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ABSTRACT. In this note, we consider orthogonal wavelets with the oversampling property. We
prove that if an orthogonal scaling function with exponential decay has the oversampling property,
then it has the sampling property (i.e., it takes values 1 at 0 and 0 at other integers); therefore, an
orthogonal scaling function with compact support has the oversampling property if and only if it
is the Haar function.

1. Introduction

The sampling theorems in multiresolution spaces have been discussed recently by several
researchers, such as Walter [1, 2], Aldroubi and Unser [3, 4], and Xia and Zhang [5]. These
theorems are generalizations of the classical Shannon sampling theorem for band-limited signals. In
[1] the following sampling representation was obtained. Assume the spaces {Vj }, Vj ⊂ Vj+1, form a
multiresolution analysis (MRA) of L2(R) and that φ(t) is its associated scaling function; see §2 or
[6]. Then for any f ∈ V0

f (t) =
∑

n

f (n)χ(t − n),

where the Fourier transform of χ is defined as
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χ̂(ω) = φ̂(ω)

�(ω)
,

provided �(ω)
�= ∑

n φ̂(ω + 2nπ) �= 0 for any real ω. The same result can be found in Aldroubi–
Unser [3, 4], where the sampling function χ(t) is described in the time domain.

In particular, if χ = φ, then for any f ∈ V0

f (t) =
∑

n

f (n)φ(t − n). (1.1)

It is clear that the condition χ = φ is equivalent to φ(n) = δ0,n, that is, φ(n) = 1 for n = 0
and φ(n) = 0 for nonzero integers. This property for a scaling function φ(t) is called the sampling
property (also, φ(t) is called a cardinal scaling function). In this article, a scaling function is assumed
to be an orthogonal scaling function (see §2), where the orthogonality is defined in the usual L2(R)

sense, that is,

〈f, g〉 =
∫ ∞

−∞
f (x)g(x) dx, for all f, g ∈ L2(R).

For scaling functions with the sampling property, Xia and Zhang [5] showed that a scaling function
with compact support has the sampling property if and only if it is the Haar function. Moreover,
they presented a family of such scaling functions with exponential decay. However, many important
families of orthogonal wavelets, such as Meyer wavelets and Daubechies wavelets, do not have the
sampling property.

To weaken this sampling property on wavelets, Walter [2] proposed that instead of looking for
a sampling function in V0 we look for one in the dilation space V1 and try to recover f ∈ V0 by its
values on the half integers. Mathematically, we want to find a scaling function φ(t) or a MRA {Vj }
so that for any f ∈ V0

f (t) =
∑

n

f (
n

2
)φ(2t − n). (1.2)

The property (1.2) for a scaling function φ(t) is called the oversampling property with sampling
rate 1/2. Clearly, all scaling functions with the sampling property do satisfy (1.2) and therefore
have the oversampling property. In [2] Walter proved that all Meyer type wavelets satisfy the
oversampling property (1.2). In addition, he showed that under a certain condition a band-limited
wavelet with the oversampling property (1.2) must be a Meyer type wavelet. However, many wavelet
properties, such as compact supportness and exponential decay, have not been addressed in this
context.

In this note, we consider the orthogonal scaling functions with the following general oversam-
pling property: For a fixed integer J ≥ 0 and any f ∈ V0

f (t) =
∑

n

f (
n

2J
)φ(2J t − n). (1.3)

The property (1.3) for an orthogonal scaling function φ(t) is called the oversampling property with
sampling rate 2−J . Let SJ denote the set of all orthogonal scaling functions with the oversampling
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property (1.3). Thus, S0 consists of all orthogonal scaling functions with the sampling property
and SJ ⊂ SJ+1 for J = 0, 1, 2, . . . . The results in [2] also show that S0 �= S1, i.e., the space
of the orthogonal scaling functions with the sampling property is a proper subspace of that of the
orthogonal scaling functions with the oversampling property. Let Se and Sc denote all orthogonal
scaling functions with exponential decay and compact support, respectively. In this note, we will
prove that S0 ∩ Se = SJ ∩ Se and S0 ∩ Sc = SJ ∩ Sc = {the Haar function} for any J ≥ 0. In other
words, if an orthogonal scaling function with exponential decay has the oversampling property, then
it has the sampling property; and if an orthogonal scaling function with compact support has the
oversampling property, then it must be the Haar function χ[0,1)(t), which is 1 when 0 ≤ t < 1 and 0
otherwise. These results imply that weakening the sampling property to the oversampling property
for wavelets is not useful in generating more wavelet families with good decay properties.

