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ABSTRACT. The notion of a Generalized Multiresolution Structure (GMS) inL2(R) is introduced. Basically,
it consists of an increasing sequence of closed subspaces of L2(R), with a pseudoframe of translates at each
level. Using their shift-invariance a frame-like decomposition is derived based on such a GMS. As a major
new contribution the construction of affine frames for L2(R) based on an GMS is presented. A fast algorithm
for the GMS-based affine frame decomposition and reconstruction using filter banks is presented as well.

1. Introduction

Multiresolution analysis (MRA) and wavelet theory have found many applications in vision,
image processing, and multiscale signal representation, e.g., [18]. They have their roots in multirate
systems in digital signal processing, e.g., [21], and multiscale representation in machine vision, e.g.,
[19, 22].

The concept of Frame Multiresolution Analysis (FMRA) as described in [2, 3] generalizes the
notation of MRA by allowing non-exact affine frames. However, subspaces at different resolutions
in an FMRA are still generated by a frame formed by translations of a single function, and dilates
of it are used at different levels. By this property any FMRA is naturally associated with multirate
systems having perfect reconstruction. On the other hand, FMRA theory can be seen as a contribution
to the theory of multirate systems as it provides a narrow band decomposition structure for arbitrary
signals.

This article is motivated from the observation that standard methods in (regular) sampling
theory provide examples of multiresolution structures which are neither MRAs nor FMRAs. It also
lead to new constructions of affine frames.

Our article aims at a detailed description and analysis of this new multiresolution structure,
and providing a new construction of affine frames. It starts by briefly recalling the basic properties
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of frames and FMRAs in Section 2. An example of a generalized multiresolution structure (GMS)
is discussed in Section 3 from a sampling point of view. In order to analyze this GMS, we introduce
in Section 4 a new notion of pseudoframes of translates for a closed subspace of the Hilbert space
L2(R). Based on this concept the formal definition of a GMS is given in Section 5. Necessary and
sufficient condition for the construction of pseudoframes of translates are derived. Subsequently
construction methods for GMSs are also explained and illustrating examples are presented. Fur-
thermore a construction that allows us to obtain affine frames associated with such a GMS is given
in Section 6. In this context a technique which applies to more general subspace decompositions
for nested multiresolution subspaces is introduced and utilized. As a valuable consequence, affine
frames constructed in this way are naturally associated with a decomposition and reconstruction
algorithm using filter banks. We elaborate on the corresponding fast algorithm and the multirate
systems associated with the GMS in Section 7.

2. Frames and Frame Multiresolution Analysis

Let H be a separable Hilbert space. We recall that a sequence {xn : n ∈ Z} ⊆ H is a frame for
H if there exist constants A,B > 0 such that

∀x ∈ H, A‖x‖2 ≤
∑
n

|〈x, xn〉|2 ≤ B‖x‖2 . (2.1)

A sequence {xn} is a Bessel sequence if (only) the upper inequality of (2.1) holds. If {xn} is a frame,
there exists a dual frame {x∗

n} such that

x =
∑
n

〈
x, x∗

n

〉
xn =

∑
n

〈x, xn〉 x∗
n in H .

See, e.g., [13, 14]. For more references on frames and relevant terminologies, we refer readers to,
e.g., [1, 6, 7, 8, 9, 10, 11], and [23].

Throughout this article, θ̂ stands for the Fourier transform of θ : θ̂ (γ ) =
∫
R

θ(t)e−2πiγ t dt ,

and τkf stands for integer translates: τkf (t) ≡ f (t − k).
The following characterization of Bessel sequences will be useful in the discussion of GMS.

Proposition 1 ([3, 12]).
Let φ ∈ L2(R). Define

�(γ ) ≡
∑
n

∣∣∣φ̂(γ + n)

∣∣∣2 , (2.2)

Then {τnφ} is a Bessel sequence in sp{τnφ} (as well as in L2(R)) if and only if there is a constant
M < ∞ such that

�(γ ) ≤ M a.e. (2.3)

The proof of Proposition 1 is straightforward. The following relationship is also useful in the
study of Bessel sequences and frames.

