .

Let P ∈ A(�N), P = ∑N
j=1 c(j)φj with (c(j)) ∈ BN

1 . We apply Theorem 2.3 to find
(c∗(j))Nj=1 with c∗(j) = 0 except for at most m coordinates and with

‖c − c∗‖Y ≤ C2m
−1/2L(M/m).

Then P ∗ := ∑N
j=1 c∗(j)φj ∈ �m and from condition 2,

‖P − P ∗‖∞ ≤ K1K2 max
y∈Y

|〈c − c∗, y〉| = K1K2‖c − c∗‖Y ≤ C2K1K2m
−1/2L(M/m). �

4. Discrete Inverse Theorems
We shall now consider inverse theorems (i.e., lower bounds) for discrete approximation. The

theorems of this section are companions to the upper bounds of §2.
Suppose that ‖ · ‖ is a norm defined on R

N and Bδ(x) := {y : ‖x − y‖ ≤ δ} denotes the ball
of radius δ about x. For a set S ⊂ R

N , we let Bδ(S) denote its δ neighborhood, which is the union
of all balls Bδ(x) with x ∈ S. We also let B := B1(0) denote the unit ball with respect to ‖ · ‖.

We shall make various comparisons between ‖ · ‖ and the Euclidean norm ‖ · ‖E := ‖ · ‖�N
2

.
We shall denote by Uδ(x) the Euclidean ball about x of radius δ and by Uδ(S) the Euclidean δ

neighborhood of the set S. Thus, the notation U is reserved for Euclidean neighborhoods and B for
neighborhoods with respect to the norm ‖ · ‖.

We let Mn denote the nonlinear manifold of §2 and let

En(x) := inf
w∈Mn

‖x − w‖

be the error in approximating x by the elements of Mn in ‖ · ‖. If A ⊂ R
N is any set, we let

En(A) := sup
x∈A

En(x).

We shall give lower estimates for En(A) provided the set A and the norm ‖ · ‖ satisfy certain
assumptions. To describe these, we let Lm denote the collection of all m-dimensional linear spaces
L that are spanned by a set {δj }j∈�, |�| = m, of m coordinate vectors δj . If L ∈ Lm, we denote by
PL the Euclidean projection onto L that takes an element x ∈ R

N into its best approximation PLx

from L in the Euclidean norm. We shall assume the following conditions on A and ‖ · ‖.
1. For each m = 1, 2, . . . , N ; each L ∈ Lm, and each x ∈ A, we have PLx ∈ A ∩ L.
2. There are a constant µ := µ(B) ≥ 1 and elements h1, . . . , hM , M = µN , such that

B ⊂
M⋃

j=1

U1(hj ).

The following property follows from 2 and trivial properties of the Euclidean norm.
3. For each ε > δ > 0 and each x ∈ R

N , the ball Bε(x) can be covered by CN(ε/δ)N

Euclidean balls of radius δ with C depending only on µ.
We use the notation voln(S) to denote the Euclidean volume of the set S as a subset of R

n.
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4.1. Theorem
Let A and ‖ · ‖ satisfy 1 and 2. For each m ≤ N/2 and for ρ := Em(A), we have

volN(A) ≤ CNρN−m volN(UN)

volm(Um)
max
L∈Lm

volm(Uρ(A ∩ L) ∩ L)

with UN the unit Euclidean ball in R
N , Um the unit Euclidean ball in R

m, and C > 0 a constant
that depends only on the constant µ of property 2.

Proof. For each ε > 0 and each set S ⊂ R
N , let nε(S) denote the smallest number of

Euclidean balls Uε(x), x ∈ R
N , which are a cover for S. Then, clearly

volN(A) ≤ ρNvolN(UN)nρ(A). (4.1)

We next show that

nρ(A) ≤ CN max
L∈Lm

nρ(Bρ(A) ∩ L) (4.2)

with C, here and later in this proof, a constant that depends only on the constant µ of property
2. If L ∈ Lm, let {xi,L} be a set of nρ(Bρ(A) ∩ L) points from R

N such that the Euclidean balls
Uρ(xi,L) form a cover of Bρ(A) ∩ L. If x ∈ A, then there are an L ∈ Lm and a point y ∈ L such
that ‖x − y‖ ≤ ρ. The point y is in Bρ(A) ∩ L. Hence, y is in one of the balls Uρ(xi,L). If hj ,
j = 1, . . . , M , are the points of property 2, then

x ∈ Bρ(y) ⊂
M⋃

j=1

Uρ(y + ρhj ) ⊂
M⋃

j=1

U2ρ(xi,L + ρhj ).

