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ABSTRACT. In the early 1960s research into radar signal synthesis produced important formulas
describing the action of the two-dimensional Fourier transform on auto- and crossambiguity
surfaces. When coupled with the Poisson Summation formula, these results become applicable to
the theory of Weyl–Heisenberg systems, in the form of lattice sum formulas that relate the energy
of the discrete crossambiguity function of two signals f and g over a lattice with the inner prod-
uct of the discrete autoambiguity functions of f and g over a “complementary” lattice. These
lattice sum formulas provide a framework for a new proof of a result of N. J. Munch characterizing
tight frames and for establishing an important relationship between l1-summability (condition A)
of the discrete ambiguity function of g over a lattice and properties of the Weyl–Heisenberg system
of g over the complementary lattice. This condition leads to formulas for upper frame bounds
that appear simpler than those previously published and provide guidance in choosing lattice
parameters that yield the most snug frame at a stipulated density of basis functions.

1. Introduction

In the early 1960s, a major research effort was undertaken to establish the (narrowband)
ambiguity function as a tool for radar signal synthesis [1, 10, 11, 12, 13, 14, 16]. This effort
produced important formulas describing the action of the two-dimensional Fourier transform on
auto- and crossambiguity surfaces. When coupled with Poisson summation, these formulas lead to
equally important lattice sum formulas that can be applied to the study of Weyl–Heisenberg systems.
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1.1. Ambiguity Functions

For f; g ∈ L2.R/, define the crossambiguity function of f and g by

A.f; g/.u; v/ =
Z

f .t/g∗.t − v/e−2³iutdt

= 〈f; gu;v〉; u; v ∈ R;

(1)

where

gu;v.t/ = g.t − v/e2³iut ; u; v ∈ R: (2)

We denote A.f; f / by A.f / and call A.f / the autoambiguity or simply the ambiguity function
of f .

One goal of the above research was to provide a function-theoretic characterization of ambiguity
surfaces

| A.f /.u; v/ |2; f ∈ L2.R/: (3)

The effort was unsuccessful but produced the following fundamental formula describing the action
of the two-dimensional Fourier transform on crossambiguity surfaces.

A. Theorem

If f; g ∈ L2.R/, then

Z Z
| A.f; g/.u; v/ |2 e−2³i.xu+yv/ du dv = A.f /.y; −x/A∗.g/.y; −x/; x; y ∈ R: (4)

We will also work with the following generalization.

B. Theorem

If f1; f2; g1; g2 ∈ L2.R/, then

Z Z
A.f1; f2/.u; v/A∗.g1; g2/.u; v/e−2³i.xu+yv/ du dv

= A.f1; g1/.y; −x/A∗.f2; g2/.y; −x/; x; y ∈ R:

(5)

Setting f = g in Theorem A, we have the self-transform property of ambiguity surfaces that
states that 90◦ rotation ambiguity surfaces are invariant under two-dimensional Fourier transforms.

A discrete ambiguity function is formed by sampling an ambiguity function over the points of a
lattice in the plane. In general, different lattices lead to discrete ambiguity functions having different
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norm-square energy. For signals f and g in Schwartz space, the Poisson summation formula applied
to Theorem A results in the following discrete lattice sum formula relating the energy of the discrete
crossambiguity function of f and g over a lattice with the inner product of the discrete ambiguity
functions of f and g over a complementary lattice.

D1. For positive real numbers A and B,

X
m

X
n

| A.f; g/.mR; nS/ |2= 1

RS

X
m

X
n

A.f /
�n

S
;

m

R

�
A∗.g/

�n

S
;

m

R

�
: (6)

Applying the Poisson summation formula to Theorem B leads to the following generaliza-
tion. �

D2. For positive real numbers A and B,

X
m

X
n

A.f1; g1/.mR; nS/A∗.f2; g2/.mR; nS/

= 1

RS

X
m

X
n

A.f1; f2/
�n

S
;

m

R

�
A∗.g1; g2/

�n

S
;

m

R

�
:

(7)

Setting f = g in D1, we have that the energy of A.f / over the lattice determined by R and S is
equal to 1

RS
times the energy of A.f / over the complementary lattice determined by 1

S
and 1

R
. �

1.2. Weyl–Heisenberg Systems

For g ∈ L2.R/ and positive real numbers R and S, the Weyl–Heisenberg (W–H) system
.g; R; S/ is the set of signals

{gmR;nS : m; n ∈ Z}: (8)

We call g the analysis signal and R and S the lattice parameters of the W–H system. A signal
f ∈ L2.R/ admits a (time-frequency) discrete representation over .g; R; S/ by the set of all inner
products

〈f; gmR;nS〉; m; n ∈ Z; (9)

or equivalently by the values of the discrete crossambiguity function formed by sampling A.f; g/

over the lattice determined by R and S.
In general, there may not exist a numerically stable algorithm reconstructing f from the inner

products in (9). In [4] conditions on .g; R; S/ for the existence of such an algorithm are described
using the language of frames.