Proposition 2 ([13]).
Two Bessel sequences {xn} ⊆ H and {x∗

n} ⊆ H are dual frames to each other for H if and
only if

∀x, y ∈ H, 〈x, y〉 =
∑
n

〈
x, x∗

n

〉 〈xn, y〉 .
Indeed, the lower frame bound of one sequence is implied by the upper Bessel bound of the

other.
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Frame Multiresolution Analysis (FMRA)

An MRA is usually built upon an affine bounded unconditional basis. An FMRA is based
on an affine frame other than a basis, see, [2, 3], and [12]. For a quick reference recall that a
frame multiresolution analysis (FMRA) {Vj , φ} of L2(R) is a sequence of closed linear subspaces
Vj ⊆ L2(R) and an element φ ∈ V0 for which the following hold:

1. Vj ⊆ Vj+1.

2. ∪jVj = L2(R) and ∩jVj = 0,

3. f (t) ∈ Vj if and only if f (2t) ∈ Vj+1,

4. f ∈ V0 implies τkf ∈ V0, for all k ∈ Z,

5. {τkφ : k ∈ Z} is a frame for the subspace V0.

One of the important ingredient for the characterization (and construction) of FMRAs is a
necessary and sufficient condition for frames of integer translates.

Indeed, let φ ∈ L2(R) and let V0 ≡ sp{τkφ : k ∈ Z} be a closed subspace of L2(R). Assume
� ∈ L∞(T). Then the sequence {τkφ} is a frame for V0 if and only if there are positive constants A
and B such that

A ≤ �(γ ) ≤ B a.e. on T \ N , (2.4)

where N ≡ {γ ∈ T : �(γ ) = 0}, and N is defined up to sets of measure zero. For details on FMRAs,
we refer to [2, 3], and [12]. Related to this subject there are also articles, e.g., [4], and [20]. Evidently
the usual MRAs is a (proper) subclass of FMRAs. As we shall show next there are however even
more general multiresolution structures.

3. An Example Beyond FMRAs

Consider a classical example from sampling theory. For� ≡ [− 1
4 ,

1
4 ), let PW 1

4
be the Paley-

Wiener space with spectrum �. According to the classical Shannon sampling theorem for any
function φ ∈ L2(R) such that

φ̂(γ ) =




1 − 1
4 ≤ γ < 1

4

decaying to zero continuously 1
4 ≤ |γ | < 1

2

0 |γ | ≥ 1
2

and for T = 1 satisfying the Nyquist rate 2T · 1
4 < 1, we have an expansion for functions in PW 1

4
:

∀f ∈ PW 1
4
, f (t) =

∑
n

f (n)φ(t − n) . (3.1)

Two observations about (3.1) arise, assuming α ≤ 1
2 , and φ̂ = 0 a.e. on R̂ \ [−α, α) as shown in

Figure 1.

a. By the theory of FMRAs [see condition (2.4)], {φ(t − n)}n cannot be a frame for the
subspace sp{φ(t − n)} since �(γ ) ≡ ∑

k |φ̂(γ + k)|2 is a continuous function [3].

b. {φ(t − n)}n cannot be a frame for PW 1
4

either since φ /∈ PW 1
4
.

Moreover, if one defines

V0 ≡ PW 1
4
,
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FIGURE 1 A function φ̂.

and

Vj ≡ PW2j 1
4
,

then, for all j ∈ Z, Vj ⊆ Vj+1, and ∪Vj = L2(R) since the set of all band-limited functions is
dense in L2(R), and that ∩Vj = {0}.

Evidently, {φ, Vj } generates an multiresolution structure which is not covered by those men-
tioned before. It is neither an MRA nor an FMRA.

By using functionsφ /∈ V0 to “generate”V0 we have gained the liberty of additional smoothness
of the sampling/reconstruction function φ̂, hence the faster decay of φ. This property represents a
notable freedom worthwhile further exploration. More importantly, we will show that affine frames
are naturally associated with GMSs, which can be constructed effectively based on a GMS.