Hence A is covered by the Euclidean balls U2ρ(xi,L + ρhj ), i = 1, . . . , nρ(Bρ(A) ∩ L), j =
1, . . . , M , L ∈ Lm. Since the cardinality of Lm does not exceed 2N and M ≤ µN , there are at most
CN maxL∈Lm

nρ(Bρ(A) ∩ L) of these balls.
We shall next prove that for each L ∈ Lm, we have

nρ(Bρ(A) ∩ L) ≤ CNnρ(Uρ(A ∩ L)). (4.3)

For the points yj := ρhj , j = 1, . . . , M , with hj given in property 2, we have

Bρ(A) ⊂
M⋃

j=1

Uρ(yj + A).

Hence,

nρ(Bρ(A) ∩ L) ≤ CN max
j

nρ(Uρ(yj + A) ∩ L). (4.4)

To estimate the right side of (4.4) we fix an arbitrary j and use property 1. We claim that

Uρ(yj + A) ∩ L ⊂ Uρ(PLyj + A ∩ L). (4.5)

Indeed, if x is an element of the set on the left side of (4.5), then ‖x − yj − a‖E ≤ ρ for some
a ∈ A. Since the projector PL is linear and has norm one (with respect to the Euclidean norm), we
find that ‖PLx − PLyj − PLa‖E ≤ ρ. Since PLx = x (because x ∈ L) and PLa ∈ A ∩ L (by
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property 1), we arrive at (4.5). Thus, we can replace nρ(Uρ(yj + A) ∩ L) on the right side of (4.4)
by nρ(Uρ(PLyj + A ∩ L)) = nρ(Uρ(A ∩ L)) and arrive at (4.3).

We next claim that

nρ(Uρ(A ∩ L)) ≤ CNnρ(A ∩ L). (4.6)

Indeed, let xi , i = 1, . . . , nρ(A ∩ L), be points from R
N such that the Euclidean balls Uρ(xi) cover

A ∩ L. The balls U2ρ(xi) cover Uρ(A ∩ L). Since we can cover each of the balls U2ρ(xi) with at
most CN Euclidean balls of radius ρ, we obtain (4.6).

Finally, we claim that

nρ(A ∩ L) ≤ CNρ−m volm(Uρ(A ∩ L) ∩ L)

volm(Um)
. (4.7)

To see this, we letmρ(A∩L)be the maximum number of pointsxi fromA∩L such that‖xi−xj‖E ≥ ρ,
j �= i. Then clearly the Euclidean balls Uρ(xi) form a cover for A ∩ L and so

nρ(A ∩ L) ≤ mρ(A ∩ L).

On the other hand, the Euclidean balls Uρ/2(xi) are disjoint and Uρ/2(xi) ∩ L ⊂ Uρ(A ∩ L) ∩ L.
Hence,

nρ(A ∩ L) ≤ mρ(A ∩ L) ≤ volm(Uρ(A ∩ L) ∩ L)

volm(Uρ/2 ∩ L)
.

Since volm(Uρ/2 ∩ L) = volm(Um
ρ/2) = (ρ/2)mvolm(Um), we have proved (4.7).

The theorem follows from inequalities (4.1), (4.2), (4.3), (4.6), and (4.7). �

5. Approximation of Classes of Trigonometric Polynomials
The remainder of this paper will show how the results of the previous sections can be used to

determine the nonlinear approximation order of certain classes of functions. In this section, we begin
by considering the approximation of certain classes of trigonometric polynomials. These results can
then be applied in a rather routine way to determine the nonlinear approximation error for smoothness
classes as will be done in the following section.

In what follows in this paper, �n will always denote the nonlinear manifold of all functions P

that can be expressed as a linear combination of at most n of the complex exponentials ek , k ∈ Z
d .

Thus, P ∈ �n if and only if

P =
∑

k∈�

c(k)ek

with � ⊂ Z
d and |�| ≤ n. If f ∈ Lp(Td), then

σn(f )p := inf
P∈�n

‖f − P ‖p

denotes its nonlinear trigonometric approximation error in the Lp(Td)-norm. For a class of functions



Nonlinear Approximation by Trigonometric Sums 39

F , we define

σn(F)p := sup
f ∈F

σn(f )p.