Associate to .g; R; S/ the operator Ag of L2.R/ defined by

Agf .m; n/ = 〈f; gmR;nS〉 = A.f; g/.mR; nS/; m; n ∈ Z; f ∈ L2.R/: (10)

Set

|| Agf ||2=
X

m

X
n

| A.f; g/.mR; nS/ |2 : (11)
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We say that .g; R; S/ has an upper frame bound if Ag is continuous. A real number B < ∞ is called
an upper frame bound of .g; R; S/, if

|| Agf ||2≤ B || f ||2; f ∈ L2.R/: (12)

If Ag is continuous, the adjoint A∗
g is given by

A∗
g.Þ/ =

X
m

X
n

Þ.m; n/gmR;nS; Þ ∈ l2.Z2/: (13)

.g; R; S/ is called a W–H frame if Ag is continuous and A∗
g is surjective. The surjectivity of A∗

g is
equivalent to any one of the following conditions,

• A∗
gAg is boundedly invertible in L2.R/.

• There exists A > 0 such that

A || f ||2≤|| Agf ||2; f ∈ L2.R/:

We call A a lower frame bound of .g; R; S/.

If .g; R; S/ is a frame, then f can be reconstructed in L2.R/ from the inner products given in
(9) by the following argument. Set Tg = A∗

gAg . In L2.R/,

Tgf =
X

m

X
n

〈f; gmR;nS〉gmR;nS: (14)

Since Tg is boundedly invertible in L2.R/, we can define

h = T −1
g g ∈ L2.R/: (15)

Then

hmR;nS = T −1
g .gmR;nS/ (16)

and in L2.R/

f =
X

m

X
n

〈f; gmR;nS〉hmR;nS: (17)

A frame .g; R; S/ is called a tight frame if for some A

|| Agf ||2= A || f ||2; f ∈ L2.R/:

We call A the frame constant of .g; R; S/.
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If .g; R; S/ is a tight frame, then we have

f = A−1
X

m

X
n

〈f; gmR;nS〉gmR;nS: (18)

1.3. Main Results

In §2, we prove D1 and D2 for signals f and g in Schwartz space by direct application of
Poisson summation (PS). Operator methods will then be called on to extend their validity to signals
outside Schwartz space for application to Weyl–Heisenberg systems and frame theory.

Condition D1, when valid, provides a formula for || Agf ||2 in terms of the inner product of
the discrete autoambiguity functions of f and g over the complementary lattice determined by 1

S
and

1
R

. D1 linearizes the impact of the discrete autoambiguity function of g on || Agf ||2
l2 . In particular,

applying the Schwartz inequality to the right-hand side of D1 factors out the lattice sum,

X
m

X
n

| A.g/
�n

S
;

m

R

�
|; (19)

in expressions for the upper bound. In §3, we will study the consequences of the convergence of this
lattice sum on properties of .g; R; S/ and derive a simple condition (condition B) for tight frames first
proved in [7]. One consequence is that .g; R; S/ is a tight frame if and only if .g; 1

S
; 1

R
/ is orthogonal.

The case of the Gaussian W–H system is considered in §4. New formulas for upper frame bounds
will be derived that appear substantially simpler than those previously published. Based on [5], we
will show that the lattice sum is the minimal upper frame bound when g.t/ = 21=4e−³t2

and 1
RS

is
an even integer.

2. Proofs of D1 and D2

Denote n-dimensional Schwartz space by Sn. Sn is closed under addition, convolution, and
multiplication and is a dense subspace in several normed spaces including L1.R/ and L2.R/ [9].
The Fourier transform is a linear isomorphism of Sn onto Sn.

The Poisson summation formula (PS) holds in every dimension n, but for our purposes, we
require only the two-dimensional case.

