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Self-Similar Lattice Tilings

Karlheinz Gröchenig and Andrew Haas

ABSTRACT. We study the general question of the existence of self-similar lattice tilings of Eu-
clidean space. A necessary and sufficient geometric condition on the growth of the boundary of
approximate tiles is reduced to a problem in Fourier analysis that is shown to have an elegant
simple solution in dimension one. In dimension two we further prove the existence of connected
self-similar lattice tilings for parabolic and elliptic dilations. These results apply to produce Haar
wavelet bases and certain canonical number systems.

1. Introduction

Let � be a lattice in R
m, and let Q be a set whose translates by elements of � tessellate, or

tile, R
m. This sort of tesselation will be referred to as a lattice tiling. Given an expansive linear

transformation A that induces an automorphism of �, we say that Q is (�, A)-self-similar if AQ is
a union of translates of Q by elements of �. Then we can write AQ = ⋃

k∈D(k + Q) and D ⊂ �

is called the digit set for Q. For tiles that generate a multiresolution analysis, it is immediate that
the digit set D must be a set of distinct coset representatives for the quotient group �/A� [13].
Under this assumption on D a number of researchers have demonstrated the existence of a unique
(�, A)-self-similar set Q with digit set D [3, 13]. In all but a small class of well-understood cases
Q has revealed itself as a complicated set with fractal boundary.

In this paper we investigate conditions on �, A, and D under which the set Q will tile or lattice
tile R

m. This and related problems have been considered by other authors. Their work provides many
examples of self-similar tilings, relates these tilings to several different areas of mathematics, and, in
some instances, gives necessary and sufficient conditions for the existence of a (�, A)-self-similar
tile Q. Although these conditions are interesting and enlightening, they are, in practice, difficult to
verify in all but a few special cases; consequently, they have not proved to be suitable as the basis
for a general theory of self-similar tilings. The lack of a theory is illustrated by the fact that even in
dimension two it remains unknown whether for each transformation A there is a digit set D so that
the �-translates of the associated self-similar set Q tile R

2.
Our approach has several facets. First we show that there is always a subset �′ ⊂ � so that

the �′-translates of Q tile R
m. This leaves open the possibility that Q gives an aperiodic tiling of

R
m, which we conjecture is not the case. In terms of the data A, �, and D we construct a matrix

C and show that the �-translates of Q tile R
m if and only if the spectral radius of C is smaller

than the absolute value of the determinant of A. This result renders the question of whether a par-
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ticular Q is a lattice tile into a fairly straightforward calculation. A deeper study of the matrix C

using Fourier analytic methods leads to a complete characterization of the self-similar tilings in
dimension one. It is seen that the subset �′ ⊂ � is always a sublattice that is explicitly determined
by the digits D. In particular, when 0 ∈ D, the �-translates of Q tile R if and only if the elements of
D are relatively prime. In dimension n = 2 the linear transformations can be classified as elliptic,
parabolic, or hyperbolic by considering their projections into PSL (2, C). Given a transformation
A that is elliptic, parabolic, or rational hyperbolic (i.e., rational eigenvalues), we develop various
methods that produce a digit set D for which the (�, A)-self-similar set Q tiles R

2. Furthermore, for
elliptic dilations we construct connected tiles. There is no method presented for dealing in a unified
fashion with irrational hyperbolics. These results have applications to computational number theory
and wavelet theory.

The problem of self-similar tilings has appeared in the literature in a variety of contexts. In
the classical theory of tilings the related notion of a k-rep tile is considered and it is shown that these
self-similar sets, when they exist, always “tile” R

m where “tile” is used in a fairly loose sense [14].
This approach is used to conclude that the unique (�, A)-self-similar set Q with digits D “tiles”
R

m [3].
Another viewpoint comes from what has come to be known as the field of fractal geometry.

Fractals are intriguing sets often characterized by their nonintegral Hausdorff dimension [5, 23]. The
boundaries of many self-similar sets are fractals, and some authors have studied these and the more
general fractal recurrent sets with a view to determining their Hausdorff dimensions [15]. This has
produced a fairly well-developed theory based on a construction due to Dekking [10, 6]. Our initial
approach is similar to theirs in that it gives necessary and sufficient conditions for the �-translates of
Q to tile in terms of the matrix C that catalogues the growth of the boundary of objects approximating
Q. This method was employed successfully by Gilbert [11] to compute the Hausdorff dimensions
for a family of self-similar lattice tiles that arose from complex radix expansions [12].

A beautiful theory of self-similar tilings was put forth by Thurston [27]. His approach, although
far more general in that it considers aperiodic self-similar tiling using several tiles, does not address
the question of lattice invariance and, moreover, presupposes transformations A that are Euclidean
similarities. A related approach is taken by Kenyon [17] whose work, although overlapping slightly
with ours, does not pay much attention to the lattice issue.

Most recently, self-similar lattice tilings have been found to be of interest by investigators in
the field of wavelets. In two independent papers [13, 22] the existence of a self-similar lattice tiling of
R

m was shown to imply the existence of a generalized Haar basis for L2(Rm). Such an orthonormal
basis for L2(Rm) is constructed from simple functions with support on a (�, A)-self-similar tile Q of
R

m by composition with combinations of translations in � and dilations by A. Both papers present
necessary and sufficient conditions for Q to tile based on a result by Cohen [7]. In another recent
paper [26] the existence of a digit set D producing a self-similar tile Q is demonstrated for a large
class of transformations A that are Euclidean similarities.

After the presentation [1] and dissemination of our result, the general theory of self-similar
tilings has received much attention and several papers have appeared since then or are in print
[4, 28]. The most remarkable results are due to Lagarias and Wang [19], who seem to have solved
the classification and existence problem for self-similar tilings.

2. Definitions and Results

Let λ(S) denote the Lebesgue measure of a measurable set S ⊆ R
m. We write S � T when

the measurable sets S and T are equal up to a set of measure zero.
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Let Q be a measurable subset of R
m, � a lattice in R

m, and �′ a subset of �. The �-translates
of Q tile R

m (or Q is a �′-tile of R
m) if the following two conditions are satisfied:

⋃

k∈�′
(k + Q) = R

m, (1)

(k + Q) ∩ (l + Q) � ∅ for all k, l ∈ �′, k 	= l. (2)

If �′ is a lattice, then we speak of a lattice tiling of R
m by Q.

Let A be a nonsingular linear transformation of R
m realized with respect to a basis of � as an

integral matrix with q = | det A|. Then A� is a sublattice of �, and the quotient �/A� is a finite
group of order q. A set Q is (�, A)-self-similar if there is a set D = {k0, . . . , kq−1} of distinct coset
representatives for the group �/A�, such that

AQ =
q−1⋃

i=0

(ki + Q), and (ki + Q) ∩ (kj + Q) � ∅ for i 	= j. (3)

D is called the digit set. References to � and A will be suppressed where there is no chance
for misunderstanding. It should also be noted that, although we use the term self-similar, the
transformation A need not be a Euclidean similarity. Sometimes sets satisfying (3) are referred to
as self-affine or self-replicating.

The transformation A is called a dilation if all its eigenvalues have modulus greater than one.
Given a lattice �, a dilation A, and a set of digits D as the data, several approaches exist for

producing the unique (�, A)-self-similar set Q with digit set D [3, 13]. We shall follow the point
of view taken in [13]. Since A is a dilation, the sum

∑∞
j=1 A−j εj converges for any sequence of

εj ∈ D. Then the compact set

Q(A, D) = {x | x =
∞∑

j=1

A−j εj , εj ∈ D} (4)

is the unique (�, A)-self-similar set with digit set D [13].
What follows is an outline of our main results.

2.1. Theorem

There is a subset �′ ⊆ � such that the �′-translates of Q(A, D) tile R
m.

The theorem is rather crude in that it makes no assertion regarding the structure of �′. It is
not even clear whether �′ is self-similar in the sense that for each k ∈ �′, A(k + Q) is a union of
�′-translates of Q although it is obvious from the definition (4) that Q(A, D) is always a union of
translates of Q(A, D) of the form ki + Ak with ki ∈ D.

The approach is very similar to that mentioned in [14], which is also followed by Bandt [3].
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The rest of our work is concerned with understanding when �′ is either a sublattice of � or �

itself.
Fix a basis e1, . . . , em for �, and set T0 = {±e1, . . . ,±em}. Recursively define the sets

Tn = {k ∈ � | (Ak + D) ∩ (l + D) 	= ∅ for some l ∈ Tn−1} (5)

and set T = ⋃∞
n=1 Tn. As we shall see in §4, the Tn eventually stabilize, from which we infer that

T is finite. Define a |T | × |T |-matrix C, called the contact matrix, with entries

ck,l = |(Ak + D) ∩ (l + D)| for k, l ∈ T . (6)

We use |S| to denote the cardinality of a set S.

2.2. Theorem

The �-translates of Q(A, D) tile R
m if and only if the contact matrix has spectral radius less

than | det A|.

The entries of the contact matrix are easily computed from the basic data �, A, and D. Thus
Theorem 2.2 provides an algorithm, which can be implemented on a computer, for determining
whether Q(A, D) is a �-tile.

In dimension one we use methods from Fourier analysis to study the eigenvalues of the contact
matrix. This leads to a complete understanding of the tiling properties of the sets Q(A, D) as detailed
in the following theorem.

2.3. Theorem

Let A : R �→ R be the map Ax = qx for q ∈ Z, |q| > 1; and let D = {k0, . . . , kq−1} . Set
d = gcd(k1 −k0, k2 −k0, . . . , kq−1 −k0), where ki ≡ i(mod q). Then the dZ-translates of Q(A, D)

tile R. In particular, Q(A, D) is a Z-tile if and only if the numbers k1 − k0, k2 − k0, . . . , kq−1 − k0

are relatively prime.

Although Theorem 2.2 is computationally efficient, it still leaves open the question of the
existence of lattice tilings.

In dimension two we classify the dilation A as elliptic, parabolic, or hyperbolic if A has,
respectively, no real eigenvalues, one real eigenvalue, or two real eigenvalues. In this setting the
orientation-preserving Euclicean similarities are all elliptic. One further distinguishes a class of
rational dilations, that is, those dilations with rational eigenvalues. All parabolic and some hyperbolic
dilations are of this type.

Given the data � and A one would like to determine a digit set D so that Q(A, D) is a �-tile.
We give general methods for doing this in dimension two in all cases except that of the irrational
hyperbolic dilations.

Let A be a rational dilation. Then A has an eigenvector e1 ∈ � of minimal norm. Choose
e2 ∈ � so that e1 and e2 are a basis for �. The eigenvalue a is an integer that divides q = | det A|.
Set c = q/a, and let L = {l0, l1, l2, . . .} be an arbitrary sequence of integers. Define the set

B(L) = {(lj + k)e1 + je2|j = 0, 1, . . . , |c| − 1, k = 0, 1, . . . , |a| − 1}. (7)
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2.4. Theorem

Let A be a rational dilation of the lattice �. Then for any sequence of integers L, D = B(L)

is a digit set and the �-translates of Q(A, D) tile R
2.

In order to treat the elliptic case we need some notions of a topological nature. Fix a basis e1, e2

of �, and recall the definition of T0 = {±e1, ±e2}. A set S ⊆ � is T0-connected if for any k, l ∈ S

there is a sequence k = h0, h1, . . . hr = l of elements in S, called a path, so that hj+1 − hj ∈ T0.
Also we say that k ∈ �, k 	= 0 pairs faces of the digit set D, if there is an e ∈ T0 so that

(Ak + D) ∩ (e + D) 	= ∅.

2.5. Theorem

Let {e1, e2} be a basis for � and D be a T0-connected set of digits so that e1 and e2 both pair
faces of D. Then Q(A, D) is a connected set and the �-translates of Q(A, D) tile R

2.

The previous theorem gives sufficient conditions on the digit set D for Q(A, D) to be a
connected �-tile. This can be employed with many but not all irrational hyperbolic dilations. For
elliptic dilations, however, there is a definite procedure for generating a digit set that satisfies the
hypothesis of Theorem 2.5.

Let a1, a2 ∈ R
2 be linearly independent. A half-open parallelogram is one of the sets {x =

sa1 + ta2|0 ≤ s < 1, 0 ≤ t < 1} or {x = sa1 + ta2|0 < s ≤ 1, 0 ≤ t < 1}.

2.6. Theorem

Let A be an elliptic dilation of the lattice �. Then there is a basis {e1, e2} for � and a half-open
parallelogram P spanned by Ae1 and Ae2 so that the set D = P ∩ � is a digit set satisfying the
hypothesis of Theorem 2.5; thus, Q(A, D) is a connected �-tile.

The proof is constructive in that it explicitly produces the basis.
The methods for Theorem 2.6 are applicable to a much wider class of dilations including many

hyperbolic dilations.

2.7. Theorem

Let A be a dilation matrix of the lattice Z
2 with basis e1 = (1, 0), e2 = (0, 1). Assume that

both ‖Ae1‖ ≥ √
2 and ‖Ae2‖ ≥ √

2 and that π
4 ≤ <) (Ae1, Ae2) ≤ 3π

4 . Then there is a half-open
parallelogram P spanned by Ae1 and Ae2 so that D = P ∩ Z

2 is a digit set and Q(A, D) is a
connected Z

2-tile.

