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ABSTRACT. This paper is devoted to a study of the Hausdorff–Young theorems from a historical
perspective, beginning with the F. Riesz–Fischer theorem. Introduced by W. H. Young (1912), these
theorems were considered and extended by F. Hausdorff (1923), F. Riesz (1923), E. C. Titchmarsh
(1924), G. H. Hardy and J. E. Littlewood (1926), M. Riesz (1927), and O. Thorin (1939/48). Special
emphasis is placed upon the development of the proofs of the two Hausdorff–Young inequalities
and their impact upon Fourier analysis as a whole, in particular on the M. Riesz–Thorin convexity
theorem and on the interpolation of operators. The golden thread connecting the various extensions
and generalizations is the concept of logarithmic convexity, one that goes back to the work of
J. Hadamard (1896), A. Liapounoff (1901), J. L. W. V. Jensen (1906), and O. Blumenthal (1907).

1. Introduction

The aim of this paper is to consider the work of William Henry Young and Felix Hausdorff
concerning the so-called Hausdorff–Young theorems of 1912/23 and to study their impact on Fourier
analysis as a whole, in particular on the M. Riesz–Thorin convexity theorem and interpolation theory
for operators. Although the Hausdorff–Young theorems are dealt with in detail in practically every
book on Fourier analysis and are called as such, with both names attached to them; however, they
do not seem to have been considered from a historical perspective. They are Young’s and also
Hausdorff’s most popular work in the broad area of Fourier analysis.
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In order to put these theorems in their proper setting, it is best of all to begin this study with the
famous F. Riesz–E. Fischer theorem of 1907 and to see how both Will Young1 and his wife Grace
Chisholm Young looked at this theorem in their joint survey paper [YY] on the subject from as early
as 1913.

In this respect it is of interest to note what their son, Laurence Young (1905) [57, p. 282],
wrote concerning the papers of his parents: “My parents published, in addition to the Theory of Sets
of Points (1906), two other mathematical books and 214 papers; 18 papers were my mother’s and
13 were joint. This is partly because my mother wanted the credit to go to my father; it would be
fairer to say that about a third of the material, and virtually all the writing up of the final versions,
was due to my mother: this last was made necessary by the fact that my father had also to make a
living. There was no such thing as a research grant.”

Of Young’s papers, some fifty are devoted to Fourier analysis (and orthogonal series). The
first appeared in 1908, when Young was already in his 45th year; the last paper in 1924. Concerning
Hausdorff, of his 42 publications only one is devoted to Fourier analysis.

Since papers treating the history of mathematics, specifically here the development of a basic
theorem in the course of some 50 years, are usually read by a wide audience, a sincere attempt is
made to make this treatment accessible for nonexperts also. In this respect this author has recently
co-authored two papers on the work of de La Vallée Poussin (see [14, 15] as well as [12]).

2. The Riesz–Fischer Theorem

The Youngs’ first major joint interest in Fourier analysis was the so-called Riesz–Fischer
Theorem2 of 1907, one of the corner stones of mathematical analysis and mathematical physics. It
is stated by them as follows [YY, p. 52]:

If the squares of the coefficients of a trigonometrical series

1

2
a0 +

∑

n=1

(an cos nx + bn sin nx)

1William Henry Young, born 1863 in London, died 1942, studied in Cambridge. Only after his marriage 1896 with
Grace Chisholm (1868–1944), who received her doctorate under F. Klein at Göttingen 1896, did Young begin to
do mathematical research. Both worked together at Göttingen, Geneva, and Lausanne, where they established their
permanent residence. Young was a professor in Calcutta (1913), Liverpool (1916), and Aberystwyth (1919–1923)
and was president of the International Union of Mathematicians 1929–36.

Independently of Lebesgue (1902) he developed (1904) the new integral concept (he named it after Lebesgue).
In 1911 he did preliminary work on P. Daniell’s general integral concept (of 1918). Important contributions to
the theory of Fourier and general orthogonal series as well as to the foundations of the differentiable calculus,
particularly to differentiation of functions of several variables. See J. London Math. Soc. 17 (1942), 218–237;
Historia Math. 2 (1975), 43–58; J. London Math. Soc. 19 (1944), 185–192.

2Concerning the reason why the “Riesz–Fischer” theorem is known as such, the Youngs write [YY, footnote, p. 52]
that whereas Fischer presented his result to the Paris Académie des Sciences on May 13, 1907 (published in the
Comptes Rendus [22]) and communicated it to the Mathematical Society of Brünn already on March 5, Riesz’s paper
had been laid before the Göttingen Gesellschaft der Wissenschaften by Prof. Hilbert on March 9 and published in
the Göttinger Nachrichten [43], with that date attached. In this respect L. C. Young writes [57, p. 309]: “Göttingen
never forgave his [F. Riesz’s] part in the Riesz–Fischer theorem, published after hearing the Seminar talk of Fischer
[at Göttingen], . . . ”. Thus F. Riesz must have heard Fischer’s talk at Göttingen before March 9, 1907. In contrast,
according to Hilb–Riesz [31, p. 1212], Riesz’s paper also appeared in the same Comptes Rendus volume [43, pp.
615–19] (thus, 400 pages earlier) and was presented to the Paris Academy on March 18; they speak of “der von F.
Riesz und E. Fischer nahezu gleichzeitig gefundene sogenannte Riesz–Fischersche Satz . . . ”.
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form a convergent series
∑

n=0(a
2
n + b2

n), then the trigonometrical series is the Fourier series of a
function whose square is summable.

