Banach Spaces of Solutions of the Helmholtz Equation in the Plane

Josefina Alvarez, Magali Folch-Gabayet, and Salvador Pérez-Esteva

Communicated by Carlos Kenig

ABSTRACT. The purpose of this article is to study the Hilbert space W^2 consisting of all solutions of the Helmholtz equation $\Delta u + u = 0$ in \mathbb{R}^2 that are the image under the Fourier transform of L^2 densities in the unit circle. We characterize this space as a close subspace of the Hilbert space \mathcal{H}^2 of all functions belonging to $L^2(|x|^{-3}dx)$ jointly with their angular and radial derivatives, in the complement of the unit disk in \mathbb{R}^2 . We calculate the reproducing kernel of W^2 and study its reproducing properties in the corresponding spaces \mathcal{H}^p , for p > 1.

1. Introduction and Preliminaries

The purpose of this article is to study Banach spaces of solutions of the Helmholtz equation $\Delta u + u = 0$ in \mathbb{R}^2 . One can generate solutions to this equation from L^1 densities in the unit circle *T* through the operator (see [3, p. 3])

$$Wf(s,t) = \int_0^{2\pi} e^{i(s\sin\theta + t\cos\theta)} f(\theta) \frac{d\theta}{2\pi}$$

where $f \in L^1(T)$. The function Wf is nothing else but the Fourier transform of the density f on T, considered as a tempered distribution in \mathbb{R}^2 . Much work has been done in the study of the Fourier transform of distributions supported in a surface and the related problem of the restriction of the Fourier transform. In this article we describe $W(L^2(T))$ as a function space. In n dimensions, this problem was studied by Guo in [5], where he gave a necessary and a sufficient condition in terms of mixed norms, for a temperate distribution to be the Fourier transform of an L^2 density in the sphere in \mathbb{R}^n . In two dimensions, González-Casanova and Wolf proved in [3] that given $f \in L^2(T)$, the restriction $(Wf(\cdot, 0), \frac{\partial Wf}{\partial t}(\cdot, 0))$ determines Wf completely. Then they constructed a reproducing kernel for the space of these restrictions in a certain Hilbert space provided with a nonlocal inner product.

Math Subject Classifications. 46E15.

Keywords and Phrases. Helmholtz equation, reproducing kernel.

Acknowledgements and Notes. Josefina Alvarez: partially supported by Arts and Sciences Research Center 01-3-43903, New Mexico State University. Magali Folch-Gabayet and Salvador Pérez-Esteva: partially supported by PAPIIT-UNAM IN106997 and CONACyT 32408-E.

In this article, we characterize the image $W(L^2(T))$ as a closed subspace of a Hilbert space \mathcal{H}^2 . This space \mathcal{H}^2 consists of all functions belonging to $L^2(|x|^{-3} dx)$ jointly with their angular and radial derivatives, in the complement of the unit disk in \mathbb{R}^2 . We also construct and study the reproducing kernel for $W(L^2(T))$. This work is done in Section 2. In Section 3 we consider the *p*-version, \mathcal{H}^p , of the space \mathcal{H}^2 and we study the class of solutions of the Helmholtz equation belonging to \mathcal{H}^p . These turn out to be Banach spaces and the projection \mathcal{P} found in Section 2 provides a reproducing formula for every $1 . We also show by means of an example that in general the operator <math>\mathcal{P}$ cannot be extended as a bounded operator in \mathcal{H}^p .

Throughout this article we will use the following notations and results: D will denote the open unit disk in \mathbb{R}^2 , and $\Omega = \mathbb{R}^2 \setminus \overline{D}$. The conjugate exponent of p > 1 will be denoted by p'.

For every integer *n*, the Bessel function $J_n(r)$ can be defined (see [7, p. 20]) by

$$J_n(r) = \int_0^{2\pi} e^{i(r\sin\theta - n\theta)} \frac{d\theta}{2\pi} \, .$$

The Bessel functions satisfy the following functional relations (see [4])

$$2J'_{n}(r) = J_{n-1}(r) - J_{n+1}(r), \qquad (1.1)$$

$$-rJ_{n+1}(r) = rJ'_{n}(r) - nJ_{n}(r), \qquad (1.2)$$

$$J_{-n}(r) = (-1)^n J_n(r) , \qquad (1.3)$$

$$\sum_{n \in \mathbb{Z}} J_n(r)^2 = 1.$$
(1.4)

For $n \ge 0$ we have the estimate (see [7, p. 16])

$$|J_n(r)| \le \frac{r^n}{n!2^n} e^{r^2/4} .$$
(1.5)

Hence, for $n \ge 1$ we obtain

$$\int_0^1 J_n^2(r) \, \frac{dr}{r^2} = o\left(\frac{1}{n!2^n}\right) \, .$$

Also for $n \ge 1$, we have [4, p. 715]

$$\int_0^\infty J_n^2(r) \, \frac{dr}{r^2} = \frac{1}{\pi} \frac{1}{n^2 - 1/4} \, .$$

Then, we conclude that for every $n \ge 1$,

$$\int_{1}^{\infty} J_{n}^{2}(r) \frac{dr}{r^{2}} = \frac{1}{\pi} \frac{1}{n^{2} - 1/4} + o\left(\frac{1}{n!2^{n}}\right) \,. \tag{1.6}$$

With $r = \sqrt{s^2 + t^2}$ and $\theta = \arctan \frac{t}{s}$, we consider the operators

$$\frac{\partial u}{\partial r} = \frac{s}{r} \frac{\partial u}{\partial s} + \frac{t}{r} \frac{\partial u}{\partial t}$$
$$\frac{\partial u}{\partial \theta} = -t \frac{\partial u}{\partial s} + s \frac{\partial u}{\partial t}$$

defined on $\mathcal{D}'(\mathbb{R}^2 \setminus \{0\})$. Given a smooth function u, then $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial \theta}$ are the radial and angular derivatives of u, respectively.