Examples and Illustrations.
(1) Let � = Z, D = {0, 1, 5}, and Ax = 3x. Then Q(A, D) is a Z-tile by Theorem 2.3.

Q(A, D) × [0, 1] = Q is illustrated in Figure 1. Furthermore, Q itself is a (Z2, A)-self-similar

tile with A =
(

3 0
0 3

)

and digit set D = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (5, 0), (5, 1),

(5, 2)}. See also [25].

(2) Let � = Z
2, D = {(0, 0), (1, 0), (2, 0), (6, 1), (7, 1), (8, 1), (3, 2), (4, 2), (5, 2)}, and

A =
(

3 1
0 3

)

. Then D = B(L) as in (7) with L = (0, 6, 3) and A is a parabolic dilation with

eigenvector (1, 0). Q(A, D) is then a Z
2-tile by an application of Theorem 2.4. See Figure 2.
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FIGURE 1

FIGURE 2

(3) Let � = Z
2, D = {(j, 0)|j = 0, 1, . . . a2}, and A =

( −a −1
1 −a

)

, a ∈ Z \ {0}. For

a basis choose e1 = (1, 0) and e2 = (−a, −1). Then D is clearly a T0-connected subset of Z
2.

One easily verifies that e1 and e2 pair faces of D. By Theorem 2.5, Q(A, D) is a Z
2-tile. Thus

Theorem 2.5 contains Gilbert’s result [12] as a special case.
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FIGURE 3

(4) Let � be the hexagonal lattice with basis e1 = (1/2,
√

3/2), e2 = (1/2, −√
3/2), D =

{(0, 0), (1, 0), (1/2,
√

3/2)}, and A =
(

3/2 −√
3/2√

3/2 3/2

)

. One can check directly that D is the

set of lattice points inside the half-open parallelogram P spanned by Ae1 and Ae2 and that they satisfy
the hypothesis of Theorem 2.5. It can also be verified that the digit set D′ = {(0, 0), (1, 0), (2, 0)},
although lying outside the context of Theorem 2.6, satisfies the hypothesis of Theorem 2.5. The
(�, A)-self-similar tiles Q(A, D) and Q(A, D′) are illustrated in Figures 3 and 4.

(5) Let � = Z
2, D = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3)}, and A =

(
2 1
1 3

)

. A is an

irrational hyperbolic dilation. Q(A, D) tiles as a consequence of either Theorem 2.5 or Theorem
2.7 working with the standard basis. See Figure 5.

Applications and a Conjecture.
We end with two applications: the first to a number-theoretic question, appearing in the theory

of computation [18], and the second to wavelet theory.

(a) Number Systems. Let Z[i] = {m + ni|m, n ∈ Z} be the lattice of Gaussian integers
in C. For any q ∈ Z[i], qZ[i] is a sublattice of Z[i]. As always D will denote a set of distinct coset
representatives in Z[i] for the group Z[i]/qZ[i]. Following Kátai and Szabó [16] we say that (q, D)

is a number system if each γ ∈ Z[i] has a representation of the form

γ = ε0 + ε1q + ε2q
2 + · · · + εnq

n (8)
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FIGURE 4

FIGURE 5

where each εj ∈ D, j = 0, 1, . . . , n. In [16] (q, D) is shown to be a number system when q =
−a ± i, a > 0, D = {0, 1, . . . , a2}. Gilbert observed that these number systems could be used

to construct (A, Z
2)-self-similar tiles Q(A, D) where A =

( −a −1
1 −a

)

, a ∈ Z. Our methods

provide a wealth of new examples.
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2.8. Theorem

Given q ∈ Z[i] with |q| > 1 and q 	∈ {2, 1 ± i}, there exists a set D of residue classes mod
q, such that (q, D) is a number system. Moreover, the representation (8) is unique.

Also, extending Theorem 2 of [16] we have

2.9. Theorem

Let q ∈ Z[i] satisfying |q| > 1 and q 	∈ {2, 1 ± i}. Then there exists a set D of residue classes
mod q, such that every z ∈ C can be written in the form

z = εnq
n + · · · + ε1q + ε0 +

∞∑

j=1

ε′
j q

−j , (9)

where εj , ε
′
j ∈ D. Moreover, for almost all z ∈ C the representation is unique.

In §9 we see that there does not exist a digit set D so that (1 ± i, D) is a number system.

(b) Wavelet Theory. The following theorem on orthonormal bases was proved in [13]
under the assumption that there exist self-similar lattice tilings.

Let U = (ui,j )i,j=0,...,q−1 be a unitary (q × q)-matrix, with constant first row, that is, u0j =
q−1/2, j = 0, . . . , q − 1. Given a compact set Q ⊆ R

2 and a finite set D = {k0, . . . , kq−1} ⊆ R
2,

define the functions ψi(U, Q, D) : R
2 �→ R

2 by

ψi(U, Q, D)(x) =
q−1∑

j=0

uij q
1/2χQ(Ax − kj ) for i = 1, . . . , q − 1. (10)

2.10. Theorem

Let � ⊆ R
2 be a lattice and A an elliptic, parabolic, or hyperbolic rational dilation on �.

Then there is a set of digits D = {k0, . . . , kq−1} so that Q = Q(A, D) is a �-tile. Given any unitary
(q × q)-matrix U with constant first row and associated functions ψi = ψi(U, Q, D), the collection
of functions

qj/2ψi(A
jx − k) j ∈ Z, k ∈ �, i = 1, . . . , q − 1,

is a complete orthonormal basis for L2(R2).

(c) A Conjecture. All results of this paper, especially the analysis in §5, lead us to the

Conjecture. Let D be a digit set for � and A, and let �′ be the lattice generated by
{Aj(kl − k0), j ≥ 0, l = 1, . . . , q − 1}. Then the �′-translates of Q(A, D) tile R

m. �
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The rest of the paper is devoted to the proofs and is organized as follows. Section 3 gives some
notation, some necessary facts from [13], and a proof that Q(A, D) always tiles. In §4 we develop
the theory of the contact matrix and prove the criterion for lattice tilings in terms of the matrix.
Section 5 treats the one-dimensional case, §6 the rational dilations in R

2, §7 connected tiles in R
2,

and in § 8 we prove the existence of lattice tilings in R
2 for elliptic dilations. Section 9 contains the

results on number systems.

3. Q(A,D) Always Tiles

We first collect some notation and some facts needed in later sections.
Given �, A, and D, let e1, . . . , em be a basis for � and Q0 the parallelepiped spanned by the

basis vectors. Define

Qn = A−1

(
⋃

k∈D
(k + Qn−1)

)

. (11)

These sets are approximations to Q(A, D) that are central to the approach in [13] and continue to
be of importance in our work. In the language of [5] Q is the attractor of an iterated function system
and the Qn arise by letting the system act on Q0.

The important facts concerning this construction are detailed in the following lemma. Their
proofs are either easy and left to the reader or may be found in [13].

Set

Dn = {k ∈ �|k =
n−1∑

j=0

Ajεj , εj ∈ D} . (12)

Given a set S ⊆ R
m, we denote the difference set by �S = {x = s − s ′|s, s ′ ∈ S}.

3.1. Lemma

1. |Dn| = qn, and for l ∈ �, l 	= 0 we have

(Anl + Dn) ∩ Dn = ∅ and
⋃

k∈�

(Ank + Dn) = �.

2. AnQn = ⋃
k∈Dn

(k + Q0) and AnQ(A, D) = ⋃
k∈Dn

(k + Q(A, D)).

3. The �-translates of Qn tile R
m for all n ≥ 0.

4. Qn converges to Q(A, D) in the compact-open topology.

5. The �-translates of Q(A, D) cover R
m,

⋃
k∈�(k + Q(A, D)) = R

m.



Self-Similar Lattice Tilings 141

For the remainder of the section fix a lattice � and a dilation A. It is easy to find a necessary
and sufficient but rather unsatisfactory condition on the digits D to produce a �-tile Q(A, D).

3.2. Proposition

Let D be a set of digits. Then Q(A, D) is a �-tile if and only if
⋃∞

n+1 �Dn = �.

From this follows immediately a necessary condition for tiling that is easy to check:

3.3. Corollary

Let D be a digit set for which Q(A, D) is a �-tile. Then the set {Aj(ki − k0), j ≥ 0, i =
0, . . . , q − 1} generates �.

Proof of the Proposition. Assume that
⋃∞

n=1 �Dn = �. Since each k ∈ � can be written
as k = l − l′, l, l′ ∈ Dn, for some n ≥ 1, it suffices to show

(l + Q) ∩ (l′ + Q) � ∅ for all l, l′ ∈ Dn and for all n ≥ 1. (13)

For this we take measure on both sides of the equation AnQ = ⋃
l∈Dn

l + Q and obtain

qnλ(Q) = λ(AnQ) = λ(
⋃

l∈Dn

l + Q) ≤
∑

l∈Dn

λ(l + Q) = qnλ(Q)

and thus the equality of λ(
⋃

l∈Dn
l +Q) and

∑
λ(l +Q). This is only possible if the translates l +Q,

l ∈ Dn, are mutually disjoint a.e., which was to be shown.
The converse follows from the following statement: If Q(A, D) is a �-tile, then for all R > 0

there exist n, N > 0 and k ∈ � so that B(ANk, R) ∩ � ⊆ DN+n. Here k ∈ � and n > 0 can be
chosen to be independent of R.

Denote the diameter of Q by δ. Observe that by Baire’s theorem, since �-translates of Q cover
R

m, Q has nonempty interior . Therefore, there are n ≥ 0 and k ∈ � so that k ∈ AnQ0 and an ε > 0
so that B(k, ε) ⊆ AnQ0.

Since by assumption on A all sufficiently large powers of A−1 are contractive, for any R > 0
there exists an N > 0 such that

B(ANk, R + δ) ⊆ ANB(k, ε) ⊆ AN+nQ.

Clearly l + Q ⊆ B(ANk, R + δ) for l ∈ B(ANk, R); therefore, we obtain the inclusions

⋃

l∈B(AN k,R)∩�

(l + Q) ⊆ ANB(k, ε) ⊆ AN+nQ =
⋃

l∈DN+n

(l + Q).
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We have assumed that �-translates of Q are mutually disjoint; hence,

B(ANk, R) ∩ � ⊆ DN+n

as desired. �

Although easy counterexamples show that Q(A, D) need not in general be a �-tile, it does
always tile R

m with respect to some subset of �.

3.4. Theorem

Let D be a set of digits and Q(A, D) be the resulting self-similar set. Then there exists a set
�′ ⊆ � so that

⋃

l∈�′
l + Q = R

m and (l + Q) ∩ (l′ + Q) � ∅ for l 	= l′, l, l′ ∈ �′.

Proof. As in the proof of the previous proposition there is a lattice point k ∈ � and an
n ≥ 0 so that k ∈ AnQ0. Set R = AnQ − k. Notice that R now contains an open neighborhood of
0. Let Uj be the connected component of 0 in AjR. With the notation D̄m = {l − Amk|l ∈ Dm+n}
the dilates of R become AmR = ⋃

l∈D̄m
l + Q where the translates l + Q, l ∈ D̄m, are mutually

disjoint by (13).
Set Xm,j = {l ∈ D̄m : (l + Q) ∩ U 0

j 	= ∅}.
Suppose Nj are a sequence of infinite subsets of N with Nj+1 ⊆ Nj so that for m, m′ ∈ Nj ,

Xm,j = Xm′,j . Set Xj = Xm,j for some, and hence all, m ∈ Nj . Since powers of A are expansive,
we have Uj ⊆ Uj+1 for j ∈ N, and therefore, Xj ⊆ Xj+1 for j ∈ N.

Then �′ = ⋃
Xj ⊆ � has the desired properties. Since

⋃
j≥0 Uj = R

m, we have
⋃

l∈�′ l+Q =
R

m. Also (l + Q) ∩ (l′ + Q) = ∅, l 	= l′, l, l′ ∈ �′ follows from the fact that the Xm,j are subsets
of D̄m.

Finally we construct the infinite subsets Nj ⊆ N by induction.
Since there are only finitely many possibilities for covering the bounded set U0 by translates,

there exists an infinite subset N0 ⊆ N so that for m, m′ ∈ N0 we have Xm,0 = Xm′,0.

Suppose that N0 ⊃ N1 ⊃ · · · ⊃ Nj are already defined. Define an equivalence relation m ∼ m′

on Nj by Xm,j+1 = Xm′,j+1, m, m′ ∈ Nj . By the same combinatorial argument as above there are
only finitely many equivalence classes. At least one of these is an infinite subset of Nj . Choose one
of these infinite classes and call it Nj+1. This finishes the proof. �

4. A Criterion for Lattice Tilings

There is an important measure-theoretic counterpart to the disjointness condition (2) in the
definition of a tiling. We already know by Lemma that the �-translates of the self-similar set
Q(A, D) ⊆ R

m cover R
m. Let Q0 be the parallelepiped spanned by a basis of �. Since a �-tile

is a fundamental domain for R
m/� and the volume of a fundamental domain is an invariant, we

have [13]:
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4.1. Proposition

λ(Q(A, D)) ≥ λ(Q0) and the �-translates of Q(A, D) tile R
m if and only if λ(Q(A, D)) =

λ(Q0).

The tiling criterion given by the proposition will be employed frequently.