In order to analyze and characterize such a GMS, we introduce a new notion of a pseud-
oframes of translates. Note that pseudoframes of translates are particular examples of the notion of
pseudoframes for subspaces of separable Hilbert spaces studied in [15].

4. Pseudoframes of Translates

Definition 1. Let {τkφ} and {τkφ∗} (k ∈ Z) be two sequences in H. Let X be a closed subspace
of H. We say {τkφ} forms a pseudoframe of translates for X with respect to {τkφ∗} (k ∈ Z) if

∀x ∈ X , x =
∑
k∈Z

〈
x, τkφ

∗〉 τkφ . (4.1)

It is important to note that φ and φ∗ need not be contained in X . The example of Section 3
and Example 1 are such cases. Consequently, the positions of {τkφ} and {τkφ∗} are not generally
“commutable” [15], i.e., there exists x ∈ X such that∑

k

〈x, τkφ〉 τkφ∗ �=
∑
k

〈
x, τkφ

∗〉 τkφ = x .



A Theory of Generalized Multiresolution Structure and Pseudoframes of Translates 27

However, in the context of the affine structure, the commutativity in the above sense is easily achiev-
able. See Theorem 1 of the next section.

5. Generalized Multiresolution Structure

Definition 2. A generalized multiresolution structure (GMS) {Vj , φ, φ∗}ofL2(R) is an increasing
sequence of closed linear subspaces Vj ⊆ L2(R) and two elements φ, φ∗ ∈ L2(R) for which the
following hold:

(i) ∪jVj = L2(R) and ∩jVj = {0},
(ii) f (t) ∈ Vj if and only if f (2t) ∈ Vj+1,

(iii) f ∈ V0 implies τkf ∈ V0, for all k ∈ Z,

(iv) {τkφ : k ∈ Z} forms a pseudoframe of translates for V0 with respect to {τkφ∗ : k ∈ Z}.

Remark: To comment on the generality of GMSs in Definition 2, we note that if {τkφ} and {τkφ∗}
are a pair of frame and dual frame of V0, a GMS is simply an FMRA [2]; if {τkφ} is an exact frame
of V0 and if φ∗ ∈ V0, a GMS becomes an MRA, in which {τkφ∗} is the biorthogonal sequence to
{τkφ} in V0. Note that even when {τkφ} is an exact frame of V0 in an GMS, it could be that φ∗ /∈ V0.
This would still correspond to an GMS.

5.1 Construction of a GMS of Paley-Wiener Subspaces

The following theorem is a necessary and sufficient condition for the construction of pseud-
oframes of translates for Paley-Wiener subspaces.

Theorem 1.
Let φ ∈ L2(R) be such that |φ̂| > 0 a.e. on a connected neighborhood of 0 in [− 1

2 ,
1
2 ), and

|φ̂| = 0 a.e. otherwise. Define � ≡ {γ ∈ R̂ : |φ̂| ≥ c > 0}, and let V0 ≡ PW� = {f ∈ L2(R) :
supp(f̂ ) ⊆ �}. Then, for a φ∗ ∈ L2(R), {τkφ} is a pseudoframe of translates for V0 with respect to
{τkφ∗} if and only if

φ̂φ̂∗ · χ� = χ� a.e. , (5.1)

where χ� is the characteristic function on �. Moreover, if φ∗ is also such that |φ̂∗| > 0 a.e. on a
connected neighborhood of 0 in [− 1

2 ,
1
2 ), and |φ̂∗| = 0 a.e. otherwise, and that (5.1) holds, then

{τkφ} and {τkφ∗} are a commutative pair of pseudoframes for X , i.e.,

∀x ∈ X , x =
∑
k

〈
x, τkφ

∗〉 τkφ =
∑
k

〈x, τkφ〉 τkφ∗ .

