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ABSTRACT. This paper presents an expansion for radial tempered distributions on Rn in terms
of smooth, radial analyzing and synthesizing functions with space-frequency localization prop-
erties similar to standard wavelets. Scales of quasi-norms are defined for the coefficients of the
expansion that characterize, via Littlewood–Paley–Stein theory, when a radial distribution be-
longs to a Triebel–Lizorkin or Besov space. These spaces include, for example, the Lp spaces,
1 < p < ∞, Hardy spaces Hp , 0 < p ≤ 1, Sobolev spaces Lpk , and Lipschitz spaces 3Þ , Þ > 0.
We also present a smooth radial atomic decomposition and norm estimates for sums of smooth
radial molecules. The radial wavelets, atoms, and molecules that we consider are localized near
certain annuli, as opposed to cubes in the usual, nonradial setting. The radial wavelet expansion
is multiscale, where the functions in the different scales are related by dilation. However, there is
no translation structure within a given scale, unlike the situation with standard wavelet systems.

0. Introduction

We develop an expansion of wavelet type adapted to the study of radial functions on Rn, or
more generally, radial tempered distributions on Rn. By “radial” we mean spherically symmetric.
If f : Rn → C and R ∈ O.n/, let Rf : Rn → C be given by Rf .x/ = f .R−1x/. We consider a
tempered distribution f ∈ S ′.Rn/ to be radial if f .g/ = f .Rg/ for every test function g ∈ S.Rn/

and R ∈ O.n/. More specifically, a radial function is of the form f .x/ = f0.|x|/, f0 : [0;∞/ → C.
For f : Rn → C, radial or not, we could consider its expansion in terms of an orthonormal wavelet
basis { .j/

¼k },¼ ∈ Z, k ∈ Zn, j = 1; : : : ; 2n−1, where .j/

¼k .x/ = 2¼n=2 .j/.2¼x−k/ for appropriate
 .j/ (see [3, 15, 17]), or we could consider its (nonorthogonal) '-transform decomposition

f =
X
¼∈Z

X
k∈Zn

〈f; '¼k〉 ¼k
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for '¼k and  ¼k determined by certain ' and  as above (see [9, 11]). One advantage of these
expansions is that most traditional function space norms are precisely characterized via Littlewood–
Paley–Stein theory by certain expressions involving the magnitudes of the coefficients in these
expressions [11, 12, 17]. Another advantage is that the  ¼k and '¼k can be taken to be both spatially
and frequency localized so that the coefficients give a simultaneous space-frequency analysis of
f . In applications, such as signal analysis or numerical partial differential equations, this allows
one to combine the advantages of a Fourier decomposition—such as diagonalization of translation-
invariant operators, which becomes near-diagonalization for these and many other operators in the
'-transform and wavelet cases—with the ability to focus on interesting local behavior, such as shock
formation. In many real-world applications the essential characteristics of a signal are carried by
relatively few terms of the wavelet expansion as compared to the Fourier expansion, leading to quick
computation and rapid convergence of various numerical schemes. (See, e.g., [1, 2, 19].)

For a radial function, it should be possible to exploit the radial symmetry for mathematical
or computational advantage. However, the expansions above are not suitable for this. Even if  is
radial, its translates and dilates ¼k are not. Roughly speaking, the sum indexed by all translates over
Zn introduces many unnecessary degrees of freedom in the expansion of a radial function f . We
will demonstrate the existence of radial functions {'¼k}¼∈Z;k∈Z+ and { ¼k}¼∈Z;k∈Z+ that are smooth,
frequency localized (supp '̂¼k;  ̂¼k ⊆ {¾ : 2¼−2 ≤ |¾ | ≤ 2¼}), and spatially localized near certain
annuli A¼k , such that a radial f : Rn → C can be expanded as

f =
X
¼∈Z

∞X
k=1

〈f; '¼k〉 ¼k: (1)

See §2 for the exact statements. Note that the range of k is independent of the dimension n, reflecting
the radiality.

We cannot obtain a satisfactory version of (1) simply by applying the standard one-dimensional
wavelet results to the restriction of f to R and extending radially to Rn since this process destroys
Fourier transform localization, vanishing moment conditions, and norm estimates. Also, we cannot
apply the methods of the “T of b” theorem [4] to a restriction of f since the relevant measure
rn−1dr is not para-accretive. Moreover, the methods used by Meyer, Mallat, and Daubechies to
construct orthonormal wavelets do not apply here (as far as we can see) since these methods depend
on an underlying translation (or at least lattice or group) structure. So although we are interested
in exploiting symmetry (radiality), the main difficulty is to remove translation symmetry from the
construction. Further work in this direction is done in [6], where we develop a wavelet decompostion
adapted to polar coordinates in R2. In that case we have neither translation nor dilation symmetry.

The identity (1) is a nonorthogonal expansion similar to the '-transform decomposition noted
above; in fact, its derivation is similar. We start with a sampling formula (Theorem 1.1) for radial
band-limited functions—see the related results in [14]. This formula is obtained by a method similar
to the proof of the Shannon sampling formula (which lies behind the '-transform—see, e.g., [13]),
except that we use a Fourier–Bessel expansion instead of a Fourier series expansion. The sampling
formula and a standard partition of unity on the frequency side lead to (1).

As for the '-transform and wavelet expansions, Littlewood–Paley techniques can be applied
to (1) to obtain norm characterizations of the function spaces covered by Littlewood–Paley theory.
These include the Lp spaces, 1 < p < ∞, the Hardy spaces Hp, 0 < p ≤ 1, the Riesz potential
spaces, and the homogeneous Lipschitz spaces. To treat all these cases systematically, we state our
results for the homogeneous Besov and homogeneous Triebel–Lizorkin spaces, denoted

:
B
Þq

p and
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:
F
Þq

p , respectively. See §2 for precise definitions and results for
:
F
Þq

p ; the Besov spaces are considered
in §5. In §6 we state results for the inhomogeneous Besov and Triebel–Lizorkin spaces, which
include as special cases the Bessel potential spaces LpÞ , Þ > 0, 1 < p < ∞, and in particular the
Sobolev spaces Lpk . See [12] for a discussion of all these spaces in the context of Littlewood–Paley
theory, the '-transform, and wavelets. For a sequence s = {s¼k}¼∈Z;k∈Z+ , let

‖s‖ :rÞqp =
������
 X
¼∈Z

∞X
k=1

.2¼Þ|s¼k|�̃A¼k /q
!1=q

������
Lp.Rn/

;

where �̃A¼k = |A¼k|−1=2�A¼k is the L2-normalized characteristic function of an annulusA¼k defined
in §2. Our basic result in the case of homogeneous Triebel–Lizorkin spaces is that for radial f ,
Þ ∈ R, 0 < q ≤ +∞, and 0 < p < +∞,

‖f ‖ :
F

Þq

p .R
n/

≈ ‖{〈f; '¼k〉}‖ :rÞqp ; (2)

where ≈ means the two quasi-norms are equivalent. (See Corollary 2.1 and similar results for the
Besov spaces in §5.) This is much like the case with the usual '-transform or wavelet characteriza-
tions, with cubes being replaced by annuli; in particular, the right side of (2) depends only on the
magnitudes of the coefficients in (1). These results are proved in §§1 and 2.

In §3 we obtain sufficient conditions for a family of radial functions m¼k , ¼ ∈ Z; k ∈ Z+, to
be a “family of radial molecules” for

:
F
Þq

p ; by definition this means that for every sequence s ∈ :
rÞqp ,

�����X
¼∈Z

∞X
k=1

s¼km¼k

����� :
F

Þq

p

≤ c‖s‖ :rÞqp ; (3)

where c < ∞ is a constant independent of the sequence s. By Theorem 2.2, the collection { ¼k} in
(1) is a family of radial molecules for

:
F
Þq

p . Such families are important, for example, because any
linear operator that is radial (i.e., takes radial functions to radial functions) and has the property that
{T  ¼k} is a family of radial molecules for

:
F
Þq

p is by (1), (2), and (3), bounded on the space
:
R
Þq

p of

radial elements of
:
F
Þq

p . A radial function m¼k is defined to be a smooth radial molecule over A¼k
for

:
R
Þq

p if it satisfies certain size, smoothness, decay, and cancellation conditions depending on Þ; p,
and q—see §3. The main result in §3 is that if each m¼k is a smooth radial molecule over A¼k for
:
R
Þq

p , then {m¼k} is a family of radial molecules for
:
F
Þq

p . This is the content of Theorem 3.1.
The conditions assumed for smooth molecules m¼k in Theorem 3.1 are similar to those in the

rectangular case, with cubes replaced by annuli, except for the cancellation condition:Z
Rn

m¼k.x/|x|j dx = 0; (4)

required for j = 0; 1; : : : ; l, where l > n=min{1; p; q} − n− 1 − Þ (the condition is void if l < 0).
To understand (4) consider the case Þ = 0, p; q ≥ 1 (e.g.,

:
F

02
p ≈ Lp; 1 < p < ∞), so that the

minimum acceptable l is zero. Then condition (4) is just that the molecules m¼k have mean zero.
The proof of the '-transform analogue of (3) in [11] involves using the cancellation assumptions
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to subtract off constants in certain convolution estimates, leading to geometric decay terms arising
from the diameter cn · 2−¼ of the dyadic cubes {Q¼k}k∈Zn in Rn of side length 2−¼. Now it happens
that the diameters of the annuli A¼k go to infinity with k, for fixed ¼. Nevertheless, we obtain a
positive result because of the fact that a radial function with mean zero is orthogonal to any function
that is homogeneous of degree zero, not just to constants. Thus, in the proof of (3) we can subtract
a function of the angle, leading to estimates involving the width of the annulus A¼k (i.e., its outer
radius minus its inner radius), which is bounded by c · 2−¼ independent of k. We emphasize the case
l = 0 because then (4) is just the usual mean zero condition, but this principle of compensating for
lack of localization by using stronger cancellation is behind the use of (4) to prove (3) in the general
case.

As we take l > 0 (in particular Þ → −∞ or p; q → 0), condition (4) becomes unfamiliar and
quite restrictive. Unlike the cancellation condition in [11], (4) does not follow from the assumption
0 =∈ supp m̂¼k , for the odd values of j . In particular, the functions  ¼k in (1) do not necessarily
satisfy (4) for odd values of j . Consequently, from Theorems 2.2 and 3.1, we have two families of
molecules, neither of which contains the other.

In §4 we consider the radial analogue of the smooth atomic decomposition results in [9] and
[11], which held there for all Þ; q; p indices. For the radial case, if l ≤ 0 in (4), we can imitate
these methods using annuli instead of cubes to get analogous results (see Theorem 4.1). However,
if l ≥ 1, the restrictiveness of (4) does not allow this method to succeed and we do not know if there
is an appropriate radial result in this case. Although the cases where l ≤ 0 are of main interest (e.g.,
Lp spaces and Sobolev spaces), this phenomenon is curious and perhaps merits further study.

In §5 we consider the Besov spaces, in §6 the inhomogeneous spaces, and conclude with some
further questions in §7.

1. Preliminaries

For the Fourier transform, we use the conventions

f̂ .¾/ =
Z

Rn

f .x/e−ix·¾ dx and f̌ .x/ = .2³/−n
Z

Rn

f .¾/eix·¾ d¾:

Let d¦t denote (unnormalized) Lebesgue surface measure on the sphere {x ∈ Rn : |x| = t}, and let
!n−1 denote the measure of the unit sphere {x ∈ Rn : |x| = 1}. Then we have

R
d¦t = !n−1t

n−1.
The usual convention is in effect, i.e., that the symbol c denotes a constant that can change from line
to line in a sequence of inequalities. We take as our definition of Bessel functions

J¹.x/ = .x=2/¹

³1=20.¹ + 1=2/

Z 1

−1
.1 − t2/¹−1=2eixt dt for ¹ > −1

2
;

and J−1=2.x/ = .2=³x/1=2 cos x. From now on we let ¹ = .n− 2/=2. It follows from the definition
of Bessel functions that

d.d¦t /.¾/ = .2³/n=2tn−1 J¹.t |¾ |/
.t |¾ |/¹ : (5)
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This may be used to show that if f is radial on Rn, i.e., f .x/ = f0.|x|/, then

f̂ .¾/ = .2³/n=2

|¾ |¹
Z ∞

0
f0.s/J¹.s|¾ |/sn=2 ds: (6)

For proofs of (5) and (6), see [5, Lemma 5.1] and [20, Theorem 3.3], taking into account our
convention for the Fourier transform.