Let Tn denote the space of trigonometric polynomials of coordinate degree n. That is, Tn

consists of the trigonometric polynomials

T =
∑

|k|≤n

T̂ (k)ek

where |k| := max{|k1|, . . . , |kd |} for k = (k1, . . . , kd) ∈ Z
d . If 0 < q ≤ ∞, we denote by Aq(Tn)

the set of all trigonometric polynomials T ∈ Tn such that

‖T ‖Aq (Tn) := ‖(T̂ (k))‖�q
≤ 1.

The main results of this section estimate the nonlinear approximation error of these classes in
the Lp(Td)-norm, 1 ≤ p ≤ ∞.

To establish direct theorems (i.e., upper estimates) for σm(Aq(Tn))p, we first note that the space
Tn with its usual basis ek , |k| ≤ n, satisfies the assumptions of §3. Assumption (3.1) is obvious,
while (3.2) follows from the classical Marcinkiewicz theorem (see Chapter 10 of Zygmund [Z]).
Namely, let �n be the set of j ∈ Z

d with |j | ≤ 2n and jk �= −2n, k = 1, . . . , d. We consider the
equally spaced points xj := xj,n := jπ

2n
, j ∈ �n. Then, for each T ∈ Tn,

‖T ‖∞ ≤ C1 max
j∈�n

|T (xj )|, (5.1)

‖T ‖2
L2(Td ) = (4n)−d

∑

j∈�n

|T (xj )|2, (5.2)

and

C2‖T ‖L1(Td ) ≥ n−d
∑

j∈�n

|T (xj )|, (5.3)

with the constants C1, C2 > 0 depending only on d. The inequality (5.1) shows that property (3.2)
holds for Tn with M = (4n)d .

We shall now derive the following corollary to Theorem 3.1.

5.1. Corollary
For each 0 < q ≤ ∞, each n = 1, . . ., and each 1 ≤ m ≤ (2n + 1)d , we have

σm(Aq(Tn))∞ ≤ Cm1/2−1/qL(nd/m), 0 < q ≤ 1, (5.4)

and

σm(Aq(Tn))∞ ≤ Cnd−d/qm−1/2L(nd/m), 1 < q ≤ ∞, (5.5)

with C depending only on q and d .



40 R. A. DeVore and V. N. Temlyakov

Proof. We first prove (5.4). Since σm is decreasing, it will be enough to show that (5.4)
holds with m replaced by 2m. If T ∈ Aq(Tn), we let � be the set of m indices k such that |T̂ (k)|
is largest (with ties broken in an arbitrary way) and define P1 := ∑

k∈� T̂ (k)ek and T1 := T − P1.
Then

m min
k∈�

|T̂ (k)|q ≤
∑

|k|≤n

|T̂ (k)|q ≤ 1.

Therefore,

∑

k /∈�

|T̂ (k)| =
∑

k /∈�

|T̂ (k)|q |T̂ (k)|1−q ≤ m1−1/q
∑

|k|≤n

|T̂ (k)|q ≤ m1−1/q .

Hence, m−1+1/qT1 is in A1(Tn). We let P2 be an approximation to T1 with m terms that satisfies the
estimate of Theorem 3.1. Then P := P1 + P2 is in �2m and

‖T − P ‖∞ ≤ Cm1/2−1/qL(4dnd/m) ≤ C(2m)1/2−1/qL(nd/2m),

which proves (5.4).
If 1 ≤ q ≤ ∞ and T ∈ Aq(Tn), then

‖(T̂ (k))‖�1(Td ) ≤ Cnd−d/q‖(T̂ (k))‖�q (Td ),

and therefore (5.5) also follows from Theorem 3.1. �

Remark. In certain cases of Lp-approximation with p < ∞, the estimates (5.4) and (5.5)
are known (or can easily be proved) to hold with the term L(nd/m) deleted from the right side and
with the constant C depending on q, d, and p (see, e.g., [B]). �

We can also give a lower bound for σm(Aq(Tn))p by changing to a discrete norm approximation
problem and then applying the results of §4. Let R

N with N := (2n + 1)d be indexed by k ∈ Z
d

with |k| ≤ n. For the norm ‖ · ‖ on R
N , we define for a ∈ R

N ,

‖a‖ := ‖T ‖L1(Td ), T :=
∑

|k|≤n

a(k)ek. (5.6)