In the introduction to their paper the Youngs write “Though first stated scarcely more than five
years ago, no fewer than seven different proofs have been supplied by continental writers, . . . Each
proof has its own peculiar advantages and throws valuable light on the still extremely modern Theory
of Functions of a Real Variable . . . . We have thought it therefore not superfluous to give an account
of these proofs. We think that each proof will gain by being compared with its rivals. We have,
moreover, occasionally taken the opportunity to introduce various simplifications of a character to
bring out the principles underlying the reasoning employed . . . . Throughout, in fact, our main object
has been to expose the variety of methods possible, rather than to obtain fresh results.”

In fact, the Youngs present Frigyes Riesz’s first proof ([43], of 1907), as well as a second one
([44], of 1910), the proof [22] by Ernst Fischer3, a proof by Hellinger, found in Hilbert’s paper [32,
p. 195] of 1906, a proof due to H. Weyl [55] of 1909. There is finally a proof by M.Plancherel [42]
of 1910; it is “not reproduced here, but utilized in the proofs of Weyl’s theorem and other auxiliary
theorems given in §§17–20.” The paper concludes with Riesz’s (first) proof of the extension of the
Riesz–Fischer theorem from the system of trigonometrical to general orthogonal functions.

Concerning the Fischer approach, the Youngs write that Fischer regards the Riesz–Fischer
theorem as a special case of the theorem established by him in the same paper, namely, that every
Cauchy sequence (fn)n=1∞ in L2(a, b) converges to a function f in L2(a, b), i.e., that the space
L2(a, b) is complete. The Riesz–Fischer theorem was indeed one of the first major applications of
the Lebesgue integral, which had been discovered just five years earlier. William Young, who in
1904 found the definition of the integral independently of Lebesgue’s work of 1902, introduced the
phrase “Lebesgue integral” into the literature.

To indicate their mathematical style, let us cite Youngs’s conclusion [YY, p. 87] to their 39-page
paper:

“§34. Summing up the information we have obtained about the Fourier series of a function
whose square is summable, we have the following result: The Fourier series of a function whose
square is summable need not converge to its function, but it does so, except at a set of content zero,
when the terms are properly grouped together; moreover, the convergence is then of the Weyl type,
i.e., we can, by excluding a set of content as small as we please, make the convergence uniform with
respect to the remaining set; further, the complete succession of partial summations sn(x) is such
that | f − sn |≤ e except at a set whose content vanishes when n → ∞.

No similar theorem has been obtained for functions whose (1 + p)th powers are summable, if
p ≤ 1.”

G. H. Hardy (1877–1947), practically a contemporary of Young (and perhaps Britain’s most
influential mathematician of the period 1900–50) wrote in his obituary notice (J. London Math. Soc.
17 (1942), p. 228) on Young: “. . . and he (or he and his wife together) could write an excellent
historical and critical résumé, with just the right spice of originality.” As an example he gives the
paper [YY].

3Ernst Fischer, born 1875 in Vienna, died 1954, studied in Vienna, receiving his doctorate 1899 under F. Mertens,
the Habilitation 1904. Taught from 1902 until 1811 in Brünn, full professor 1911 in Erlangen, from 1920 to 1938
in Cologne when the Nazi race laws forced him to retire. Although especially well known due to the Riesz–Fischer
theorem, his main work was on invariant theory and determinants. His work on algebra while at Erlangen influenced
E. Noether. Neue Deutsche Biographie 5 (1961), p. 183.
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3. The Hausdorff–Young Theorems and Their First Extensions

We now discuss one of Young’s major contributions to the theory of Fourier series: basically
the problem is how far can the Riesz–Fischer theorem be extended to powers of f (x) other than two?

(A.) If f is a function whose (1 + 1/q)th power is summable, where q is an odd integer, and
an and bn are its typical Fourier constants, then the sum

∑

n=1

(
a1+q

n + b1+q
n

)

is convergent.

(B.) If a trigonometrical series a0/2 + ∑
n=1(an cos nx + bn sin nx) is such that

∑

n=1

(
a1+1/q

n + b1+1/q
n

)
,

where q is an odd integer, is a convergent series, then the trigonometrical series is the Fourier series
of a function f (x) whose (1 + q)th power is summable.

Part (A) is stated in slightly different words in [Y3, p. 79] (within a proof) and [Y2] and is
proved in [Y2] and [Y1, p. 336] (using a result of [Y5]).

Part (B) is a direct citation from [Y3, p. 80] (except that the letter q is used instead of Young’s
p); the proof for the case q = 3 is to be found there. According to [Y3, p. 80], “In the general case
the demonstration is precisely parallel.” See especially §5 in this respect.

Part (A) can be regarded as a generalization either of Bessel’s inequality to which it can be
said to reduce when q = 1, namely,

a2
0

2
+

∞∑

n=1

(
a2

n + b2
n

) ≤ 1

π

∫ π

−π

f (x)2 dx,

or of Parseval’s theorem, the case of equality here. Part (B) extends the Riesz–Fischer theorem.
Both parts are not converses of each other, except for 1 + q = 2. Specifically, both parts

become false if the numbers q and 1/q are interchanged. In fact, regarding (A), Carleman [16]

constructed a continuous f (so that f ∈ Lr
2π for all r > 0) such that

∑∞
n=1

(
a

1+q
n + b

1+q
n

)
= ∞ for

all q < 1.