Before we give a proof to Theorem 1, let us elaborate briefly on the commutativity issue of
pseudoframes of translates.

Assume both {τnφ} and {τnφ∗} are Bessel sequences in H. Define U : H → l2 by

∀x ∈ H, Ux = {〈x, τnφ〉} , (5.2)

and define V : H → l2 by

∀x ∈ H, V x = {〈
x, τnφ

∗〉} . (5.3)
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As a special case of [15], {τnφ} is a pseudoframe of translates for X w.r.t. {τnφ∗} if and only if

V ∗UP = P ,

where P is the orthogonal projection onto X . And {τnφ} and {τnφ∗} are a commutative pair of
pseudoframes if and only if [15]

V ∗UP = P = PU∗V , (5.4)

where U∗ and V ∗ are the unique bounded adjoints of U and V , respectively. The commutativity
condition (5.4) is simply because the adjoint operation U∗V of V ∗U interchanges the positions of
{τnφ} and {τnφ∗} in equation (4.1).

We comment that while commutativity is achieved in our examples presented in Theorem 1,
pseudoframes for subspaces are generally rather delicate depending on the spanning behavior of
sequences {τnφ} and {τnφ∗}, relative to the subspace X . We refer readers to [15] for further discus-
sions.

Proof of Theorem 1. For all f ∈ PW�, consider(∑
n

〈
f, τnφ

∗〉 τnφ
)∧

=
∑
n

∫
R

f̂ (λ)φ̂∗(λ)e2πinλdλ φ̂(γ )e−2πinγ

=
∑
n

∫ 1

0

∑
k

f̂ (λ+ k)φ̂∗(λ+ k)e2πinλdλ φ̂(γ )e−2πinγ

= φ̂(γ )
∑
k

f̂ (γ + k)φ̂∗(γ + k)

= f̂ (γ ) · φ̂(γ )φ̂∗(γ ) ,

where we have used the fact that |φ̂| �= 0 only on [− 1
2 ,

1
2 ), and that

∑
k

f̂ (γ + k)φ̂∗(γ + k)

is 1-periodic. Therefore,

φ̂φ̂∗ · χ� = χ� a.e.

is a necessary and sufficient condition for {τnφ} to be a pseudoframe of translates for V0 with respect
to {τnφ∗}.

Direct calculation also shows that (5.4) is satisfied if φ̂∗ and φ̂ satisfy support conditions
specified in the theorem. Hence, {τnφ} and {τnφ∗} are a commutative pair of pseudoframes for V0,

Proposition 3.
Let {τkφ} be a pseudoframe of translates for V0 with respect to {τkφ∗}. Define Vj by

Vj ≡
{
f ∈ L2(R) : f

(
t

2j

)
∈ V0

}
. (5.5)

Then {φjk}k is a pseudoframe (of translates) for Vj with respect to {φ∗
jk}k , where θjk ≡ √

2j θ(2j t−
k).
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We leave the verification of this proposition to readers.

Theorem 2.
Let φ, φ∗ ∈ L2(R) have the properties specified in Theorem 1 such that the condition (5.1) is

satisfied. Assume that Vj is defined by (5.5). Then {Vj , φ, φ∗} forms a GMS.

Proof. There are three axioms to be verified in Definition 2, plus the property that Vj ⊆ Vj+1.
The inclusion Vj ⊆ Vj+1 follows from the fact that Vj defined by (5.5) is equivalent to PW(2j�),
and PW� ⊆ PW2�.

Condition (i) is satisfied because the set of all band-limited signals is dense in L2(R). On the
other hand, the intersection of all band-limited signals is the trivial function.

Condition (ii) is an immediate consequence of (5.5).
For condition (iii) one may show that

∀n ∈ Z,
∑
k

〈
τnf, τkφ

∗〉 τkφ = τnf .

Or, it is a fact that (τnf )∧ has support in � for arbitrary n ∈ Z. Therefore, τnf ∈ V0.