It is known that this norm satisfies condition 2 of §4 (see [T]).
We use the notation of §4 for Mm (the nonlinear manifold obtained by linear combinations of

m coordinate sequences δk) and its induced error Em.
There is an obvious connection between Em and nonlinear approximation by exponentials. To

bring out this connection, we define

σm(f )1 := inf
P∈�m∩Tn

‖f − P ‖1; (5.7)

that is, σm indicates the further restriction that the approximation P should have frequencies |k| ≤ n.
Then if a := (a(k)) ∈ R

N and T := ∑
|k|≤n a(k)ek , we have

Em(a) = σm(T )1. (5.8)
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We shall now show how we can use σm to estimate σm.
We fix our value of n (and hence N ) and let Kn denote the multivariate Fejer kernel

Kn :=
∑

|k|≤n

b(k, n)ek, b(k, n) :=
d∏

j=1

(1 − |kj |/(n + 1))+.

Then Kn is the tensor product of the univariate Fejer kernels. Hence convolution with Kn is a
norm-one operator on Lp(Td), 1 ≤ p ≤ ∞,

‖f ∗ Kn‖p ≤ ‖f ‖p, f ∈ Lp(Td).

Let An,q denote the class of trigonometric polynomials S = T ∗ Kn, T ∈ Aq(Tn). We claim
that

σm(Aq(Tn))p ≥ σm(An,q)p, m = 1, 2, . . . . (5.9)

Indeed, if T ∈ Aq(Tn) and P is any element in �m, then

‖T − P ‖p ≥ ‖T ∗ Kn − P ∗ Kn‖p.

Since P ∗ Kn has frequencies k with |k| ≤ n, (5.9) follows by taking an infimum over all P ∈ �n

and then a supremum over all T ∈ Aq(Tn).
To complete our conversion to a discrete problem on R

N , we let A = An,q be the set of all
sequences c ∈ R

N of the form c(k) = b(k, n)a(k) with a in the unit ball of �q(R
N). Such sequences

are precisely the coefficient sequences of the T ∈ An,q . Hence, using (5.8) and (5.9) we find that

σm(Aq(Tn))1 ≥ Em(An,q)1. (5.10)

5.2. Theorem
For each 0 < q ≤ ∞, each 1 ≤ p ≤ ∞, each n = 1, 2, . . . , m = (N − 1)/2, and

N := (2n + 1)d , we have

σm(Aq(Tn))p ≥ σm(Aq(Tn))1 ≥ σm(An,q)1 ≥ Cm1/2−1/q, (5.11)

with C a constant that depends only on d .

Proof. Since ‖ · ‖p ≥ ‖ · ‖1, the first inequality in (5.11) is valid. The second inequality in
(5.11) follows from (5.9). To prove the last inequality, we first consider the case q = ∞. The class
A := An,∞ clearly satisfies condition 1 of §4. Therefore, we can apply Theorem 4.1 to estimate
ρ := Em(A) = σm(An,∞)1. For this, we need to estimate the various Euclidean volumes that appear
in the statement of that theorem. First of all, it is well known that the volume of the Euclidean unit
ball Uk in R

k satisfies

Ck
1k−k/2 ≤ volk(U

k
2 ) ≤ Ck

2k−k/2, (5.12)

with C1 and C2 absolute constants.
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From Stirling’s formula, we have

volN(A) =
∏

|k|≤n

2b(k, n) ≥ CN, (5.13)

with C > 0 an absolute constant.
We next consider any of the linear spaces L of dimension m (spanned by m coordinate vectors

δk). For any a ∈ A ∩ L, we have

‖a‖�2 ≤ √
m‖a‖�∞ ≤ √

m.

Therefore, it follows from (5.12) that

volm(Uρ(A ∩ L) ∩ L) ≤ volm(Um
ρ+√

m
) ≤ Cm

2 (1 + ρ/
√

m)m. (5.14)

If we use (5.12), (5.13), (5.14) in Theorem 4.1, we arrive at the inequality

ρm+1 ≥ Cm+1
0

√
m

m+1
(1 + ρ/

√
m)−m.

It follows that

ρ ≥ C0
√

m(1 + ρ/
√

m)−
m

m+1 .

From this, it follows easily that ρ ≥ C
√

m with C an absolute constant. This is (5.11) in our special
case q = ∞.