In the case of (B), Hardy and Littlewood [28] showed by means of an example that when
∑∞

n=1

(
a

1+1/q
n + b

1+1/q
n

)
converges for a value of q that is < 1, the coefficients are not neces-

sarily Fourier constants. Indeed, take the series
∑∞

n=1 n−1/2 cos 2nx (not a Fourier series) with∑∞
n=1

(
n−1/2

)1+1/q
< +∞ for any q < 1. See, for example, [33, Volume II, p. 227; 3, Volume I,

p. 223].
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It was some eleven years later before Felix Hausdorff 4 [H] seriously extended the two Young
theorems. He answered the question of what happens if q is not necessarily an odd integer and put
the theorems in their present known forms; he worked with trigonometrical series in their complex
notation.

Now let p and p′ be conjugate exponents, i.e., 1/p + 1/p′ = 1, 1 < p ≤ 2 ≤ p′. Let f be
real or complex, ck = (1/2π)

∫ π

−π
f (u) exp(−iku) du, k ∈ Z, being the Fourier coefficients of f .

Set

Jp(f ) :=
[

1

2π

∫ π

−π

| f (u) |p du

]1/p

, Sp(c) :=
[ ∞∑

k=−∞
| ck |p

]1/p

. (3.1)

Hausdorff’s version of the theorems, in slightly more modern terminology, reads:

(A′.) If f ∈ L
p

2π with 1 < p ≤ 2, then
∑

k∈Z | ck |p′
is convergent; in fact

Sp′(c) ≤ Jp(f ).

(B′.) If (ck)
∞
−∞ is any sequence of (complex) numbers such that

∑
k∈Z | ck |p is convergent,

where 1 < p ≤ 2, then the ck are the Fourier coefficients of a function f such that f ∈ L
p′
2π ; in fact

Jp′(f ) ≤ Sp(c).

In the Young notation p = 1 + 1/q, p′ = 1 + q (q > 1). Young proved the theorems for q odd,

q = 2m − 1, namely p = 2m/2m − 1, thus for the special sequence of values of p: 2, 4/3, 6/5,
8/7, . . . , in other words, for p′ = 2, 4, 6, 8, . . . . He did not give the two explicit inequalities.

Just as in the case of the original Young theorems, both parts (A′) and (B′) become false, when
p > 2; the examples mentioned there again apply. It can be shown (cf. [59, Volume II, p. 105]) that
equality occurs in (A′) if and only if f (x) = const einx for some n ∈ Z and in (B′) if and only if
the cn vanish for all but at most one element of Z. (The “only if” assertion is not trivial and due to
Hardy–Littlewood [29] (1926)).

Between the two parts of the Hausdorff–Young theorem there is a certain duality: (B′) is
deduced from (A′) if the function f , depending on the variable x, is replaced by the function c

4Felix Hausdorff, born 1868 in Breslau, who committed suicide together with his wife before being deported to a
concentration camp in 1942, studied in Leipzig, Freiburg, and Berlin. He received both his doctorate 1891 and the
Habilitation 1895 in Leipzig. He was appointed associate professor in Leipzig 1902, 1910 in Bonn, and then full
professor in Greifswald 1913. He returned to Bonn as a full professor 1921 where he stayed until his retirement in
1935. He began his work with astronomy, probability theory, and geometry. He was the author of 42 papers and
6 books (four of them under the pseudonym Paul Mongré). He wrote 3 papers on Hilbert’s identities and bilinear
forms (1909, 1919, 1927). His book Grundzuege der Mengenlehre (1914) made him world famous. Hausdorff
space, Hausdorff moment problem, and Hausdorff summability are some basic concepts attached with his name.
See Jahresber. Deutsch. Math.-Verein. 69 (1967), 51–76.
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depending on the variable n, where integration is replaced by summation and vice versa. This is a
major occurrence of such a duality in Fourier analysis.

In the Hausdorff–Young theorem the intrinsic assumption is that p > 1. However, it remains
valid at p = 1; for then p′ = ∞, and ‖ f (x) ‖∞= ess. supx | f (x) |, and ‖ c ‖∞= maxn | cn |.

Frigyes Riesz5 [44] observed that the Hausdorff extensions of the Young theorems are also valid
for any system of (complex) functions ϕ1(x), ϕ2(x), . . . that are orthogonal, normal, and uniformly
bounded on some interval (a, b), i.e.,

∫ b

a
ϕn(u)ϕm(u) du = δn,m, | fn(x) |≤ M , n ∈ N. Riesz’s

extensions read:

(A′′.) If f ∈ Lp(a, b) for 1 < p ≤ 2 and if ck are the Fourier coefficients of f with respect to
ϕk , i.e., ck = ∫ b

a
f (x)ϕk(x) dx, k ∈ N, then

∑∞
k=1 | ck |p′

is finite; in fact

( ∞∑

k=1

| ck |p′
)1/p′

≤ M(2−p)/p

(∫ b

a

| f (x) |p dx

)1/p

.

(B′′.) If (ck)
∞
1 is any sequence for which

∑∞
1 | ck |p is finite, then there is an f ∈ Lp′

(a, b)

whose Fourier coefficients with respect to ϕk are ck; in fact

[∫ b

a

| f (x) |p′
dx

]1/p′

≤ M(2−p)/p

[ ∞∑

k=1

| ck |p
]1/p

.