Let j¹;1 < j¹;2 < j¹;3 < · · · denote the positive zeroes of J¹ . We will use the result of
McMahon’s asymptotic expansion, that

j¹;k = .k + ¹=2 − 1=4/³ +O.1=k/:

(See [21, pp. 505–506].) For ½ > 0, let

h¹;k.½/ =
√

2

J¹+1.j¹;k/

J¹.j¹;k½/

½¹
:

Then {h¹;k}∞k=1 is known to be a complete orthonormal basis for L2.[0; 1]; ½n−1d½/. (See
[8, p. 147].) The following pointwise convergence lemma is obtained by a change of weight in
[21, Theorem 18.24].

1.1. Lemma

Suppose ¹ = .n− 2/=2. Let f .½/ be a measurable function on the interval [0; 1] such that

Z 1

0
½¹+1=2|f .½/| d½ < ∞:

If ½¹f .½/ is continuous on .a; b/ and has bounded variation on .a; b/, where 0 < a < b < 1, then
the series

∞X
k=1

〈f; h¹;k〉L2.[0;1];½n−1d½/h¹;k.x/

converges to f .x/ for every x ∈ .a; b/.

The '-transform expansion [9, 10, 11] was derived from an n-dimensional generalization of
the Shannon sampling formula. The next theorem provides an n-dimensional radial version of the
sampling formula. (Compare with [14].)

1.1. Theorem

Suppose f; g are radial, f ∈ S ′.Rn/, g ∈ S.Rn/, supp f̂ ⊂ {¾ ∈ Rn : |¾ | < B} for some
B > 0, and supp ĝ ⊂ {¾ ∈ Rn : |¾ | ≤ B}. Let e be a fixed unit vector in Rn. Then for every x ∈ Rn



316 J. Epperson and M. Frazier

.f ∗ g/.x/ = 2B−1
∞X
k=1

.j¹;kJ
2
¹+1.j¹;k//

−1f .B−1j¹;ke/ g ∗ d¦B−1j¹;k .x/: (7)

Proof. Suppose first that f ∈ S. We will show that the right side of (7) is a continuous,
integrable function, whose Fourier transform equals f̂ ĝ.

The principal asymptotic formula for J¹.x/, as x → +∞, is

J¹.x/ = .2=³x/1=2 cos.x − ¹³=2 − ³=4/+O.x−3=2/:

(See, [21, 7.21].) The asymptotics for j¹;k therefore imply that

lim
k→∞

j¹;kJ
2
¹+1.j¹;k/ = 2=³:

Since the zeros of J¹ and J¹+1 are interlaced, we conclude that there exist constants c1; c2 > 0 such
that

c1 ≤ j¹;kJ
2
¹+1.j¹;k/ ≤ c2 (8)

for all k. Also, since f ∈ S, the sequence of numbers {f .B−1j¹;ke/}∞k=1 has rapid decay as k → ∞.
Finally, the family of continuous functions {g ∗ d¦B−1j¹;k }∞k=1 has the property that

‖g ∗ d¦B−1j¹;k‖L∞.Rn/ ≤ !n−1.B
−1j¹;k/

n−1‖g‖L∞.Rn/ ≤ ckn−1:

We conclude that the right side of (7) converges uniformly to a continuous function. As for integra-
bility, note that

‖g ∗ d¦B−1j¹;k‖L1.Rn/ ≤ !n−1.B
−1j¹;k/

n−1‖g‖L1.Rn/ ≤ ckn−1:

Using the rapid decay of the numbers f .B−1j¹;k/ and the Lebesgue dominated convergence theorem,
we see that the Fourier transform of the right side of (7) is

2B−1
∞X
k=1

.j¹;kJ
2
¹+1.j¹;k//

−1f .B−1j¹;ke/ĝ.¾/cd¦B−1j¹;k .¾/:

Now we show that for 0 < ½ < B,

f̂ .½e/ = 2B−1
∞X
k=1

.j¹;kJ
2
¹+1.j¹;k//

−1f .B−1j¹;ke/cd¦B−1j¹;k .½e/:

By scaling, the functions {B−n=2h¹;k.B−1½/}∞k=1 form a complete orthonormal basis for L2.[0; B];
½n−1d½/. Since f ∈ S, the function F.½/ = f̂ .½e/ satisfies the hypotheses of Lemma 1.1, suitably
scaled to [0; B]. Hence, the Fourier–Bessel series
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∞X
k=1

B−n=2〈F; h¹;k.B−1·/〉L2.[0;B];½n−1d½/B
−n=2h¹;k.B−1½/

converges to F.½/ for every 0 < ½ < B. Now,

〈F; h¹;k.B−1·/〉L2.[0;B];½n−1d½/

=
√

2

J¹+1.j¹;k/

Z B

0
F.½/

J¹.j¹;kB
−1½/

.B−1½/¹
½n−1 d½

=
√

2.2³/n=2j¹¹;k
J¹+1.j¹;k/

· .2³/
−n=2

.B−1j¹;k/¹

Z ∞

0
F.½/J¹.j¹;kB

−1½/½n=2 d½

=
√

2.2³/n=2j¹¹;k
J¹+1.j¹;k/

f .B−1j¹;ke/;

where the last equality comes from the Fourier inverse version of (6). Also,

h¹;k.B
−1½/ =

√
2.2³/−n=2j−n=2

¹;k Bn−1

J¹+1.j¹;k/
.cd¦B−1j¹;k /.½e/:

This completes the proof if f ∈ S.
In the general case f ∈ S ′, we apply a regularization argument. According to the Paley–

Wiener theorem, f is a smooth function of exponential type. For " > 0 let f .x; "/ = � ."x/f .x/,
where � ∈ S satisfies � .0/ = 1 and supp �̂ ⊂ {¾ : |¾ | ≤ 1}. Then f .· ; "/ ∈ S, so that if " > 0 is
sufficiently small we may apply the above result to get

.f .· ; "/ ∗ g/.x/ = 2B−1
∞X
k=1

.j¹;kJ
2
¹+1.j¹;k//

−1f .B−1j¹;ke; "/g ∗ d¦B−1j¹;k .x/:

It is elementary now to obtain (7) by taking the limit " → 0. �

2. The Radial Wavelet Transform

Throughout this section e denotes a fixed unit vector in Rn. Let '; ∈ S.Rn/ be radial
functions such that supp '̂;  ̂ ⊂ {¾ : 1=4 < |¾ | < 1}, |'̂.¾/|; | ̂.¾/| ≥ c > 0 if 3=10 ≤ |¾ | ≤ 5=6,
and

X
¼∈Z

'̂.2−¼¾/ ̂.2−¼¾/ = 1 for ¾ �= 0:
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(Such functions exist—see, e.g., [12, p. 54].) Let '¼.x/ = 2¼n'.2¼x/ and  ¼.x/ = 2¼n .2¼x/.
Recall that if f ∈ S ′.Rn/ and f̂ is supported at the origin, then f must be a polynomial on Rn.
Hence, if f ∈ S ′, then the identity

f =
X
¼∈Z

'̃¼ ∗  ¼ ∗ f

holds in S ′=P , where we use the notation '̃¼.x/ ≡ '¼.−x/. Now applying Theorem 1.1 to the
functions '̃¼ ∗ f and  ¼, using B = 2¼, we obtain

f =
X
¼∈Z

2−¼+1
∞X
k=1

.j¹;kJ
2
¹+1.j¹;k//

−1'̃¼ ∗ f .2−¼j¹;ke/ ¼ ∗ d¦2−¼j¹;k :

Since '̃¼ and f are radial, so is their convolution '̃¼ ∗ f . We claim that

'̃¼ ∗ f .2−¼j¹;ke/ = 2¼.n−1/

j n−1
¹;k !n−1

〈f; '¼ ∗ d¦2−¼j¹;k 〉: (9)

By a regularization argument, it suffices to prove this claim for bounded, measurable functions f .
In this case

'̃¼ ∗ f .2−¼j¹;ke/ = !−1
n−1

Z
'̃¼ ∗ f .2−¼j¹;ky/ d¦1.y/

= !−1
n−1

Z Z
'̃¼.2

−¼j¹;ky − x/f .x/ dx d¦1.y/

= 2¼.n−1/

j n−1
¹;k !n−1

Z
f .x/

Z
'¼.x − y/ d¦2−¼j¹;k .y/ dx

= 2¼.n−1/

j n−1
¹;k !n−1

〈f; '¼ ∗ d¦2−¼j¹;k 〉;

by an application of Fubini’s theorem and a change of variables. Define

'¼k =
 

2.¼.n−2/+1/

j n¹;kJ
2
¹+1.j¹;k/!n−1

!1=2

'¼ ∗ d¦2−¼j¹;k :

Similarly define  ¼k , using  ¼ in place of '¼. Then we obtain the radial wavelet expansion

f =
X
¼∈Z

∞X
k=1

〈f; '¼k〉 ¼k: (10)

Note that '¼k.x/ = 2¼n=2'0k.2¼x/ and  ¼k.x/ = 2¼n=2 0k.2¼x/.
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The remainder of this section is devoted to the characterization of function spaces in terms of
the coefficients in the expansion (10). Recall that the homogeneous Triebel–Lizorkin space

:
F
Þq

p is
defined to be the set of all f ∈ S ′=P for which

‖f ‖ :
F

Þq

p

=
������
 X
¼∈Z

.2¼Þ|'¼ ∗ f |/q
!1=q

������
Lp.Rn/

< ∞:

(Equivalent norms are obtained from different choices of the function ' satisfying the conditions
given above.) The range of allowed indices is Þ ∈ R, 0 < q ≤ ∞, and 0 < p < ∞. Let

:
R
Þq

p denote

the subspace of radial elements f ∈ :
F
Þq

p , with ‖f ‖ :
R

Þq

p

:= ‖f ‖ :
F

Þq

p

. Since the elements of
:
F
Þq

p are

actually equivalence classes modulo polynomials, what we mean by a “radial element” is that there
exists a radial distribution in its class. We introduce the nonstandard convention that j¹;0 = 0, and
we define, for ¼ ∈ Z, k ∈ Z+,

A¼k = {x ∈ Rn : 2−¼j¹;k−1 ≤ |x| ≤ 2−¼j¹;k}:

Thus, if k = 1, this set is a ball; otherwise the set is an annulus. Let
:
rÞqp denote the space of sequences

s = {s¼k}¼∈Z;k∈Z+ for which

‖s‖ :rÞqp =
������
 X
¼∈Z

∞X
k=1

.2¼Þ|s¼k|�̃A¼k /q
!1=q

������
Lp.Rn/

< ∞;

where �̃A¼k = |A¼k|−1=2�A¼k denotes the L2-normalized characteristic function of A¼k .

2.1. Theorem

Let Þ ∈ R, 0 < q ≤ ∞, and 0 < p < ∞. The operator

S :
:
R
Þq

p → :
rÞqp

defined by

S.f / = {〈f; '¼k〉}

is bounded.

2.2. Theorem

Let Þ ∈ R, 0 < q ≤ ∞, and 0 < p < ∞. The operator

T :
:
rÞqp → :

R
Þq

p
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defined by

T .{s¼k}/ =
X
¼∈Z

∞X
k=1

s¼k ¼k

is bounded.

Note that (10) implies that T ◦ S is the identity map. Thus we have the following.

2.1. Corollary

Let Þ ∈ R, 0 < q ≤ ∞, and 0 < p < ∞. Then for a radial f ∈ S ′.Rn/,

‖f ‖ :
F

Þq

p

≈ ‖{〈f; '¼k〉}‖ :rÞqp :

Using these results we can address the convergence properties of (10).

2.2. Corollary

If f ∈ :
R
Þq

p , q < ∞, and

fn =
+nX

¼=−n

∞X
k=1

〈f; '¼k〉 ¼k;

then fn → f in
:
R
Þq

p as n → ∞.

To prove this corollary, apply Theorem 2.2 and the dominated convergence theorem to f −fn.