Example 1. Take φ be such that

φ̂(γ ) =




1 a.e. − 1
4 ≤ γ < 1

4

2 − 4|γ | a.e. 1
4 ≤ |γ | ≤ 1

2
0 otherwise.

Choose

� ≡
{
γ ∈ R̂ :

∣∣∣φ̂(γ )∣∣∣ ≥ 1
}

=
[
−1

4
,

1

4

]
,

and define V0 = PW�. Now, select φ∗ ∈ L2(R) such that

φ̂∗(γ ) =




1 a.e. − 1
4 ≤ γ < 1

4

3 − 8|γ | a.e. 1
4 ≤ |γ | ≤ 3

8
0 otherwise.

Then, by Theorem 1, {τkφ} and {τkφ∗} form a pair of pseudoframes for V0 = PW� since φ̂ · φ̂∗ = 1
a.e. on �. Further, define Vj as in (5.5), {Vj , φ, φ∗} forms a generalized multiresolution structure
for L2(R) by Theorem 2.

5.2 The Scaling Relationship Associated with a GMS

The familiar scaling relationships associated with MRAs between dilates of the function φ, as
well as that of φ∗ still hold in GMSs. Symbols H0 and H ∗

0 are defined by H0 =
∑
n

h0(n)e
−2πin(·),

and H ∗
0 =

∑
n

h∗
0(n)e

−2πin(·) for sequences h0 and h∗
0 wherever the sum is defined.

Proposition 4 ([12]).
Let {h0(n)} be such that H0(0) = √

2 and H0(γ ) �= 0 in a neighborhood of 0. Assume also
that |H0| ≤ √

2. Then there exist φ ∈ L2(R) such that

φ(t) = √
2
∑
n

h0(n)φ(2t − n) . (5.6)
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The proof of Proposition 4 is very similar to Mallat’s Lemma in [17]. See also [7, p. 175]. We
hereby omit the proof.

Similarly, there exists a scaling relationship for φ∗ under the same conditions as that of h0 for
a sequence h∗

0, as specified in Proposition 4:

φ∗(t) = √
2
∑
n

h∗
0(n)φ

∗(2t − n) . (5.7)

In terms of the filters H0 and H ∗
0 , Theorem 1 becomes the following:

Corollary 1.
Suppose H0 and H ∗

0 generate φ and φ∗ as in equations (5.6) and (5.7), respectively. Assume
φ ∈ L2(R) and φ∗ ∈ L2(R) have the properties specified in Theorem 1. Then {τkφ} forms a
pseudoframe of translates for V0 with respect to {τkφ∗} if and only if

H0 ·H ∗
0 χ�/2 = 2χ

�/2 a.e. (5.8)

Proof. Take the Fourier transform of equations (5.6) and (5.7), one has φ̂(2γ ) = 1√
2
H0(γ )φ̂(γ )

and φ̂∗(2γ ) = 1√
2
H ∗

0 (γ )φ̂
∗(γ ). Then (5.1) holds if and only if (5.8) holds. The result is immediate.

Therefore, the construction of GMSs may simply start from filtersH0,H ∗
0 satisfying (5.8) and

the scaling equations (5.6) and (5.7).

An example of a pair of H0 and H ∗
0 are given in Figures 2 and 3.
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FIGURE 2 A filter H0 generating φ.
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FIGURE 3 A H∗
0 generating φ∗.

6. Affine Frames for L2(R)

As an important and major part of the theory of GMSs, we discuss in this section the construc-
tion of affine frames for L2(R) based on a GMS structure. This is not only an integrate part of the
theory of GMSs, we also note that affine frames constructed via a GMS have a natural filter-bank-
based fast decomposition and reconstruction algorithm, a favorable property that needs not hold for
affine frames constructed some other ways. This can be of meaningful values.