4. The Hausdorff–Young–Titchmarsh Inequality

Another mathematician who took up Young’s work was Hardy’s student E. C. Titchmarsh.
Already on May 30, 1923, he presented his paper [51] to the London Mathematics Society, which
gave the analogue of the Hausdorff formulation in the instance of Fourier transforms for the real line
R. Working in the spirit of Plancherel’s approach [42, of 1910], Titchmarsh6 himself regards the
analogues as follows:

5Frigyes Riesz, born 1880 in Györ (Raab), died 1956, studied at the ETH Zürich, in Budapest and Göttingen. Doctorate
1902 in Budapest, then a Gymnasium teacher. Appointed associate professor in Klausenburg (=Koloszvar, Cluij)
1912, full professor there 1914, 1920 in Szeged, and 1946 in Budapest. At Szeged he built up the internationally
known mathematical institute, and founded the Acta Sci. Math. Szeged in 1922. He was a member or corresponding
member of the Academies of Hungary, Paris, Sweden, and Bavaria, and received honorary doctorates from Szeged,
Budapest, and Paris. He was the author of some 95 papers on topology, real and analytic functions, ergodic theory,
subharmonic functions, Riesz representation theorems, and compact operators. See B. Sz.-Nagy, J. Szabados (eds.):
Functions, Series, Operators. Colloquia Mathematica Societatis János Bolyai 35, North-Holland, Amsterdam,
Vol. I, 1983, pp. 37–48, 69–76.

6Edward Charles Titchmarsh, born 1899 in Newburry, died 1963, studied in Oxford under G. H. Hardy, receiving
his B.A. 1922, later the M.A. Already 1929 professor of pure mathematics at Liverpool, 1931 in Oxford. FRS in
1931, honorary doctorate Sheffield 1953. Especially well known for his books on the Riemann Zeta function (1930,
1951), on the theory of functions (1932), on the theory of Fourier integrals (1937), and on eigenfunction expansions
associated with second-order differential equations (1946). He was also the author of some 135 papers. See
J. London Math. Soc. 39 (1964), p. 544–565.
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Analogue of the Parseval Theorem: If f ∈ Lp(o, ∞), 1 < p ≤ 2, then the function

F(x) =
(

2

π

)1/2
d

dx

∫ ∞

0

sin xu

u
f (u) du

belongs to the space Lp′
(0, ∞).

Analogue of the Riesz–Fischer Theorem: If f ∈ Lp(0, ∞), 1 < p ≤ 2, then there is a function
F ∈ Lp′

(0, ∞) such that

f (x) =
(

2

π

)1/2
d

dx

∫ ∞

0

sin xu

u
F(u) du.

The function F , the same in both parts, which has a meaning for almost all x, is the Fourier cosine
transform.

Titchmarsh states that his results apply equally well to Fourier sine transforms and shows by
means of an example that the results are false if p > 2. However, nowadays the inequality

(∫ ∞

0
| F(x) |p′

dx

)1/p′

≤ π

2

(∫ ∞

0
| f (x) |p dx

)1/p

,

just mentioned by Titchmarsh [51, p. 298] in passing, is usually regarded as Titchmarsh’s analogue
of the Hausdorff–Young results. In modern terminology, the Fourier transform f ˆ = Fp[f ] of
f ∈ Lp(R), 1 < p ≤ 2, being defined by

F p[f ](v) =
(p′)

l.i.m.
�→∞

1√
2π

∫ �

−�

f (u)e−ivu du,

it reads: The Fourier transform Fp defines a bounded linear transformation of Lp(R), 1 < p ≤ 2,
into Lp′

(R), which contracts norms, i.e.,

(
1√
2π

∫

R
| F p[f ](v) |p′

dv

)1/p′

≤
(

1√
2π

∫

R
| f (u) |p du

)1/p

(f ∈ Lp(R)). (4.1)

By contrast with the situation for the circle group, where this inequality was noticed to be sharp,
equality is never attained in (4.1) except when f ≡ 0. In this respect K. I. Babenko [2] (1961)
obtained a sharp form of the Titchmarsh inequality, stating that

‖ F p[f ] ‖p′≤
(

p1/p

p′ 1/p′

)1/2

‖ f ‖p (f ∈ Lp(R)) (4.2)



120 P. L. Butzer

is valid for the special values p′ = 2, 4, 6, . . . . Using the methods of entire functions, Babenko
proved that equality occurs in (4.2) for the Gaussian functions f (x) = exp(−αx2), α > 0. This
inequality for the full range of values of p, 1 < p ≤ 2, is due to W. Beckner [6, 1975]; he also
studied the situation for the Fourier transform on Rn, the best constant in (4.2) now being the nth
power of the multiplicative (p − p′)-factor there.

5. Concerning the Proofs

Let us look at Young’s proofs in the particular case p = (2m)/(2m− 1), m ∈ N. A. Zygmund
[58, p. 191f] in his original edition of 1935 writes “This case is fairly easy and, what is more important,
in certain interesting applications of the Hausdorff–Young theorem it suffices entirely.” Concerning
notation, let, for example, f, g ∈ L2

2π with f (x) ∼ ∑∞
k=−∞ ake

ikx , g(x) ∼ ∑∞
k=−∞ bke

ikx . Then
f · g ∈ L1

2π with f (x) · g(x) ∼ ∑∞
k=−∞ cke

ikx , where ck is now the resultant or convolution of ak

and bk ,

ck :=
∞∑

j=−∞
ajbk−j .