Proof of Theorem 2.1. First, note that because of the asymptotics of j¹;k ,

|A¼k| = !n−1

n
..2−¼j¹;k/n − .2−¼j¹;k−1/

n/ ≈ 2−¼nkn−1: (11)

Suppose x ∈ A¼;k . Then using (11), (9), and (8)

2¼Þ|〈f; '¼k〉|�̃A¼k .x/
≤ c2¼Þ2¼n=2k−.n−1/=2|〈f; '¼k〉|

= c2¼Þ2¼n=2k−.n−1/=2

 
2.¼.n−2/+1/

j n¹;kJ
2
¹+1.j¹;k/!n−1

!1=2

|〈f; '¼ ∗ d¦2−¼j¹;k 〉|

= c2¼Þ2¼n=2k−.n−1/=2

 
2.¼.n−2/+1/

j n¹;kJ
2
¹+1.j¹;k/!n−1

!1=2  
2¼.n−1/

j n−1
¹;k !n−1

!−1

|'̃¼ ∗ f .2−¼j¹;ke/|

≤ c2¼Þ
þþþþ'̃¼ ∗ f

�
2−¼j¹;k

x

|x|
�þþþþ :
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(The constants c may change from line to line but depend only on the dimension n.) Since x ∈ A¼k ,
þþþþx − 2−¼j¹;k

x

|x|
þþþþ ≤ 2−¼.j¹;k − j¹;k−1/ ≤ c2−¼:

Therefore, for every � > 0, there exists a constant c� < ∞ such that

2¼Þ
þþþþ'̃¼ ∗ f

�
2−¼j¹;k

x

|x|
�þþþþ ≤ c� 2¼Þ sup

y∈Rn

|'̃¼ ∗ f .x − y/|
.1 + 2¼|y|/� := c� 2¼Þ'∗∗

¼ f .x/:

The last object is Peetre’s maximal function [18]. Now with ¼ fixed,

 ∞X
k=1

.2¼Þ|〈f; '¼;k〉|�̃A¼k .x//q
!1=q

≤ c|2¼Þ'∗∗
¼ f .x/| a:e:;

by the essential disjointness of the sets {A¼k}∞k=1. Hence, by Peetre’s inequality [18] (for � chosen
sufficiently large)

‖S.f /‖ :rÞqp ≤ c

������
 X
¼∈Z

|2¼Þ'∗∗
¼ f |q

!1=q
������
Lp

≤ c‖f ‖ :
R

Þq

p

: �

For the proof of Theorem 2.2 we require three lemmas. Let M denote the Hardy–Littlewood
maximal operator, whose action on f ∈ L1

loc.R
n/ is given by

Mf .x/ = sup
B

|B|−1
Z
B

|f |;

where the supremum is taken over all balls in Rn centered at x. Note that this version of the maximal
operator maps radial functions to radial functions.

2.1. Lemma

Let e ∈ Sn−1. There exists c > 0, independent of k ∈ N, such that

M�A0k
.re/ ≥ c.1 + |r − j¹;k|/−n:

Proof. This is easy if k = 1, so assume k ≥ 2. Suppose 0 < a < b, and let A.a; b/ denote
the set {x ∈ Rn : a ≤ |x| ≤ b}. Also let B.x; r/ denote the ball of radius r, centered at x ∈ Rn. If
r > 0, then we have

B

�
a + b

2
e;
b − a

2

�
⊂ A.a; b/ ∩ B.re; b − a + |a − r|/:
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Hence

M�A.a;b/.re/ ≥ |B.re; b − a + |a − r|/|−1
Z
B.re;b−a+|a−r|/

�A.a;b/.y/dy

≥ |B..a + b/e=2; .b − a/=2/|
|B.re; b − a + |a − r|/| = ..b − a/=2/n

.b − a + |a − r|/n :

Applying this with a = j¹;k−1 and b = j¹;k , and using the asymptotics of j¹;k , the result is

M�A0k
.re/ ≥ 2−n|j¹;k − j¹;k−1|n

.j¹;k − j¹;k−1 + |r − j¹;k−1|/n ≥ c.1 + |r − j¹;k|/−n: �

In §3 we will require sharper estimates on M�A0k
. However, the above elementary result

suffices for this section.

2.2. Lemma

Let e ∈ Sn−1, and let 0 < � ≤ 1. For every m > n=� + 1, there exists a constant c < ∞,
depending only on n; �, and m, such that for every ¼ ∈ Z, {sk}k∈Z+ , and r > 0

∞X
k=1

|sk|.1 + 2¼|r − 2−¼j¹;k|/−m ≤ c

 
M

 ∞X
k=1

|sk|��A¼k
!!1=�

.re/:

Proof. It suffices to prove the lemma for ¼ = 0, because that case implies

∞X
k=1

|sk|.1 + 2¼|r − 2−¼j¹;k|/−m =
∞X
k=1

|sk|.1 + |2¼r − j¹;k|/−m

≤ c

 
M

 ∞X
k=1

|sk|��A0k

!!1=�

.2¼re/

= c

 
M

 ∞X
k=1

|sk|��A¼k
!!1=�

.re/:

For the ¼ = 0 case we use Lemma 2.1,

|sk|.1 + |r − j¹;k|/−m = ..1 + |r − j¹;k|/−m�+n|sk|�.1 + |r − j¹;k|/−n/1=�

≤ c.1 + |r − j¹;k|/−m+n=�.M.|sk|��A0k
//1=�.re/

≤ c.1 + |r − j¹;k|/−m+n=�
 
M

 ∞X
l=1

|sl|��A0l

!!1=�

.re/:
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Now we sum over k. Since m > n=� + 1, there exists a constant c < ∞ independent of r such that

∞X
k=1

.1 + |r − j¹;k|/−m+n=� < c: �

2.3. Lemma

Suppose f : Rn → C is radial. If m > 0 and |f .x/| ≤ .1 + |x|/−.m+n−1/ for all x ∈ Rn, then
for every ž > 0 there exists a constant c < ∞ such that

|f ∗ d¦t .x/| ≤ c.1 + | |x| − t |/−m+ž

for all x ∈ Rn.

Proof. If n = 1, then we trivially get the bound |f ∗ d¦t .x/| ≤ 2.1 + | |x| − t |/−m, so
assume n ≥ 2. Since f ∗ d¦t is radial, it suffices to check the estimate at x ∈ Rn of the form
re1 = .r; 0; : : : ; 0/. Let d¦r;t denote the Lebesgue surface measure on the sphere S.r; t/ = {x ∈
Rn : |x − re1| = t}. We have

f ∗ d¦t .re1/ =
Z
f .y/ d¦r;t .y/:

Using |f .y/| ≤ c.1 + |y|2/−.m+n−1/=2 and the law of cosines |y|2 = r2 + t2 − 2rt cos � , where � is
the angle between 0 re1 and re1 y, we get

|f ∗ d¦t .re1/| ≤
Z ³

0
c.1 + r2 + t2 − 2rt cos �/−.m+n−1/=2!n−2.t sin �/n−2t d�

=
Z ³=2

0
.·/d� +

Z ³

³=2
.·/ d�

= I + II:

Clearly II ≤ I. If t < 2=³ , then using

r2 + t2 − 2rt cos � ≥ .r − t/2 for 0 ≤ � ≤ ³=2; (12)

we get

I ≤ c.1 + .r − t/2/−.m+n−1/=2 ≤ c.1 + |r − t |/−.m+n−1/;

which is more than satisfactory. If t ≥ 2=³ , then we write

I =
Z 1=t

0
.·/ d� +

Z ³=2

1=t
.·/ d� = III + IV:
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Using sin � ≤ � and (12),

III ≤ c.1 + .r − t/2/−.m+n−1/=2tn−1
Z 1=t

0
�n−2 d� ≤ c.1 + |r − t |/−.m+n−1/:

For IV, we use (12), sin � ≤ � , and

r2 + t2 − 2rt cos � ≥ .r2 + t2/.1 − cos �/ ≥ ct2�2; 0 ≤ � ≤ ³=2;

to obtain for ž > 0

IV ≤
Z ³=2

1=t
c.1 + .r − t/2/−.m−ž/=2.t2�2/−.n−1+ž/=2tn−1�n−2 d�

≤ c.1 + |r − t |/−m+ž t−ž
Z ³=2

1=t
�−.1+ž/ d�

≤ c.1 + |r − t |/−m+ž : �

From Lemma 2.3 we see that for every m > 0 and every multi-index � ,

|D�'¼k.x/|; |D� ¼k.x/| ≤ c�;m2¼n=2j−.n−1/=2
¹;k 2¼|� |.1 + 2¼| |x| − 2−¼j¹;k|/−m;

where c�;m is a constant independent of ¼ and k.

Proof of Theorem 2.2. Let

f =
X
¼∈Z

∞X
k=1

s¼k ¼k:

Since

supp  ̂¼k; '̂¼ ⊂ {¾ : 2¼−2 ≤ |¾ | ≤ 2¼};

we have '¼ ∗  ½k = 0 unless ½ = ¼− 1; ¼, or ¼+ 1. Thus

'¼ ∗ f .re/ =
¼+1X
½=¼−1

∞X
k=1

s½k '¼ ∗  ½k.re/:
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Now, by writing out the convolutions and changing variables, we see that

'¼ ∗  ½k.re/ =
 

2.½.n−2/+1/

j n¹;kJ
2
¹+1.j¹;k/!n−1

!1=2

'¼ ∗  ½ ∗ d¦2−½j¹;k .re/

=
 

2.½n+1/

j n¹;kJ
2
¹;k.j¹;k/!n−1

!1=2

'� ∗  0 ∗ d¦j¹;k .2½re/;

where � = ¼− ½. Restricting to � = −1; 0; 1, we have

|'� ∗  0.y/| ≤ cm.1 + |y|/−.m+n/

for all m > 0, since '−1; '0; '1;  0 ∈ S. According to Lemma 2.3 this implies

|'� ∗  0 ∗ d¦j¹;k .re/| ≤ cm.1 + |r − j¹;k|/−m:

Hence, by (8),

|'¼ ∗  ½k.re/| ≤ c2½n=2k−.n−1/=2.1 + 2½|r − 2−½j¹;k|/−m:

Choose � ∈ .0; 1] such that p=�; q=� > 1. By Lemma 2.2

|'¼ ∗ f .re/| ≤ c

¼+1X
½=¼−1

∞X
k=1

2½n=2k−.n−1/=2|s½k|.1 + 2½|r − 2−½j¹;k|/−m

≤ c

¼+1X
½=¼−1

.M.

∞X
k=1

2½n�=2k−.n−1/�=2|s½k|��A½k //1=�.re/:

So, we have

‖f ‖ :
R

Þq

p

=
������
 X
¼∈Z

.2¼Þ|'¼ ∗ f |/q
!1=q

������
Lp

≤ c

�������
0@X
¼∈Z

0@2¼Þ
¼+1X
½=¼−1

 
M

 ∞X
k=1

2½n�=2k−�.n−1/=2|s½k|��A½k
!!1=�

1Aq1A1=q
�������
Lp

≤ c

������
0@X
¼∈Z

 
M

 ∞X
k=1

.2¼Þ|s¼k|�̃A¼k /�
!!q=�1A�=q������

1=�

Lp=�

:
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Applying the Fefferman–Stein vector-valued maximal inequality [7], sincep=�; q=� > 1, we remove
the operator M and use the essential disjointness of the sets {A¼k}∞k=1 for ¼ fixed, with the result

‖f ‖ :
R

Þq

p

≤
������
0@X
¼∈Z

 ∞X
k=1

.2¼Þ|s¼k|�̃A¼k /�
!q=�1A�=q������

1=�

Lp=�

= c

������
 X
¼∈Z

∞X
k=1

.2¼Þ|s¼k|�̃A¼k /q
!1=q

������
Lp

= c‖{s¼k}‖ :rÞqp : �

3. Smooth Radial Molecules

The purpose of this section is to describe a family of smooth radial molecules for
:
R
Þq

p . We
assume that Þ ∈ R, 0 < q ≤ ∞, and 0 < p < ∞ are fixed. Let 0 < � ≤ 1 be such that
p=�; q=� > 1, let J > max{n=�; n=� − Þ}, let S > n=�, and let l be the smallest integer in the set
{−1; 0; 1; 2; : : :} such that n + l + 1 + Þ − n=� > 0. Also let N = [Þ], and let Ž ∈ .0; 1] be such
that N + Ž > Þ. A radial function m¼k : Rn → C is said to be a smooth radial molecule over A¼k
for

:
R
Þq

p if

Z
Rn

m¼k.x/|x|a dx = 0; a = 0; 1; : : : ; l; (13)

|m¼k.x/| ≤ 2¼n=2j−.n−1/=2
¹;k .1 + 2¼| |x| − 2−¼j¹;k|/−J ; (14)

|D�m¼k.x/| ≤ 2¼n=2j−.n−1/=2
¹;k 2¼|� |.1 + 2¼| |x| − 2−¼j¹;k|/−S; |� | ≤ N; (15)

|D�m¼k.x/−D�m¼k.x
′/| ≤ 2¼n=2j−.n−1/=2

¹;k 2¼|� |2¼Ž|x − x ′|Ž (16)

· sup
0<�<1

.1 + 2¼| |x + �.x ′ − x/| − 2−¼j¹;k|/−S; |� | = N:

The superscript � denotes an ordinary multi-index. Our convention is that (13) is void if l = −1
and that (15) and (16) are void if N < 0. Note that the functions '¼k ,  ¼k from §2 satisfy, to within
a constant, (14) through (16), but not necessarily (13).
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3.1. Theorem

Let Þ ∈ R, 0 < q ≤ ∞, and 0 < p < ∞. Suppose that for each ¼ ∈ Z and k ∈ Z+, m¼k is a
smooth radial molecule over A¼k for

:
R
Þq

p . Then there exists a constant c < ∞ independent of {s¼k}
and {m¼k} such that

�����X
¼∈Z

X
k∈Z+

s¼km¼k

����� :
R

Þq

p

≤ c‖{s¼k}‖ :rÞqp :

The proof follows the method of proof for the '-transform in [10]. We require estimates
on |'¼ ∗ m½k.x/|, followed by some maximal function estimates. First, though, we make some
observations about using the vanishing moments hypothesis (13). Since the molecules are radial,
(13) implies that for every y ′ ∈ Sn−1 and a = 0; 1; : : : ; l;

Z ∞

0
m½k.ry

′/ra+n−1dr = 0: (17)

For x ∈ Rn, y ′ ∈ Sn−1, define

h¼;x;y ′.r/ = '¼.x − ry ′/;

h
.a/
¼;x;y ′ = da

dra
.h¼;x;y ′/:

Now using the vanishing moments condition (17),

'¼ ∗m½k.x/ =
Z
Sn−1

Z ∞

0
h¼;x;y ′.r/m½k.ry

′/rn−1drd¦1.y
′/ (18)

=
Z
Sn−1

Z ∞

0

 
h¼;x;y ′.r/−

lX
a=0

h
.a/
¼;x;y ′.2−½j¹;k/

.r − 2−½j¹;k/a

a!