If q ≤ ∞, then by Hölder’s inequality

N−1/qA∞(Tn) ⊂ Aq(Tn),

and therefore, the general case of (5.11) follows from what we have already proved. �

6. Approximation of Smoothness Classes
In this section, we shall indicate how the results of the previous sections can be used to

determine the nonlinear trigonometric approximation order of certain classes of functions. We
shall consider two types of classes: the first are described by conditions on their Fourier coeffi-
cients, and the second are described by classical smoothness conditions. We begin with the first
class.

For 0 < α < ∞ and 0 < q ≤ ∞, let Fα
q denote the class of those functions in L1(T

d) such
that

|f |Fα
q

:= ‖(|k|α|f̂ (k)|)k∈Zd ‖�q (Zd ) ≤ 1.

Here, we continue to use the notation |k| = max{|k1|, . . . , |kd |} but remark that we could just as
easily work with any other norm on Z

d . If α is a positive integer, then Fα
1 is a set of functions whose

αth partial derivatives have absolutely convergent Fourier series. When q = 2, Fα
q is equivalent

(modulo constants) to the unit ball of the Sobolev class Wα
2 .
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We shall determine the nonlinear approximation order of the classes Fα
q . For this, we shall

use the decomposition

f =
∞∑

m=0

fm (6.1)

where fm := ∑
2m−1≤|k|<2m f̂ (k)ek , m ≥ 1, and f0 := f̂ (0)e0. We note that

2(m−1)αfm ∈ Aq(T2m), m = 1, 2, . . . . (6.2)

6.1. Theorem
If α > 0 and λ := α/d + 1/q − 1/2, then for all 1 ≤ p ≤ ∞ and all 0 < q ≤ ∞,

C1n
−λ ≤ σn(Fα

q )p ≤ C2n
−λ, α > d(1 − 1/q)+, (6.3)

with C1, C2 > 0 constants depending only on d, α, q.

Proof. We shall prove (6.3) in the case q ≤ 1. A similar proof applies in the case
1 < q ≤ ∞. For each N = 1, 2, . . ., we shall create an approximation to f with approximately 2Nd

terms. If k ≤ N , we define Pk := fk . If k > N , we define mk := [(k −N)−22Nd ] (with [x] denoting
the greatest integer in x); and whenever mk ≥ 1, we let Pk to be an element of �mk

that satisfies

‖fk − Pk‖p ≤ Cm
1/2−1/q

k L(2kd/mk)2
−kα, (6.4)

with C here and later in this proof depending at most on α, q, d . The estimate (6.4) follows from
(6.2) and (5.4). Let N0 be the largest integer k such that mk ≥ 1. Then, P := ∑N0

k=0 Pk is a linear
combination of at most

(2 · 2N + 1)d +
N0∑

k=N+1

(k − N)−22Nd ≤ a2Nd

exponentials ek with a depending only on d . Hence, P is in �a2Nd . We also have

‖f − P ‖p ≤
N0∑

k=N+1

‖fk − Pk‖p +
∞∑

k=N0+1

‖fk‖p =: S1 + S2. (6.5)

We estimate the first sum S1 in (6.5). Since [x] ≥ x/2, if x ≥ 1, we have mk ≥ (k−N)−22Nd−1

for N < k ≤ N0. Hence from (6.4), we obtain

S1 ≤ C

∞∑

k=N+1

(k − N)2(1/q−1/2)2−Nd(1/q−1/2)(k − N)22−kα ≤ C2−N(α+d/q−d/2). (6.6)

To estimate S2, we note that from (6.2)

‖fk‖p ≤ ‖fk‖∞ ≤
∑

j

|f̂ k(j)| ≤ ‖(|f̂ k(j)|)‖�q
≤ 2−(k−1)α.
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Hence,

S2 ≤ 2α
∞∑

k=N0+1

2−kα ≤ (1 − 2−α)−12−N0α.

Now, from the definition of N0, we have N0 ≥ N + 2Nd/2 − 1. It follows that if N is sufficiently
large (depending only on d, α, q), αN0 ≥ (α + d/q − d/2)N . Hence,

S2 ≤ C2−N(α+d/q−d/2).

Using this and (6.6) in (6.5), we find that

σa2Nd (f )p ≤ ‖f − P ‖p ≤ C2−N(α+d/q−d/2).