Concerning the resultant of two arbitrary positive sequences (ak), (bk), playing around with Hölder’s
inequality, Young [YY, Y1, Y3] established the “bemerkenswerte Ungleichung” (in the words of
F. Hausdorff [H, p. 166]):

If r > 1, s > 1, 1
r

+ 1
s

> 1 (so that rs < r + s), then

∑

k

c
rs/r+s−rs

k ≤
(

∑

k

ar
k

)s/r+s−rs

·
(

∑

k

bs
k

)r/r+s−rs

. (5.1)

More elegantly, if λ > 0, µ > 0, and λ + µ < 1, then, in the notation of (3.1.),

S1/(1−λ−µ)(c) ≤ S1/(1−λ)(a) · S1/(1−µ)(b). (5.2)

Inequality (5.2) precisely in this form is to be found in Hausdorff [H] and Hardy–Littlewood–Polya
[30, p. 199]. The latter remarks that Young did not the consider the question of equality; it can occur
only if all the ak , or all the bk , or all ak but one or all the bk but one, are zero.

Now let us take Young’s proof (following [27]) of the simplest case of (B′), namely p =
2m/(2m − 1) for m = 3, i.e., p = 4/3, supposing that

∑
k | ck |4/3< +∞. Denoting the resultant

of ck with itself by c
(2)
k , then c

(2)
k is the Fourier coefficient of f 2. Taking λ = µ = 1/4 in (5.2) yields∑

k | c
(2)
k |2≤ (∑

k | ck |4/3
)3

. Hence, by the Riesz–Fischer theorem, f 2 ∈ L2
2π , i.e., f ∈ L4

2π , and

1

2π

∫ π

−π

| f 2 |2 dx =
∑

k

| c
(2)
k |2≤

(
∑

k

| ck |4/3

)3

.
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This is J4(f ) ≤ S4/3(c). Young established this result explicitly for m = 3 and 4. For general
p = 2m/(2m − 1) one would first have to generalize inequality (5.1) to m-fold convolutions. This
result is given in a clearer form in [30, Theorem 279]: If

c
(m)
k :=

∑

i1+···+im=k

ai1ai2 · · · aim ,

then, unless all but one are zero,

∑

k

| c
(m)
k |2≤

(
∑

k

a
2m/(2m−1)

k

)2m−1

. (5.3)

If c
(m)
k is in particular the m-fold convolution of ck with itself, where

(∑
k c

2m/(2m−1)

k

)
< ∞, then

c
(m)
k is the Fourier coefficient of f 2m. Hence again by the Riesz–Fischer theorem, f m ∈ L2

2π and

1

2π

∫ π

−π

| f m |2 dx =
∑

k

| c
(m)
k |2 ≤

(
∑

k

(
c

2m/(2m−1)

k

))2m−1

.

This would deliver J2m(f ) ≤ S2m/(2m−1)(c).
Concerning the proof of (A′), Young’s proof being somewhat difficult to follow, let us take

Hausdorff’s modification of it (see also [30, p. 203] for the latter). The basic idea is to deduce (A′)
from (B′). Let

sn(x) =
n∑

k=−n

ane
ikx, g(x) =

n∑

k=−n

bke
ikx

—the former the Fourier partial sum of f , the latter an arbitrary polynomial. If f ∈ L
p

2π , Parseval’s
theorem (see, e.g., Young [YS]) and Hölder’s inequality yield

|
n∑

k=−n

akbk |=| 1

2π

∫ π

−π

f (u)g(−u) du |≤ Jp(f )Jp′(g) ≤ Jp(f )Sp,n(b),

where Sp,n(b) := (∑n
k=−n | bk |p)1/p

, the last inequality being an application of (B′). Taking in
particular bk =| ak |p′−1 sgn āk , then akbk =| ak |p′=| bk |p. Hence

Sp,n(b) =
(

n∑

k=−n

| ak |p′
)1/p

= S
p′/p
p′,n (a)
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or

S
p′
p′ (a) =

n∑

k=−n

| akbk |≤ Jp(f )S
p′/p
p′,n (a).

Thus Sp′(a) ≤ Jp(f ), so that
∑∞

k=−∞ | ak |p′
is convergent, proving (A′).

One could also establish (A′), independently of (B′), by using a dual of (5.3). It is to be found
in [30, Theorem 284]: If f has period 2π and

fm(x) := 1

(2π)m−1

∫ π

−π

· · ·
∫ π

−π

f (u1)· · ·f (um−1)f (x − u1 −· · ·− um−1) du1· · · dum−1, (5.4)

then

1

2π

∫ π

−π

| fm(x) |2 dx ≤
(

1

2π

∫ π

−π

f (x)2m/(2m−1) dx

)2m−1

. (5.5)

Note that f1(x) = f (x), fj (x) := (f ∗fj−1)(x) := (1/2π)
∫ π

−π
fj−1(x −u)f (u) du, j = 2, 3, . . . .

Supposing that f ∈ L
2m/(2m−1)

2π , noting that if ck are the Fourier coefficients of f , those of fj

are c
j

k , it follows by Parseval’s theorem that

(
1

2π

∫ π

−π

f (x)2m/(2m−1) dx

)2m−1

≥ 1

2π

∫ π

−π

| fm(x) |2 dx =
∞∑

k=−∞
| cm

k |2=
∞∑

k=−∞
| ck |2m .

This is S2m(c) ≤ J2m/(2m−1)(f ).

Similary as above one could now deduce (B′) from (A′). It is to be found in Zygmund [58,
§9.121, p. 191]. Therefore, both parts are in reality equivalent (in the particular Young instance).

Note that inequality (5.5) is related to, respectively, an extension of the so-called Young
inequality about convolutions. This states that if f ∈ L

p

2π and g ∈ L
p

2π where p ≥ 1, q ≥ 1,
1/r = 1p + 1/q − 1 ≥ 0, then f ∗ g ∈ Lr

2π and

{
1

2π

∫ π

−π

| (f ∗ g)(u) |r du

}1/r

≤
{

1

2π

∫ π

−π

| f (u) |p du

}1/p

·
{

1

2π

∫ π

−π

| g(u) |q du

}1/q

.