Definition 1. (a) For $1 \le p < \infty$, we denote with \mathcal{H}^p the space of all $u \in \mathcal{D}'(\Omega)$ such that $u, \frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial \theta} \in L^1_{loc}(\Omega)$ and

$$\|u\|_{\mathcal{H}^p} = \left\{ \iint_{\Omega} \left(|u|^p + \left| \frac{\partial u}{\partial r} \right|^p + \left| \frac{\partial u}{\partial \theta} \right|^p \right) \frac{dx}{r^3} \right\}^{1/p} < \infty .$$

(b) We will denote with W^p the space of all functions $u \in \mathcal{H}^p$ satisfying the Helmoltz equation in \mathbb{R}^2 .

Remark 1. (1) For any bounded open set $U \subset \Omega$, the restriction operator is continuous from \mathcal{H}^p into the standard Sobolev space $W^{p,1}(U)$. Using this fact, it is easy to see that \mathcal{H}^p is a Banach space.

(2) One can represent the dual space of \mathcal{H}^p as in the case of the Sobolev space $W^{p,1}(\Omega)$. In fact, every $L \in (\mathcal{H}^p)^*$ can be represented as

$$Lu = \iint_{\Omega} \left(uF_1 + \frac{\partial u}{\partial r}F_2 + \frac{\partial u}{\partial \theta}F_3 \right) \frac{dx}{|x|^3} ,$$

where $F_i \in L^{p'}(\Omega, |x|^{-3} dx)$ and $||L|| \approx \sum_{i=1}^3 ||F_i||_{L^{p'}(\Omega, |x|^{-3} dx)}$ and as we said before, p' is the conjugate exponent of p. The proof is the same as in the case of the space $W^{p,1}(\Omega)$.

(3) If *u* satisfies the Helmoltz equation in \mathbb{R}^2 and u = 0 in Ω , then *u* is identically zero (see for example (3.1) below). Hence \mathcal{W}^p may be thought of as a space of functions in \mathbb{R}^2 , with $\|\cdot\|_{\mathcal{H}^p}$ as a well defined norm.

(4) Since the measure $\frac{dx}{|x|^3}$ is finite in Ω , we have $\mathcal{H}^{p_1} \subset \mathcal{H}^{p_2}$, when $p_1 > p_2$. The same can be said about the space \mathcal{W}^p .

We end this section with the following estimates used in Section 3:

Lemma 1.

For each $\gamma > 2$, there exist C > 0 and $C_{\gamma} > 0$ such that

(1)
$$\iint_{\Omega} \frac{dy}{(1+|x-y|)^{3/2}|y|^2} \le C \frac{\log|x|}{|x|^{3/2}}, x \in \Omega,$$

(2)
$$\iint_{\Omega} \frac{dy}{(1+|x-y|)^{3/2}|y|^{\gamma}} \le \frac{C_{\gamma}}{|x|^{3/2}}, x \in \Omega.$$

Proof. The proof follows from elementary estimates on these integrals splitting

$$\begin{split} \Omega &= \Omega_1 \cup \Omega_2 \cup \Omega_3 \cup \Omega_4, \text{ where} \\ \Omega_1 &= \{ y \in \Omega : |x - y| \le |x| / 2 \}, \\ \Omega_2 &= \{ y \in \Omega : 1 < |y| \le |x| / 2 \}, \\ \Omega_3 &= \{ y \in \Omega : |x| / 2 \le |y| \le 3 |x| / 2, |x| / 2 \le |x - y| \}, \\ \Omega_4 &= \{ y \in \Omega : 3 |x| / 2 \le |y| \}. \end{split}$$

For $x, y \in \mathbb{R}^2$, $x \cdot y$ will denote the dot product of x and y. Also, if $y = (y_1, y_2)$ we will denote $iy = (-y_2, y_1)$.

Throughout this article c and C will denote generic positive constants that may change in each occurrence.

2. A Reproducing Kernel for the Space W^2

For $n \in \mathbb{Z}$, let $e_n(\varphi) = e^{-in\varphi}$. We also consider the translation operator $f_\theta(\varphi) = f(\varphi - \theta)$ and the rotation operator T_θ , that is the complex multiplication by $e^{i\theta}$. Then

- (1) $Wf_{\theta} = Wf \circ T_{\theta};$
- (2) Since $(e_n)_{\theta} = e^{in\theta}e_n$, we have $We_n(T_{\theta}(s,t)) = e^{in\theta}We_n(s,t)$. In particular, if (r, θ) are the polar coordinates of $x \in \mathbb{R}^2$; then
- (3) $We_n(x) = e^{in\theta} We_n(r,0) = e^{in\theta} J_n(r).$

Hence, we can represent the functions in $W(L^2(T))$ in polar coordinates (r, θ) , as series

$$u(r,\theta) = \sum_{n \in \mathbb{Z}} a_n J_n(r) e^{in\theta}$$

with $\sum |a_n|^2 < \infty$.

According to (1.5), this series converges absolutely and uniformly on compact subsets of \mathbb{R}^2 . Moreover, using the identity (1.1) repeatedly, one can see that the series can be differentiated term by term, with absolute and uniform convergence in compact subsets of \mathbb{R}^2 .

Following [7, p. 522], we will call these series Neumann series.

Theorem 1.

The operator W is a topological isomorphism of $L^2(T)$ onto W^2 .

Proof. For every $n \in \mathbb{Z}$, let $F_n(re^{i\theta}) = J_n(r)e^{in\theta}$. The family $\{F_n\}_{n \in \mathbb{Z}}$ is orthogonal in \mathcal{W}^2 . Furthermore, using (1.1) and integrating in polar coordinates, we have

$$\|F_{n}\|_{\mathcal{H}^{2}}^{2} = \iint_{\Omega} \left(|F_{n}(x)|^{2} + \left| \frac{\partial F_{n}}{\partial \theta}(x) \right|^{2} + \left| \frac{\partial F_{n}}{\partial r}(x) \right|^{2} \right) \frac{dx}{r^{3}}$$

= $2\pi \int_{1}^{\infty} \left(1 + n^{2} \right) J_{n}^{2}(r) \frac{dr}{r^{2}} + \frac{\pi}{2} \int_{1}^{\infty} \left(J_{n-1}(r) - J_{n+1}(r) \right)^{2} \frac{dr}{r^{2}}$

By (1.6), there exists c > 0, such that for every $n \in \mathbb{Z}$, $n \neq 0$,

$$\|F_n\|_{\mathcal{H}^2} > c$$

and

$$\|F_n\|_{\mathcal{H}^2} = \sqrt{2} + O\left(1/n^2\right) \,. \tag{2.1}$$

Thus, using the orthogonality of $\{F_n\}_{n \in \mathbb{Z}}$, we can conclude that

$$c \|f\|_2 \le \|Wf\|_{\mathcal{H}^2} \le C \|f\|_2$$
.