!
m½k.ry

′/rn−1 dr d¦1.y
′/:

There are two ways of estimating |'¼ ∗m½k| using (18). First, we claim that if 0 < þ ≤ 1, then

þþþþþh¼;x;y ′.r/−
lX

a=0

h
.a/
¼;x;y ′.2−½j¹;k/

.r − 2−½j¹;k/a

a!

þþþþþ (19)

≤ c|r − 2−½j¹;k|l+þ2¼.n+l+þ/ sup
0<�<1

.1 + 2¼|x − 2−½j¹;ky ′ − �.r − 2−½j¹;k/y ′|/−L;

where L can be taken arbitrarily large. To prove (19), note that

h
.a/
¼;x;y ′.r/ =

X
� :|� |=a

.−1/a.D� '¼/.x − ry ′/.y ′/� :
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Therefore, using Taylor’s theorem, we haveþþþþþh¼;x;y ′.r/−
l−1X
a=0

h
.a/
¼;x;y ′.2−½j¹;k/

.r − 2−½j¹;k/a

a!
− h

.l/
¼;x;y ′.2−½j¹;k/

.r − 2−½j¹;k/l

l!

þþþþþ
=
þþþþh.l/¼;x;y ′.¾/

.r − 2−½j¹;k/l

l!
− h

.l/
¼;x;y ′.2−½j¹;k/

.r − 2−½j¹;k/l

l!

þþþþ
≤ c|r − 2−½j¹;k|l

X
|� |=l

|D�'¼.x − ¾y ′/−D�'¼.x − 2−½j¹;ky ′/|

= c|r − 2−½j¹;k|l
X
|� |=l

2¼.n+l/|D�'.2¼.x − ¾y ′//−D�'.2¼.x − 2−½j¹;ky ′//|;

where ¾ is some number contained in the open interval I with endpoints r and 2−½j¹;k . If
2¼|r − 2−½j¹;k| ≤ 1, then by the mean value theorem and the fact that ' ∈ S, we have

|D�'.2¼.x − ¾y ′//−D�'.2¼.x − 2−½j¹;ky ′//|
≤ 2¼|¾ − 2−½j¹;k| sup

0<�<1
|D.D�'/..1 − �/2¼.x − ¾y ′/+ �2¼.x − 2−½j¹;ky ′//|

≤ c.2¼|2−½j¹;k − r|/þ sup
�∈I
.1 + 2¼|x − �y ′|/−L:

On the other hand, if 2¼|2−½j¹;k − r| > 1, then we have

|D�'.2¼.x − ¾y ′//−D�'.2¼.x − 2−½j¹;ky ′//| ≤ c sup
�∈I
.1 + 2¼|x − �y ′|/−L;

which suffices for (19). The other way of estimating (18) is simply to use the triangle inequality:þþþþþh¼;x;y ′.r/−
lX

a=0

h
.a/
¼;x;y ′.2−½j¹;k/

.r − 2−½j¹;k/a

a!

þþþþþ (20)

≤ c2¼n.1 + 2¼|x − ry ′|/−L + c

lX
a=0

|r − 2−½j¹;k|a2¼.n+a/.1 + 2¼|x − 2−½j¹;ky ′|/−L;

whereLmay be taken arbitrarily large. In general, (19) gives the better estimate if |r−2−½j¹;k| ≤ 2−¼

while (20) gives the better estimate if |r − 2−½j¹;k| > 2−¼. Note that (19) and (20) are still correct
when l = −1, if we take þ = 1.

We will repeatedly use the next elementary lemma.

3.1. Lemma

Suppose s; t ≥ 0 and L > s + t + 1. Then there exists a constant c < ∞ independent of ½; k
such that

Z ∞

0

|r − 2−½j¹;k|sr tdr
.1 + 2½|r − 2−½j¹;k|/L ≤ c2−½.s+t+1/j t¹;k:
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Proof. By a change of variables, the integral in the lemma equals

2−½.s+t+1/
Z ∞

0

|r − j¹;k|sr t dr
.1 + |r − j¹;k|/L :

We split the last integral into three parts. First,

Z j¹;k

0

|r − j¹;k|sr t dr
.1 + |r − j¹;k|/L =

Z j¹;k

0

rs.j¹;k − r/t dr

.1 + r/L
≤ j t¹;k

Z ∞

0

rs dr

.1 + r/L
≤ cj t¹;k:

Similarly,

Z 2j¹;k

j¹;k

|r − j¹;k|sr t dr
.1 + |r − j¹;k|/L =

Z j¹;k

0

rs.r + j¹;k/
t dr

.1 + r/L
≤ cj t¹;k

Z ∞

0

rsdr

.1 + r/L
≤ cj t¹;k:

Finally,

Z ∞

2j¹;k

|r − j¹;k|sr t dr
.1 + |r − j¹;k|/L ≤ c

Z ∞

2j¹;k

rs+t−L dr ≤ cj s+t−L+1
¹;k ≤ c ≤ cj t¹;k: �

To state the next two lemmas we require more notation. Let x ∈ Rn be fixed, and define

A½ = {k ∈ N : 2 · 2−½j¹;k ≤ |x|};
B½ = {k ∈ N : 2−½j¹;k−1=2 < |x| < 2 · 2−½j¹;k};
C½ = {k ∈ N : |x| ≤ 2−½j¹;k−1=2}:

Let þ = max{k : k ∈ B½}, and let T be the smallest integer such that 2T > 2j¹;þ+1. Let

S½0 = {k ∈ B½ : | |x| − 2−½j¹;k| ≤ 2−½}

and, for m = 1; 2; : : : ; T let

S½m = {k ∈ B½ : 2m−1−½ < | |x| − 2−½j¹;k| ≤ 2m−½}:

Note that

B½ =
T[
m=0

S½m:
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3.2. Lemma

Suppose ¼ ≤ ½. Then there exist constants R > n=� − Þ, s > n=�, and c < ∞, such that

i. if k ∈ A½, then

|'¼ ∗m½k.x/| ≤ c2.¼−½/R.1 + 2¼|x|/−s2½n=2j .n−1/=2
¹;k ;

ii. if m ∈ {0; : : : ; T } and k ∈ S½m, then

|'¼ ∗m½k.x/| ≤ c2.¼−½/.R+1−n/.1 + 2m+¼−½/−s2½n=2j−.n−1/=2
¹;k ;

iii. if k ∈ C½, then

|'¼ ∗m½k.x/| ≤ c2.¼−½/R.1 + 2¼−½j¹;k/−s2½n=2j
.n−1/=2
¹;k :

Here c is independent of ¼; ½; k; x, and in .ii/ m.

Proof. Let ²− = max{0; 2−½j¹;k − 2−¼} and ²+ = 2−½j¹;k + 2−¼. From (18) and (14)

|'¼ ∗m½k.x/|

≤
Z ²−

0

Z
Sn−1

.·/ d¦1.y
′/ dr +

Z ²+

²−

Z
Sn−1

.·/ d¦1.y
′/ dr +

Z ∞

²+

Z
Sn−1

.·/ d¦1.y
′/ dr

= I + II + III;

where

.·/ =
þþþþþh¼;x;y ′.r/−

lX
a=0

h
.a/
¼;x;y ′.2−½j¹;k/

.r − 2−½j¹;k/a

a!

þþþþþ
· 2½n=2j−.n−1/=2

¹;k .1 + 2½|r − 2−½j¹;k|/−J rn−1:

We consider II first. Then |r − 2−½j¹;k| ≤ 2−¼. Hence for y ′ ∈ Sn−1,

sup
0<�<1

.1 + 2¼|x − 2−½j¹;ky ′ − �.r − 2−½j¹;k/y ′|/−L ≤ c.1 + 2¼|x − 2−½j¹;ky ′|/−L: (21)

Let

.A/ =
Z
Sn−1

.1 + 2¼|x − 2−½j¹;ky ′|/−L d¦1.y
′/

.B/ =
Z ∞

0
|r − 2−½j¹;k|l+þ.1 + 2½|r − 2−½j¹;k|/−J rn−1 dr:
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We will take þ ∈ .0; 1] such that n=� − Þ < n + l + þ < J . This is possible, since n + l ≤
n=� − Þ < n + l + 1 and n=� − Þ < J . Note that if l = −1, then we can (and will) take þ = 1,
since in this case we have n− 1 ≤ n=� − Þ < n < J . Now, by (19), (21), and Lemma 3.1,

II ≤ c2¼.n+l+þ/2½n=2j−.n−1/=2
¹;k .A/.B/

≤ c2.¼−½/.n+l+þ/2½n=2j .n−1/=2
¹;k .A/: (22)

If k ∈ A½, then for all y ′ ∈ Sn−1, |x − 2−½j¹;ky ′| ≥ |x|=2, so

.A/ ≤ c.1 + 2¼|x|/−L:

For the case k ∈ S½m, we use Lemma 2.3 and a change of variables to obtain

Z
Sn−1

.1 + 2¼|x − ry ′|/−L d¦1.y
′/ ≤ c.2¼r/−.n−1/.1 + 2¼| |x| − r|/−L+n: (23)

Thus, for k ∈ S½m, we have

.A/ ≤ c.2¼−½j¹;k/−.n−1/.1 + 2¼| |x| − 2−½j¹;k|/−L+n

≤ c.2¼−½j¹;k/−.n−1/.1 + 2m+¼−½/−L+n:

(This holds even form = 0 since ½ ≥ ¼.) If k ∈ C½, then for y ′ ∈ Sn−1, |x−2−½j¹;ky ′| ≥ 2−½j¹;k=2,
so

.A/ ≤ c.1 + 2¼−½j¹;k/−L:

Substituting these estimates above, taking L > n + n=�, and recalling that n + l + þ > n=� − Þ,
we obtain satisfactory estimates for II in all cases.