4.2. Lemma

Let V be an invertible linear transformation on R
m; and set A′ = V AV −1, �′ = V �,

D′ = V D. Then Q(A′, D′) = V Q(A, D). Thus, Q(A′, D′) is a �′-tile if and only if Q(A, D) is a
�-tile.

If V maps a basis of � to the standard basis of Z
m, then A′ has integer entries and �′ = Z

m.

In the following we may, whenever it is convenient, assume that A is an integral matrix acting
on � = Z

m.
The proof of Theorem 2.2 will proceed in several parts.
Recall that the nth approximation of Q(A, D) is Qn = ⋃

k∈Dn
A−nk + A−nQ0 and let Q̂n =

AnQn = ⋃
k∈Dn

k + Q0. First we show that λ(Q) = 1 if and only if the boundaries of the

approximating Q̂n grow sufficiently slowly.
The set Q̂n is a union of m-cubes with vertices at integral lattice points. Two cubes k +Q0 and

l+Q0 with l, m ∈ Zm have a (m−1)-face in common if and only if k− l ∈ T0. The boundary of Q̂n,
written ∂Q̂n, consists of those faces of the cubes Q0 + k, k ∈ Dn, that are not common to two such
cubes. Let σ(∂Q̂n) denote the number of faces on the boundary of Q̂n. We write Q = Q(A, D).

4.3. Proposition

λ(Q) = 1 if and only if limn→∞ q−nσ (∂Q̂n) = 0.

For a subset S of R
m and ε > 0 let N(S, ε) denote the neighborhood of S of radius ε. The

collar about S of radius ε is the set C(S, ε) = N(S, ε)\S.

We shall need the following fact, which is seen by considering the Jordan form of the dilation
A : there exist positive constants C, λ, r with λ > 1 so that for all x,y ∈ R

m and integers n ≥ 0

||A−nx − A−ny|| ≤ Cλ−nnr ||x − y|| (14)

and, therefore,

A−nN(AnS, ε) ⊆ N(S, Cλ−nnrε).

4.4. Lemma

There is a constant a > 1 such that for all n ≥ 0

AnQ ⊆ N(Q̂n, a) (15)
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and

Q̂n ⊆ N(AnQ, a). (16)

Proof. Choose a > 0 so that Q ⊆ N(Q0, a) and Q0 ⊆ N(Q, a). We argue by induc-
tion. Suppose AnQ ⊆ N(Q̂n, a). Then An+1Q = An(

⋃
k∈D k + Q) = ⋃

k∈D(Ank + AnQ) ⊆
⋃

k∈D Ank + N(Q̂n, a) = ⋃
k∈D N(Ank + Q̂n, a) = N(Q̂n+1, a). On the other hand, if Q̂n ⊆

N(AnQ, a), then Q̂n+1 ⊆ ⋃
k∈Dn+1

(k + N(Q, a)) = N(An+1Q, a) using Lemma 3.1(2). �

Proof of Proposition 4.3. First assume that limn→∞ q−n∂(Q̂n) = 0. Let Im−1 be an
(m − 1) face of the unit cube Q0 ⊆ R

m. The boundary of Q̂n is a union of translates of m − 1 faces
of Q0. Thus, by taking neighborhoods of all faces of ∂Q̂n we obtain the estimate λ(C(Q̂n, a)) ≤
λ(N(Im−1, a))σ (∂Q̂n), and consequently λ(A−nC(Q̂n, a)) ≤ λ(N(Im−1, a))q−nσ (∂Q̂n) for any
a > 0. Applying the hypothesis we deduce that

lim
n→∞ λ(A−nC(Q̂n, a)) = 0. (17)

Now we show that λ(Q) = 1. Choose a to be as in Lemma 4.4. We write

Q = A−n[AnQ ∩ C(Q̂n, a)] ∪ (Q ∩ Qn).

By (17) the measure of the first term on the right vanishes in the limit and we obtain λ(Q) =
limn→∞ λ(Q∩Qn).Using thatλ(Q) ≥ 1 andλ(Qn) = 1 for alln, we get 1 ≤ λ(Q) = limn→∞ λ(Q∩
Qn) ≤ 1 and, consequently, λ(Q) = 1.

To prove the converse we assume that λ(Q) = 1. For each face Im−1 of ∂Q̂n take a plate of
height 1

2 of the form Im−1 × [0, 1
2 ] where the arc p × [0, 1

2 ], for p ∈ Im−1, is orthogonal to Im−1 and

meets Q̂n in the face Im−1. The plate on Im−1 is contained in N(Im−1, a), and two plates can only
meet in sets of lower dimension. Thus the union of these plates is contained in C(Q̂n, a) and we
have

1

2
σ(∂Q̂n) ≤ λ(C(Q̂n, a)).

This implies

1

2
q−nσ (∂Q̂n) ≤ λ(A−nC(Q̂n, a)). (18)

From (16) we may infer thatC(Q̂n, a) = N(Q̂n, a)\Q̂n ⊆ N(N(AnQ, a), a)\Q̂n ⊆ N(AnQ, 2a)\Q̂n.

Applying A−n and taking the measure on both sides gives

λ(A−nC(Q̂n, a)) ≤ λ(A−nN(AnQ, 2a)) − λ(Qn). (19)
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The estimate (14) tells us that there are constants λ, r, a′ so that for all n ≥ 0

Q ⊆ A−nN(AnQ, 2a) ⊆ N(Q, λ−nnra′).

Combining this with the estimates (18) and (19) yields

1

2
q−nσ (∂Q̂n) ≤ λ(A−nN(AnQ, 2a)) − λ(Qn)

≤ λ(N(Q, λ−nnra′)) − λ(Qn).

Since N(Q, λ−nnra′) is a neighborhood basis of the compact set Q, the regularity of Lebesgue
measure implies that limn→∞ λ(N(Q, λ−nnra′)) = λ(Q), which is 1 by hypothesis. As λ(Qn) = 1
for all n ≥ 0 we conclude that limn→∞ q−nσ (∂Q̂n) = 0. �

We must now relate the growth of ∂Q̂n to the contact matrix C. We begin with a digression in
which we clarify the definition of the set of contact points T and prove its finiteness.

Let T ∗
n = {l ∈ Z

m
0 |(Anl + Dn) ∩ (f + Dn) 	= ∅ for some f ∈ T0} where Z

m
0 = Z

m \ {0}.
Observing that as Dn is precisely the set of points of the form

∑n−1
i=0 Aiεi, εi ∈ D, l ∈ T ∗

n is
characterized by stipulating that

Anl = f +
n−1∑

i=0

Ai(εi − ε′
i ) for f ∈ T0 and εi, ε

′
i ∈ D. (20)

4.5. Lemma

1. Tn = T ∗
n .

2. T is the smallest set such that T0 ⊂ T and D ∪ (T + D) ⊆ D ∪ (AT + D).

3. Dn ∪ (T + Dn) ⊆ Dn ∪ (AnT + Dn) for n ≥ 1.

4. T is finite.

Proof. (1) We argue by induction. Suppose that k ∈ Tn if and only if Ank can be written
in the form (20). By definition l ∈ Tn+1 if and only if (Al + D) ∩ (k + D) 	= ∅ for some k ∈ Tn

and, hence, if and only if (An+1l + AnD) ∩ (Ank + AnD) 	= ∅ for some k ∈ Tn. Using the inductive
hypothesis, this holds if and only if (An+1l + AnD) ∩ (f + ∑n−1

i=0 Ai(εi − ε′
i ) + AnD) 	= ∅ for

some f ∈ T0, εi, ε′
i ∈ D or, equivalently, An+1l + Anε′

n = f + ∑n−1
i=0 Ai(εi − ε′

i ) + Anεn for
some f ∈ T0, εi, ε′

i ∈ D, i = 0, . . . , n. The last assertion is equivalent to An+1l being of the form
(20) and thus of l belonging to T ∗

n .

(2) Suppose e ∈ T is in Tn for some n ≥ 0. Then, by definition of Tn+1, e + D ⊆ D ∪
(ATn+1 + D) ⊆ D ∪ (AT + D). To show minimality of T , let T ′ be another set with T0 ⊆ T ′ and
T ′+D ⊆ D∪(AT ′+D). Assume that we know already that Tk ⊆ T ′ for k ≤ n, and keep in mind that
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the AZ
m-translates of D are all disjoint. If e ∈ Tn+1\T ′, then for some l ∈ Tn, l + D ∩ Ae + D 	= ∅

and l + D 	⊆ D ∪ (AT ′ + D), a contradiction. Thus Tn+1 ⊂ T ′ and
⋃

k≥0 Tk ⊆ T ′.
(3) This follows by induction. The first step was (2). Now suppose that the result holds for n.

Then

T + Dn+1 = T + Dn + AnD

⊆ (AnT + Dn + AnD)
⋃

(Dn + AnD)

⊆ (An(T + D) + Dn)
⋃

Dn+1

⊆ (An(AT + D) + Dn)
⋃

Dn+1

= (An+1T + Dn+1)
⋃

Dn+1.

(4) Choose a digit k0 ∈ D. By part (1), l ∈ Tn can be written in the form

l = [A−nf +
n−1∑

i=0

Ai−nεi −
n−1∑

i=0

Ai−nε′
i]

= [A−nf + (

n−1∑

i=0

Ai−nεi +
∞∑

i=n

A−ik0) − (

n−1∑

i=0

Ai−nε′
i +

∞∑

i=n

A−ik0)]

for some f ∈ T0, εi, ε
′
i ∈ D. Notice that A−nf ∈ A−nR where R = [−1, 1]m and that the two sums

belong to Q. Thus for n > 0, Tn ⊆ ⋃∞
r=0 A−rR + Q − Q, which is a compact set. Consequently T

is finite. �

The next lemma provides a means for counting the number of faces on ∂Q̂n.

4.6. Lemma

σ(∂Q̂n) = ∑
f ∈T0,l∈T |Anl + Dn ∩ f + Dn|.

Proof. Since the An
Z

m-translates of Q̂n tile R
m, the intersection (Anl + Q̂n)∩ Q̂n, l ∈ Z

m,
is either empty or a subset of ∂Q̂n. Moreover, every (m − 1) face of ∂Q̂n lies in exactly one such
intersection. Hence we may write

σ(∂Q̂n) =
∑

l∈Z
m
0

σ(Anl + Q̂n ∩ Q̂n) =
∑

k,k′∈Dn

l∈Z
d
0

σ(Anl + k′ + Q0 ∩ k + Q0)

where the last equality is a consequence of the decomposition of Q̂n into Dn-translates of Q0.
As discussed earlier, σ(k +Q0 ∩ k′ +Q0) = 1 if and only if k − k′ ∈ T0 (and it takes the value

zero otherwise). It follows that σ(Anl + k′ + Q0 ∩ k + Q0) = 1 if and only if Anl + k′ − k ∈ T0 or,
equivalently, |Anl + k′ ∩ f + k| = 1 for some f ∈ T0.
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Consequently, the above equality may be continued to give

σ(∂Q̂n) =
∑

k,k′∈Dn
l∈Z

m
0

f ∈T0

|Anl + k′ ∩ f + k| =
∑

f ∈T0
l∈Z

m
0

|Anl + Dn ∩ f + D|. (21)

That completes the proof, since by Lemma 4.5(3), |Anl + Dn ∩ f + Dn| > 0 if and only if
l ∈ T . �

The last three lemmas point to a nice geometric interpretation of the sets Tn. As was observed
in the proof of Lemma 4.6, each Qn will intersect finitely many of its Z

m-translates; these are of the
form k + Qn for k ∈ Tn. Thus the set T records those translates that pair boundary faces of Qn for
some n ≥ 0.

The information about intersecting translates can be given a quantitative form. Let En be the
|T | × |T | matrix with entries e

(n)
lf = |Anl + Dn ∩ f + Dn| where f, l ∈ T . In these terms Lemma

becomes σ(∂Q̂n) = ∑
f ∈T0,l∈T e

(n)
lf .

The next lemma shows that the matrix C is rich enough to describe all of the matrices En and,
thus, also the growth of ∂Q̂n.

4.7. Lemma

For l, f ∈ T , n > 0, we have |Anl + Dn

⋂
f + Dn| = (Cn)lf , and consequently σ(∂Q̂n) =∑

f ∈T0,l∈T (Cn)lf .

Proof. As Dn = ⋃q−1
i=0 (An−1ki +Dn−1) where the sets An−1ki +Dn−1 are mutually disjoint,

we have the following

|(Anl + Dn) ∩ (f + Dn)|

= |
q−1⋃

i=0

q−1⋃

j=0

(Anl + An−1kj + Dn−1) ∩ (f + An−1ki + Dn−1)|

=
q−1∑

i=0

q−1∑

j=0

|(Anl + An−1kj + Dn−1) ∩ (f + An−1ki + Dn−1)|

=
q−1∑

i=0

q−1∑

j=0

|(An−1(Al + kj − ki) + Dn−1) ∩ (f + Dn−1)|. (22)

By Lemma 4.5

(An−1(Al + kj − ki) + Dn−1) ∩ (f + Dn−1) 	= ∅

if and only if Al+kj −ki ∈ Tn−1. For each m ∈ T the number of pairs (i, j) for which Al+kj −ki = m
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is |Al + D ∩ m + D|. Thus by collecting together such pairs (22) becomes

|Anl + Dn ∩ f + Dn|

=
∑

m∈T
|Al + D ∩ m + D| |An−1m + Dn−1 ∩ f + Dn−1|

=
∑

m∈T
clme

(n−1)
mf ;

in other words, En = CEn−1. Repeating this argument gives En = Cn.