It remains to prove that W is onto.

Given $u \in W^2$, the ellipticity of the Helmholtz operator implies, in particular, that u is smooth in \mathbb{R}^2 . If we consider the Fourier series representation of $u(r, \theta)$,

$$u(r,\theta) = \sum_{n\in\mathbb{Z}} A_n(r) e^{in\theta}$$

the smoothness of *u* implies that the coefficients

$$A_n(r) = \int_0^{2\pi} u(r,\theta) e^{-in\theta} \frac{d\theta}{2\pi}$$
(2.2)

satisfy the following:

For each $k, l \ge 0$, the series $\sum_{n \in \mathbb{Z}} n^k \left| \frac{d^l A_n}{dr^l}(r) \right|$ converges uniformly on compact subsets of $(0, \infty)$. Thus, the Helmholtz operator written in polar coordinates,

$$\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} + 1$$

can be applied term by term.

We obtain

$$\sum_{n\in\mathbb{Z}} \left(r^2 A_n''(r) + r A_n'(r) + \left(r^2 - n^2 \right) A_n(r) \right) e^{in\theta} = 0$$

The orthogonality of the functions $e_n(\theta)$, implies that for each $n \in \mathbb{Z}$, the function $A_n(r)$ satisfies the Bessel equation of order n,

$$r^{2}A_{n}''(r) + rA_{n}'(r) + \left(r^{2} - n^{2}\right)A_{n}(r) = 0.$$

Then, A_n can be written as a linear combination,

$$A_n(r) = a_n J_n(r) + b_n N_n(r) ,$$

where $N_n(r)$ is the Neumann function of order *n* (see [4, p. 960]). Since N_n has a singularity at r = 0 and $A_n(r)$ is bounded, it follows that $b_n = 0$ for all $n \in \mathbb{Z}$. We claim that $\sum_{n \in \mathbb{Z}} |a_n|^2 \leq C ||u||_{\mathcal{H}^2}^2$. In fact, by (1.6),

$$\sum_{0 < |n| < N} |a_n|^2 \leq C \sum_{0 < |n| < N} \int_1^\infty |a_n n|^2 J_n^2(r) \frac{dr}{r^2}$$
$$= C \sum_{|n| < N} \lim_{R \to \infty} \int_1^R |a_n n|^2 J_n^2(r) \frac{dr}{r^2}$$
$$\leq C \lim_{R \to \infty} \int_1^R \sum_{n \in \mathbb{Z}} |a_n n|^2 J_n^2(r) \frac{dr}{r^2}$$
$$= C \iint_{\Omega} \left| \frac{\partial u}{\partial \theta}(r, \theta) \right|^2 d\theta \frac{dr}{r^2}$$
$$\leq C ||u||_{\mathcal{H}^2}^2 < \infty.$$

Similarly, using the Cauchy-Schwarz inequality in (2.2) with n = 0 and integrating both sides of the resulting inequality on $(1, \infty)$ with respect to $\frac{dr}{r^2}$, we obtain

$$|a_0|^2 \int_1^\infty J_0^2(r) \frac{dr}{r^2} \leq \iint_{\Omega} |u(r,\theta)|^2 \frac{d\theta}{2\pi} \frac{dr}{r^2} \, .$$

Since $0 < \int_1^\infty \frac{J_0^2(r)}{r^2} dr < \infty$, we have

$$|a_0|^2 \le \left(2\pi \int_1^\infty \frac{J_0^2(r)}{r^2} dr\right)^{-1} \iint_{\Omega} |u(r,\theta)|^2 d\theta \frac{dr}{r^2} \, .$$

Finally,

$$\sum_{n\in\mathbb{Z}}|a_n|^2\leq C\|u\|_{\mathcal{H}^2}^2.$$

We conclude that $f = \sum_{n \in \mathbb{Z}} a_n e_n$ belongs to $L^2(T)$ and u = Wf.

We will now construct the reproducing kernel for W^2 , as a subspace of the Hilbert space \mathcal{H}^2 . In the proof of Theorem 1, we observed that if we set $\beta_n = ||F_n||_{\mathcal{H}^2}$, the family $\{\beta_n^{-1}F_n\}$ is an orthonormal basis for W^2 .

Let

$$\mathcal{K}(x, y) = \sum_{n \in \mathbb{Z}} \frac{F_n(x)F_n(y)}{\beta_n^2}$$
$$= \sum_{n \in \mathbb{Z}} \frac{J_n(r)J_n(s)}{\beta_n^2} e^{in(\theta - \varphi)} .$$
(2.3)

In (2.3) and in the rest of this article, (r, θ) and (s, φ) will denote the polar coordinates of points $x, y \in \mathbb{R}^2$, respectively.

By (1.5), the series (2.3) that defines $\mathcal{K}(x, y)$, converges absolutely and uniformly on compacts subsets of $\mathbb{R}^2 \times \mathbb{R}^2$.

Notice that by (1.3), we have

$$\beta_n = \beta_{-n}$$

and $\mathcal{K}(x, y)$ is real and symmetric.

Also, from (1.4), we have that $\mathcal{K}(x, \cdot) \in \mathcal{W}^2$ for each $x \in \mathbb{R}^2$, with the series

$$\mathcal{K}(x,\cdot) = \sum_{n \in \mathbb{Z}} \frac{F_n(x)}{\beta_n^2} \overline{F_n}$$

converging in \mathcal{W}^2 .

The orthogonal projection of \mathcal{H}^2 onto \mathcal{W}^2 is given by

$$\mathcal{P}u = \sum_{n \in \mathbb{Z}} \left\langle u, \beta_n^{-1} F_n \right\rangle_{\mathcal{H}^2} \beta_n^{-1} F_n$$

with convergence in \mathcal{W}^2 and also pointwise.