6.1 The Decomposition of V1

We shall denote the orthogonal complement of V0 in V1 by W0, as usual.
Due to the non-orthogonality and the unconventional behavior of pseudoframes, we need to

further generalize the usual decomposition approach seen in conventional MRAs. In order to split a
function f of V1 into two functions (mostly) in V0 and W0, respectively, we will construct an affine
pseudoframe for V1, making use of the existing affine pseudoframe structure for V0. Conventional
symbols, ψ and ψ∗, will be used as generating functions for W0 (in a sense of pseudoframes of
translates). Notice thatψ andψ∗ will still be “band-pass” functions. But they need not be contained
in W0.

Definition 3. Let {Vj , φ, φ∗} be a given GMS, and let ψ and ψ∗ be two (band-pass) functions in
L2(R). We say {τnφ, τnψ} form a pseudoframe (of translates) for V1 w.r.t. {τnφ∗, τnψ∗} if

∀f ∈ V1, f =
∑
n

〈
f, τnφ

∗〉 τnφ +
∑
n

〈
f, τnψ

∗〉 τnψ . (6.1)

{τnφ∗, τnψ∗} is called a dual pseudoframe to {τnφ, τnψ} in the sense of (6.1).

Remark: Eventually, we shall give a condition for which the collection of {ψj,k} and {ψ∗
jk} forms

a pair of affine frames for L2(R). See Section 6.2.
To characterize the condition for which {τnφ, τnψ} form an affine pseudoframe for V1 w.r.t.

{τnφ∗, τnψ∗}, we start from developing the “wavelet equations” with “band-pass” functions ψ and
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ψ∗ based on an GMS, namely,

ψ(t) = √
2
∑
n

h1(n)φ(2t − n) in L2(R) , (6.2)

and

ψ∗(t) = √
2
∑
n

h∗
1(n)φ

∗(2t − n) in L2(R) . (6.3)

In fact, with similar proof as in Proposition 4, we have the following.

Proposition 5.
Let {h1(n)} be such that H1(0) = 0, and H1 ∈ L∞(T). Let φ ∈ L2(R) and be defined

by (5.6). Assume that {h0(n)} satisfies the conditions in Proposition 4. Then there exists ψ ∈ L2(R)
generated from (6.2).

Proof. Define a function ψ̂ by

ψ̂(γ ) = 1√
2
H1

(γ
2

) ∞∏
j=2

1√
2
H0

( γ
2j

)
= 1√

2
H1

(γ
2

)
φ̂
(γ

2

)
. (6.4)

Since H0 satisfies conditions in Proposition 4, φ is in L2(R). Therefore, because H1 ∈ L∞(T), ψ
defined by (6.4) is in L2(R). It is now sufficient to use Parseval’s Theorem and the inverse Fourier
transform of (6.4) to obtain (6.2).

A similar condition and conclusion applies to (6.3) with respect to a sequence h∗
1.

Let χ�(γ ) be the characteristic function of the interval �. We will also use the following
1-periodic function

��(γ ) ≡
∑
k

χ�(γ + k) . (6.5)

Theorem 3.
Let � be the bandwidth of the subspace V0 defined in Theorem 1. {τnφ, τnψ} form a pseud-

oframe of translates for V1 w.r.t. {τnφ∗, τnψ∗} if and only if there are G0 and G1 in L2(T) such
that

G0(γ )H
∗
0 (γ )��(γ )+G1(γ )H

∗
1 (γ )��(γ ) = 2��(γ ) a.e ,

G0(γ )H
∗
0

(
γ + 1

2

)
��(γ )+G1(γ )H

∗
1

(
γ + 1

2

)
��(γ ) = 0 a.e.

(6.6)

Proof. We first note that since {φ∗
1m}m is complete when restricted to V1, equation (6.1) holds if

and only if

∀m ∈ Z,
〈
f, φ∗

1m

〉 = ∑
n

〈
f, τnφ

∗〉 〈τnφ, φ∗
1m

〉 + ∑
n

〈
f, τnψ

∗〉 〈τnψ, φ∗
1m

〉
. (6.7)

Define

c0(n) = 〈
f, τnφ

∗〉 , c1(n) = 〈
f, φ∗

1n

〉
, d0(n) = 〈

f, τnψ
∗〉 ,

and denote by

g0(m− 2n) = 〈
τnφ, φ

∗
1m

〉
, g1(m− 2n) = 〈

τnψ, φ
∗
1m

〉
,
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where the “m− 2n” indexing is easily verifiable. Then (6.7) becomes

∀m ∈ Z, c1(m) =
∑
n

c0(n)g0(m− 2n)+
∑
n

d0(n)g1(m− 2n) .