Interpreting Lemma 4.6 in terms of En we have

σ(∂Q̂n) =
∑

f ∈T0
l∈T

e
(n)
lf =

∑

f ∈T0
l∈T

(Cn)lf

as claimed. �

We are now in a position to complete the proof of Theorem 2.2. Using the tiling criterion of
Proposition 4.1, the theorem may be restated as

4.8. Theorem

The �-translates of Q(A, D) tile R
m if and only if r(C) < q. Furthermore, if λ(Q) 	= 1, then

r(C) = q.

Proof. If r(C) < q, then 1
q
C is a contraction and consequently limn→∞ q−nCn = 0, the

zero matrix. In particular, q−n
∑

f ∈T0,l∈T (Cn)lf = q−nσ (∂Q̂n) converges to zero. By Proposition
4.3, λ(Q) = 1.

To see that λ(Q) 	= 1 implies r(C) = q, we observe that the matrix q−1C is substochastic;
i.e., q−1 ∑

l∈T clk ≤ 1. This follows since (Al + D) ∩ (Al′ + D) = ∅ for l 	= l′, and consequently,
q−1 ∑

l∈T clk = q−1 ∑
l∈T |(Al+D)∩(k+D)| = q−1|[⋃l∈T (Al+D)]∩(k+D)| ≤ q−1|k+D| = 1.

Then as q−1C is a nonnegative matrix it follows that r(q−1C) ≤ 1 [20, Chapter 10]. Thus we always
have r(C) ≤ q.

Now we argue the converse. Ifλ(Q) = 1, then by Proposition limn�→∞ q−n
∑

f ∈T0,l∈T (Cn)lf =
limn�→∞ q−nσ (∂Q̂n) = 0. Therefore, limn �→∞ q−n(Cn)lf = 0 for l ∈ T , f ∈ T0. More generally,
since (Anl + Dn) ∩ Dn = ∅, we have (Cn)lk = |(Anl + Dn) ∩ (k + Dn)| ≤ ‖k‖σ(∂Q̂n) for any
k, l ∈ T . Here the number on the right side bounds the cardinality of the set of lattice points lying
within a neighborhood of width ‖k‖ of ∂Q̂n inside Q̂n.

It follows that limn�→∞ q−nCn = 0. Thus C cannot have an eigenvector of eigenvalue q, and
we conclude r(C) < q. �

In the next section a more refined version of Theorem 4.8 is needed. We end this section by
deriving the necessary variation.
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4.9. Lemma

1. k ∈ T if and only if −k ∈ T and c−l,−k = clk.

2. Given a vector u = (uk), k ∈ T , define ū = (ūk) by ūk = u−k . If u is an eigenvector of C

with eigenvalue λ, then so is ū.

Proof. (1) Using Lemma 4.5, k ∈ T if and only if Ank + Dn ∩ f + Dn 	= ∅ for some n >

0, f ∈ T0; or in other words, Ank+d1 = f +d2 for somen > 0, f ∈ T0, andd1, d2 ∈ Dn.Multiplying
both sides by −1 and shifting the di gives An(−k)+d2 = −f +d1 or An(−k)+Dn ∩−f +Dn 	= ∅
for some n > 0, f ∈ T0. That proves the first assertion.

To see the relation between the entries of C write

clk = |Al + D ∩ k + D| =
∑

d1,d2∈D
|Al + d1 ∩ k + d2|.

Then Al + d1 = k + d2 if and only if A(−l) + d2 = −k + d1, which implies that

clk =
∑

d1,d2∈D
|A(−l) + d2 ∩ −k + d1| = c−l−k.

(2)
∑

k∈T clkūk = ∑
k∈T clku−k = ∑

k∈T c−l,−ku−k = λu−l = λūl . Thus Cū = λū. �

4.10. Proposition

λ(Q) 	= 1 if and only if there is a nonzero, nonnegative vector v = (vk), k ∈ T , with v−k = vk

satisfying Cv = qv.

Proof. By Theorem 4.8 the existence of such an eigenvector v immediately implies λ(Q) 	=
1. To prove the converse we use the Frobenius Theorem. Since C is nonnegative, there is a nontrivial,
nonnegative eigenvector u with eigenvalue r(C) = q. By Lemma 4.9 ū is also an eigenvector with
eigenvalue q. The vector u + ū has the asserted properties. �

5. Self-Similar Lattice Tilings in Dimension 1

In order to obtain more information about the matrix C and the dependence of its spectrum on
the choice of digits we shall investigate its Fourier transform.

Fix a dilation A of the lattice Z
m and a digit set D = {k0, . . . , kq−1}. Let  be the finite-

dimensional subspace of l2(Zm) of sequences a = (ak), k ∈ Z
m, where ak = 0 for k 	∈ T . Interpret

the contact matrix C as a linear operator on  by setting (Ca)(l) = ∑
k∈T clkak for l ∈ T and zero

otherwise.
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Let F : L2(Tm) → l2(Zm) be the Fourier transform, that is

ˆf (k) = Ff (k) = 1

(2π)m

∫

[0,2π ]m
f (x)e−ik·x dx

for f ∈ L2(Tm) = L2([0, 2π ]m).

Let ̂ = {f ∈ L2(Tm)| f (x) = ∑
k∈T ake

ik·x}, the finite-dimensional space of trigonometric
polynomials supported on T . One easily sees that F̂ = . Define the linear operator Ĉ on ̂ by
Ĉ = F−1CF . Since F is unitary, the operators C and Ĉ have identical spectra.

Define the function m ∈ L2(Tm) by m(x) = 1
q

∑q−1
j=0 eikj ·x. Let B = At , and choose a complete

set {lj } of representatives of the group Z
m/BZ

m with l0 = 0, in other words,
⋃q−1

i=0 (lj +BZ
m) = Z

m.

5.1. Lemma

1.
1

q

q−1∑

j=0

e2πik·B−1lj =
{

1 if k ∈ AZ
m,

0 otherwise.

2.
q−1∑

j=0

|m(x + 2πB−1lj )|2 = 1 for all x ∈ R
m.

Proof. Define χj (k) = e2πik·B−1lj . If k ∈ AZ
m, then A−1k ∈ Z

m and χj (k) = e2πik·B−1lj =
e2πiA−1k·lj = 1. This gives the first assertion of (1).

For k ∈ Z
m consider the finite subset Gk = {χj (k)| j = 0, . . . , q − 1} of the unit circle in C.

One easily verifies that Gk is a finite multiplicative, hence cyclic, subgroup of C
∗ and that lj → χj (k)

defines a homomorphism of Z
m/BZ

m onto Gk .

We claim that for k 	∈ AZ
m, Gk is a nontrivial subgroup of C

∗. It will suffice to show that
χj (k) 	= 1 for some 0 ≤ j < q. If this were not true, then for all j = 0, . . . , q − 1 we would have
1 = χj (k) = e2πik·B−1lj = e2πik·B−1(lj +Bl) for any l ∈ Z

m. As every l′ ∈ Z
m is of the form lj + Bl

for some 0 ≤ j < q and l ∈ Z
m, 1 = e2πik·Bl′ = e2πiA−1k·l′ for all l′ ∈ Z

m, and hence A−1k ∈ Z
m,

contrary to hypothesis.

As a homomorphic image of Z
m/BZ

m, Gk has order dividing q; therefore, its elements must
satisfy the polynomial equation 0 = zq − 1 = (z − 1)(zq−1 + · · · + 1). Choosing as generator of
Gk , z = χ(k) say, the last term of the right gives

∑q−1
j=0 χj (k) = 0 as required.

The proof of (2) is by computation:

q−1∑

j=0

|m(x + 2πB−1lj )|2 = 1

q2

q−1∑

j,r,s=0

ei(kr−ks )·(x+2πB−1lj )

= 1

q

q−1∑

r,s=0

ei(kr−ks )·x
(

1

q

q−1∑

j=0

e2πi(kr−ks )·B−1lj

)
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= 1

q

q−1∑

r,s,=0

ei(kr−ks )·xδrs = 1,

where we have used (1) and the fact that kr − ks ∈ AZ
m if and only if r = s. �

The next lemma provides an intrinsic formulation of the operator Ĉ. It is essentially due to
Lawton [21]. Since we also need that Ĉ leaves ̂ invariant, we include its short proof.

5.2. Lemma

Ĉf (x) = q
∑q−1

j=0 |m(B−1(x + 2πlj )|2f (B−1(x + 2πlj )), where f ∈ ̂.

Proof. Let f (x) = ∑
k∈T ake

ikx . We show that with Ĉ defined as in the statement of the
lemma, C(Ff )(l) = F(Ĉf )(l) for all l ∈ Z

m.
Since Ff (k) = ak for k ∈ T and Ff (k) = 0 for k ∈ T , C(Ff )(l) = ∑

k∈T clkak for l ∈ T
and zero otherwise. On the other hand,

Ĉf (x) = 1

q

q−1∑

j,r,s=0

ei(kr−ks )·(B−1x+2πB−1lj )

(
∑

k∈T
ake

ik·(B−1x+2πB−1lj )

)

=
∑

k∈T
ak

q−1∑

r,s=0

ei(kr−ks+k)·B−1x

(
1

q

q−1∑

j=0

e2πi(kr−ks+k)·B−1lj

)

.

By Lemma 5.1 the last expression in parenthesis is nonzero if and only if kr − ks + k = Al for some
l ∈ Z

m, in other words, if and only if Al + D ∩ k + D 	= ∅ for some l ∈ Z. Since k ∈ T , we also
have l ∈ T by Lemma 4.5. Carrying out the summation over r and s gives

Ĉf (x) =
∑

k∈T
ak

∑

l∈T
eiAl·B−1x |Al + D ∩ k + D| =

∑

l,k∈T
clkake

il·x.

Thus (FĈf )(l) = ∑
k∈T clkak for l ∈ T and zero otherwise, as was to be proved. �

Now it is possible to derive an equivalent formulation of Proposition 4.10 in terms of the
operator Ĉ.

5.3. Proposition

λ(Q) 	= 1 if and only if there is a nonconstant, real-valued function f ∈ ̂ satisfying Ĉf = qf.

Proof. Suppose λ(Q) 	= 1. Let a ∈ R
m be the vector given by Proposition with Ca = qa

and ak = a−k. Then F−1a = ∑
k∈T ake

ik·x is a real-valued eigenfunction of Ĉ of eigenvalue q. By
definition, 0 	∈ T , and consequently F−1a is nonconstant.
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Now let f ∈ ̂ satisfy Ĉf = qf . Then Ff is a vector in  with C(Ff ) = qFf . It follows
from Theorem 4.8 that λ(Q) 	= 1. �

So far we have considered the general case of a dilation A of R
m. Throughout the remainder

of this section our attention shall be restricted to the one dimensional case of the dilation Ax = qx

of R, for q ∈ Z, |q| > 1.

5.4. Lemma

Suppose that the operator Ĉ has a nonconstant, real-valued eigenfunction f ∈ ̂ of eigenvalue
q. Then there are positive integers r and s with 0 < s < qr − 1 so that for x = 2πs/(qr − 1),
m(x) = 1.

Proof. Recall that f satisfies Ĉf = q
∑q−1

j=0 |m(
x+2πj

q
)|2f (

x+2πj

q
) = q f. In dimension

one Lemma 5.1 takes the form

q−1∑

j=0

∣
∣
∣
∣m

(

y + 2πj

q

)∣
∣
∣
∣

2

= 1, (23)

and therefore we can write

0 = Ĉf − qf = q

q−1∑

j=0

∣
∣
∣
∣m

(
x + 2πj

q

)∣
∣
∣
∣

2 [

f

(
x + 2πj

q

)

− f (x)

]

. (24)

We now analyze the structure of the set of absolute extreme points of f , which we refer to as
extrema. Two extrema x, y are said to be of the same type if they are either both maxima or minima.
As f is nonconstant and 2π -periodic, it has distinct maxima and minima. Thus we may choose an
extremum x0 of f so that 0 < x0 < 2π.

Take y = x0/q. For some j0 the term m(y + 2πj0

q
) in (23) is nonzero, and consequently we

must have f ((x0 + 2πj0)/q) = f (x0). Thus x1 ≡ ((x0 + 2πj0)/q)(mod 2π) is an extremum of
the same type as x0 with qx1 ≡ x0 mod 2π and 0 < x1 < 2π. Repeating this argument produces a
sequence of extrema x0, x1, . . . , xr all of the same type with qxi ≡ xi−1 (mod 2π) and 0 < xi < 2π.

Since f is a trigonometric polynomial, it has only a finite number of extrema mod 2π. Thus
for some r and i with 0 ≤ i < r , xr = xi . Let r be the smallest value for which this occurs. We
claim that xr = x0. If not, then i > 0 and xi−1 ≡ qxi = qxr ≡ xr−1. It follows that xi−1 = xr−1y ,
contradicting the minimality of r . Therefore for all i, qr xi ≡ xi mod 2π. This may be written
as qrxi = xi + 2πs for an integer s, depending on i, with 0 < s < qr − 1, or in other words,
xi = 2πs/(qr − 1).

We refer to the sequence x0, . . . , xr as a cycle of extrema. The proof will be completed by
showing that m(x1) = 1. The same argument works with any xi .