Therefore, the upper estimate in (6.3) follows from the monotonicity of σn.
We next prove the lower inequality in (6.3). For each n, n−αAq(Tn) ⊂ Fα

q . Therefore, from
(5.11),

σm(Fα
q ) ≥ Cn−αm1/2−1/q ≥ Cm−α/d−1/q+1/2

for m = (2n + 1)d/2 − 1 and each n = 1, 2, . . . . The lower estimate in (6.3) follows from this and
the monotonicity of σm. �

Remark 6.2. Let α > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. It follows from the proof of
Theorem 6.1 that whenever a function f has the decomposition (6.1) with the functions fm satisfying
(6.2), then for each α > d(1/2 − 1/q)+ we have

σm(f )p ≤ Cm−λ, m = 1, 2, . . . ,

with λ := α/d + 1/q − 1/2 and C depending only on α, d, and q. �

Our next application will be to the Besov spaces Bα
s (Lτ ) := Bα

s (Lτ (T
d)), α > 0, 0 < τ, s ≤

∞. There are many definitions and equivalent characterizations of these spaces (see, e.g., [DP]).
We use the following characterization, which follows from linear approximation by trigonometric
polynomials as our definition of the Besov spaces. A function f is in the unit ball U(Bα

s (Lτ )) of the
Besov space Bα

s (Lτ ) if and only if there exist trigonometric polynomials Tn of coordinate degree 2n

such that f = ∑∞
n=0 Tn and

‖(2nα‖Tn‖τ )
∞
n=0‖�s (Z) ≤ 1. (6.7)

In the case 1 < τ < ∞, we can take Tn := fn with fn the functions in (6.1). We define the seminorm
|f |Bα

s (Lτ ) as the infimum over all the decompositions (6.7) and denote by U(Bα
s (Lτ )) the unit ball

with respect to this seminorm.
In preparation for the following theorem, we consider the following problem of approximation

of trigonometric polynomials. Let Bn
∞ be the set of all trigonometric polynomials T ∈ Tn such that

‖T ‖∞ ≤ 1.
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6.3. Lemma
For each n = 1, 2, . . . and m ≤ nd/2, we have for each 1 ≤ p ≤ ∞

σm(Bn
∞)p ≥ C (6.8)

with C > 0 depending only on d .

Proof. We fix n and m as in the lemma and let δ := σm(Bn
∞)1. According to (5.11) and the

monotonicity of σm, there is a T ∈ A1(Tn) such that σ 2m(T )1 ≥ Cm−1/2 with C here and later a
positive constant depending only on d . Hence, for any T1 ∈ Tn ∩�m and a suitably chosen T2 ∈ �m,
we have

Cm−1/2 ≤ σ 2m(T )1 ≤ ‖T − T1 − T2‖1 ≤ δ‖T − T1‖∞. (6.9)

Acccording to (5.4), we can choose T1 so that ‖T − T1‖∞ ≤ Cm−1/2. Using this in (6.9) proves the
lemma. �

We can now prove our main result about the nonlinear trigonometric approximation of the
Besov classes.

6.4. Theorem
Let 1 ≤ p ≤ ∞, 0 < τ, s ≤ ∞; and define

α(p, τ) :=
{

d(1/τ − 1/p)+, 0 < τ ≤ p ≤ 2 and 1 ≤ p ≤ τ ≤ ∞,

max{d/τ, d/2}, otherwise.

Then for α > α(p, τ), we have

C1m
−α/d+(1/τ−max{1/p,1/2})+ ≤ σm(Bα

s (Lτ ))p ≤ C2m
−α/d+(1/τ−max{1/p,1/2})+ (6.10)

with C1, C2 > 0 depending only on α, p, τ, and d.

Proof. We shall consider only the case τ ≥ 1; similar arguments apply for τ < 1. We shall
first prove the upper estimates in (6.10). We begin with two special cases. If p = ∞, τ = 2, and
s = ∞ in the definition of the Besov space, we can take Tm = fm, with fm as in (6.1). Then, since
‖fm‖2 = ‖(f̂ m(k))‖�2 , the definition of the Besov space gives

2mαfm ∈ A2(T2m).

Hence, from Remark 6.2, we have

σm(U(Bα
∞(L2))∞ ≤ Cm−α/d, provided α > d/2. (6.11)

Our second special case is p = τ , s = ∞. Well-known results on linear approximation by trigono-
metric polynomials (see [N, Chapter 5]) give

σm(U(Bα
∞(Lp))p ≤ Cm−α/d, α > 0. (6.12)
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Now to prove the upper estimates in (6.10), we shall use the two special cases and various
well-known embeddings for Besov spaces. We consider the following possibilities.