The particular case 1/p + 1/q = 1 is the classical Hölder inequality, with f ∗ g continuous. See,
for example, Hilb–Riesz [31, p. 1211] in regard to the history.

Finally three citations in regard to the proofs of Hausdorff’s extensions of the Young theorems,
namely (A′) and (B′) of §3. It is the commentator’s impression that the breakthrough in regard to
these proofs is due to Hausdorff and not to F. Riesz.

In this respect it is of interest to cite F. Riesz [45] in his own words: “Herr Hausdorff hat
über seine Resultate im September d.J. der Naturforschersammlung in Leipzig berichtet; bezüglich
des Beweises verwies er auf seine in dieser Zeitschrift demnächst erscheinende Arbeit. Durch
diese Mitteilung angeregt, suchte ich mir einen Beweis auszuarbeiten; dabei fand ich, daß jene
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Resultate nicht nur für das trigonometrische Orthogonalsystem, sondern auch für jedes beschränkte
Orthogonalsystem gelten.

Mein Beweis läuft teilweise, wie ich aus einer brieflichen Mitteilung des Herrn Hausdorff
erfahre, dem seinigen ziemlich parallel; der wesentliche Unterschied, der mir den allgemeineren
Schluß gestattet, besteht in folgendem: Hausdorff führt den Fall eines beliebigen dyadisch rationalen
q = r/2s > 1 (aus welchem ja die entsprechenden Ungleichungen für beliebige q > 1 durch
Einschachtelung unmittelbar folgen) in einer endlichen Anzahl von Schritten auf den Youngschen
Fall zurück, während ich (für beliebige q > 1) denselben Prozeß u n e n d l i c h o f t wiederhole
und den allgemeinen Fall auf den fast trivialen Grenzfall q −→ ∞ zurückführe. Genauer gesagt ist
dieser Grenzübergang nur der leitende Gedanke meines Beweises, tatsächlich ersetze ich ihn in §2
durch eine einfacher Abschätzung für große Werte von q.”

G. H. Hardy and J. E. Littlewood [29, p. 160] observed that F. Riesz’s “alternative proof [was]
somewhat simpler than Hausdorff’s,” and that “We give a new proof in §3. The proof will be useful
as an introduction to the more difficult analysis which follows. It has also two points of independent
interest; it enables us to complete the solution of the minimal problem suggested in Hausdorff’s
analysis, and it involves what would appear to be the least possible amount of ‘existence-theory’ .”
It is odd that their (section) heading of §3, called “A new proof of Hausdorff’s Theorem, with
determination of the minimal functions,” does not contain the word “Young.” This new proof covers
six pages.

Finally let us see what Will’s son Laurence C. Young [57, p. 300] said in the matter: “Haus-
dorff’s part of the [Hausdorff–Young] inequality was that of a professional rather than a pioneer.”.
In this respect, Hardy, concerning whom L. C. Young writes [57, p. 288] “Hardy was always gen-
erous in reference to my father,” expresses the following general opinion about Will Young’s work
[27]: “His style is better in his books than in his papers, which are sometimes rather rambling and
diffuse—· · · A theorem will be proved, in varying degrees of generality, in a half a dozen different
papers, with continual cross-references, and promises of further developments not always fulfilled.”
Nevertheless the originator of the fundamental Hausdorff–Young theorem is Young; the basic facts
concerning the proof of his particular cases are also his. Hausdorff essentially put the matter in its
present form.

The proof of the Hausdorff–Young theorem generally found in the early literature is Frigyes
Riesz’s modification. Examples are Hobson [33, II, pp. 600–606] and Kacmarz–Steinhaus [36,
pp. 203–208]. However, already in 1926 Frigyes’s brother Marcel Riesz7 came up with a new
approach in establishing inequalities of the type given by the Young theorems, first known under
“M. Riesz’s convexity theorems”; see below.

6. The Riesz–Thorin Convexity Theorem

Whereas J. L. W. V. Jensen [34] (1906) first recognized the importance of the class of
convex functions and associated inequalities, according to Zygmund [58, p. 70] it is apparently

7Marcel Riesz, born 1886 in Györ, died 1969; after studying 1904–1910 in Budapest, Göttingen, and Paris, doctorate
1909 in Budapest, he accepted an invitation by G. Mittag–Leffler in 1911 to be a lecturer at Stockholm’s Högskola.
Full professor at Lund Univ. 1926–1952. He had honorary degrees from Copenhagen and Lund, was a member of
the Swedish Academy, of one in Lund and Copenhagen. He was the author of 60 papers on summability theory of
power series, trigonometric series, Dirichlet series, potential theory, wave progation, relativity theory, and elementary
number theory. Acta. Math. 124 (1979), I–XI.
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F. Hausdorff [33] who observed8, using Hölder’s inequality, that the ordinary sum and integral means
Sp(c), Jp(f ) of (3.1), which are nondecreasing, continuous functions of p, define logarithmically
(or multiplicatively) convex functions of p for p > 0. Thus p log Sp(c) is convex, namely,

Sp
p (c) ≤ (

Sp1
p1

(c)
)1−t · (

Sp2
p2

(c)
)t

where p = p1(1 − t) + p2t , pi > 0, 0 < t < 1. As a follow-up, Marcel Riesz [46] (1927),
continuing work of Hilbert (1888/93), Schur (1911), Hellinger and Toeplitz (1910), and his brother
F. Riesz [45] (1923), considered the bilinear form in the variables xi , yj