Let x∗ be an element in the above cycle of extrema. Then for j not divisible by q, x∗ + 2πj

q

cannot be an extremum of the same type as x∗. If it were, then since q(x∗ + 2πj

q
) = qx∗ mod 2π ,

the cycle of extrema could be constructed to contain both x∗ and x∗ + 2πj

q
. More precisely, if the

original cycle has length r , then starting with x0 = x∗ one may consistently set xr = x∗ + 2πj

q
and

continue defining the cycle, as above. Then x∗ + 2πj

q
≡ qR(x∗ + 2πj

q
) ≡ qRx∗ ≡ x∗ mod 2π , where

R is the length of the cycle. This is clearly impossible.
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By the previous argument (x0 + 2πj)/q for j 	= j0 and 0 ≤ j < q cannot be an extremum of
the same type as x0. Therefore, from (24) we see that for j 	= j0, m((x0 + 2πj)/q) = 0 and by (23)
conclude that m(x1) = m((x0 + 2πj0)/q) = 1. �

Remark. The analysis of the extrema of an eigenfunction of Ĉ is adapted from [9]. The
operator Ĉ plays an important role in many recent results in wavelet theory, since its spectrum
encodes information on the orthonality or smoothness of wavelet bases, see for instance [8].

Almost all steps in Lemma 5.4 can be extended to higher dimensions. However, since in
higher dimensions the set of extrema of a trigonometric polynomial is in general nondiscrete, our
analysis breaks down. Nevertheless we think that in some form the result carries over to arbitrary
dimension. �

We end this section with a proof of Theorem 2.3.

Proof of Theorem 2.3. We work with the tiling criterion of Proposition 4.1. Observe that
there is no loss of generality in assuming that k0 = 0. This follows by considering the construction
based around the modified digit set D′ = {0, k1 −k0, . . . , kq−1 −k0}. Then Q(A, D′) = {x ∈ R|x =∑

ε′
j q

−j , ε′
j ∈ D′} = {x ∈ R|x = ∑

(εj − k0)q
−j , εj ∈ D} = Q(A, D) − (

∑∞
j=1 k0q

−j ), and so
Q(A, D′) and Q(A, D) have the same measure.

First suppose that gcd D = d > 1. The elements of D∗ = {0, k1/d, . . . , (kq − 1)/d}
are distinct mod q, and therefore D∗ is also a set of digits for the dilation q of R. It is known
from Proposition 4.1 that in general λ(Q(A, D∗) ≥ 1. Since Q(A, D) = dQ(A, D∗), we obtain
λ(Q(A, D)) = dλ(Q(A, D∗) ≥ d > 1.

To argue the converse assume that λ(Q(A, D)) > 1. Proposition 5.3 asserts the existence of
a nonconstant, real-valued eigenfunction f of Ĉ with eigenvalue q. By Lemma there is a number
x = 2πs/(qr − 1) for some positive integers r and s, 1 < s < qr − 1, for which m(x) = 1. Writing
this out gives 1 = m(x) = 1

q

∑q−1
j=0 eikj x . This is only possible if eikj x = 1 for j = 0, . . . , q − 1.

We infer that kjx = kj 2πs/(qr − 1) ∈ 2πZ. Since s < qr − 1, in lowest terms s/(qr − 1) = a
d

with a, d relatively prime and d > 1. We conclude that d|kj for j = 0, . . . , q − 1, and thus
gcd(D) ≥ d > 1.

The general case now follows immediately. �

6. The Rational Case

To treat the case when A has two rational eigenvalues we first give explicit digit sets in the
special case of triangular matrices A.

6.1. Proposition

Let � = Z
2; let A be a dilation matrix of the form

A =
(

a b
0 c

)

, a, b, c ∈ Z, |a|, |c| > 1;
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and let l0, l1, l2, . . . , l|c|−1 be arbitrary integers. Set

D = {
(lj + k, j), j = 0, 1, 2, . . . , |c| − 1, k = 0, 1, . . . , |a| − 1

}
,

then the Z
2-translates of Q(A, D) tile R

2.

Proof. It is easily checked that D is a set of representatives for Z
2/AZ

2. A computation
yields

A−n =
(

a−n bna
−nc−n

0 c−n

)

, where bn = −b

n−1∑

j=0

aj cn−1−j .

Now every point x = (α, β) ∈ Q(A, D) has the coordinates

(
α
β

)

=
∞∑

j−1

A−j εj =
∞∑

j=1

(
a−j bja

−j c−j

0 c−j

) (
ε′
j

ε′′
j

)

=









∞∑

j=1

(a−j ε′
j + bja

−j c−j ε′′
j )

∞∑

j=1

ε′′
j c−j









for some sequence εj = (ε′
j , ε

′′
j ) ∈ D.

Since ε′′
j ∈ {0, 1, . . . , |c| − 1}, the second coordinate is just the c-adic expansion of some

number β in an interval Ic of length 1, more precisely, Ic = [0, 1] for c > 0 and Ic = [ c
1−c

, 1
1−c

] for
c < 0. Every β ∈ Ic has a c-adic expansion that is unique for almost all β, more precisely, for β

irrational.
For a fixed irrational β, with c-adic expansion

∑∞
j=1 ε′′

j c−j , we look at the section of Q at
height β :

Q(β) = {α ∈ R : (α, β) ∈ Q}

= {α|α =
∞∑

j−1

(a−j ε′
j + bja

−j c−j ε′′
j ), where lεj ′′ ≤ ε′

j ≤ lεj ′′ + |a| − 1}.

Consequently the left end point of such a section

m(β) = inf{α ∈ Q(β)} =
∞∑

j=1

(a−j lε′′
j

+ bja
−j c−j ε′′

j ) when a > 1
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is obtained by choosing the smallest possible digit for each j ≥ 1. Similarly, the right end point is

M(β) = sup{α ∈ Q(β)} =
∞∑

j=1

(a−j (lε′′
j

+ a − 1) + bja
−j c−j ε′′

j ) when a > 1.

When a < 0, the same considerations give

m(β) =
∞∑

j=1

(a−2j lε′′
2j

+
∞∑

j=1

(a−2j+1(lε′′
2j−1

+ |a| − 1) +
∞∑

j=1

bja
−j c−j ε′′

j )

and

M(β) =
∞∑

j=1

(a−2j (lε′′
2j

+ |a| − 1) +
∞∑

j=1

(a−2j+1lε′′
2j−1

+
∞∑

j=1

bja
−j c−j ε′′

j ).

Since one term of the expansion for α is an a-adic expansion, for almost all β the section Q(β) is the
entire interval [m(β), M(β)] that has the length |Q(β)| = M(β) − m(β) = (a − 1)

∑∞
j=1 a−j = 1.

Using Fubini’s theorem, we obtain for the measure of Q :

λ(Q) =
∫

Ic

|Q(β)| dβ = |Ic| = 1. �

Remark. Using Theorem 2.3 the set of the second coordinates of the digits {0, 1, . . . , |c|−
1} can be replaced by {k0, k1, . . . , kc−1}, where ki ≡ i (mod c). If gcd(ki) = d, the projection of
Q(A, D) onto the second coordinate is a dZ-tile for R and, by the same proof as above, Q(A, D) is
a tile with respect to the lattice Z × dZ.

To prove the general case, let V be the nonsingular matrix that maps a given basis of �

to the standard basis of Z
2. Then A′ = V AV −1 is an integral matrix acting on Z

2. Conse-
quently the eigenvalues of A′ are integers and its eigenvectors can be chosen in Z

2. In particu-

lar, there exist a, m, n ∈ Z with |a| > 1 and gcd(m, n) = 1 such that A′
(

m
n

)

= a

(
m
n

)

.

Choose r, s ∈ Z, so that mr − ns = 1, and define W =
(

m s
n r

)

. Then W ∈ SL(2, Z) and

W−1A′W =
(

a b
0 c

)

where b, c ∈ Z, |a|, |c| > 1. This observation and Proposition together

prove Theorem 2.4. �

7. Connected Lattice Tilings

Recall that given a lattice � with basis T0 = {±e1, ±e2} a set S ⊆ � is T0-connected if for
any k, l ∈ S there is a sequence k = h0, h1, . . . , hr = l of elements of S, called a path from k to l,
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so that hj+1 − hj ∈ T0. One easily sees that a set S is T -connected if and only if the interior of the
set

⋃
s∈S s + Q0 is a connected subset of R

m. A point k ∈ �, k 	= 0, pairs faces of Qn if there is an
e ∈ T0 such that (Ank + Dn) ∩ (e + Dn) 	= ∅. In the context of §4, k pairs faces of Qn if and only
if k ∈ Tn. It can also be verified that k pairs faces of Qn if and only if Qn ∩ k + Qn is a nonempty
(m − 1)-dimensional piecewise linear submanifold of R

m. We shall make use of both viewpoints.

7.1. Lemma

Suppose that D is T0-connected and each e ∈ T0 pairs faces of Q1. Then, for each integer
n > 0, Dn is T0-connected and each e ∈ T0 pairs faces of Qn.

Proof. We argue both conclusions by induction. Certainly for D1 = D, the hypotheses
coincide with the conclusions. Suppose that the conclusions hold for Dn.

First we show that Dn+1 is T0-connected. Given k, l ∈ Dn+1 there are digits k′, l′ ∈ Dn such
that k ∈ Ak′ + D and l ∈ Al′ + D. Choose a path k′ = h0, h1, . . . , hr = l′ from k′ to l′ in Dn. Since
hj+1−hj ∈ T0 and each element of T0 pairs faces of Q1, we can find kj ∈ D+Ahj and lj ∈ D+Ahj+1

such that kj −lj ∈ T0. Setting l−1 = k and kr = l we have kj and lj−1, 0 ≤ j ≤ r, both belonging to the
T0-connected set D+Ahj . Choose a path lj−1 = hj,0, hj,1, . . . , hj,sj = kj for j = 0, . . . , r. Then since
kj −lj ∈ T0, we can concatenate these to form a path k = h0,0, h0,1, . . . , h0,s0 , h1,0, h1,1, . . . , hr,sr

= l

from k to l in Dn+1. Thus Dn+1 is T0-connected.
To see that each e ∈ T0 pairs faces of Qn+1, recall from Lemma 4.7 that

|An+1e + Dn+1 ∩ f + Dn+1| =
∑

e′∈T
|Ae + D ∩ e′ + D||Ane′ + Dn ∩ f + Dn|.

Given e ∈ T0 we know from the hypothesis that |Ae+D∩e′+D| 	= 0 for some e′ ∈ T0. By induction
there is f ∈ T0 with |Ane′ + Dn ∩ f + Dn| 	= 0. This implies |An+1e + Dn+1 ∩ f + Dn+1| 	= 0, in
other words, e pairs sides of Dn+1. �

For the remainder of this section we shall restrict attention to the case where � is a lattice in
R

2. In the next proposition we adopt a topological point of view.
Let F be a compact subset of R

2 with piecewise linear boundary. We say that the set F is good if
for any x, y ∈ ∂F there exists a continuous, simple curve γ : [0, 1] → F with γ (0) = x, γ (1) = y,

and γ ((0, 1)) ⊂ F 0.

7.2. Proposition

Suppose that F is a good �-tile and that both e1 and e2 pair faces of F . If k ∈ � also pairs
faces, then k ∈ �T0.

Observe that under the same assumptions as in Lemma 7.1 each Qn is a good �-tile and e1

and e2 pair faces of Qn. Thus we obtain the following:

7.3. Corollary

Suppose that D is T0-connected and that e1 and e2 pair faces of Q1. Then T ⊂ �0T0.
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Let us mention that the hypothesis of the proposition is not sufficient to guarantee the conclusion
for dimensions m > 2. A counterexample has been constructed by J. Tollefson.

Proof. Define R ⊆ R
2 by R = ⋃

k∈�0T0
(k + F). We arrange �0T0 as follows: l0 = e1,

l1 = e1 + e2, l2 = e2, l3 = e2 − e1, l4 = −e1, l5 = −e1 − e2, l6 = −e2, l7 = −e2 + e1, l8 = l0.

By the hypothesis there exist line segments αj , βj , ⊆ ∂F , j = 1, 2, with αj + ej = βj . Setting
X = α1 ∪ β1 ∪ α2 ∪ β2, we may choose points pi ∈ (li−1 + X0) ∩ (li + X0), i = 1, 2 . . . , 7, and
with p0 = p8 = p1 − e2. Since F is a good �-tile, there are simple curves ϕi : [ i

8 , i+1
8 ] → li + F

such that ϕi(
i
8 ) = pi , ϕi(

i+1
8 ) = pi+1 and ϕi((

i
8 , i+1

8 )) ⊆ li + F 0.

Then � : [0, 1] → R, defined by �(x) = ϕi(x) for i
8 ≤ x ≤ i+1

8 , i = 0, 1, . . . , 7, is a simple,
closed curve whose graph, also denoted by �, is contained in R0. This property is equivalent to

� ∩ (k + F) = ∅ for all k 	∈ �0T0. (25)

It follows from the Jordan curve theorem that the complement of � in R
2 consists of a bounded

connected region B and an unbounded connected region U. By the construction of � the set F must
lie either in B or in U .