For $x \in \mathbb{R}^2$ fixed we have,

$$\mathcal{P}u(x) = \sum_{n \in \mathbb{Z}} \left\langle u, \beta_n^{-2} \overline{F_n(x)} F_n \right\rangle_{\mathcal{H}^2} = \left\langle u, \overline{\mathcal{K}(x, \cdot)} \right\rangle_{\mathcal{H}^2}$$
$$= \iint_{\Omega} \left[\mathcal{K}(x, y) u(y) + \frac{\partial}{\partial s} \mathcal{K}(x, y) \frac{\partial}{\partial s} u(y) + \frac{\partial}{\partial \varphi} \mathcal{K}(x, y) \frac{\partial}{\partial \varphi} u(y) \right] \frac{dy}{s^3}.$$
(2.4)

We would like to write the kernel $\mathcal{K}(x, y)$ in a closed form. We will be able to do it up to composition with a topological isomorphism of \mathcal{W}^2 . More precisely we can prove the following.

Lemma 2.

Let \mathcal{M} be the Fourier multiplier operator defined by the sequence (β_n^2) . That is,

$$\mathcal{M}\left(\sum \alpha_n e^{in\theta}\right) = \sum \beta_n^2 \alpha_n e^{in\theta}$$

for any trigonometric polynomial $\sum \alpha_n e^{in\theta}$. Then, \mathcal{M} is a topological isomorphism of \mathcal{W}^2 onto itself. Moreover, the kernel of the composition $\mathcal{M} \circ \mathcal{P}$ is the function $J_0(|x - y|)$.

Proof. Notice that for some constants c, C > 0, we have

$$c \leq \beta_n^2 \leq C$$

Then it is clear that the action of \mathcal{M} in \mathcal{W}^2 defined by

$$\mathcal{M}\left(J_n(r)e^{in\theta}\right) = \beta_n^2 J_n(r)e^{in\theta}$$

for every $n \in \mathbb{Z}$, is a topological isomorphism. In particular, we have that (see [4, p. 992])

$$\mathcal{MK}(x, y) = \sum_{n \in \mathbb{Z}} J_n(r) J_n(s) e^{in(\theta - \varphi)} = J_0 \left(|x - y| \right)$$

where \mathcal{M} may be thought of as acting on θ or on φ , since $\beta_n = \beta_{-n}$ for all $n \in \mathbb{Z}$.

The kernel $J_0(|x - y|)$ has the same properties as \mathcal{K} . Hence it defines a continuous operator $\widetilde{\mathcal{P}}$ from \mathcal{H}^2 into itself, given by

$$\widetilde{\mathcal{P}}u(x) = \iint_{\Omega} \left[J_0(|x-y|)u(y) + \frac{\partial}{\partial s} J_0(|x-y|) \frac{\partial}{\partial s} u(y) + \frac{\partial}{\partial \varphi} J_0(|x-y|) \frac{\partial}{\partial \varphi} u(y) \right] \frac{dy}{s^3}$$

It is easy to verify that the operators $\widetilde{\mathcal{P}}$ and $\mathcal{M} \circ \mathcal{P}$ coincide on the space \mathcal{H}_0 defined as the linear span of the set $\{A(r)e^{in\theta} : A \in C_c^{\infty}(0,\infty)\}_{n \in \mathbb{Z}}$. Since \mathcal{H}_0 is dense in \mathcal{H}^2 , we conclude that $\widetilde{\mathcal{P}} = \mathcal{M} \circ \mathcal{P}$. \Box

3. The Space \mathcal{W}^p

Theorem 2.

- Let 1 . Then,
- (1) W^p is a Banach space.
- (2) The linear span of $\{J_n(r)e^{in\theta}\}_{n\in\mathbb{Z}}$ is dense in \mathcal{W}^p .

Proof. (1) Let $\Phi(x, y)$ be the fundamental solution of the Helmholtz equation in two dimensions [1, p. 341] and [2, p. 106]), given as

$$\Phi(x, y) = \frac{i}{4} \left(J_0 \left(|x - y| \right) + i N_0 \left(|x - y| \right) \right) \,.$$

Let D_R be the open disk centered at the origin with radius R > 1. If $v \in W^p$ and $x \in D_R$, then for $l \in [2R, 3R]$ we can write (see [1] and [2])

$$v(x) = \int_{|y|=l} \left(\frac{\partial v}{\partial s}(y) \Phi(x, y) - \frac{\partial \Phi}{\partial s}(x, y) v(y) \right) d\sigma(y) , \qquad (3.1)$$

where $d\sigma$ is the Lebesgue measure on |y| = l. Integrating both sides of the equation above with respect to l on [2R, 3R], we obtain

$$v(x) = \frac{1}{R} \iint_{2R \le |y| \le 3R} \left(\frac{\partial v}{\partial s}(y) \Phi(x, y) - \frac{\partial \Phi}{\partial s}(x, y) v(y) \right) dy .$$
(3.2)

Using the reproducing formula (3.2), we can now show that W^p is complete.

Let $\{u_n\}_{n\geq 0}$ be a sequence in \mathcal{W}^p converging to $u \in \mathcal{H}^p$. The function $\Phi(x, y)$ is smooth in $\overline{D_R} \times (\overline{D_{3R}} \setminus D_{2R})$. Moreover, for each $y \in \overline{D_{3R}} \setminus D_{2R}$, the functions $\Phi(\cdot, y)$ and $\frac{\partial \Phi}{\partial s}(\cdot, y)$ satisfy the Helmholtz equation. Thus, we can conclude that the limit function u satisfies (3.2) and it is a solution of the Helmholtz equation in D_R , for every R > 1. It follows that $u \in \mathcal{W}^p$, and we have proved that \mathcal{W}^p is closed in \mathcal{H}^p .

(2) Let

$$K_N(\theta) = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N+1} \right) e^{in\theta}$$

be the Féjer kernel.