A(x, y) =
m∑

i=1

n∑

j=1

aij xiyj

with real or complex coefficients aij . Letting Mα,β be the maximum of | A(x, y) | for

[
m∑

i=1

| xi |1/α

]α

≤ 1,

[
n∑

j=1

| yj |1/β

]β

≤ 1 (α, β > 0)

max
i

| xi |≤ 1, max
j

| yj |≤ 1 (α = β = 0)

he showed that Mα,β is a logarithmically convex function of the variables α, β in the lower triangle
� = {(α, β); 0 ≤ β ≤ α ≤ 1} of the unit square � = {(α, β); 0 ≤ α, β ≤ 1}. Thus, if
α = α1(1 − t) + α2t , β = β1(1 − t) + β2t , 0 < t < 1, then

Mα,β ≤ M1−t
α1,β1

Mt
α2,βx

.

8Although, for example, Roberts–Varberg [47], D. S. Mitrinovic̀ [40], M. Kuczma [38] go into the history of convex
functions, they do not in the case of log-convex functions. One of the first results in this respect seems to be
Hadamard’s three-circles theorem: Let f be a holomorphic function, regular in the annulus domain r1 ≤| z |≤ r2.
If Mi = M(ri) = max|z|=ri | f (z) | for i = 1, 2, 3 with r1 < r2 < r3, then

M
log(r2/r1)

2 ≤ M
log(r3/r2)

1 M
log(r2/r1)

3 ,

i.e., log M(r) is a convex function of log r . According to G. H. Hardy [26], this result “was discovered independently
by O. Blumenthal [8], G. Faber [19], and Hadamard [25]. The first statement of the theorem was due to Hadamard
and the first proof to Blumenthal.” The theorem is related to results of E. Fabry (1902) and F. Hartogs (1905). It was
perhaps Hardy (1914) who first used the terminology “log M(r) is a convex function of log r”. Hardy–Littlewood–
Polya [30, p. 27] (who speak or deal with log-convex functions on pp. 71, 72, 122, 139, 145, but also do not go into

its history) observe that for the means Mp = Mp(a) =
(
n−1

∑n

k=1 a
p

k

)1/p
A. Liapounoff ([39], 1901) showed

that for p1 < p2 < p3, Mp1
p2

≤
(
Mp1

p1

)(p3−p2)/(p3−p1) (Mp3
p3

)(p2−p1)/(p3−p1)
or, for p2 = p1t + p3(1 − t), with

0 < t < 1, that
∑

ap2 ≤
(∑

ap1
)t (∑

ap3
)1−t

, i.e., in the present terminology log Mp
p (a) is a convex function

of p. See also G. Julia [35], E. F. Beckenbach [4], E. F. Beckenbach–R. Bellman [5]. It seems that the textbook [9] by
Bohr–Mollerup (1922) contains the first proof of the fact that the Gamma function �(x) is log-convex for x > 0. The
author would like to thank J. Korevaar (Amsterdam), H. Kairies (Clausthal-Zellerfeld), and A. M. Bruckner (Santa
Barbara) for valuable suggestions concerning the references to Hadamard, Kuczma, and Beckenbach, respectively.
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Note that R. E. A. C. Paley [41] gave an alternative proof of the convexity theorem as did also Will
Young’s son Laurence C. Young [56] (1939). M. Riesz cites the Hausdorff paper four times.

Now the Riesz convexity theorem does not extend to the upper triangle of �, at least for
real variables xi , yj . But if these are allowed to be complex, Riesz’s student Olof Thorin (born
1912) showed [49, 50] (1939/48) that convexity does hold on the whole square �. Moreover,
Thorin expressed the result not in the finite-dimensional setting of matrix transformations and their
associated bilinear functionals but in terms of linear operators. But the basic idea of an “interpolation
of linear operators” is M. Riesz’s. Thorin’s proof depends crucially on the use of complex functions,
in fact on Hadamard’s three lines theorem, whose conclusion also involves a logarithmically convex
function. At last to the theorem; it reads as follows (see, e.g., [58, 59, 18, 7]):

Let (R1, µ1), (R2, µ2) be two measure spaces, and let T be a linear operator defined on all
µ1-simple functions on R1 and taking values in the µ2-measurable functions on R2. Suppose that T

is simultaneously of strong type (1/α1; 1/β1) and (1/α2; 1/β2), that,

‖Tf ‖1/β1,µ2 ≤ M1‖f ‖1/α1,µ1 , ‖Tf ‖1/β2,µ2 ≤ M2‖f ‖1/α1,µ1 , (6.1)

the points (α1, β1), (α2, β2) belonging to the square 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. Then T is also of
strong type (1/α; 1/β) for all

α = (1 − t)α1 + tα2, β = (1 − t)β1 + tβ2 (0 < t < 1)

and

‖ Tf ‖1/β,µ2≤ M1−t
1 Mt

2 ‖ f ‖1/α,µ1 . (6.2)

In particular, if α > 0, the operator T can be uniquely extended to the whole space L
1/α
µ1 , preserving

norm.
If Mi is the strong type (1/αi; 1/βi) norm of T (i.e., the least constant Mi for which (6.1)

hold), then (6.2) may be rewritten as

Mt ≤ M1−t
1 Mt

2

where Mt = Mt(α, β) is the strong type (1/α; 1/β) norm of T . Inequality (6.2) in this form states
that Mt(α, β) is logarithmically convex in �. Moreover, the set of all points (α, β) such that T is
of strong type (1/α; 1/β) is a convex set. Thus the concept of logarithmically convex functions is
the basic element of proofs in the papers of F. Hausdorff (also F. Riesz), M. Riesz, O. Thorin. It was
used, at least implicitly, by W. Young when establishing the inequalities (5.1) and (5.2), as can best
be seen from Hausdorff’s presentation of Young’s arguments.