Poisson Summation. For � ∈ S2 and positive real numbers R and S, the expression

P .�/.x; y/ =
X

m

X
n

�.x + mR; y + nS/ (20)

absolutely and uniformly converges to a periodic C∞ function with respect to the lattice determined
by R and S and has absolutely converging Fourier series (FS)

1

RS

X
m

X
n

�̂
�m

R
;

n

S

�
e2³i. m

R
x+ n

S
y/; (21)
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where �̂ is the Fourier transform of �. In particular, if � ∈ S2, then �̂ ∈ S2, and

X
m

X
n

�.mR; nS/ = 1

RS

X
m

X
n

�̂
�m

R
;

n

S

�
; (22)

where both sides converge absolutely. Since S2 is closed under multiplication, we also have

X
m

X
n

| �.mR; nS/ |r< ∞; � ∈ S2; (23)

for all integers r > 0.
For � ∈ L1.R2/; P .�/ converges in L1.R2/ to a periodic integrable function with respect to

the lattice determined by R and S having Fourier coefficients

n
�̂
�m

R
;

n

S

�o
; m; n ∈ Z; (24)

but the corresponding FS does not in general converge [6].
Since f; g ∈ S1 implies A.f; g/ ∈ S2, we can apply PS to | A.f; g/.x; y/ |2 and use Theorem

A to prove the following result.

1. Theorem

If f; g ∈ S1 and R and S are positive real numbers, then

P .f; g/.x; y/ =
X

m

X
n

| A.f; g/.x + mR; y + nS/ |2 (25)

uniformly converges to a periodic C∞ function with respect to the lattice determined by R and S

and has absolutely converging FS,

1

RS

X
m

X
n

A.f /
�n

S
; −m

R

�
A∗.g/

�n

S
; −m

R

�
e2³i. m

R
x+ n

S
y/: (26)

1. Corollary

If f; g ∈ S1, then D1 holds.

For f1; f2; g1; g2 ∈ S1,

A.f1; g1/.x; y/A∗.f2; g2/.x; y/ ∈ S2; (27)

and we can argue as above with Theorem B to prove the following result.
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2. Corollary

If f1; f2; g1; g2 ∈ S1, then D2 holds.

For application to W–H systems we must extend the validity of D1 and D2 to signals outside
Schwartz space. Consider the W–H system .g; R; S/ with associated operator Ag .

2. Theorem

If g ∈ S1, then .g; R; S/ has an upper frame bound

B = 1

RS

X
m

X
n

| A.g/
�n

S
;

m

R

�
| : (28)

Proof. For f ∈ S1, we have by Corollary 1,

|| Agf ||2= 1

RS

X
m

X
n

A.f /
�n

S
;

m

R

�
A∗.g/

�n

S
;

m

R

�
: (29)

Since A.f / achieves its maximum || f ||2 at the origin,

|| Agf ||2≤ B || f ||2; f ∈ S1: (30)

Since S1 is dense in L2.R/, the inequality holds for all f ∈ L2.R/, completing the proof of the
theorem. �

A direct computation shows that

P .f; g/.x; y/ =|| Agf−x;−y ||2; x; y ∈ R; f; g ∈ L2.R/; (31)

which can be used to relate properties of Ag with properties of P .f; g/.

3. Theorem

If .g; R; S/ has an upper frame bound B < ∞, then P .f; g/ is continuous and

P .f; g/.x; y/ ≤ B || f ||2; x; y ∈ R; f ∈ L2.R/: (32)

Proof. Take f ∈ L2.R/. Since Ag is continuous and the mapping

.x; y/ → f−x;−y : R2 → L2.R/
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is continuous, the mapping

P .f; g/ : .x; y/ →|| Agf−x;−y ||2: R2 → C

is continuous and

P .f; g/.x; y/ ≤ B || f−x;−y ||2= B || f ||2;

completing the proof of the theorem. �

The same argument shows that if .g; R; S/ is a frame with frame bounds 0 < A ≤ B < ∞,
then

A || f ||2≤ P .f; g/.x; y/ ≤ B || f ||2; x; y ∈ R; f ∈ L2.R/: (33)

In particular, if .g; R; S/ is a tight frame, then

P .f; g/.x; y/ = A || f ||2; x; y ∈ R; f ∈ L2.R/: (34)

Under the conditions of Theorem 3, the Fourier series of P .f; g/ will not, in general, converge,
but we do have the following result.

4. Theorem

If g ∈ S1 and f ∈ L2.R/, then P .f; g/ is continuous and has absolutely converging Fourier
series.

Proof. P .f; g/ is continuous by Theorems 2 and 3. The absolute convergence of the Fourier
series follows from

X
m

X
n

þþþA.f /
�n

S
;

m

R

�þþþ þþþA.g/
�n

S
;

m

R

�þþþ ≤ || f ||2
X

m

X
n

þþþA.g/
�n

S
;

m

R

�þþþ ;
completing the proof of the theorem. �

3. Corollary

D1 holds for all g ∈ S1 and f ∈ L2.R/.