Given $u \in W^p$, the proof of the surjectivity in Theorem 1 shows that we can write

$$u(r,\theta) = \sum_{n\in\mathbb{Z}} a_n J_n(r) e^{in\theta}$$

for some $a_n \in \mathbb{C}$, where the convergence is absolute and uniform in compact subsets of \mathbb{R}^2 . Consider now

$$u_N(r,\theta) = K_N * (u(r,\cdot))(\theta)$$

= $2\pi \sum_{n=-N}^N \left(1 - \frac{|n|}{N+1}\right) a_n J_n(r) e^{in\theta}$

Then we clearly have that $u_N \in W^p$. The fast decay of $a_n J_n(r)$, uniform with respect to r in compact subsets of $(0, \infty)$, implies that u_N converges to u uniformly in compact subsets of \mathbb{R}^2 as well. Let

$$\Psi_{N}^{p}(r) = \int_{0}^{2\pi} \left[|u_{N}(r,\theta) - u(r,\theta)|^{p} + \left| \frac{\partial (u_{N} - u)}{\partial r} (r,\theta) \right|^{p} + \left| \frac{\partial (u_{N} - u)}{\partial \theta} (r,\theta) \right|^{p} \right] d\theta .$$

Inserting $\frac{\partial}{\partial r}$ and $\frac{\partial}{\partial \theta}$ inside the convolution that defines $u_N(r, \theta)$, we obtain

$$\Psi_{N}^{p}(r) \leq C \int_{0}^{2\pi} \left[|u(r,\theta)|^{p} + \left| \frac{\partial}{\partial r} u(r,\theta) \right|^{p} + \left| \frac{\partial}{\partial \theta} u(r,\theta) \right|^{p} \right] d\theta.$$

By the dominated convergence theorem it follows that

$$\lim_{N\to\infty}\int_1^{\infty}\Psi_N^p(r)\frac{dr}{r^2}=0\;.$$

That is, we have shown that u_N converges to u in \mathcal{W}^p .

In general, the operator \mathcal{P} cannot be extended to a continuous operator from \mathcal{H}^p into \mathcal{W}^p . In fact, Proposition 2 below shows that \mathcal{P} cannot be extended to a continuous operator from \mathcal{H}^p into itself, for p < 4/3. However, the next two results will show that \mathcal{P} is continuous from \mathcal{H}^p into $L^p(\Omega, |x|^{-3} dx)$ and that it has a reproducing property, namely, given $u \in \mathcal{H}^p$ the function $u \in \mathcal{W}^p$ if and only if $\mathcal{P}u = u$.

Proposition 1.

The operator \mathcal{P} has a continuous extension from \mathcal{H}^p into $L^p(\Omega, |x|^{-3} dx)$.

Proof. As observed in (2.1), for $n \neq 0$

$$\beta_n^2 = 2 + O\left(1/n^2\right) \,,$$

then

$$\beta_n^{-2} = 1/2 + O\left(1/n^2\right) \,.$$

Hence, the Fourier multiplier operators \mathcal{M} and \mathcal{M}^{-1} are continuous in $L^p(T)$ for every 1 $(see for example [6, Prop. 4.1, Ch. V]). They also may be thought of as acting continuously on <math>L^p(\Omega, |x|^{-3} dx)$, starting with their natural action on \mathcal{H}_0 , which is also dense in $L^p(\Omega, |x|^{-3} dx)$. In fact, by Fubini's theorem we can find constants c, C > 0 such that

$$c \left\| \sum_{n} A_{n}(r) e^{in\theta} \right\|_{L^{p}(\Omega, |x|^{-3} dx)} \leq \left\| \sum_{n} \beta_{n}^{2} A_{n}(r) e^{in\theta} \right\|_{L^{p}(\Omega, |x|^{-3} dx)}$$
$$\leq C \left\| \sum_{n} A_{n}(r) e^{in\theta} \right\|_{L^{p}(\Omega, |x|^{-3} dx)}$$

for every finite sum $\sum_{n} A_n(r) e^{in\theta}$ in \mathcal{H}_0 .

We observe that \mathcal{H}_0 is dense in \mathcal{H}^p for $1 . Then the claimed continuity of <math>\mathcal{P}$ will be proved once we prove this continuity for $\widetilde{\mathcal{P}} = \mathcal{M} \circ \mathcal{P}$, originally defined on \mathcal{H}_0 . To this end we shall prove the continuity on $L^p(\Omega, |x|^{-3} dx)$ of the operators M_1, M_2 and M_3 with kernels $J_0(|x - y|)$, $\frac{\partial}{\partial \varphi} J_0(|x - y|)$, and $\frac{\partial}{\partial \varphi} J_0(|x - y|)$, respectively. We have the following estimates

(a)
$$|J_0(|x - y|)| \le \frac{C}{(1+|x-y|)^{1/2}};$$

(b) $\left|\frac{\partial}{\partial s}J_0(|x - y|)\right| = \left|J_1(|x - y|)\frac{(x - y) \cdot y}{|x - y||y|}\right| \le \frac{C}{(1+|x - y|)^{1/2}};$ and
(c) $\left|\frac{\partial}{\partial \varphi}J_0(|x - y|)\right| = \left|J_1(|x - y|)\frac{(x - y) \cdot iy}{|x - y|}\right| = \left|J_1(|x - y|)\frac{x \cdot iy}{|x - y|}\right| \le \frac{C|x||y|}{(1+|x - y|)^{3/2}}.$

To prove the above inequalities, one observes that

$$|J_n(r)| \le C_n r^{-1/2}$$

for r > 0, and that the function $J_n(r)$ has a zero of order *n* at r = 0.

Proceeding as in the proof of Lemma 1, we see that the integral

$$\iint_{\Omega} \frac{1}{(1+|x-y|)^{1/2}} \frac{dy}{|y|^3}$$

is a bounded function of $x \in \Omega$.