We now consider III. In this case 2¼|r − 2−½j¹;k| ≥ 1, so the term with a = l in the sum over
a on the right side of (20) dominates the terms with a = 0; 1; : : : ; l − 1. Thus III = IV + V, where

IV ≤ c2¼n
Z ∞

²+

Z
Sn−1

.1 + 2¼|x − ry ′|/−L2½n=2j−.n−1/=2
¹;k .1 + 2½|r − 2−½j¹;k|/−J d¦1.y

′/rn−1 dr;

and, with .A/ as above,

V ≤ c2¼.n+l/2½n=2j−.n−1/=2
¹;k .A/.D/;

where

.D/ =
Z ∞

²+
|r − 2−½j¹;k|l.1 + 2½|r − 2−½j¹;k|/−J rn−1 dr:
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By the change of variables 2½r − j¹;k → r ,

.D/ =
Z ∞

2½−¼
2−½.n+l/r l.1 + r/−J .r + j¹;k/

n−1 dr

≤ c2−½.n+l/
Z ∞

2½−¼
.rl+n−1−J + jn−1

¹;k r
l−J / dr

≤ c2−½.n+l/.2.¼−½/.J−n−l/ + jn−1
¹;k 2.¼−½/.J−l//

≤ c2−½.n+l/j n−1
¹;k 2.¼−½/.J−n−l/: (24)

Hence V ≤ c2.¼−½/J2½n=2j .n−1/=2
¹;k .A/. This is the same as (22), with J in place of n+ l + þ. Since

J > n=� − Þ, the estimates above for .A/ yield the desired estimates for V.
To estimate IV, let

.E/ =
Z
Sn−1

.1 + 2¼|x − ry ′|/−L d¦1.y
′/:

If k ∈ C½, then for r > ²+ > 2−½j¹;k > 2|x|, we have |x − ry ′| ≥ cr for y ′ ∈ Sn−1, so

.E/ ≤ c.1 + 2¼r/−L ≤ c.1 + 2¼−½j¹;k/−L;

as for .A/ above. Using the l = 0 case of (24), we obtain

IV ≤ c2.¼−½/J .1 + 2¼−½j¹;k/−L+n2½n=2j .n−1/=2
¹;k

for k ∈ C½, as desired, since J > n=� − Þ and we can take L > n=�.
Now suppose k ∈ A½. Then by (23),

.E/ ≤ c.2¼r/−.n−1/.1 + 2¼| |x| − r|/−L+n: (25)

Substituting this above, we obtain

IV ≤
Z max{²+;3|x|=4}

²+
.·/ dr +

Z ∞

max{²+;3|x|=4}
.·/ dr = VI + VII;

where

.·/ = c2½n=2j−.n−1/=2
¹;k 2¼.1 + 2¼| |x| − r|/−L+n.1 + 2½|r − 2−½j¹;k|/−J :

For VI, since r < 3|x|=4, we have | |x| − r| ≥ c|x|. So

VI ≤ c2½n=2j−.n−1/=2
¹;k .1 + 2¼|x|/−L+n2¼

Z ∞

²+
.1 + 2½|r − 2−½j¹;k|/−J dr:
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Using the l = 0, n = 1 case of (24) and taking L > n + n=�, we obtain satisfactory estimates for
VI. For VII, note that r > 3|x|=4 > 3 · 2−½j¹;k=2, so that 1 + 2½|r − 2−½j¹;k| ≥ c.1 + 2½r/. If
|x| < 2−¼−1, then since ²+ > 2−¼, we obtain

VII ≤ c2½n=2j−.n−1/=2
¹;k 2¼

Z ∞

2−¼
.2½r/−J dr

≤ c2.¼−½/J2½n=2j−.n−1/=2
¹;k ;

as needed. If |x| ≥ 2−¼−1, then since r > 3|x|=4, it follows that 1+2½|r−2−½j¹;k| ≥ c2½r ≥ c2½|x|,
so taking L > n+ 1,

VII ≤ c2½n=2j−.n−1/=2
¹;k .2½|x|/−J2¼

Z ∞

−∞
.1 + 2¼| |x| − r|/−L+ndr

≤ c2½n=2j−.n−1/=2
¹;k 2.¼−½/J .2¼|x|/−J ;

as desired in this case.
Now suppose k ∈ S½m, m ∈ {0; : : : ; T }. Substituting (25) and making the change of variables

2¼.r − 2−½j¹;k/ → r , we get

IV ≤ c2½n=2j−.n−1/=2
¹;k

Z ∞

1
.1 + |r − 2¼.|x| − 2−½j¹;k/|/−L+n.1 + 2½−¼r/−J dr:

If m ≤ ½ − ¼ + 2, we simply use .1 + 2½−¼r/−J ≤ 2.¼−½/J for r ≥ 1 to get (taking L > n + 1)
IV ≤ c2.¼−½/J2½n=2j−.n−1/=2

¹;k , which is more than satisfactory since J + n − 1 ≥ J > n=� − Þ. If
m > ½ − ¼ + 2 and 1 ≤ r ≤ 2m+¼−½−2, then r ≤ 2¼| |x| − 2−½j¹;k|=2, so that 1 + |r − 2¼.|x| −
2−½j¹;k/| ≥ 1 + 2¼| |x| − 2−½j¹;k|=2 ≥ c.1 + 2m+¼−½/: Hence

Z 2m+¼−½+2

1
.1 + |r − 2¼.|x| − 2−½j¹;k/|/−L+n.1 + 2½−¼r/−J dr

≤ c.1 + 2m+¼−½/−L+n2.¼−½/J ;

as desired, by taking L > n + n=�. If r ≥ 2m+¼−½−2 ≥ 1, then .1 + 2½−¼r/−J ≤ c2.¼−½/J .1 +
2m+¼−½/−J ; and

Z ∞

2m+¼−½−2
.1 + |r − 2¼.|x| − 2−½j¹;k/|/−L+n dr ≤ c;

by taking L > n+ 1. Since J > n=�, this is sufficient, giving the needed estimate for IV in the final
case. This completes the estimate for III.

The estimates for I are similar to those for III. We assume ²− > 0, i.e., 2¼−½j¹;k > 1. As for
III, we have 2¼|r − 2−½j¹;k| ≥ 1, which leads to I ≤ IV′ + V′, where
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IV′ = c2¼n
Z ²−

0
.E/2½n=2j−.n−1/=2

¹;k .1 + 2½|r − 2−½j¹;k|/−J rn−1 dr

and

V′ = c2¼.n+l/2½n=2j−.n−1/=2
¹;k .A/.D′/:

Here

.D′/ =
Z ²−

0
|r − 2−½j¹;k|l.1 + 2½|r − 2−½j¹;k|/−J rn−1 dr

=
Z j¹;k

2½−¼
2−½.l+n/rl.1 + r/−J .j¹;k − r/n−1 dr;

by the change of variables j¹;k − 2½r → r . Clearly .D′/ ≤ .D/, so we obtain the required estimate
for V′ as above.

To estimate IV′, suppose first k ∈ A½. Then r < 2−½j¹;k ≤ |x|=2, so for y ′ ∈ Sn−1,
|x − ry ′| ≥ c|x|, which implies .E/ ≤ c.1 + 2¼|x|/−L. Thus, by the l = 0 cases of .D′/ ≤ .D/ and
(24),

IV′ ≤ c2¼n.1 + 2¼|x|/−L2½n=2j−.n−1/=2
¹;k

Z ²−

0
.1 + 2½|r − 2−½j¹;k|/−J rn−1 dr

≤ c2.¼−½/J2½n=2j .n−1/=2
¹;k .1 + 2¼|x|/−L:

This is acceptable if we take L > n=�.
Now suppose k ∈ C½. Then by (25),

IV′ ≤ c2½n=2j−.n−1/=2
¹;k 2¼

Z ²−

0
.1 + 2¼| |x| − r|/−L+n.1 + 2½|r − 2−½j¹;k|/−J dr:

If r ≤ 3 · 2−½j¹;k=4, then |r − 2−½j¹;k| ≥ 2−½j¹;k=4. Hence, taking L > n+ 1,

Z 3·2−½j¹;k=4

0
.1 + 2¼| |x| − r|/−L+n.1 + 2½|r − 2−½j¹;k|/−J dr

≤ j−J
¹;k

Z ∞

−∞
.1 + 2¼| |x| − r|/−L+n dr

≤ c2−¼j−J
¹;k ≤ c2−¼.1 + 2¼−½j¹;k/−J2.¼−½/J

since 2¼−½j¹;k > 1. Now suppose 3 · 2−½j¹;k=4 ≤ r ≤ ²−. Then since k ∈ C½, it follows that
r > 3|x|=2, so | |x| − r| ≥ cr ≥ c2−½j¹;k . Hence
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Z ²−

3·2−½j¹;k=4
.1 + 2¼| |x| − r|/−L+n.1 + 2½|r − 2−½j¹;k|/−J dr

≤ c.1 + 2¼−½j¹;k/−L+n
Z ²−

3·2−½j¹;k=4
.1 + 2½|r − 2−½j¹;k|/−J dr

≤ c.1 + 2¼−½j¹;k/−L+n2−½
Z j¹;k=4

2½−¼
r−J dr

= c.1 + 2¼−½j¹;k/−L+n2−¼2.¼−½/J :

Taking L > n+ n=�, we have a satisfactory estimate in this case.
Finally, suppose k ∈ S½m, m ∈ {0; : : : ; T }. Using (25),

IV′ ≤ c2½n=2j−.n−1/=2
¹;k 2¼

Z ²−

0
.1 + 2¼| |x| − r|/−L+n.1 + 2½|r − 2−½j¹;k|/−J dr

= c2½n=2j−.n−1/=2
¹;k

Z 2¼−½j¹;k

1
.1 + |r − 2¼.2−½j¹;k − |x|/|/−L+n.1 + 2½−¼r/−J dr;

by the change of variables 2¼.2−½j¹;k − r/ → r . Now it is clear that the estimates above for IV hold
for IV′ as well. �

In the next lemma we apply Taylor’s theorem to the molecules m½k , instead of '¼. Since ',
and hence '¼, have vanishing moments of all orders, we have

'¼ ∗m½k.x/ =
Z

Rn

'¼.x − y/.m½k.y/−
X

|� |≤N
D�m½k.x/

.y − x/�

� !
/ dy: (26)

Since ' ∈ S,

|'¼.x − y/| ≤ cL2¼n.1 + 2¼|x − y|/−L; (27)

where L can be taken arbitrarily large. When N ≥ 0, we can use (16) to estimate the other term in
(26), þþþþþm½k.y/−

X
|� |≤N

D�m½k.x/
.y − x/�

� !

þþþþþ (28)

=
þþþþþm½k.y/−

X
|� |≤N−1

D�m½k.x/
.y − x/�

� !
−
X

|� |=N
D�m½k.x/

.y − x/�

� !

þþþþþ
=
þþþþþ X|� |=N

.D�m½k.x + ².y − x//−D�m½k.x//
.y − x/�

� !

þþþþþ for some ² ∈ .0; 1/

≤ c2½n=2j−.n−1/=2
¹;k 2½N2½Ž|y − x|N+Ž sup

0<�<1
.1 + 2½| |x + �.y − x/| − 2−½j¹;k|/−S:
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This estimate is true for all x; y, but when 2½|y − x| ≤ 1 we have

sup
0<�<1

.1 + 2½| |x + �.y − x/| − 2−½j¹;k|/−S ≤ c.1 + 2½| |x| − 2−½j¹;k|/−S;

in which case (28) is bounded by

c2½n=2j−.n−1/=2
¹;k 2½N2½Ž|y − x|N+Ž.1 + 2½| |x| − 2−½j¹;k|/−S: (29)

When N < 0, then N + Ž ≤ 0, so that when 2½|y − x| ≤ 1, the bound (29) for (28) still holds, with
S replaced by J > n=�. On the other hand, just using the triangle inequality and (14), we have for
2½|y − x| ≥ 1,

þþþþþm½k.y/−
X

|� |≤N
D�m½k.x/

.y − x/�

� !

þþþþþ (30)

≤ c2½n=2j−.n−1/=2
¹;k .1 + 2½| |y| − 2−½j¹;k|/−J

+ c2½n=2j−.n−1/=2
¹;k 2½N |y − x|N.1 + 2½| |x| − 2−½j¹;k|/−S:

3.3. Lemma

Suppose ½ ≤ ¼. Then there exist constants R > Þ and c < ∞ such that

i. if k ∈ A½, then

|'¼ ∗m½k.x/| ≤ c2.½−¼/R.2½|x|/−s2½n=2j−.n−1/=2
¹;k ;

ii. if m ∈ {0; : : : ; T } and k ∈ S½m, then

|'¼ ∗m½k.x/| ≤ c2.½−¼/R2−ms2½n=2j−.n−1/=2
¹;k ;

iii. if k ∈ C½, then

|'¼ ∗m½k.x/| ≤ c2.½−¼/Rj−s
¹;k2

½n=2j
−.n−1/=2
¹;k :

Here c is independent of ¼; ½; k; x, and m, and s = min{S; J } > n=�, with J; S as in (15),(16).