Next we show F ⊆ B. Since � is dividing, it separates e1 + F into two sets P1 and P2, which
are also good sets. Since � ⊆ R0 and β1, β1 + e1 ⊂ ∂R, either of P1 or P2, say P2, contains β1 + e1,
and therefore P2 ∩ (2e1 +F) 	= ∅. Thus P2 lies in the same component of � as 2e1 +F . Now notice
that

⋃∞
n=2(ne1 + F) is a connected, unbounded set disjoint from �, and, therefore, is contained in

U . In particular, 2e1 + F ⊆ U. Consequently, also P2 ⊆ U and P1 ⊆ B. Therefore, the inclusion
F ⊆ B will follow from F ∩ P1 	= ∅.

If F ∩ P1 = ∅, then also β1 ⊆ P2, and we can choose a point x ∈ β1 ⊆ P2 so that
y = x + e1 ∈ β1 + e1 ⊆ P2. Therefore, there is a simple curve γ1 : [0, 1] → P2 with γ1(0) = x,
γ1(1) = y, and γ1 ((0, 1)) ⊂ P 0

2 . Set γ2 = ϕ0 = �|e1+F , and notice that γ1 and γ2 are disjoint.
To see how this leads to a contradiction, consider the projections γ̄ 1 and γ̄ 2 of the two curves to

the quotient torus R
2/�. By construction both γ̄ 1 and γ̄ 2 are simple, closed, disjoint, homotopically

nontrivial curves on R
2/�. But this can only happen when γ̄ 1 and γ̄ 2 are freely homotopic curves.

Since the covering group � is 0, γ̄ 1 and γ̄ 2 must be covered by the same transformation in � [24].
By construction γ̄ 1 is covered by e1 and γ̄ 2 by e2, which gives the contradiction. Thus we have
proved F ⊆ B.

Now assume that l 	∈ �0T0 pairs faces of F . Then the set F
⋃

(l + F) is connected and
disjoint from � by (25). It must therefore lie in the bounded component B. On the other hand,
V = ∪∞

m=0(ml + F) is connected, disjoint from �, and unbounded. Thus V ⊆ U and F ⊆ V ⊆ U

provides a contradiction. This finishes the proof of the proposition. �

7.4. Lemma

Suppose that D is T0-connected and each element of T0 pairs faces of Q1. Then �Dn ⊃ �T0

for n ≥ 4.

We shall refer to elements of the set {e1 + e2, −e1 − e2, e1 − e2, −e1 + e2} = �0T0\T0 as
vertices. A digit k ∈ Dn is said to be surrounded if for each e ∈ T0, k + e ∈ Dn.
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Proof. The argument will be divided into several steps. The hypothesis of Lemma 7.4 shall
be assumed at all stages.

Step 1. T0 ⊆ �D2.

Since D is T0-connected there is an element of T0 belonging to �D. Without loss of generality
suppose that e1 ∈ �D. If e2 ∈ �D, then we are done, so further assume that e2 	∈ �D. Then the
digits of D must all be multiples of e1 plus some fixed constant.

For some mi, li ∈ Z, i = 1, 2, Aei = mie1 + lie2. From the hypothesis that e1 and e2 pair
faces of Q1 and the fact that D lies along an e1-line we conclude that for i = 1, 2, li must take one
of the values 0 or ±1. If either l1 or l2 takes one of the values ±1, then e2 ∈ �D2, as desired. If
both l1 and l2 are zero, then Ae1 = m1e1 and Ae2 = m2e1. Since a dilation matrix is invertible, this
last possibility cannot occur. We conclude that T0 ⊆ �D2.

Step 2. Suppose that T0 ⊆ �D. Then �D contains a vertex.
Since both e1, e2 ∈ �D, there must be a transitional k ∈ D and digits l, l′ ∈ D so that

k − l = ±e1 and k − l′ = ±e2. Then l − l′ ∈ �D is a vertex.
Step 3. Suppose that T0 ⊆ D, e1 + e2 ∈ �D, and e1 − e2 	∈ �D. Then D is a path

P = {k = h0, h1, . . . , hr = k} where hi+1 − hi = e1 or e2.
A digit k ∈ D can be written in e1, e2-coordinates as k = me1 + le2. Let min ⊆ D consist of

those digits with minimal e1-coordinate. Let k ∈ min have minimal e2-coordinate in min. Similarly
let max ⊆ D consist of those digits with maximal e1-coordinate and choose k ∈ max with maximal
e2-coordinate. Since D is T0-connected, there is a shortest length path P = {k = h0, h1, . . . , hr = k}
from k to k in D.

We now argue that hi+1 − hi = e1 or e2. This is clear for i = 0 from the definition of k.
Suppose there is a first j > 0 for which this fails. Then for some s, t ∈ {1, 2}, hj+1 − hj = −es

and hj − hj−1 = et . The minimality of the length of P ensures that t 	= s. Thus, hj−1 − hj+1 =
(hj − et ) − (hj − es) = es − et . Since k ∈ �D if and only if −k ∈ �D, this last conclusion is
contrary to the hypothesis. Consequently hi+1 − hi = e1 or e2.

The proof of Step 3 will be completed by showing that P = D. Since D is T0-connected, there
is a path from any k ∈ D to any point h ∈ P . It will therefore suffice to show that, assuming the
existence of h ∈ P , k 	∈ P with k − h ∈ T0 leads to a contradiction.

First consider the case where h = k. By the minimality of k we must have k = k + ei for
i = 1 or 2. Also, h1 = k + ej for j 	= i. Then k − h1 = ei − ej ∈ �D, contrary to the hypothesis.
One can similarly argue the case h = k.

Now suppose 0 < i < r. Then there are s, t ∈ {1, 2} such that hi−1 − hi = −es and
hi+1−hi = et . This forces k−hi = u where u = es or −et . If u = es , then k−hi+1 = es −et ∈ �D.

If u = −et then hi−1 − k = et − es ∈ �D. Both conclusions are contrary to the hypothesis. The
proof of Step 3 is complete.

Step 4. If T0 ⊆ �D, then �T0 ⊆ �D2.

We argue by contradiction. By Step 2 �D contains a vertex. Without loss of generality suppose
that e1 + e2 ∈ �D ⊆ �D2 but e1 − e2 	∈ �D2. By the previous step D is a path P1 from k to k

and D2 is also a path P2 that contains a translate of P1. This means that the only points where faces
of Q1 can be paired are the end points k and k of P1 = D. This leaves the following possibilities,
where s, t ∈ {1, 2}:

I. k + es = Ae1 + k and k + et = Ae2 + k where (a) s = t or (b) s 	= t ;
II. k + es = Ae1 + k and k − et = Ae2 + k where (a) s = t or (b) s 	= t ;

and four similar conditions with k and k interchanged:

I(a) implies Ae1 = Ae2. Thus A is not invertible, which is a contradiction.
I(b) implies A(e1 − e2) = es − et = ±(e1 − e2). This gives a contradiction since a dilation

matrix cannot have eigenvalues ±1.
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II(a) implies k = k + es − et = Ae1 + k − et = A(e1 + e2) + k. Thus A(e1 + e2) = 0 which
is impossible.

II(b) implies, as above, that A(e1 + e2) = es − et , s 	= t.

Since by assumption e1 + e2 ∈ �D, there exists an i, 1 ≤ i ≤ r − 1, such that hi+1 −
hi−1 = e1 + e2. Define l = Ahi+1 + k and m = Ahi−1 + k. Both l and m belong to D2 and
l − m = A(e1 + e2) = es − et = ±(e1 − e2) ∈ �D2, which contradicts the assumption.

The analogous conditions with k and k interchanged are argued similarly. That completes the
proof of Step 4.

It is now an easy matter to finish the proof of Lemma . Using Step 1 we conclude that
T0 ⊆ �D2. Notice that D′ = D2 is a valid digit set for the dilation B = A2 and that D′

n = D2n. Then
D′ satisfies the hypothesis of Step 4, and consequently �D4 = �D′

2 ⊃ �T0 as asserted. �

We are now able to prove Theorem 2.5 on the existence of connected �-tiles in R
2 under

assumptions that are easy to verify.

Proof of Theorem 2.5. From Lemma 4.5(3) we know that Ank + Dn ∩ e + Dn 	= ∅ for
some e ∈ T and some integer n > 0 implies k ∈ T or k = 0. Thus for e ∈ T

e + Dn = (Dn ∩ e + Dn) ∪
⋃

l∈T
(Anl + Dn ∩ e + Dn)

is a decomposition into disjoint sets. Taking cardinalities, we obtain

qn = |e + Dn| = |Dn ∩ e + Dn| +
∑

l∈T
|Anl + Dn ∩ e + Dn|

= |Dn ∩ e + Dn| +
∑

l∈T
(Cn)le (26)

where in the last equality we have used the identification |Anl + Dn ∩ e + Dn| = (Cn)le from
Lemma 4.7.

Now, under the assumptions stated, T ⊆ �T0 is a consequence of Corollary 7.3 and, for n ≥ 4,
�T0 ⊂ �Dn of Lemma 7.4. In particular, we have for n ≥ 4

Dn ∩ (e + Dn) 	= ∅ for all e ∈ T . (27)

Using (26) we find for the column sums of Cn

∑

l∈T
(Cn)le < qn for all e ∈ T . (28)

This means that for n ≥ 4 the matrix q−nCn is strictly substochastic, and therefore it must have
spectral radius r(q−nCn) < 1. Consequently r(C) < q, and an application of Theorem 2.2 proves
the claim that Q is a �-tile.
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Since all Qn are connected by Lemma 7.1 and connectedness is preserved under limits in the
compact-open topology, the tile Q(A, D) is also connected. �

8. The Elliptic Case

In this section we consider elliptic dilation matrices A, that is, those with complex eigenvalues
λ ± iµ, µ 	= 0. Then A is a conjugate to a similarity and, since det A = λ2 + µ2 > 0, is orientation-
preserving. Thus there exists a C ∈ SL(2, R), such that CAC−1 = √

qO, q = det A, O ∈ SO(2).

Moreover, using basic facts about the fundamental domain for SL(2, Z) and its relation to lattices
in R

2 [2], we may choose C so that C� has a basis of the form e1 = (1, 0), e2 = (x, y) with
− 1

2 < x ≤ 1
2 , x2 +y2 ≥ 1, and x ≥ 0 if x2 +y2 = 1. We shall refer to such a basis as a normal basis

and a lattice � with a normal basis as a normal lattice. For the remainder of this section we assume
without loss of generality that � is a normal lattice and that A is a multiple of an orthogonal matrix
that leaves � invariant. The angle θ = <) (e1, e2) between the basis vectors satisfies π

3 ≤ θ < 2π
3 . If

α =
√

x2 + y2, then x = α cos θ and − 1
2 < α cos θ ≤ 1

2 .
For a > 0 let ā = (a, 0) and set v+ = ā − x and v− = −ā − x for x ∈ R

2. Let W be the set
of all x ∈ R

2 for which <) (v+, v−) ≥ π
3 . Then we have

8.1. Lemma

W ⊆ B(0,
√

3a).

Proof. Let θx = <) (v+, v−). Given x ∈ R
2 with |x| = τa, we show that cos θx > 1

2 for
τ >

√
3. Then ā · x = τa2 cos γ for some angle γ and we obtain

cos θx = (x − ā) · (x + ā)

‖x − ā‖ ‖x + ā‖ = |x|2 − a2

√
(|x|2 + a2)2 − 4(ā · x)2

= (τ 2 − 1)a2

√
(τ 2 + 1)2a4 − 4τ 2a4 cos2 γ

≥ τ 2 − 1

τ 2 + 1
>

1

2
for τ >

√
3. �

8.2. Lemma

Let e1, e2 be a normal basis for �, and let p = p1e1 + p2e2 ∈ �, with p1, p2 ∈ Z. Then
<) (−p + e1, −p + e2) ≤ π

3 for p1 < 0, p2 < 0 or p1 > 1, p2 > 1 and <) (−p, −p + e1 + e2) ≤ π
3

for p1 < 0, p2 > 1 or p1 > 1, p2 < 0. Equality can hold if and only <) (e1, e2) = 2π
3 or π

3 and
‖e2‖ = 1, i.e., for the hexagonal lattice.

Proof. Let θ = <) (e1, e2) and α = ‖e2‖ ≥ 1. Then by assumption | cos θ | ≤ 1
2 and

|e1 · e2| = α| cos θ | ≤ α/2. By the preceding lemma we only have to show that the distance from p
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to the center 1
2 (e1 + e2) of the fundamental parallelogram spanned by e1, e2 is greater than

√
3

2 times
the length of the diagonal of the parallelogram that is seen from p. Thus it will suffice to verify that

‖p − 1

2
(e1 + e2)‖ ≥

√
3

2
max(‖e1 − e2‖, ‖e1 + e2‖) (29)

for all p ∈ � in the four defined quadrants. But for p as specified, p − 1
2 (e1 + e2) = r1e1 + r2e2

with |r1| ≥ 3
2 and |r2| ≥ 3

2 . Taking squares and computing out the norms, (29) is equivalent to the
inequality

r2
1 + r2

2 α2 + 2r1r2α cos θ ≥ 3

4
(1 + α2 + 2α| cos θ |).

Using |r1|, |r2| ≥ 3
2 and | cos θ | ≤ 1

2 , the left side can be estimated as

(r2
1 + r2

2 α2 + 2r1r2α cos θ) ≥ r2
1 + r2

2 α2 − |r1r2|α

= 1

2
(r2

1 + α2r2
2 ) + 1

2
(|r1| − α|r2|)2

≥ 1

2
(r2

1 + α2r2
2 ) ≥ 9

8
(1 + α2).