Since the kernel $\frac{1}{(1+|x-y|)^{1/2}}$ is symmetric, we can use Schur's lemma to conclude that it defines a bounded operator on $L^p(\Omega, |x|^{-3} dx)$ for $1 \le p \le \infty$. As a consequence, M_1 and M_2 have the same continuity property. Finally, we consider the operator M_3 . According to the estimate (c) above, it suffices to prove that the operator T_3 with kernel $\frac{|x||y|}{(1+|x-y|)^{3/2}}$ is a bounded operator from $L^p(\Omega, |x|^{-3} dx)$ into itself for 1 . We have the following estimates, for every $x \in \Omega$:

$$\begin{split} |T_3 f(x)|^p &= \left| \iint_{\Omega} \frac{|x| \, |y|}{(1+|x-y|)^{3/2}} f(y) \frac{dy}{|y|^3} \right|^p \\ &\leq \left(\iint_{\Omega} \frac{|x| \, |y|}{(1+|x-y|)^{3/2}} \, |f(y)| \, \frac{dy}{|y|^3} \right)^p \\ &= |x|^p \left(\iint_{\Omega} \frac{|y|}{(1+|x-y|)^{3/2}} \, |f(y)| \, \frac{dy}{|y|^3} \right)^p \, . \end{split}$$

Applying Hölder's inequality to this last integral, we obtain

$$\leq |x|^{p} \left(\iint_{\Omega} \frac{|y|}{(1+|x-y|)^{3/2}} \frac{dy}{|y|^{3}} \right)^{p/p'} \iint_{\Omega} \frac{|y| |f(y)|^{p}}{(1+|x-y|)^{3/2}} \frac{dy}{|y|^{3}} \,.$$

Using Lemma 1, we can estimate the above by

$$\leq C |x|^{p} \left(\frac{\log |x|}{|x|^{3/2}}\right)^{p/p'} \iint_{\Omega} \frac{|f(y)|^{p}}{(1+|x-y|)^{3/2}} \frac{dy}{|y|^{2}}$$

Then fixing $0 < \beta < 1/2$ we obtain from $\frac{\log|x|}{|x|^{3/2}} \le \frac{C}{|x|^{1+\beta}}$,

$$|T_3f(x)|^p \le \frac{C}{|x|^{\beta(p-1)-1}} \iint_{\Omega} \frac{|f(y)|^p}{(1+|x-y|)^{3/2}} \frac{dy}{|y|^2}$$

By Fubini's Theorem and Lemma 1, we finally have

$$\begin{split} \iint_{\Omega} |T_{3}f(x)|^{p} \frac{dx}{|x|^{3}} &\leq C \iint_{\Omega} |f(y)|^{p} \frac{dy}{|y|^{2}} \iint_{\Omega} \frac{dx}{(1+|x-y|)^{3/2} |x|^{\beta(p-1)+2}} \\ &\leq C \iint_{\Omega} |f(y)|^{p} \frac{dy}{|y|^{2+3/2}} \\ &\leq C \iint_{\Omega} |f(y)|^{p} \frac{dy}{|y|^{3}} \,. \end{split}$$

This proves the continuity of M_3 for any p > 1.

Now we are ready to prove the reproducing property mentioned previously.

Theorem 3.

Given $u \in \mathcal{H}^p$, the function $u \in \mathcal{W}^p$ if and only if $\mathcal{P}u = u$.

Proof. Given $u \in \mathcal{H}^p$, we claim that the function $\mathcal{P}u(x)$ is well defined for every $x \in \mathbb{R}^2$, and it satisfies the Helmholtz equation on the plane. In fact, as shown by (2.4), the operator \mathcal{P} consists of three terms. Let us consider first

$$\iint_{\Omega} \mathcal{K}(x, y) u(y) \frac{dy}{s^3} = \iint_{\Omega} \left(\sum_{n \in \mathbb{Z}} \frac{J_n(r) J_n(s)}{\beta_n^2} e^{in(\theta - \varphi)} \right) u(y) \frac{dy}{s^3} \,. \tag{3.3}$$

Using the uniform estimate [5, Lemma 3.4]

$$|J_n(s)| \leq C s^{-1/3}$$
,

valid for $s \ge 1$, we obtain that the norms $||F_n||_{L^{p'}(\Omega,|x|^{-3}dx)}$ are uniformly bounded. Then, the estimate (1.5) implies that for each $x \in \mathbb{R}^2$, the integrand in (3.3) belongs to $L^1(\Omega, |y|^{-3}dy)$. Moreover, its norm is bounded uniformly with respect to x in each compact subset of \mathbb{R}^2 .

This argument can be applied to the other two terms in the representation of $\mathcal{P}u$ given by (2.4). Moreover, it is legitimate to take derivatives of $\mathcal{P}u$ of any order under the integral sign. Since $\mathcal{K}(\cdot, y)$ satisfies the Helmholtz equation in \mathbb{R}^2 for each $y \in \Omega$, so does $\mathcal{P}u$. Then, we can conclude that $u \in W^p$ if we assume that $\mathcal{P}u = u$.

To prove the converse, we recall that \mathcal{P} is a continuous projection from \mathcal{H}^2 onto \mathcal{W}^2 . This implies that $\mathcal{P}u = u$ for each u in the linear span of $\{J_n(r)e^{in\theta}\}_{n\in\mathbb{Z}}$. According to Theorem 2, this linear span is dense in \mathcal{W}^p . Thus, Proposition 1 implies that $\mathcal{P}u = u$ for any $u \in \mathcal{W}^p$.

Proposition 2.

The operator \mathcal{P} cannot be extended to a bounded operator in \mathcal{H}^p for any 1 .

Proof. As in the proof of Proposition 1, we can show that \mathcal{M} and \mathcal{M}^{-1} are continuous operators in \mathcal{H}^p , for $1 , assuming that they are initially defined on the linear span of <math>\{J_n(r)e^{in\theta}\}_{n\in\mathbb{Z}}$. Thus, the operators \mathcal{P} and $\widetilde{\mathcal{P}}$ will have the same continuity properties on \mathcal{H}^p .

We observe that $C_c^{\infty}(\mathbb{R}^2)$ is dense in \mathcal{H}^p . Let $u \in C_c^{\infty}(\mathbb{R}^2)$. To estimate $\|\widetilde{\mathcal{P}}u\|_{\mathcal{H}^p}$ we have to calculate the norm in $L^p(\Omega, |x|^{-3} dx)$ of $\widetilde{\mathcal{P}}u, \frac{\partial}{\partial r}\widetilde{\mathcal{P}}u$ and $\frac{\partial}{\partial \theta}\widetilde{\mathcal{P}}u$.