Proof. By (26)–(30),

|'¼ ∗m½k.x/| ≤ c.I + II + III/;
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where

I = 2½.n=2+N+Ž/j−.n−1/=2
¹;k .1 + 2½| |x| − 2−½j¹;k|/−s

·
Z
B.x;2−½/

2¼n|x − y|N+Ž.1 + 2¼|x − y|/−Ldy;

II = 2½n=2j−.n−1/=2
¹;k

Z
Rn\B.x;2−½/

2¼n.1 + 2¼|x − y|/−L.1 + 2½| |y| − 2−½j¹;k|/−sdy;

III = 2½.n=2+N/j−.n−1/=2
¹;k .1 + 2½| |x| − 2−½j¹;k|/−S ·

·
Z

Rn\B.x;2−½/
2¼n|x − y|N.1 + 2¼|x − y|/−L dy:

We consider I and III first. By the change of variables 2¼.x − y/ → y,

Z
B.x;2−½/

2¼n|x − y|N+Ž.1 + 2¼|x − y|/−L dy

=
Z
B.0;2¼−½/

2−¼.N+Ž/|y|N+Ž.1 + |y|/−L dy ≤ c2−¼.N+Ž/;

by taking L sufficiently large. Similarly, assuming L > N + n,

Z
Rn\B.x;2−½/

2¼n|x − y|N.1 + 2¼|x − y|/−L dy (31)

≤ c2−¼N
Z

Rn\B.0;2¼−½/
|y|N−L dy = c2−¼N2.½−¼/.L−N−n/:

If k ∈ A½, then

.1 + 2½| |x| − 2−½j¹;k|/−s ≤ c.1 + 2½|x|/−s;

if k ∈ S½m, then

.1 + 2½| |x| − 2−½j¹;k|/−s ≤ c.1 + 2m/−s;

and if k ∈ C½, then

.1 + 2½| |x| − 2−½j¹;k|/−s ≤ c.1 + j¹;k/
−s :

Taking L > n + Þ and recalling that N + Ž > Þ, we obtain satisfactory estimates for I and III in
all cases.
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To estimate II, we define a set A in each case as follows:

i. If k ∈ A½, let A = {y : |x − y| > 2−½ and | |y| − 2−½j¹;k| ≥ |x|=4}.
ii. If k ∈ S½m, let A = {y : |x − y| > 2−½ and | |y| − 2−½j¹;k| ≥ 2m−½=4}.

iii. If k ∈ C½, let A = {y : |x − y| > 2−½ and | |y| − 2−½j¹;k| ≥ 2−½j¹;k=4.

In each case, define B = {y : |x − y| > 2−½} \ A. Then

Z
Rn\B.x;2−½/

.·/ dy =
Z
A

.·/ dy +
Z
B

.·/ dy = IV + V;

where

.·/ = 2¼n.1 + 2¼|x − y|/−L.1 + 2½| |y| − 2−½j¹;k|/−s :

For IV, we can estimate .1 + 2½| |y| − 2−½j¹;k|/−s , for y ∈ A, by c.2½|x|/−s if k ∈ A½, by c2−ms if
k ∈ S½m, and by cj−s

¹;k if k ∈ C½. Estimating

Z
Rn\B.x;2−½/

2¼n.1 + 2¼|x − y|/−L dy

by the N = 0 case of (31), we obtain the desired estimates for IV.
For V, we make the trivial estimate .1 + 2½| |y| − 2−½j¹;k|/−s ≤ 1. We write

|x − y| ≥ | |x| − |y| | ≥ | |x| − 2−½j¹;k| − | |y| − 2−½j¹;k|:

Examining the definitions in each case, we obtain, for y ∈ B,

i. |x − y| ≥ |x|=4 if k ∈ A½,
ii. |x − y| ≥ 2m−½=4 if k ∈ S½m,

iii. |x − y| ≥ 2−½j¹;k=4 if k ∈ C½.
We write

.1 + 2¼|x − y|/−L = .1 + 2¼|x − y|/−s.1 + 2¼|x − y|/−L+s ;

and estimate .1 + 2¼|x − y|/−s by 2.½−¼/s.2½|x|/−s if k ∈ A½, by 2.½−¼/s2−ms if k ∈ S½m, and by
2.½−¼/sj−s

¹;k if k ∈ C½. By (31), assuming L > s + n,

Z
Rn\B.x;2−½/

2¼n.1 + 2¼|x − y|/−L+s dy ≤ c2.½−¼/.L−s−n/:

Taking L > n+ Þ, we have the required estimate for V. �
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3.4. Lemma

There exist constants " > 0 and c > 0 such that for any sequence {s½k}½∈Z;k∈Z+ ,

2¼Þ
þþþþþ'¼ ∗

X
½∈Z

∞X
k=1

s½km½k.x/

þþþþþ ≤ c
X
½∈Z

2−|¼−½|"
 
M

 ∞X
k=1

2½Þ�|s½k|��̃�A½k
!
.x/

!1=�

: (32)

Here � ∈ .0; 1] is such that p=�; q=� > 1, as above,M is the Hardy–Littlewood maximal operator,
and c and " depend on Þ; p; q and �, but not on x, {s½k}, or {m½k} as in (13)–(16).

Proof. Let A½;B½; {S½m}Tm=0, and C½ be as in Lemmas 3.2 and 3.3. First suppose k ∈ A½.
If ¼ ≤ ½, we use Lemma 3.2(i) and .1 + 2¼|x|/−s ≤ .2¼|x|/−n=� (since s > n=�) to obtain

2¼Þ|'¼ ∗m½k.x/| ≤ c2.¼−½/.R+Þ−n=�/2½Þ2−½n=�|x|−n=�2½n=2j .n−1/=2
¹;k ;

with R > n=� − Þ. If ½ ≤ ¼, we use Lemma 3.3(i), .2½|x|/−s ≤ c.2½|x|/−n=� (since s > n=� and
|x| ≥ c2−½ for x ∈ A½), and j−.n−1/=2

¹;k ≤ cj
.n−1/=2
¹;k to obtain

2¼Þ|'¼ ∗m½k.x/| ≤ c2.½−¼/.R−Þ/2½Þ2−½n=�|x|−n=�2½n=2j .n−1/=2
¹;k ;

with R > Þ in this case. Thus we have " > 0 such that in both cases,

2¼Þ|'¼ ∗m½k.x/| ≤ c2−|¼−½|"2½Þ2−½n=�|x|−n=�2½n=2j .n−1/=2
¹;k :

By the continuous imbedding l� → l1, and since j .n−1/�=2
¹;k ≤ cj

n−1−.n−1/�=2
¹;k , we obtain

2¼Þ|'¼ ∗
X
½∈Z

X
k∈A½

s½km½k.x/|

≤ c
X
½∈Z

X
k∈A½

2−|¼−½|"|s½k|2½Þ2−½n=�|x|−n=�2½n=2j .n−1/=2
¹;k

≤ c
X
½∈Z

2−|¼−½|"
 X
k∈A½

|s½k|�2½Þ�2−½n|x|−n2½n�=2jn−1−.n−1/�=2
¹;k

!1=�

:

By considering B.x; 3|x|=2/, we see that the term inside the parentheses above is bounded by
cM.

P
k∈A½ |s½k|�2½Þ��̃�A½k /.x/. This yields the part of (32) for k ∈ A½.

Now suppose k ∈ S½m, for some m ∈ {0; 1; : : : ; T }. If ¼ ≤ ½, note that in Lemma 3.2(ii) we
have R+ 1 − n > n=�− Þ+ 1 − n = 1=�− Þ+ .n− 1/.1=�− 1/ ≥ 1=�− Þ. Hence, by reducing
s if necessary, we can assume R + 1 − n > s − Þ and s > 1=�. We obtain

2¼Þ|'¼ ∗m½k.x/| ≤ c2.¼−½/.R+1−n+Þ−s/2½Þ2−ms2½n=2j−.n−1/=2
¹;k :
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If ½ ≤ ¼, Lemma 3.3(ii) gives

2¼Þ|'¼ ∗m½k.x/| ≤ c2.½−¼/.R−Þ/2½Þ2−ms2½n=2j−.n−1/=2
¹;k ;

where s > n=� ≥ 1=� and R > Þ. Thus, in either case we have

2¼Þ|'¼ ∗m½k.x/| ≤ c2−|¼−½|"2½Þ2−ms2½n=2j−.n−1/=2
¹;k ;

with s > 1=� and " > 0 independent of m. By the imbedding l� → l1, then

2¼Þ|'¼ ∗
X
½∈Z

X
k∈B½

s½km½k.x/|

= 2¼Þ|'¼ ∗
X
½∈Z

TX
m=0

X
k∈S½m

s½km½k.x/|

≤ c
X
½∈Z

2−|¼−½|"
TX
m=0

2−ms
 X
k∈S½m

|s½k|�2½Þ�2½n�=2j−.n−1/�=2
¹;k

!1=�

:

We claim that

X
k∈S½m

|s½k|�2½Þ�2½n�=2j−.n−1/�=2
¹;k ≤ c2mM

 X
k∈S½m

2½Þ�|s½k|��̃�A½k
!
.x/: (33)

This follows easily from Lemma 3.5, which we state and prove at the end of this section. Using (33)
in the estimate above and replacing the sum over k ∈ S½m by k ∈ B½, we can sum over m to obtain
the part of (32) for k ∈ B½ since s > 1=�.

Now suppose k ∈ C½. Let

T½0 = {k ∈ C½ : 2−½j¹;k ≤ 2−¼}

and, for m = 1; 2; 3; : : : ;

T½m = {k ∈ C½ : 2m−¼−1 < 2−½j¹;k ≤ 2m−¼}:

Then C½ = S∞
m=0 T½m. Suppose k ∈ T½m. If ¼ ≤ ½, then 1 + 2¼−½j¹;k ≈ 2m, so by Lemma 3.2(iii),

2¼Þ|'¼ ∗m½k.x/| ≤ c2.¼−½/.R+Þ/2½Þ2−ms2½n=2j .n−1/=2
¹;k

= c2.¼−½/.R+Þ−n=�/2.¼−½/n=�2½Þ2−ms2½n=2j .n−1/=2
¹;k ;

with R > n=� − Þ and s > n=�. Now suppose ½ ≤ ¼. In Lemma 3.3(iii) we have R > Þ and
s > n=�, so by reducing s if necessary, we can assume R > Þ + s − n=� and s > n=�. Since
k ∈ T½m, we have j¹;k ≥ c2m+½−¼ (when m = 0 this follows since j¹;k ≥ c and ½ ≤ ¼). Hence



Wavelet Expansion for Radial Distributions 341

2¼Þ|'¼ ∗m½k.x/| ≤ c2.½−¼/.R−Þ−s/2½Þ2−ms2½n=2j .n−1/=2
¹;k

= c2.½−¼/.R−Þ−s+n=�/2.¼−½/n=�2½Þ2−ms2½n=2j .n−1/=2
¹;k :

Hence in either case there exists " > 0 (independent of m) and s > n=� such that

2¼Þ|'¼ ∗m½k.x/| ≤ c2−|¼−½|"2.¼−½/n=�2½Þ2−ms2½n=2j .n−1/=2
¹;k :

Using the imbedding l� → l1 again,

2¼Þ|'¼ ∗
X
½∈Z

X
k∈C½

s½km½k.x/|

= 2¼Þ|'¼ ∗
X
½∈Z

∞X
m=0

X
k∈T½m

s½km½k.x/|

≤ c
X
½∈Z

2−|¼−½|"
∞X
m=0

2−ms
 X
k∈T½m

2.¼−½/n|s½k|�2½Þ�2½n�=2jn−1−.n−1/�=2
¹;k

!1=�

:

Since k ∈ T½m ⊆ C½, we have |x| ≤ 2−½j¹;k=2 ≤ 2m−¼−1. Therefore |B.x; |x| + 2m−¼/| ≈
2.m−¼/n, which implies that the term inside the last parentheses above is bounded by
c2mnM.

P
k∈T½m 2½Þ�|s½k|��̃�A½k /.x/: Using this estimate above and then replacing the sum over

k ∈ T½m by the sum over k ∈ C½, we can sum over m to obtain the portion of (32) for k ∈ C½,
since s > n=�. �

Proof of Theorem 3.1. We take the lq norm over ¼ ∈ Z of both sides of (32). If q ≥ 1,
we use Young’s inequality ‖a ∗ b‖lq ≤ ‖a‖l1 |b‖lq , while if 0 < q < 1 we first use the q-triangle
inequality |P½ a½|q ≤ P

½ |a½|q followed by the q = 1 version of Young’s inequality. Since " > 0,
the result is

 X
¼∈Z

 
2¼Þ

þþþþþ'¼ ∗
X
½∈Z

∞X
k=1

s½km½k.x/

þþþþþ
!q!1=q

≤ c

0@X
¼∈Z

 
M

 ∞X
k=1

2¼Þ�|s¼k|��̃�A¼k
!
.x/

!q=�1A1=q

:

Taking theLp norm of both sides and applying the Fefferman–Stein vector-valued maximal inequality
as in the proof of Theorem 2.2, we obtain the desired result�����X

¼∈Z

∞X
k=1

s¼km¼k

����� :
R

Þq

p

≤ c‖{s¼k}‖ :rÞqp : �

It remains now to prove the inequality (33).