For application to W–H systems we need to reverse the conditions on f and g. We use Theorem
4 and the formula

P .g; f /.−x; −y/ = P .f; g/.x; y/; x; y ∈ R; f; g ∈ L2.R/; (35)

to prove the following result.
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4. Corollary

D1 holds for all f ∈ S1 and g ∈ L2.R/.

Arguing in the same way we have the following results.

5. Corollary

D2 holds for all g1; g2 ∈ S1 and f1; f2 ∈ L2.R/.

6. Corollary

D2 holds for all f1; f2 ∈ S1 and g1; g2 ∈ L2.R/.

3. Lattice Sum Conditions

We will study the effect on a W–H system .g; R; S/ of imposing conditions on the discrete
ambiguity function of g over the complementary lattice determined by 1

S
and 1

R
.

3.1. l1-Lattice Sum Condition

A W–H system .g; R; S/ is said to satisfy condition A if

X
m

X
n

| A.g/
�n

S
;

m

R

�
|< ∞: (36)

5. Theorem

If .g; R; S/ satisfies condition A, then for all f ∈ L2.R/,

1. .g; R; S/ has an upper frame bound

B = 1

RS

X
m

X
n

| A.g/
�n

S
;

m

R

�
| :

2. P .f; g/ is continuous and has absolutely converging Fourier series.

3. D1 holds for f and g.

Proof. Corollary 4 implies that D1 holds for f and g, whenever f ∈ S1. Arguing as in
the proof of Theorem 2, .g; R; S/ has an upper frame bound B. From Theorem 3 and the proof of
Theorem 4, P .f; g/ is continuous and has absolutely converging Fourier series for all f ∈ L2.R/.
In particular, D1 holds for f ∈ L2.R/ and g, completing the proof of the theorem. �
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Two W–H systems .g1; R; S/ and .g2; R; S/ are said to satisfy condition A′ if

X
m

X
n

| A.g1; g2/
�n

S
;

m

R

�
|< ∞: (37)

Arguing as above from Corollary 6 and D2, we can prove the following result.

6. Theorem

If .g1; R; S/ and .g2; R; S/ satisfy condition A′, then D2 holds for f1, g1, f2, g2, whenever
f1; f2 ∈ L2.R/.

3.2. Tight Frame

A W–H system .g; R; S/ is said to satisfy condition B if A.g/. n
S
; m

R
/ = 0, unless m = n = 0.

Based on certain results by M. Rieffel in [8], R. Howe and T. Steger (see [2]) show that a W–H
system .g; R; S/ cannot be a frame when RS > 1. We will assume throughout that RS ≤ 1 and use
this assumption to show the existence of a W–H system satisfying condition B.

Define

h.t/ =
²

1; 0 ≤ t < S;

0; otherwise:

Since RS ≤ 1,

h.t/h
�
t − m

R

�
= 0 unless m = 0: (38)

Condition B follows from

A.h/
�n

S
; 0
�

=
Z S

0
e−2³i n

S
t dt =

²
S; n = 0;

0; otherwise:

We can now give a new proof of a result that first appeared in [7].

7. Theorem

.g; R; S/ is a tight frame if and only if .g; R; S/ satisfies condition B. In this case, the frame
constant is

B = || g ||2
RS

: (39)

Proof. If .g; R; S/ is a tight frame with frame constant A, then by the comments following
Theorem 3, P .g/ ≡ P .g; g/ is the constant function A || g ||2 and has Fourier coefficients
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1

RS
| A.g/

�n

S
;

m

R

�
|2=

( ||g||4
RS

; n = m = 0;

0; otherwise;

proving that g satisfies condition B.
Conversely if .g; R; S/ satisfies condition B, then by Theorem 5, D1 holds for f ∈ L2.R/ and

g and we have

|| Agf ||2 = 1

RS

X
m

X
n

A.f /
�n

S
;

m

R

�
A∗.g/

�n

S
;

m

R

�

= || g ||2
RS

|| f ||2;

(40)

completing the proof of the theorem. �

Theorem 7 implies the following important corollary [15].

7. Corollary

.g; R; S/ is a tight frame if and only if .g; 1
S
; 1

R
/ is orthogonal.

A W–H system .g; R; S/ is called weakly linearly independent if

X
n

X
m

an;mgn=S;m=R = 0 (41)

with
P

n

P
m | an;m |2< ∞ implies an;m = 0, for all n; m ∈ Z.

8. Theorem

If .g; R; S/ satisfies condition A and has dense linear span in L2.R/, then .g; R; S/ is weakly
linearly independent.