(30)

It is now easily verified that

9

8
(1 + α2) ≥ 3

4
(1 + α2 + α) ≥ 3

4
(1 + α2 + 2α| cos θ |)

as was to be proved.
Here equality holds if and only if α = 1, θ = π

3 , and r1 = −r2 = ± 3
2 , or θ = 2π

3 , and
r1 = r2 = ± 3

2 . �

8.3. Lemma

Suppose � has a normal basis e1, e2, with <) (e1, e2) = θ and ‖e2‖ = α. Let a1 = pe1 +
qe2, a2 = re1 + se2 where p, q, r, s ∈ Z; and set <) (a1, a2) = ϕ.

1. a1 = ps−qr

r+s
(e1 − e2) + p+q

r+s
a2.

2. If |q| ≥ 3 or |q|,|p| ≥ 2, then ‖a1‖ > 2√
3
‖e1 ± e2‖.

3. ϕ ≤ min(θ, π − θ) or ϕ ≥ max(θ, π − θ) is equivalent to the inequality |ps − qr|α ≤
‖a1‖ ‖a2‖ with equality only if ϕ = θ or ϕ = π − θ.
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Proof. (1) is a simple computation.
(2) follows from ‖a1‖2 = p2 + 2pqα cos θ + α2q2 ≥ p2 − |pq|α + q2α2 ≥ 1

2 (p2 + q2α2) =
C(p, q). If |q| ≥ 3, then C(p, q) ≥ 9

2α2; if |p|, |q| ≥ 2, then C(p, q) ≥ 2 + 2α2. Therefore, in
both cases C(p, q) ≥ 4

3 (1 + α + α2) ≥ 4
3‖e1 ± e2‖2, as in the proof of Lemma 8.2.

(3) follows from ‖a1‖ ‖a2‖ sin ϕ = ‖a1 × a2‖ = |ps − qr| ‖e1 × e2‖ = |ps − qr|α
sin θ . �

In the following we call a parallelogram spanned by two vectors a1, a2 ∈ R
2 half-open, if it

contains two sides that enclose the larger angle but not their opposite sides. That is, if <) (a1, a2) ≥ π
2 ,

then P = {z ∈ R
2 : z = s1a1 + s2a2, 0 ≤ s1, s2 < 1} (or 0 < s1, s2 ≤ 1); if <) (a1, a2) < π

2 , then
P = {z ∈ R

2 : z = s1a1 + s2a2, 0 < s1 ≤ 1, 0 ≤ s2 < 1} (or 0 ≤ s1 < 1, 0 < s2 ≤ 1).

8.4. Theorem

Let � be a normal lattice with normal basis e1, e2. Let a1, a2 ∈ � be vectors such that
<) (a1, a2) = <) (e1, e2) = θ , and let P be the half-open parallelogram spanned by a1, a2. Set
E = P ∩ �. Then one of the following holds:

1. E is connected.

2. e2 = (x, y) with x = −r
2s

, 0 < r < s, a1 = εe1, and a2 = ε(re1 + se2) with ε = ±1; or
e2 = (x, y) with x = r

2s
, 0 < r < s, a1 = εe1, and a2 = ε(−re1 + se2), ε = ±1; or

either of the above with a1 and a2 interchanged. In this case E is connected if and only if
|r| = 1.

3. e2 = (x, y) with x = −α2s
2r

, ‖e2‖ = α ≥ 1, r > α2s > 0, a1 = −εe2, and a2 =
ε(re1 + se2); or e2 = (x, y) with x = α2s

2r
, ‖e2‖ = α ≥ 1, r > α2s, a1 = −εe2, and

a2 = ε(−re1 + se2); or either of the above with a1 and a2 interchanged. E is connected if
and only if |s| = 1.

Although our proof of Theorem 8.4 is analytic and technical, we encourage the reader to draw
the appropriate diagrams to assist his/her deliberations on the various cases. He/she will find that
many of the calculations have a simple geometric analogue.

Proof. To prove connectedness it suffices to show that for distinct k, l ∈ E there exists
f ∈ T0 such that k +f ∈ E and d(k +f, l) < d(k, l), where d(k, l) is the length of the shortest path
from k to l. Then given a path k = h0, h1, . . . , hn in E with d(hi, l) > d(hi+1, l) > 0, applying the
above to hn and l produces a point hn+1 in E closer to l. Repetition of this argument gives a path
from k to l.

Let k = r1e1 + s1e2, l = r2e1 + s2e2 both belong to E . If r1 = r2, and s2 > s1, then
ki = r1e1 + (s1 + j)e2, j = 0, 1, 2, . . . , s2 − s1, are all in E because P is convex. A similar
statement holds if s1 = s2. Thus if either the e1 or the e2 coordinates of k and l agree, then they are
joined by a path in E . If r1 < r2, s1 < s2, then we have to show that either k+e1 ∈ E or k+e2 ∈ E . If
r1 > r2, s1 < s2, we have to show that either k −e1 ∈ E or k +e2 ∈ E . We analyze the first case. The
latter can be reduced to the former by a reflection about the y-axis (i.e., e1 → e1, e2 → (−x, y)).

Arguing by contradiction, assume that k + e1 	∈ E and k + e2 	∈ E . This implies that the line
segment joining k to k + e1 and the line segment joining k to k + e2 must intersect different sides
σ1 and σ2 of the parallelogram P (Figure 6). Neither of these segments can lie in part on a side of
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k + ek

k + e2

a1

a2

FIGURE 6

P because then, by definition of half-open, one of k + e1 or k + e2 will belong to E . Several cases
and subcases will be considered.

Case I. σ1 and σ2 are adjacent and intersect at a vertex v of P . Then v = t1e1 + t2e2 with
either t1 ≤ r1, t2 ≤ s1 or t1 ≥ r2, t2 ≥ s2. Equality for the first pair implies that both of the segments
lie on the boundary of the closed polygon; consequently, one of k + e1 or k + e2 must lie on a side of
the half-open parallelogram, contrary to the assumption. Equality for the second pair is problematic
only if k + e1 = l − e2 and k + e2 = l − e1, and then the above analysis produces a contradiction.
Under all other circumstances Lemma 8.2 asserts that <) (σ1, σ2) < <) (k + e1 −v, k + e2 −v) < π

3 ,

and this contradicts the assumption that <) (σ1, σ2) = θ or π − θ with π
3 ≤ θ, π − θ ≤ 2π

3 .

Case II. σ1 and σ2 are opposite sides of P and thus parallel to, say, a2. This can only occur
if the following propositions hold:

(1) a2 is in the interior of the first or third quadrant with respect to basis e1, e2; that is,
a2 = re1 + se2 for r, s > 0 or r, s < 0. We argue for r, s > 0. The other case follows by reversing
signs.

(2) The height of P perpendicular to a2 is shorter than the length of the diagonal of the
parallelogram spanned by the basis e1, e2, that is, ‖a1‖ sin θ < ‖e1 − e2‖. Since π

3 ≤ θ < 2π
3 , this

implies ‖a1‖ < 2√
3
‖e1 − e2‖.

(3) The projection of a1 onto e1 − e2 along a2 is shorter than the diagonal ‖e1 − e2‖, that is, if
a1 = λ(e1 − e2) + µa2, then |λ| < 1.

Now Lemma 8.3 asserts that for a1 = pe1 + qe2 we must have |q| ≤ 2 and |λ| = |ps−rq|
r+s

< 1.

This allows us to reduce further the number of possible cases: |ps − rq| < r + s entails p, q ≥ 0
or p, q ≤ 0. If p, q ≥ 0, then both a1 and a2 lie in the first quadrant with respect to the bases e1, e2

whence <) (a1, a2) < <) (e1, e2) = θ, a contradiction. If p, q ≤ 0, then a1 lies in the third quadrant.
If we further assume that π

3 ≤ θ ≤ π
2 , then clearly <) (a1, a2) > π − θ ≥ θ , again contradicting

<) (a1, a2) = θ.
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e2

e1

a1

a2

FIGURE 7

This leaves π
2 < θ ≤ 2π

3 and the possibilities q = 0, −1 and p ≤ 0 or q = −2 and p = 0, −1.
The restriction on p when q = −2 derives from Lemma 8.3(2).

We consider these subcases.
Case 1. If q = 0, p < 0, then Lemma (3) asserts ‖a1‖ ‖a2‖ = |p|sα; whence, ‖a2‖ = sα.

This implies ‖a2‖2 = r2 + 2rsα cos θ + s2α2 = s2α2 or 2sα cos θ + r = 0. Then with e2 = (x, y),
x = α cos θ = − r

2s
< 0; and since x > − 1

2 , we also have r < s. On the other hand, |λ| = |ps−qr|
r+s

<

1 forces − r
s
− 1 < p < 0 or p = −1. This is the first exception (2) stated in the theorem.

Case 2. a1 = pe1−e2, p ≤ 0. Then |λ| = |ps−rq|
r+s

< 1 implies the restriction − 2r
s
−1 < p ≤ 0

on the range of p.
If p = 0, then Lemma 8.3(3) implies ‖a1‖ ‖a2‖ = |ps − rq|α = rα and consequently

‖a2‖ = r. This entails 2r cos θ + αs = 0 or x = α cos θ = −sα2/2r. Again since x > − 1
2 , we must

have r > α2s. This is the second exception (3) in the statement of the theorem.
If s = 1, then E = {(j, 0), j = 1, . . . , r − 1}, which is obviously connected (Figure 7). Since

it is not needed in the proof of Theorem 8.5, we leave it to the reader to prove that E connected
implies |s| = 1.

Case 2 is completed by showing that p < 0 does not occur. In the context of Lemma 8.3(3)
this follows by proving that

(ps + r)2α2 < ‖a1‖2 ‖a2‖2

= (p2 − 2pα cos θ + α2)(r2 + 2rsα cos θ + s2α2)

= C(p, r, s) (31)

for p ≤ −1. Assume first that p = −1; then C ≥ α2(r2 − rs + s2α2) > α2(r − s)2 = α2(ps + r)2,
where we have used the normalization |α cos θ | = |x| ≤ 1

2 (and will continue to).
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Now suppose r ≥ s. Observe that when p = − r
s
, <) (a1, a2) = π. It follows that if − 2r

s
−1 <

p ≤ − r
s
, then <) (a1, a2) > <) ((− 2r

s
− 1)e1 − e2, a2); consequently, it suffices to verify (31) for

p = − 2r
s

− 1.

If − r
s

< p < 0, then <) (a1, a2) > <) (−e1 − e2, a2) and by the above computation for p = −1
we have <) (−e1 − e2, a2) > θ. Therefore, when r ≥ s we need only consider the case p = − 2r

s
−1 :

C ≥ (p2 − |p| + α2)(r2 − rs + s2α2) ≥ (p2 − |p| + α2)α2s2

= α2((2r + s)2 − 2rs − s2 + s2α2) = α2(4r2 + 2sr + s2α2)

> α2(r + s)2 = α2(ps + r)2,

as asserted
The case r < s remains to be considered.
If 2r

s
< 1, then p = −1, which was already dispatched above. The last possibility is r

s
< 1 <

2r
s

, which entails p = −2 or −1. If p = −2, then <) (a1, a2) > <) (−2e1 − e2, e1 + e2) = ϕ. Then
ϕ ≥ max(θ, π − θ) or equivalently sin ϕ ≤ sin θ follows from Lemma 8.3(3) and the easily verified
inequality α2 ≤ ‖2e1 + e2‖ ‖e1 + e2‖.

We now turn to the third and final case.
Case 3. q = −2, p = 0, or p = −1. Then |λ| = |ps−qr|

r+s
< 1 implies r < s for p = 0 and

r < 2s for p = −1.

First consider p = 0. Since r < s, we have <) (a1, a2) > <) (−2e2, e1 + e2) = π −<) (2e2, e1 +
e2). Applying Lemma 8.3(3) to the obvious inequality 2α ≤ ‖2e2‖ ‖e1 + e2‖, we conclude that
sin <) (2e2, e1 + e2) ≤ sin θ, and therefore <) (a1, a2) > θ.

Finally, let p = −1. With r < 2s we have <) (a1, a2) > <) (−e1 − 2e2, 2e1 + e2)

= π −<) (e1 + 2e2, 2e1 + e2), and <) (e1 + 2e2, 2e1 + e2) ≤ π
3 follows immediately from Lemma 8.2.

This completes the proof of Theorem 8.4. �

Remark. The exceptional cases (2) or (3) of Theorem are characterized by one of a1 or
a2 being of the form ±e1 or ±e2. When, in particular, we have a Euclidean similarity A and set
a1 = Ae1 and a2 = Ae2, this becomes AT0 ∩ T0 	= ∅.

The next theorem settles the question of existence of self similar �-tilings in the case of elliptic
dilation matrices.

8.5. Theorem

Let � be a normal lattice with normal basis e1, e2, and suppose that the dilation A is a Euclidean
similarity and A� ⊆ �. Then there is a basis e′

1, e
′
2 for � and a half-open parallelogram P spanned

by Ae′
1 and Ae′

2 such that for D = P ∩ � the �-translates of Q(A, D) tile R
2.

By conjugation we therefore obtain the existence of connected self-similar tiles for all elliptic
dilation matrices and, hence, Theorem 2.6.