2. Some Known Results in Wavelets

This section reviews some known results in multiresolution analysis (MRA). An orthogonal
multiresolution analysis of L2(R) is a nested sequence of closed subspaces {Vj }j∈Z of L2(R) such
that

i. {φ(t − n)} is an orthogonal basis of V0,

ii. Vj ⊂ Vj+1 for all j ∈ Z,

iii. f (t) ∈ Vj if and only if f (2t) ∈ Vj+1,

iv.
⋃

j Vj = L2(R) and
⋂

j Vj = {0},

where φ(t) is called an orthogonal scaling function associated with the MRA {Vj }. If ψ(t) is an

associated mother wavelet, then ψjk(t)
�= 2j/2ψ(2j t −k), j, k ∈ Z, is an orthonormal basis of L2(R)

(see [6]). Let H(ω) with H(0) = 1 be a lowpass filter with impulse response 1
2hk , and let G(ω) be

the bandpass filter with impulse response 1
2gk = (−1)k 1

2h1−k so that H and G are the associated
quadrature mirror filters. Then for any ω ∈ R

φ̂(ω) = H(
ω

2
)φ̂(

ω

2
) =

∞∏

k=1

H(2−kω), (2.1)

ψ̂(ω) = G(
ω

2
)φ̂(

ω

2
), (2.2)

and

|H(ω)|2 + |G(ω)|2 = 1, (2.3)

where φ̂ denotes the Fourier transform of φ, i.e.,

φ̂(ω) =
∫ ∞

−∞
φ(t)e−itω dt.

Detailed introductions to wavelets may be found in [6–12].



196 Xiang-Gen Xia

For scaling functions with the sampling property (1.1),

�0(ω)
�= �(ω) =

∑

n

φ(n)e−inω =
∑

n

φ̂(ω + 2nπ) = 1 for ω ∈ R. (2.4)

The following properties were obtained in [5].

2.1. Proposition

An orthogonal scaling function φ(t) has the sampling property if and only if

H(ω) = 1

2
+ 1

2
H̃ (2ω)eiω, (2.5)

where H̃ (ω) has the impulse response h̃k = h2k+1, H̃ (0) = 1, and |H̃ (ω)| ≡ 1.

From this result, a family of orthogonal scaling functions with the sampling property and
exponential decay was presented in [5].

2.2. Proposition

An orthogonal scaling function φ(t) with compact support has the sampling property if and
only if it is the Haar function, i.e., φ(t) = χ[0,1)(t).

For scaling functions with the oversampling property (1.3), it was proved in [2] that (1.3) holds
for all f ∈ V0 if and only if

φ̂(ω) = �J (ω)φ̂(2−J ω), (2.6)

where

�J (ω)
�= 2−J

∑

k

φ(2−J k)e−ik2−J ω =
∑

k

φ̂(ω + 2J+1kπ). (2.7)

3. Wavelets with the Oversampling Property

A wavelet ψ(t) or a scaling function φ(t) is said to be of exponential decay if the lowpass
filter H(ω) with impulse response hk satisfies |hk| ≤ O(a|k|) for certain constant a with 0 < a < 1.
This implies that for a scaling function with exponential decay, the Laurent series

L(z)
�= 1

2

∑

k

hkz
k
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is analytic on the open annulus R1 < |z| < R2 for some constants R1 and R2 with 0 < R1 < 1 and
1 < R2 < ∞. This suggests the following lemma.

3.1. Lemma

If a scaling function φ(t) has exponential decay, then its associated lowpass filter H(ω) has
finitely many zeros in [−π, π).

Proof. Assume that H(ω) has infinitely many zeros in [−π, π). Then L(z) has infinitely
many zeros on the unit circle |z| = 1. Since φ(t) has exponential decay, L(z) is analytic in a region
D that contains the unit circle. Therefore, the condition that L(z) has infinitely many zeros implies
that L(z) = 0 for all z ∈ D, and therefore H(ω) = 0 for all real ω. This contradicts the assumption
that H(ω) is a lowpass filter. �

Now we give the main result concerning scaling functions with the oversampling property.

3.2. Theorem

If an orthogonal scaling function φ(t) has exponential decay and the oversampling property
with sampling rate 2−J for some nonnegative integer J , then φ(t) has the sampling property, i.e.,
φ(n) = δ0,n.

Proof. From Lemma 1, H(ω) has only finitely many zeros in [−π, π). Thus,

φ̂(ω) =
∞∏

j=1

H(2−jω) �= 0

almost everywhere in [−2J π, 2J π ]. From (2.1) and (2.6),

�J (ω) =
J∏

j=1

H(
ω

2j
) almost everywhere. (3.1)

From (1.3),

φ(
k

2J
) =

∑

n

φ(
n

2J
)φ(k − n).

Taking the Fourier transform of both sides of this equation yields

∑

k

φ(
k

2J
)e−ikω = �0(ω)

∑

n

φ(
n

2J
)e−inω.
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Utilizing (2.7) and (3.1) produces

�J (2J ω) = �0(ω)�J (2J ω)

or, equivalently,

J∏

j=1

H(2J−jω) = �0(ω)

J∏

j=1

H(2J−jω).

Since H(ω) has only finitely many zeros in [−π, π),

J∏

j=1

H(2J−jω) �= 0 almost everywhere.

Therefore, �0(ω) = 1 almost everywhere in R. That is, φ satisfies the sampling property. �

3.3. Corollary

An orthogonal scaling function φ(t) with compact support has the oversampling property with
sampling rate 2−J for certain nonnegative integer J if and only if it is the Haar function.

Proof. This is a direct consequence of Theorem 1 and Proposition 2. �
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