Proof. Suppose
P

n

P
m an;mgn=S;m=R = 0 with

P
n

P
m | an;m |2< ∞. Take any tight

frame .h; R; S/. By Corollary 7, .h; 1
S
; 1

R
/ is orthogonal, implying

f =
X

n

X
m

bn;mhn=S;m=R ∈ L2.R/;

where bn;m = a∗
−n;−me−2³inm=RS . By Theorem 5, D1 holds for f and g. Direct computation shows

that for all r , s ∈ Z

|| Agf ||2= || h ||2
RS

X
s

X
r

bs;r

X
n

X
m

b∗
s−n;r−me2³i.s−n/m=RSA∗.g/

�n

S
;

m

R

�
(42)
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and that

X
n

X
m

b∗
s−n;r−me2³i.s−n/m=RSA∗.g/

�n

S
;

m

R

�
=
X

n

X
m

an;me−2³inr=RSA∗.g/

�
n + s

S
;

m + r

R

�

= e−2³inr=RS

*X
n

X
m

an;mgn=S;m=R; g−s=S;−r=R

+

= 0:

Since the linear span of .g; R; S/ is dense in L2.R/, f = 0, completing the proof of the
theorem. �

4. Frame Bound Calculation: Gaussian Window

By Theorem 5, if .g; R; S/ satisfies condition A, then an upper frame bound is given by

1

RS

X
m

X
n

| A.g/
�n

S
;

m

R

�
| : (43)

Consider the case of a Gaussian window of unit L2 norm

g.t/ =
�

1

³¦ 2

� 1
4

e−t2=2¦ 2
: (44)

A direct computation shows that

| A.g/.u; v/ |= e− 1
2 . 1

2 .v=¦ /2+2³2.¦u/2/: (45)

If B is the minimal upper frame bound, then

B ≤ 1

RS

X
n

X
m

e− 1
2 . 1

2 .nS=¦/2+2³2.mR¦/2/: (46)

Setting K = 1
RS

, we can write

B ≤ K
X

m

e−.³¦=KS/2m2
X

n

e−.S=2¦/2n2
: (47)
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The following argument suggested by A. J. E. M. Janssen shows that equality holds in (47) whenever
K is an even integer and g.t/ = 21=4e−³t2

, providing a basis for previously computed values for the
Gaussian case [2, 3]. In these works, upper (and lower) frame bounds are computed by maximizing
(and minimizing) expressions involving functions of the window g.

Set

f Ž.t/ = e−³Žt2
X

n

e−³Žn2R2
e2³inRt ∈ L2.R/ (48)

and place f Ž into the inequality

1

|| f ||2
X

k

X
l

〈g; gk=S;l=R〉〈fk=S;l=R; f 〉 ≤
X

k

X
l

| 〈g; gk=S;l=R〉 | : (49)

With K = 1
RS

an even integer

〈g; gk=S;l=R〉 = e− ³
2 .l2=R2+k2=S2/ =| 〈g; gk=S;l=R〉 | : (50)

A direct computation shows that the left-hand-side of (49) can be written as

P
l e− ³

2 .1+Ž/l2=R2 P
k e− ³

2 k2=S2 P
m e− ³

2 ŽR2m2
.−1/mle− ³

2 Ž−1.k=S+mR/2P
m e− ³

2 .Ž+Ž−1/R2m2 : (51)

As Ž ↓ 0, the summation over m in the numerator vanishes unless m = − k
RS

, an even integer.
For the purpose of determining the limit in (51) as Ž ↓ 0 we can replace the numerator by

X
l

e− ³
2 .1+Ž/l2=R2

X
k

e− ³
2 .1+Ž/k2=S2

: (52)

It is now easy to see that this limit is

X
l

e− ³
2 l2=R2

X
k

e− ³
2 k2=S2

; (53)

proving the claim.
In the general case, a lengthy argument [5] shows that the tightest bound in (47) results from

choosing the delays of the two exponential terms to be equal, resulting in optimum S and R as
follows:

S0 = ¦

r
2³

K
; (54)
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R0 = 1

¦
√

2³K
: (55)

Then

B ≤ B0 = K

 X
m

e− ³
2 Km2

!2

: (56)

One may not be able to pick S = S0 and R = R0 in an application, in which case it is of interest to
evaluate the bound corresponding to the mismatched case. For K = 1 (the Gabor case) computations
show that the minimum B occurs at S

¦
= 2. As K increases, the bound monotonically increases at

fixed S
¦

, and its optimum value approaches K from above, as predicted by (56).
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