Proof. (a) D is a set of digits. This is clear, since P is a fundamental domain for R
2/A�

and the kernel of the projection p : R
2/A� → R

2/� equals �/A� ∼= P ∩ �.
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(b) Connectedness and face pairing. Either AT0∩T0 = ∅, and then D is connected according to
Theorem 8.4(1); or AT0 ∩T0 	= ∅, and we are in one of the exceptional cases (2), (3) of Theorem 8.4.

If AT0 ∩ T0 = ∅, then e1 and e2 pair faces. To see this consider the parallelograms P1 =
P ∪ (Ae1 + P) and P2 = P ∪ (Ae2 + P), which are spanned by {2Ae1, Ae2} and {Ae1, 2Ae2}
respectively. Then Pi ∩ � = D ∪ (Aei + D), i = 1, 2, are T0-connected, again by Theorem 8.4.
Thus there is a path from k ∈ D to li ∈ Aei + D, i = 1, 2, and we can find ki ∈ D, fi ∈ T0,
mi ∈ Aei + D so that ki + fi = mi , i = 1, 2. This means that e1 and e2 pair faces. Thus in this case
the choice e′

1 = e1 and e′
2 = e2 is appropriate.

(c) We now turn to the exceptional cases AT0 ∩ T0 	= ∅. Since ‖Aei‖ = √
q‖ei‖ > 1 = ‖e1‖,

case (2) in Theorem 8.4 is impossible for Euclidean similarities. However, Ae1 = ±e2 does occur

precisely when the matrix is of the form A = ±
(

x −y
y x

)

, where e2 = (x, y). Writing Ae2 =
re1 + se2 in terms of x, y gives ±(x2 − y2, 2xy) = (r + sx, sy), and from |x| ≤ 1/2 we infer
|s| = |2x| ≤ 1. s = 0 is no problem because then P is a parallelogram aligned along e1 and e2, and
the above argument prevails.

If s = ±1, then D is connected (for all choices of signs), e.g., D = ±{(j, 0), j = 0, . . . r − 1}
will do. However, e2 does not pair faces since Ae2+D = {(j +r)e1±e2 | j = 0, . . . , r−1( or −j =
0, . . . , r − 1)} and (Ae2 + D) ∩ (T0 + D) = ∅ (see Figure 7).

The situation is repaired by the choice of a different basis. To be specific, assume Ae1 = −e2

and Ae2 = re1 + e2 with r > 0 and choose e′
1 = e1, e

′
2 = e1 + e2. The other possible choices

of signs are treated in the same fashion. Then the digit set P ′ ∩ �, where P ′ is the parallelogram
spanned by Ae′

1 = −e2 and Ae′
2 = re1, remains D = {(j, 0), j = 0, . . . , r − 1}. Then clearly

(Ae′
1 + D) ∩ (−e′

2 + D) = (−e2 + D) ∩ (−e1 − e2 + D) 	= ∅ and (Ae′
2 + D) ∩ (e′

1 + D) =
(re1 + D) ∩ (e1 + D) = {re1} 	= ∅ and e′

1, e
′
2 pair faces.

This settles the exceptional cases and the proof of Theorem 8.5 is complete. �

The method developed in Theorem 8.5 has a much wider applicability than just the existence
of self-similar �-tilings for elliptic dilations. Although we do not have a general existence proof of
self-similar �-tilings for irrational hyperbolic dilations we can show the existence for a large class
of such dilations. The conditions of the following theorem are extremely easy to check.

8.6. Theorem

Let A be an (integer-valued) dilation matrix acting on Z
2 with basis e1 = (1, 0), e2 = (0, 1).

Assume that both ‖Ae1‖ ≥ √
2 and ‖Ae2‖ ≥ √

2 and that π
4 ≤ <) (Ae1, Ae2) ≤ 3π

4 . Let P be a
half-open parallelogram spanned by Ae1 and Ae2. Then the set D = P ∩Z

2 produces a self-similar
connected Z

2 tile Q(A, D).
The proof is similar to the proofs of Theorem 8.4 and Theorem 8.5. On the lattice Z

2 many
details are easier to check. Also the angle <) (Ae1, Ae2) may vary more in this situation, and the
cumbersome Case II in the proof of Theorem 8.4 does not occur since ‖Aei‖ ≥ √

2. We may
therefore leave the modifications that are required to the reader. The basic ideas appear in the proof
of Lemma 9.2.

9. Number Systems

We now give proofs of Theorems 2.8 and 2.9. The method follows the general elliptic case,
although deviating slightly from the description of digit sets given in §8. Attention will be restricted
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to the lattice Z
2 and dilations of the form A =

(
a b

−b a

)

, a, b ∈ Z, which are all Euclidean

similarities on Z
2. We work with the standard basis {e1, e2}.

Let N(0, r) be the set of points k ∈ Z
2 for which there is a path from k to 0 of length at most

r . Let D be a connected digit set for the dilation A, and suppose that T0 pairs faces.

9.1. Lemma

If �T0 ⊆ D, then N(0, n) ⊆ Dn.

Proof. We argue by induction. Suppose N(0, n) ⊆ Dn. Given k ∈ N(0, n + 1),
we show that k ∈ Dn+1. First since 0 ∈ D, we have Dm ⊆ Dn for all m ≤ n. Every k ∈ N(0, n + 1)

is of the form k = h + e for h ∈ N(0, n) and e ∈ T0 and therefore k − e ∈ N(0, n) ⊆ Dn. Since
the disjoint union of the An

Z
2-translates of Dn is Z

2 (Lemma 3.1), we have k ∈ Anl + Dn for some
l ∈ Z

2. Then from k − e ∈ Dn we conclude that l pairs faces of Dn. By Lemma 7.3, l ∈ �T0 ⊆ D,
and thus k ∈ AnD + Dn = Dn+1 as required. �

Let P be any of the half-open polygons with vertices (±e1 ± e2)/2. P is a unit square at the
origin with half of its boundary deleted (as defined in § 8). Then clearly D = AP ∩ Z

2 is a set of
digits for A.

9.2. Lemma

Let A be a Euclidean similarity, and set D = AP ∩ Z
2. Then D is T0-connected and e1 and

e2 both pair faces of D. Thus by Theorem 7.1 the Z
2-translates of Q(A, D) tile R

2.

Proof. The proof is similar to that of Theorem 8.4.
First we see that D is connected. Let k = re1 + se2 and k′ = r ′e1 + s ′e2 be two points in D.

As in the proof of Theorem 8.4 there is no loss of generality in assuming that r < r ′ and s < s ′.
Also, as before, we are reduced to showing that for one of the basis vectors e, k + e ∈ D. If this
were not true, then the line segments from k to k + e1 and from k to k + e2 would both meet distinct
sides σ1 and σ2 of ∂P .

Suppose that σ1 and σ2 are opposite, parallel sides. Then it follows that both sides meet the
diagonal joining k + e1 to k + e2, and therefore the sides of the square AP have length strictly
less than ‖e1 − e2‖ = √

2. This implies that area(AP ) < 2, which is impossible for a Euclidean
similarity. Thus σ1 and σ2 cannot be opposite sides of AP .

If σ1 and σ2 are adjacent, then they share a vertex v. From Lemma 8.2 we infer that θ =
<) (k + e1 − v, k + e2 − v) ≤ π/3, which contradicts the fact that the angles of the square AP are
π/2. It follows that k + e belongs to D for some basis vector e.

Almost the identical argument shows that the set D ∪ (Ae + D) = [AP ∪ (Ae + AP)] ∩ Z
2

is connected for any basis vector e. It is immediate that e1 and e2 pair faces of D. �

Remark. Let a1, a2 ∈ Z
2, and let P be the half-open parallelogram spanned by a1 and a2.

It is not true in general that connectedness of P ∩ Z
2 implies connectedness of (x + P) ∩ Z

2 for all
x ∈ R

2. Thus Lemma 9.2 does not follow directly from Theorem 8.4 or Theorem 8.6. �
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9.3. Proposition

Let the dilation A be a Euclidean similarity, and set D = AP ∩ Z
2. If | det A| > 8, then⋃∞

n=1 �Dn = Z
2.

Proof. The proposition will follow from the preceding two lemmas by showing that �T0 ⊆
D. Since A = √

qO, AP is a rotated copy of the square P0 with vertices (±√
q/2, ±√

q/2). Thus
dist(0, ∂AP ) = dist(0, ∂P0) = √

q/2. Since | det A| = q > 8, dist(0, ∂AP ) = √
q/2 >

√
2 =

supk∈�T0
‖k‖. Hence �T0 ⊆ AP ∩ Z

2. �

We now state Theorems 2.8 and 2.9 in their matrix version.

9.4. Theorem

Let A be a Euclidean similarity other than

(
1 ±1

∓1 1

)

or

(
2 0
0 2

)

, and set D =
AP ∩ Z

2. Then each k ∈ Z
2 has a unique representation of the form

k =
n∑

j=0

Ajεj with εj ∈ D . (32)

By uniqueness we mean that if also k = ∑N
j=0 Ajε′

j , ε′
j ∈ D, then εj = ε′

j for j = 0, . . . n and ε′
j = 0

for j > n.

Proof. First let | det A| > 8. Given k ∈ Z
2, it may be inferred from Proposition 9.3 that

there is an integer n > 0 such that k ∈ Dn. By the definition of Dn (12), k = ∑n
j=0 Ajεj with

εj ∈ D.
Since Dn ⊆ Dn+1 when 0 ∈ D, uniqueness is proven by showing that the representation of

length n in Dn is unique for all n. We argue by induction. Certainly the representation for k ∈ D = D1

is unique. Suppose this is true for Dn. Since Dn+1 = AnD + Dn and (Ank + Dn) ∩ (Anl + Dn) = ∅
for k 	= l, the uniqueness in Dn+1 follows.

The remaining matrices | det A| ≤ 8 are now checked by hand. One observes that for all these
matrices �T0 ⊆ Dm for some m ≤ 5. Then Proposition 9.3 is applicable to Am with Dm as digit
set. �

9.5. Theorem

Let A be a Euclidean similarity other than

(
1 ±1

∓1 1

)

or

(
2 0
0 2

)

, and set D =
AP ∩ Z

2. Then each x ∈ R
2 has a representation of the form

x =
∞∑

j=1

A−j εj +
N∑

j=0

Aj ε̂j for εj , ε̂j ∈ D and some N > 0. (33)

Moreover, the representation is unique for almost all x ∈ R
2.
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Proof. By Lemma 9.2 the Z
2-translates of Q(A, D) tile R

2. Thus each x ∈ R
2 can be

written in the form x = α + k, where k ∈ Z
2, α ∈ Q(A, D). Theorem 9.4 and the definition of

Q(A, D) give the existence of the desired representation. Moreover, the form x = k + α is unique
except when α ∈ ∂Q(A, D).

LetF = ⋃
k∈Z

2(k+∂Q(A, D)), and setX = (
⋃∞

n=0 A−nF )∩Q(A, D). Sinceλ(∂Q(A, D)) =
0 by Proposition 4.3, we have λ(X) = 0.

Set V = Q(A, D) \ X. To complete the proof we show that for α ∈ V , α = ∑∞
j=1 A−j εj =

∑∞
j=1 A−j ε′

j , εj , ε
′
j ∈ D, implies εj = ε′

j for all j ∈ Z.
Any two finite length expansions for α must be identical, since multiplying by a sufficiently

large power of A puts us in the case treated by the previous theorem. Therefore, we may suppose
that εj 	= 0 for infinitely many j . Let n be the smallest number for which εn 	= ε′

n. Then A−n(εn +∑∞
j=1 A−j εj+n) = ∑∞

j=n A−j εj = ∑∞
j=n A−j ε′

j = A−n(ε′
n + ∑∞

j=1 A−j ε′
j+n). Consequently, we

have εn + β = ε′
n + β ′ for β, β ′ ∈ Q(A, D). As already observed, this can only occur if β ∈

∂Q(A, D). But β ∈ ∂Q(A, D) implies α ∈ V , contrary to the assumption. Thus every α ∈ V has
a unique digit expansion. �

The preceding theorems are now easily translated into the complex forms given in §2. R
2 is

replaced by C in the obvious way. Z
2 becomes the lattice of Gaussian integers Z[i] = {m+ni|m, n ∈

Z}. If

(
a b

−b a

)

is a Euclidean similarity and (x, y) ∈ R
2, then the vector A(x, y) corresponds

to (a + ib)(x + iy) ∈ C.
Finally, we show that there does not exist a set of digits D for which (1 + i, D) is a number

system. In other words, writing q = 1 + i, for each digit set D there is a γ ∈ Z[i] that cannot be
written in the form

γ = ε0 + ε1q + · · · + εnq
n (34)

for εj ∈ D. Working in complex notation with D = {σ, τ } where τ 	= 0, we show that iτ 	∈ Dn for
any integer n ≥ 0. It follows from the identity iτ = τ + qiτ that iτ ≡ τ mod q. If iτ could be
written in the form (34), then there would be a smallest value of n, necessarily n > 1 so that iτ ∈ Dn.
Consequently, we could write iτ = τ + qβ for some β ∈ Dn−1. But then we obtain β = iτ ∈ Dn−1,
contradicting the choice of n.

A similar argument works for q = 1 − i.
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170 Karlheinz Gröchenig and Andrew Haas

[7] Cohen, A., (1990), Ondelettes, analyses multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré, Analyse
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