3.5. Lemma

Let x ∈ Rn, x �= 0, ½ ∈ Z, m ∈ {0; 1; : : : ; T }, and k ∈ S½m. Then there exist constants
a; c > 0 independent of x;m; ½, and k, such that

|A½k ∩ B.x; 2m−½a/| ≥ c2m.n−1/2−½n: (34)
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Proof. By a dilation argument we may assume that ½ = 0. The n = 1 case is easy (just
take a > 1), so we assume that n ≥ 2. By symmetry we may assume that x is a positive multiple of
the unit vector e1 = .1; 0; : : : ; 0/. Note that the quantity |A0k ∩ B.x; 2ma/| is increasing in a. Let
� = supk∈N.j¹;k−j¹;k−1/ < ∞ and take a ≥ 1+� . ThenB..j¹;k−1 +j¹;k/e1=2; .j¹;k−j¹;k−1/=2/ ⊂
A0k ∩ B.x; 2ma/, since | |x| − j¹;k| ≤ 2m, and 2ma ≥ 2m + � ≥ 2m + .j¹;k − j¹;k−1/. Hence
|A0k ∩ B.x; 2ma/| ≥ c.infk∈N.j¹;k − j¹;k−1//

n > 0, which proves (34) for small values of m.
If 2m ≥ j¹;k−1=4, take a ≥ 9 + 2� . Then

2ma ≥ 2 · 4 · 2m + 2� + 2m ≥ 2 · j¹;k−1 + 2� + 2m ≥ 2j¹;k + 2m:

Since | |x| − j¹;k| ≤ 2m, we see that A0k ⊂ A0k ∩ B.x; 2ma/. Thus, |A0k ∩ B.x; 2ma/| ≈ jn−1
¹;k . On

the other hand, since k ∈ S0m ⊂ B0, we have (without using 2m ≥ j¹;k−1=4) that when þ > 1

j¹;k ≥ |x|=2 ≥ j¹;þ−1=4 ≥ cj¹;þ+1 > c2T > c2m:

If þ = 1 and m > 0 we use

3j¹;1 > |x| + j¹;1 ≥ | |x| − j¹;1| > 2m=2:

Finally, if þ = 1 and m = 0, we use the trivial fact that |A01| ≥ c. These observations prove (34)
when 2m ≥ j¹;k−1=4.

Now suppose that max{1; 4� } < 2m < j¹;k−1=4 (which rules out k = 1) and, as a first subcase,
that j¹;k ≤ |x|. We will consider the effect of taking a > � + 2. Let j¹;k−1 ≤ r ≤ j¹;k . The ball
B.x; 2ma/ intersects the n − 1 sphere {y ∈ Rn : |y| = r} in a nonempty spherical cap Cr whose
boundary @Cr is either an n− 2 sphere (meaning a pair of points in the n = 2 case) or else empty. If
@Cr �= ∅, then the points in @Cr have a common first coordinate, say t .r/. In this case the hyperplane
{y ∈ Rn : y · e1 = t .r/} intersects B.x; 2ma/ in an n − 1 disk D whose boundary coincides with
@Cr . Let ².r/ denote the radius ofD. Then the .n−1/-dimensional measure |Cr |n−1 of the spherical
cap Cr is bounded below by a quantity of the form cn.².r//

n−1 if t .r/ > 0 (this is an isoperimetric
inequality) and by a quantity of the form cjn−1

¹;k−1 ≥ c2m.n−1/ if t .r/ ≤ 0 or if @Cr = ∅. Using
spherical coordinates,

|A0k ∩ B.x; 2ma/| = cn

Z j¹;k

j¹;k−1

|Cr |n−1 dr:

Thus, it suffices in this case to show that

inf{².r/ : r ∈ [j¹;k−1; j¹;k] and t .r/ > 0} ≥ c2m

for some c > 0 independent of k; x;m. First, suppose that j¹;k−1 − 2m ≤ t .r/ ≤ j¹;k . Then
|x − t .r/e1| ≤ 2 · 2m + � . Since .².r//2 + |x − t .r/e1|2 = .2ma/2, we obtain

.².r//2 ≥ .2ma/2 − .2 · 2m + � /2 = .a2 − .4 + 4�

2m
+ � 2

22m
//22m ≥ .a2 − .� + 2/2/22m:
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Next, if 0 < t.r/ ≤ j¹;k−1 − 2m, then we use .².r//2 + .t .r//2 = r2 ≥ j 2
¹;k−1 to get

.².r//2 ≥ j 2
¹;k−1 − .j¹;k−1 − 2m/2 = 2 · j¹;k−12m − 22m ≥ 7 · 22m:

Finally, we consider the subcase where j¹;k > |x|. Since 2m > max{1; 4� }, it must be that m > 0.
Therefore, | |x| − j¹;k| > 2m−1 > 2� , which implies that |x| < j¹;k−1. This time we consider the
effect of taking a > 1. If |x| ≤ t .r/, then

0 ≤ t .r/− |x| ≤ j¹;k − |x| ≤ 2m:

Hence, from .t .r/ − |x|/2 + .².r//2 = .2ma/2, we obtain .².r//2 ≥ 22m.a2 − 1/, as desired. If
t .r/ < |x|, then we get a lower bound for |Cr |n−1 by considering a ball of smaller radius than
2ma, centered at x, such that t .r/ = |x|. Then the value of ² corresponding to this smaller ball
satisfies |x| + ² ≥ r . But r − |x| ≥ j¹;k−1 − |x| ≥ j¹;k − |x| − � ≥ 2m−1 − 2m−2 = 2m−2, so
² ≥ 2m−2. �

By considering B.x; 2m−½a/, the inequality (33) now follows.

4. The Smooth Radial Atomic Decomposition

In some applications (e.g., trace theorems—see [9] or [11]) it is useful to have represent-
ing functions of compact support in the standard rectangular Littlewood–Paley decompositions.
Nonorthogonal decompositions of this type can be obtained easily from the Calderón reproduc-
ing formula. Such results have a long history, part of which is described in [12]. More recently,
Daubechies [3] constructed smooth orthonormal wavelets of compact support. Here we present a
radial version of the older, nonorthogonal decomposition. However, because of the requirement (13)
in the proof of Theorem 3.1, we obtain norm equivalences for

:
R
Þq

p only for Þ large enough; e.g., for
p; q ≥ 1, we require Þ > −1.

For¼ ∈ Z and k ∈ Z+, we let Ã¼k be the fattening ofA¼k: Ã¼k = {x ∈ Rn : 2−¼.j¹;k−1−1/ ≤
|x| ≤ 2−¼.j¹;k + 1/}. Since j¹;k − j¹;k−1 = ³ +O.1=k/, this fattening is of the same order as the
width of the annulus A¼k . For Þ > .n=min{1; p; q}/ − n − 1, we define a smooth radial atom for
A¼k to be any radial function a¼k satisfying

i. supp a¼k ⊆ Ã¼k;

ii.
Z
a¼k = 0;

iii. |D� a¼k.x/| ≤ c� 2¼n=22¼|� |j−.n−1/=2
¹;k ;

for all multi-indices � , where c� = 1 for |� | ≤ Þ + 1 and the c� are independent of ¼ and k for
|� | > Þ + 1 (with fixed values to be determined by the proof below).

4.1. Theorem

Suppose 0 < q ≤ ∞, 0 < p < ∞, and Þ > .n=min{1; p; q}/ − n − 1. For f ∈ :
R
Þq

p , there
exists a sequence s = {s¼k} ∈ :

rÞqp and functions {a¼k}¼∈Z;k∈Z+ (both depending on f ) such that each
a¼k is a smooth radial atom for A¼k ,
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f =
X
¼∈Z

X
k∈Z+

s¼ka¼k; (35)

and

‖f ‖ :
R

Þq

p

≈ ‖s‖ :rÞqp ; (36)

with equivalence constants independent of f . The identity (35) has the interpretation that the partial
sums

fN =
¼=+NX
¼=−N

X
k∈Z+

s¼ka¼k

converge to f in the
:
R
Þq

p quasi-norm as N → ∞ if q < +∞ and in S ′=P if q = +∞.

Proof. Select a radial function � ∈ D.Rn/ satisfying supp � ⊆ B.0; 1/,
R
� = 0, and

|�̂ .¾/| ≥ c > 0 if 1=4 ≤ |¾ | ≤ 1. (See, e.g., [9, p. 783].) Then there exists a radial function
' ∈ S.Rn/ such that supp '̂ ⊂ {¾ : 1=4 ≤ |¾ | ≤ 1}, |'̂.¾/| ≥ c > 0 if 3=10 ≤ |¾ | ≤ 5=6, andX

¼∈Z

'̂.2−¼¾/�̂.2−¼¾/ = 1 if ¾ ∈ Rn \ {0}: (37)

For ¼ ∈ Z, let '¼.x/ = 2¼n'.2¼x/ and �¼.x/ = 2¼n�.2¼x/. By (37), we have

f =
X
¼∈Z

�¼ ∗ '¼ ∗ f; (38)

with convergence in S ′=P . Since {A¼k}∞k=1 is an essentially disjoint cover of Rn,

�¼ ∗ '¼ ∗ f .x/ =
∞X
k=1

Z
A¼k

�¼.x − y/'¼ ∗ f .y/ dy: (39)

For a sufficiently large constant c′ to be determined later, define

s¼k = c′|A¼k|1=2 sup
y∈A¼k

|'¼ ∗ f .y/|

and, if s¼k �= 0, define

a¼k.x/ = 1

s¼k

Z
A¼k

�¼.x − y/'¼ ∗ f .y/ dy: (40)
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Thus (38) and (39) yield (35). Since �¼; '¼; f , and A¼k are spherically symmetric, a¼k is a radial
function. Since supp �¼ ⊆ B.0; 2−¼/, we have supp a¼k ⊆ A¼k + B.0; 2−¼/ = Ã¼k , i.e., .i/ holds.
Since

R
� = 0, .ii/ also holds. Next,

|D� a¼k.x/| ≤ 1

s¼k

Z
A¼k

2¼n2¼|� ||.D� �/.2¼x − 2¼y/| |'¼ ∗ f .y/| dy

≤ 2¼|� |

c′
|A¼k|−1=2

Z
A0k

|D� �.2¼x − y/| dy

= 2¼|� |

c′
|A¼k|−1=2

Z j¹;k

j¹;k−1

|D� � | ∗ d¦t .2¼x/ dt:

By Lemma 2.3,

|D� � | ∗ d¦t .2¼x/ ≤ c′�;m.1 + |2¼|x| − t |/−m:

Since |A¼k|−1=2 ≈ 2¼n=2j−.n−1/=2
¹;k , we have |D� a¼k.x/| ≤ c′�m

c′ 2¼n=22¼|� |j−.n−1/=2
¹;k . Taking c′ large

enough gives .iii/. Hence each a¼k is a smooth radial atom for A¼k .
If x ∈ A¼k , then by the radiality of |'¼ ∗ f | we have

|A¼k|−1=2|s¼k| = c′ sup{|'¼ ∗ f .rx=|x|/| : 2−¼j¹;k−1 ≤ r ≤ 2−¼j¹;k} ≤ c'∗∗
¼ f .x/:

As in the proof of Theorem 2.1, we obtain

‖s‖ :rÞqp ≤ c‖f ‖ :
R

Þq

p

: (41)

The converse estimates are obtained from Theorem 3.1. We check that for the assumed
indices, radial smooth atoms a¼k are, up to a constant factor, radial smooth molecules as defined
before Theorem 3.1. By the assumption on Þ in Theorem 4.1, we can take 0 < � ≤ 1 sufficiently
close to min{1; p; q} so that p=�; q=� > 1 and n+ 1 + Þ − n=� > 0. This allows us to take l = 0
in (13), so (13) reduces to .ii/. Then (14),(15), and (16) follow, up to a constant multiple, from .i/

and .iii/. Thus, by (35) and Theorem 3.1, we have

‖f ‖ :
R

Þq

p

≤ c‖s‖ :rÞqp : (42)

The remark about convergence in the quasi-norm when q < ∞ follows by applying Theorem 3.1 to

f − fN =
X

|¼|>N

∞X
k=1

s¼ka¼k

and using the dominated convergence theorem. �
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The obstruction to such a result if Þ ≤ .n=min{1; p; q}/ − n − 1 is as follows. To apply
Theorem 3.1 to get (42), we need to assume (13) with l ≥ 1 for a¼k in place of m¼k . Even if we
find a � satisfying such a condition, (40) does not guarantee that this condition will be “inherited”
by a¼k , unlike the simple mean-zero condition. Finding a version of Theorem 4.1 for Þ below the
stated value remains open.

5. Results for the Besov Spaces

In this section we briefly describe some of the results for Besov spaces. Recall that the
homogeneous Besov space

:
B
Þq

p , Þ ∈ R, 0 < p; q ≤ ∞, is defined to be the set of all f ∈ S ′=P
such that

‖f ‖ :
B

Þq

p

=
 X
¼∈Z

.2¼Þ‖'¼ ∗ f ‖Lp.Rn//
q

!1=q

< ∞:

Let
:
H
Þq

p denote the space of all radial elements of
:
B
Þq

p , together with the same quasi norm as
:
B
Þq

p . Again, by a radial element, we mean that that there exists a radial element in its class. For
s = {s¼k}¼∈Z;k∈Z+ , define

‖s‖ :
h
Þq

p

=
 X
¼∈Z

����� ∞X
k=1

2¼Þ|s¼k|�̃A¼k
�����
q

Lp

!1=q

:

Let {'¼k}¼∈Z;k∈Z+ and { ¼k}¼∈Z;k∈Z+ be as in §2.