According to the proof of Proposition 1, the kernels $J_0(|x-y|)$, $\frac{\partial}{\partial s}J_0(|x-y|)$ and $\frac{\partial}{\partial \varphi}J_0(|x-y|)$ define continuous operators on $L^p(\Omega, |x|^{-3} dx)$.

It follows that

$$\left\|\widetilde{\mathcal{P}}u\right\|_{L^{p}(\Omega,|x|^{-3}dx)} \leq C \|u\|_{\mathcal{H}^{p}}$$

The function $\frac{\partial}{\partial r}\widetilde{\mathcal{P}}u$ involves the kernels $\frac{\partial}{\partial r}J_0(|x-y|)$, $\frac{\partial^2}{\partial r\partial s}J_0(|x-y|)$ and $\frac{\partial^2}{\partial r\partial \varphi}J_0(|x-y|)$. These kernels are all bounded in modulus by a constant multiple of $\frac{|x||y|}{(1+|x-y|)^{3/2}}$, which is the kernel of the operator T_3 that we used in the proof of Proposition 1. Thus we have also

$$\left\|\frac{\partial}{\partial r}\widetilde{\mathcal{P}}u\right\|_{L^p(\Omega,|x|^{-3}dx)}\leq C\,\|u\|_{\mathcal{H}^p}\ .$$

Finally, we need to consider the function $\frac{\partial}{\partial \theta} \widetilde{\mathcal{P}} u$. This function is again the sum of three terms

$$\frac{\partial}{\partial \theta} \widetilde{\mathcal{P}} u = \iint_{\Omega} \left[\frac{\partial}{\partial \theta} J_0(|x-y|)u(y) + \frac{\partial^2}{\partial \theta \partial s} J_0(|x-y|) \frac{\partial}{\partial s} u(y) + \frac{\partial}{\partial \theta \partial \varphi} J_0(|x-y|) \frac{\partial}{\partial \varphi} u(y) \right] \frac{dy}{s^3}.$$
(3.4)

Repeating the argument above, we can prove that the kernels $\frac{\partial}{\partial \theta} J_0(|x-y|)$ and $\frac{\partial^2}{\partial \theta \partial s} J_0(|x-y|)$ define continuous operators on $L^p(\Omega, |x|^{-3} dx)$.

The last term in (3.4) is an integral operator evaluated in $\frac{\partial}{\partial \omega}u$, with kernel

$$\begin{split} \frac{\partial^2}{\partial \theta \partial \varphi} J_0(|x-y|) &= \frac{\partial}{\partial \theta} \left[\frac{J_1(|x-y|)}{|x-y|} x \cdot iy \right] \\ &= \frac{J_1(|x-y|)}{|x-y|} ix \cdot iy + \frac{J_2(|x-y|)}{|x-y|^2} \left(y \cdot ix \right) \left(x \cdot iy \right) \,. \end{split}$$

Once again, the term $\frac{J_1(|x-y|)}{|x-y|}ix \cdot iy$ can be handled by the above argument. Recalling that $J_2(t)$ has a zero of order 2 at t = 0, the asymptotic expansion [4, p. 972]

$$J_2(t) = \sqrt{2/\pi t} \cos(t - 3\pi/4) + O\left(t^{-3/2}\right) ,$$

and the relations $(x - y) \cdot ix = x \cdot iy = (x - y) \cdot iy$, we can write

$$\frac{J_2(|x-y|)}{|x-y|^2}(y \cdot ix)(x \cdot iy) = L(x, y) + \sqrt{2/\pi} \frac{\cos(|x-y| - 3\pi/4)}{(1+|x-y|)^{5/2}}(x \cdot iy)^2 ,$$

with

$$|L(x, y)| \le \frac{C |x| |y|}{(1 + |x - y|)^{3/2}}.$$

Hence, we obtain a representation of the integral operator

$$\iint_{\Omega} \frac{\partial}{\partial \theta \partial \varphi} J_0\left(|x-y|\right) f(y) \frac{dy}{s^3} = Rf(x) + Tf(x) \,,$$

where R is a bounded operator in $L^p(\Omega, |x|^{-3} dx)$ and

$$Tf(x) = \iint_{\Omega} \frac{\cos(|x-y| - 3\pi/4)}{(1+|x-y|)^{5/2}} (x \cdot iy)^2 f(y) \frac{dy}{|y|^3}$$

The discontinuity of $\widetilde{\mathcal{P}}$ will come from the term $T(\frac{\partial u}{\partial \varphi})$ as we shall see. To this end, we write $(x \cdot iy)^2 = |x|^2 |y|^2 \sin^2(\alpha(x, y))$, where $\alpha(x, y)$ is any choice of the angle between x and y.

For every positive integer m, let D_m be the disk of center $(0, 2\pi m)$ and fixed radius $\varepsilon \le \pi/8$. For $k \ge m$ let A_k be the region in the first quadrant between the circles centered at $(0, 2\pi m)$ with radii $2\pi k + \frac{3\pi}{4}$ and $2\pi k + \frac{7\pi}{8}$ respectively, below the diagonal and above the horizontal line that passes through $(0, 2\pi m)$. Let ψ be a nonnegative smooth function supported in the disk centered at the origin with radius ε such that $1/2 \le \psi(x) \le 1$ for $|x| \le \varepsilon/2$. Define

$$f_m(x) = \psi(x + (0, 2\pi m))$$
.

For every $y \in D_m$ and $x \in A_k$ we have that $ck \le |x| \le Ck$, $cm \le |y| \le Cm$ and $ck \le |x-y| \le Ck$ for some positive constants *c* and *C*. We also have that $\sin^2(\alpha(x, y)) \ge c$ and $\cos(|x-y| - \frac{3\pi}{4}) \ge c$, for c small enough. Hence, for $x \in A_{k}$

$$A \in A_k$$

$$|Tf_m(x)| \geq c|x|^2 \iint_{D_m} \frac{f_m(y)}{|x-y|^{5/2}} \frac{dy}{|y|}$$

$$\geq c|x|^2 k^{-5/2} m^{-1}.$$

Then

$$\iint_{A_k} \frac{|Tf_m(x)|^p}{|x|^3} dx \geq ck^{-5p/2}m^{-p} \iint_{A_k} |x|^{2p-3} dx$$
$$\geq ck^{2p-3}k^{-5p/2}m^{-p} |A_k| \geq ck^{-p/2-2}m^{-p}$$