Case 2 ≤ τ ≤ p ≤ ∞. Since ‖ ·‖p ≤ ‖·‖∞ and U(Bα
s (Lτ )) ⊂ U(Bα

∞(L2)), this case follows
from (6.11).

Case 0 < τ ≤ 2 ≤ p ≤ ∞. This case follows from (6.11) and the (Sobolev-) embedding
U(Bα

s (Lτ )) ⊂ U(B
α−(d/τ−d/2)
∞ (L2)).

Case 0 < τ ≤ p ≤ 2. This case follows from (6.12) and the embedding U(Bα
s (Lτ )) ⊂

U(B
α−(d/τ−d/p)+
s (Lp)).

Case 1 ≤ p ≤ τ ≤ ∞. This case follows from (6.12) and the embedding U(Bα
s (Lτ )) ⊂

U(Bα
∞(Lp)).

This completes the proof of the direct estimates.
To prove the lower estimates of (6.10), we first consider the special case p = 1 and τ = ∞.

For each n = 1, 2, . . ., we have from the definition of the Besov spaces that

2−nαB2n

∞ ⊂ Bα
s (L∞).

Hence, from Lemma 6.3,

σm(Bα
s (L∞))1 ≥ C2−nα ≥ Cm−α/d (6.13)

for m := 2nd−1. By the monotonicity of σm this holds for all m.
Now, for any 0 < τ, s ≤ ∞ and α > 0 we have that

U(Bα
s (L∞)) ⊂ U(Bα

s (Lτ )).

Hence, from (6.13), we have for any 1 ≤ p ≤ ∞

σm(Bα
s (Lτ ))p ≥ σm(Bα

s (Lτ ))1 ≥ σm(Bα
s (L∞))1 ≥ Cm−α/d, m = 1, 2, . . . . (6.14)

This proves the lower estimates in (6.10) in the cases 1 ≤ p ≤ τ ≤ ∞ and 2 ≤ τ ≤ p ≤ ∞.
To prove the lower bound in the remaining cases, we shall use the de la Valleé Poussin kernel

Vn of coordinate degree 2n. It is obtained as a tensor product of the univariate de la Valleé Pouisson
kernels (see [DL, p. 273]). The simple properties of Vn that we need are that ‖Vn‖1 ≤ 3d and the
Fourier coefficients V̂ n(k) = 1 if |k| ≤ n. It is well known and easy to prove that

‖Vn‖τ ≤ Cnd(1−1/τ).

Hence, from the definition of the Besov spaces, we have for a constant C1 > 0 depending only on
d, α, and τ that

C1n
−α+d(1/τ−1)Vn ∈ U(Bα

s (Lτ )). (6.15)

In the proof of (5.9), we showed that for any 1 ≤ p ≤ ∞

σm(Vn)p ≥ σm(Vn ∗ Kn)p (6.16)
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with Kn the Fejer kernel of §5. We have Vn ∗ Kn = Kn and any Fourier coefficient b(k, n) of Kn

with |k| ≤ n/2 satisfies

|b(k, n)| ≥ 2−d .

Hence, σm(Kn)2 ≥ Cnd/2 whenever m ≤ nd/2. From the Nikol’skii inequality for trigonometric
polynomials (see [DL, p. 102]), for any 1 ≤ p ≤ ∞ and any T in Tn ∩ �m we have

‖Kn − T ‖2 ≤ C‖Kn − T ‖pnd(1/p−1/2).

Hence, σm(Kn)2 ≤ Cnd(1/p−1/2)σm(Kn)p. We use this in (6.16) to obtain

σm(Vn)p ≥ σm(Kn)p ≥ Cnd(1−1/p).

Therefore from (6.15), we have

σm(U(Bα
s (Lτ ))p ≥ Cn−α+d(1−1/p), m ≤ nd/2.

We take m = [nd/2] and obtain the lower estimate in (6.10) in the case τ ≤ p ≤ 2 for these m. By
the monotonicity of σm, we obtain (6.10) for this case for all m.

Finally, the remaining case 1 ≤ τ ≤ 2 ≤ p ≤ ∞ follows from the case we have just proved
for p = 2 because ‖ · ‖p ≥ ‖ · ‖2; that is,

σm(U(Bα
s (Lτ ))p ≥ σm(U(Bα

s (Lτ ))2 ≥ Cm−α+d(1/τ−1/2). �
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