5.1. Theorem

Let Þ ∈ R and 0 < p; q ≤ ∞. The operator

S :
:
H
Þq

p → :
h
Þq

p

defined by

S.f / = {〈f; '¼k〉}

is bounded.

5.2. Theorem

Let Þ ∈ R and 0 < p; q ≤ ∞. The operator

T :
:
h
Þq

p → :
H
Þq

p
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defined by

T .{s¼k}/ =
X
¼∈Z

∞X
k=1

s¼k ¼k

is bounded.

5.1. Corollary

Let Þ ∈ R and 0 < p; q ≤ ∞. Then for a radial f ∈ S ′.Rn/,

‖f ‖ :
B

Þq

p

≈ ‖{〈f; '¼k〉}‖ :hÞqp :

Proof of Theorem 5.1. As in the proof of Theorem 2.1, we have

∞X
k=1

2¼Þ|〈f; '¼k〉|�̃A¼k .x/ ≤ c2¼Þ'∗∗
¼ f .x/ a:e:

We will take � > n=p in the definition of '∗∗
¼ . According to Peetre’s estimate [18],

'∗∗
¼ f .x/ ≤ c.M.|'̃¼ ∗ f |n=� //�=n.x/:

Applying the ordinary maximal inequality (since �p=n > 1) gives

‖'∗∗
¼ f ‖Lp ≤ c‖'̃¼ ∗ f ‖Lp

with c independent of ¼ and f . The desired inequality ‖S.f /‖ :
h
Þq

p

≤ c‖f ‖ :
H

Þq

p

now follows easily,

since we obtain an equivalent norm to ‖ · ‖ :
B

Þq

p

using '̃¼ in place of '¼. �

Proof of Theorem 5.2. By examining the proof of Theorem 2.2 we see that

‖'¼ ∗ f ‖Lp ≤ c

¼+1X
½=¼−1

������
 
M

 ∞X
k=1

|s½k|��̃�A¼k
!!1=�

������
Lp

;

where, as before,

f =
X
¼∈Z

∞X
k=1

s¼k ¼k:
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Taking 0 < � ≤ 1 such that p=� > 1, applying the ordinary maximal inequality, and using the
essential disjointness of the sets {A½k}∞k=1 (for fixed ½), we see that the right side of the last inequality
is bounded by

c

¼+1X
½=¼−1

����� ∞X
k=1

|s½k|�̃A½k
�����
Lp

:

This immediately gives the desired inequality ‖f ‖ :
H

Þq

p

≤ c‖s‖ :
h
Þq

p

: �

For the molecular estimates, the only change in the definition of a molecule is that we need
only assume that 0 < � ≤ 1 satisfies p=� > 1. From Lemma 3.4 we get, with p∗ = min{1; p}, by
either Minkowski’s inequality if p ≥ 1 or the p-triangle inequality if p < 1,

2¼Þ
�����'¼ ∗

X
½∈Z

∞X
k=1

s½km½k

�����
Lp

≤ c

0@X
½∈Z

2−|½−¼|"p∗
�����M

 ∞X
k=1

2½Þ�|s½k|��̃�A½k
!�����

p∗=�

Lp=�

1A1=p∗

≤ c

0@X
½∈Z

2−|½−¼|"p∗
����� ∞X
k=1

2½Þ|s½k|�̃A½k
�����
p∗

Lp

1A1=p∗

≤ c
X
½∈Z

2−|½−¼|"=2
����� ∞X
k=1

2½Þ|s½k|�̃A½k
�����
Lp

:

The second inequality follows from the ordinary maximal inequality (sincep=� > 1) and the essential
disjointness of the sets {A½k}∞k=1 for fixed ½. The last inequality is trivial if p∗ = 1 and follows from
Hölder’s inequality if p∗ < 1. We now have

�����X
½∈Z

∞X
k=1

s½km½k

����� :
H

Þq

p

≤ c

 X
¼∈Z

 X
½∈Z

2−|½−¼|Ž=2
����� ∞X
k=1

2½Þ|s½k|�̃A½k
�����
Lp

!q!1=q

≤ c

 X
¼∈Z

����� ∞X
k=1

2¼Þ|s¼k|�̃A¼k
�����
q

Lp

!1=q

= c‖s‖ :
h
Þq

p

;

as desired. Here we have used ‖a ∗ b‖lq ≤ ‖a‖l1‖b‖lq if q ≥ 1 and ‖a ∗ b‖lq ≤ ‖|a|q ∗ |b|q‖1=q
l1

≤
‖|a|q‖1=q

l1
‖|b|‖1=q

l1
= ‖a‖lq‖b‖lq if q < 1.

Finally, the atomic decomposition described in Theorem 4.1 is valid for the pair
:
H
Þq

p ;
:
h
Þq

p ,
with the same proof, except in this case we only require Þ > .n=min{1; p}/−n−1 and p is allowed
to take the value +∞. Let s¼k be defined as in the proof of Theorem 4.1. Then, using Peetre’s
estimate again,
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‖s‖ :
h
Þq

p

≤ c

 X
¼∈Z

����� ∞X
k=1

2¼Þ. sup
y∈A¼k

|'¼ ∗ f .y/|/�A¼k
�����
q

Lp

!1=q

≤ c

 X
¼∈Z

‖2¼Þ'̃∗∗
¼ f ‖qLp

!1=q

≤ c

 X
¼∈Z

.2¼Þ‖'¼ ∗ f ‖Lp/q
!1=q

= c‖f ‖ :
H

Þq

p

:

The converse estimate follows from the
:
H
Þq

p version of Theorem 3.1, which, as discussed above,
only requires that there exists some 0 < � ≤ 1 such that p=� > 1 and n+ 1 + Þ − n=� > 0. This
is guaranteed by our modified hypotheses.

6. Results for the Inhomogeneous Spaces

In addition to the homogeneous Besov and Triebel–Lizorkin spaces
:
B
Þq

p and
:
F
Þq

p , there are
also the inhomogeneous spacesBÞqp andFÞqp . The Bessel potential spacesLpÞ ≈ FÞ2

p , 1 < p < +∞,
Þ > 0, arise in this scale; in particular, when Þ = k ∈ Z+ we have the usual Sobolev space Lpk .
One advantage is that for the inhomogeneous spaces we have quasi-norms on all of S ′ and not just
the quotient S ′=P . As usual in this subject (see, e.g., [11, §12]), the results for

:
B
Þq

p and
:
F
Þq

p have
complete analogues for the inhomogeneous spaces. Since the proofs are virtually the same, we will
be brief.

To set notation, pick radial functions 8;9 ∈ S.Rn/ satisfying supp 8̂; 9̂ ⊆ {¾ : |¾ | ≤ 1},
|8̂.¾/|; |8̂.¾/| ≥ c > 0 if |¾ | ≤ 5=6, and

8̂.¾/ 9̂.¾/+
∞X
¼=1

'̂¼.¾/ ̂¼.¾/ = 1 for all ¾ ∈ Rn; (43)

where '¼; ¼ are as in §2. For 0 < q ≤ ∞, 0 < p < ∞, Þ ∈ R, and f ∈ S ′.Rn/, let

‖f ‖FÞqp = ‖8 ∗ f ‖Lp +
������
 ∞X
¼=1

.2¼Þ|'¼ ∗ f |/q
!1=q

������
Lp

(see, e.g., [11, Lemma 12.1]). For the same q; Þ, f , and 0 < p ≤ ∞, let

‖f ‖BÞqp = ‖8 ∗ f ‖Lp +
 ∞X
¼=1

.2¼Þ‖'¼ ∗ f ‖Lp/q
!1=q

:
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Let RÞqp denote the space of radial elements in FÞqp and HÞq
p the space of radial elements in BÞqp ,

with the same quasi-norms, respectively.
From (43) we obtain

f = 8̃ ∗9 ∗ f +
∞X
¼=1

'̃¼ ∗  ¼ ∗ f; (44)

with convergence in S ′. For k ∈ Z+, let

8k =
 

2

jn¹;kJ
2
¹+1.j¹;k/!n−1

!1=2

8 ∗ d¦j¹;k ;

and similarly define {9k}∞k=1. Then each8k and9k is radial. If f is radial, then by applying Theorem
1.1 as in §2 we obtain the identity

f =
∞X
k=1

〈f;8k〉9k +
∞X
¼=1

∞X
k=1

〈f; '¼k〉 ¼k:

For a sequence s = {s¼k}k∈Z+;¼=0;1;2;::: and indices as above, define

‖s‖rÞqp =
������
 ∞X
¼=0

∞X
k=1

.2¼Þ|s¼k|�̃A¼k /q
!1=q

������
Lp

and

‖s‖hÞqp =
 ∞X
¼=0

����� ∞X
k=1

2¼Þ|s¼k|�̃A¼k
�����
q

Lp

!1=q

:

For f ∈ S ′, let S.f / = {s¼k}, where s0k = 〈f;8k〉, and for¼ ≥ 1, s¼k = 〈f; '¼k〉. For s = {s¼k}¼;k ,
let

T .s/ =
∞X
k=1

s0k9k +
∞X
¼=1

∞X
k=1

s¼k ¼k:

6.1. Theorem

The maps S : RÞqp → r
Þq
p .S : HÞq

p → h
Þq
p / and T : rÞqp → R

Þq
p .T : hÞqp → H

Þq
p / are

bounded, and the composition T ◦S is the identity onRÞqp .H
Þq
p /. In particular, ‖f ‖RÞqp ≈ ‖S.f /‖rÞqp

.‖f ‖HÞq
p

≈ ‖S.f /‖hÞqp /.
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Proof. Modify the proof in §2 by dropping negative indices and replacing '0 with
8. �

A family of smooth radial molecules has the form {m¼k}¼;k , where k ranges over Z+ and
¼ = 0; 1; 2; : : : : The only change in the definition is that when ¼ = 0, (13) is not required.

6.2. Theorem

If {m¼k}¼;k is a family of smooth molecules for RÞqp .H
Þq
p /, then there exists a constant c > 0

such that for all sequences s = {s¼k}k∈Z+;¼=0;1;2;:::,����� ∞X
¼=0

∞X
k=1

s¼km¼k

�����
R
Þq
p

≤ c‖s‖rÞqp

(and similarly with HÞq
p ; h

Þq
p ).

Proof. Note that in the proof of Theorem 3.1, we only need (13) to estimate '¼ ∗m½k when
¼ < ½. (The ¼ = ½ case is covered by Lemma 3.3.) Here ¼ ≥ 0, so for ½ = 0, (13) is never
required. �

For the smooth radial atomic decomposition, the decomposition takes the form

f =
∞X
¼=0

∞X
k=1

s¼ka¼k;

where the a¼k are as above, except that .ii/ is not required for ¼ = 0. The norm equivalence is, of
course, ‖f ‖RÞqp ≈ ‖s‖rÞqp (‖f ‖HÞq

p
≈ ‖s‖hÞqp ).

7. Conclusion

We conclude with some problems and directions for further study. The first and most obvious
question is whether there exists an orthonormal radial wavelet decomposition having good space-
frequency localization and allowing norm characterizations for the spaces occuring in Littlewood–
Paley theory. The “rectangular” wavelet theory, as developed by Lemarié and Meyer [15], Mallat
[16], and others is based on dyadic translations and dilations. To work by analogy in the radial
setting seems impossible.

Theorems 2.1 and 2.2 can be used to study radial linear operators (i.e., linear operators map-
ping radial functions to radial functions) on

:
R
Þq

p , in the same way that the '-transform and wavelet

transform can be used to study linear operators defined on all of
:
F
Þq

p . There is a notion of radial
almost diagonality parallel to the standard notion of almost diagonality. In another direction, the
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radial atomic decomposition given by Theorem 4.1 together with the method of proving Theorem
3.1 can be used to study the restriction of a (not necessarily radial) linear operator to radial functions.
We plan to discuss some of these issues elsewhere.

In reference [6] we describe a wavelet-type transform adapted to polar coordinates on R2,
which generalizes the transform in this paper. The polar wavelets are not related to each other by
translation or dilation. Some of them are rotations of each other. Continuing in the direction of
removing symmetries, we could consider the general problem of developing a wavelet-type theory,
including Littlewood–Paley norm equivalences, on an arbitrary compact Riemannian manifold.
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