Let us see how the Riesz–Thorin theorem applies to the Hausdorff–Young theorem. On the
one hand, by definition of the complex Fourier coefficient of f ∈ L1

2π ,

‖ c ‖∞= max
n∈ Z

| cn |≤‖ f ‖1= J1(f ),

and on the other hand, by Bessel’s inequality,
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‖ c ‖2≡ S2(c) ≤‖ f ‖2 .

Thus the Fourier-coefficient transform f −→ c is simultaneously of types (1/α1, 1/β1) = (1, ∞)

and (1/α2, 1/β2) = (2, 2) with the operator norms M1, M2 ≤ 1. Thus α = (1 − t)/1 + t/2 =
(2 − t)/2, β = (1 − t)/∞ + t/2 = t/2 so that for p = 1/α = 2/(2 − t), q = p′ = 1/β = 2/t one
has 0 ≤ t ≤ 1, 1 ≤ p ≤ 2 and so by the Riesz–Thorin theorem this transform is also of type (p, p′),
mapping L

p

2π into lp
′
, with norm at most 1, or

‖ c ‖p′≤ 11−t · 1t ‖ f ‖p .

This is (A′) of the Hausdorff result; (B′) can be established by a similar argument. So both parts are
equivalent (see, e.g., [59, Vol. II, p. 103].

The Riesz–Thorin convexity theorem was the forerunner of a variety of interpolation theorems
for linear and sublinear operators, and also in the realm of general Banach spaces. Thus, certain
weaker conditions at the “end points” (pi; qi), i = 0, 1, are often sufficient to guarantee strong type
(pt ; qt ) for 0 < t < 1; here 1/pt = (1 − t)/p1 + t/p2, likewise for qt . In this respect there is the
Marcinkiewicz interpolation theorem. It can be applied, for example, to the Hilbert transform or the
conjugate function in the periodic instance; although of strong type (2, 2) it is only of weak type
(1, 1). Still the operator is of strong type (p, p), 1 < p < 2.

The same applies, for example, to the Hardy–Littlewood maximal operator, to fractional in-
tegrals. Then there is, for example, the E. M. Stein and G. Weiss [48] interpolation theorem for
“restricted” weak type operators.

Let (X1, X2) be a compatible couple, i.e., a couple of Banach spaces X1, X2, both spaces
continuously embedded in some Hausdorff topological spaces X . Now the spaces X1 ∩ X2 and
X1 + X2 = {f = f1 + f2; f1 ∈ X1, f2 ∈ X2} are Banach spaces under the norms

‖ f ‖X1∩X2= max{‖ f ‖X1 , ‖ f ‖X2},

‖ f ‖X1+X2= inf{‖ f1 ‖X1 + ‖ f2 ‖X2; f = f1 + f2}.

Then any B-space X ⊂ X satisfying X1 ∩X2 ⊂ X ⊂ X1 +X2 with continuous embeddings is said to
be an intermediate space of (X1, X2). For example, if 1 ≤ p1, p2 ≤ ∞, 1/pt = (1 − t)/p1 + t/p2,
0 ≤ t ≤ 1, then Lpt is an intermediate space between Lp1 and Lp2 .

Let (X1, X2) and (Y1, Y2) be two compatible couples in X , Y , and let X, Y be intermediate
spaces of (X1, X2) and (Y1, Y2), respectively. Then the spaces X, Y are said to have the interpolation
property with respect to the given compatible couples if each sublinear operator T : X1 + X2 −→
Y1 + Y2 with T |Xi

∈ [Xi, Yi], i = 1, 2, is a bounded operator from X into Y . In particular, X and Y

are called interpolation spaces of type t , 0 ≤ t ≤ 1, if for each admissable operator T there holds
the convexity inequality

M ≤ cM1−t
1 Mt

2

with some positive constant c, M being the norm of T on X to Y and Mi the norm of T |Xi
on Xi

to Yi . According to the Riesz convexity theorem, Lpt is also an interpolation space between Lp1

and Lp2 .
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Given two compatible couples (X1, X2) and (Y1, Y2), some of the general problems in the
theory of interpolation of operators include the characterization of all interpolation spaces between
(X1, X2) and (Y1, Y2), the construction of such spaces, the development of different interpolation
methods. This material is treated in Butzer–Berens [11], one of the first books devoted to the material,
and in the more modern books such as H. Triebel [53], who emphasizes important applications to
differential equations, which originally gave impetus to the theory; Bennett–Sharpley [7], which is an
elegant introduction into the theory of linear operators; and Krein–Petunin–Semenov [37] as well as
Brudnyi–Krugljak [10], both typical fine Russian works, perhaps more in the direction of good hard
analysis than functional analysis. For interpolation methods within the context of rearrangement
invariant Banach function spaces and weak-type interpolation, see for example, [20, 21] of F. Fehér.

Now everybody admits (see, e.g., Garding [23], Hardy et al [30], Aronszajn–Gagliardo [1]) that
the “beginning of what we now call interpolation methods between Banach spaces was the convexity
theorem of M. Riesz.” The bases to this theorem were the two Hausdorff–Young inequalities, as we
saw. The golden thread connecting the results from 1912 until the present was—in my judgement—
the concept of logarithmic convexity.
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