Adding on k we obtain the estimate

$$\|Tf_m\|_{L^p(\Omega,|x|^{-3}dx)} \ge cm^{-3/2 - 1/p} .$$
(3.5)

Now consider the Fourier series expansion of f_m in polar coordinates

$$f_m = \sum_{n \in \mathbb{Z}} A_n^{(m)}(r) e^{in\theta} .$$

It is easy to see that $|f_m|$ and $|\nabla f_m|$ are uniformly bounded in \mathbb{R}^2 . Then, since the distance of D_m to the origin is of order m, it is not hard to see that for every r > 1,

$$\left|A_0^{(m)}(r)\right| + \left|A_0^{(m)\prime}(r)\right| \le \int_0^{2\pi} \left|f_m\left(re^{i\theta}\right)\right| \frac{d\theta}{2\pi} + \int_0^{2\pi} \left|\nabla f_m\left(re^{i\theta}\right)\right| \frac{d\theta}{2\pi} \le \frac{C}{m}.$$

Hence, the following estimates hold

$$\|f_m\|_{L^p(\Omega,|x|^{-3}dx)}^p + \|\nabla f_m\|_{L^p(\Omega,|x|^{-3}dx)}^p = O\left(m^{-3}\right),$$

$$\|A_0^{(m)}\|_{L^p(\Omega,|x|^{-3}dx)}^p + \|A_0^{(m)'}\|_{L^p(\Omega,|x|^{-3}dx)}^p = O\left(m^{-3}\right).$$
 (3.6)

Thus

$$\left\|\sum_{n\neq 0} A_n^{(m)}(r) e^{in\theta}\right\|_{L^p(\Omega,|x|^{-3}dx)}^p + \left\|\sum_{n\neq 0} A_n^{(m)'}(r) e^{in\theta}\right\|_{L^p(\Omega,|x|^{-3}dx)}^p = Cm^{-3}.$$
 (3.7)

Finally, we define

$$u_m = m^{3/p} \sum_{n \neq 0} \frac{A_n^{(m)}(r)}{in} e^{in\theta} .$$

From (3.6), (3.7), and the L^p continuity of the Fourier multiplier (see [6, Prop. 4.1, Ch. V])

$$\lambda_n = \begin{cases} 1/n : n \neq 0\\ 0 : n = 0 \end{cases}$$

it follows that

$$\|u_m\|_{\mathcal{H}^p} \le C . \tag{3.8}$$

Since for every $x \in \Omega$

$$\iint_{\Omega} \frac{\partial}{\partial \varphi} J_0\left(|x-y|\right) A_0^{(m)}(s) \frac{dy}{s^3} = 0 ,$$

then (3.5) and (3.8) imply that

$$\begin{split} \left\| \frac{\partial}{\partial \theta} \iint\limits_{\Omega} \frac{\partial}{\partial \varphi} J_0(|\cdot - y|) \frac{\partial}{\partial \varphi} u_m(y) \frac{dy}{s^3} \right\|_{L^p(\Omega, |x|^{-3}dx)} \\ &= \left\| \frac{\partial}{\partial \theta} \iint\limits_{\Omega} \frac{\partial}{\partial \varphi} J_0(|\cdot - y|) m^{3/p} f_m(y) \frac{dy}{s^3} \right\|_{L^p(\Omega, |x|^{-3}dx)} \\ &= \left\| R\left(m^{3/p} f_m\right) + T\left(m^{3/p} f_m\right) \right\|_{L^p(\Omega, |x|^{-3}dx)} \\ &\geq m^{3/p} \|T f_m\|_{L^p(\Omega, |x|^{-3}dx)} - \left\| R\left(m^{3/p} f_m\right) \right\|_{L^p(\Omega, |x|^{-3}dx)} \\ &\geq Cm^{3/p} \|T f_m\|_{L^p(\Omega, |x|^{-3}dx)} \geq Cm^{2/p-3/2} \,, \end{split}$$

valid for *m* large enough, where we have used that *R* is a continuous operator so that $|| R(m^{3/p} f_m) ||_{L^p(\Omega,|x|^{-3}dx)}$ is a bounded sequence, and 2/p - 3/2 > 0. Since $\{u_m\}_{m \ge 0}$ is a bounded sequence in \mathcal{H}^p , this completes the proof of the proposition.

Remark 2. Notice that by a standard duality argument, we can conclude that the operator *T* in the proof of Proposition 2 cannot be extended to a bounded operator in $L^p(\Omega, |x|^{-3} dx)$ for |1/p - 1/2| < 1/4. However, we were not able to conclude anything about the continuity of \mathcal{P} on \mathcal{H}^p for p > 4, or $p \in [4/3, 4] \setminus \{2\}$.

References

- [1] Chen, G. and Zhou, J. (1992). *Boundary Element Methods*, Series Computational Mathematics and Applications, Academic Press.,
- [2] Colton, R. and Kress, R. (1992). Integral Equation Methods in Scattering Theory, Kreiger Publishing Company, Malabar, FL.
- [3] González-Casanova, P. and Wolf, K.B. (1995). Interpolation for solutions of the Helmholtz equation, Numerical Methods for Partial Differential Equations, 11, 77–91.
- [4] Gradshteyn, I.M. and Ryzhik, I.M. (1994). Table of Integrals, Series and Products, Academic Press.
- [5] Guo, K. (1997). A uniform L^p estimate of Bessel functions and distributions supported on S^{n-1} , *Proc. Am. Math. Soc.*, **125**, 1329–1340.
- [6] Torchinsky, A. (1986). Real-Variable Methods in Harmonic Analysis, Academic Press.
- [7] Watson, G.N. (1995). A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library, Cambridge University Press.

Received August 31, 1999

Department of Mathematics, New Mexico State University, Las Cruces, NM 88003, USA e-mail: jalvarez@nmsu.edu

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., 04510, México e-mail: folchgab@matem.unam.mx

Instituto de Matemáticas Unidad Cuernavaca, Universidad Nacional Autónoma de México, A.P. 273-3 ADMON 3, Cuernavaca, Mor., 62251, México e-mail: salvador@matcuer.unam.mx