Taking the Fourier Transform, we have

C1(γ ) = C0(2γ )G0(γ )+D0(2γ )G1(γ ) , (6.8)

where Ci = ĉi , i = 1, 2, and D0 = d̂0, the Fourier series of c0, c1 and d0, respectively. Note
that (5.7) and (6.3) also imply

c0(n) =
∑
m

h∗
0(m− 2n)c1(m) ,

and

d0(n) =
∑
m

h∗
1(m− 2n)c1(m) .

And, their Fourier series are, respectively,

C0(2γ ) = 1

2

[
C1(γ )H

∗
0 (γ )+ C1

(
γ + 1

2

)
H ∗

0

(
γ + 1

2

)]
, (6.9)

and

D0(2γ ) = 1

2

[
C1(γ )H

∗
1 (γ )+ C1

(
γ + 1

2

)
H ∗

1

(
γ + 1

2

)]
, (6.10)

Combining (6.8), (6.9), and (6.10), we have

2C1(γ ) = G0(γ )

[
C1(γ )H

∗
0 (γ )+ C1

(
γ + 1

2

)
H ∗

0

(
γ + 1

2

)]

+G1(γ )

[[
C1(γ )H

∗
1 (γ )+ C1

(
γ + 1

2

)]
H ∗

1

(
γ + 1

2

)]

=
[
G0(γ )H

∗
0 (γ )+G1(γ )H

∗
1 (γ )

]
C1(γ )

+
[
G0(γ )H

∗
0

(
γ + 1

2

)
+G1(γ )H

∗
1

(
γ + 1

2

)]
C1

(
γ + 1

2

)
.

This relationship holds for all f ∈ V1. In particular, for those f ∈ V1 such thatC1(γ )C1(γ+ 1
2 ) = 0,

the above relationship holds only if

G0(γ )H
∗
0 (γ )��(γ )+G1(γ )H

∗
1 (γ )��(γ ) = 2��(γ ) a.e. ,

G0(γ )H
∗
0

(
γ + 1

2

)
��(γ )+G1(γ )H

∗
1

(
γ + 1

2

)
��(γ ) = 0 a.e.

The “if” part is clear. This establishes the result.

Corollary 2.
Let {τnφ, τnψ} be an affine pseudoframe for V1 w.r.t. {τnφ∗, τnψ∗}. Then, for each j ∈ Z,

{φjk, ψjk}k form a pseudoframe (of translates) for Vj+1 w.r.t. {φ∗
jk, ψ

∗
jk}k , i.e.,

∀f ∈ Vj+1, f =
∑
k

〈
f, φ∗

jk

〉
φjk +

∑
k

〈
f,ψ∗

jk

〉
ψjk .

Proof. The proof uses the self-similarity property of GMSs and a change of variable technique.
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6.2 The Pyramid Decomposition Structure

Because a GMS possesses a nested multiresolution subspace structure, our further concern is
to build for a given GMS a recursive decomposition scheme similar to that available for an MRA.
While (6.1) is a two-stage decomposition and reconstruction formula, it does not provide by itself a
recursive decomposition scheme in a GMS. Indeed for a general function f ∈ V1 the “coarser” term
of the decomposition is not generally in V0, i.e.,∑

n

〈
f, τnφ

∗〉 τnφ /∈ V0 .

Further decompositions would not hold by using (6.1).
To enable recursive decompositions, it is necessary that we enforce a general decomposition

architecture in a GMS.

Definition 4. Let {Vj , φ, φ∗} be a given GMS. We say that the GMS has a pyramid decomposition
scheme if there are band-pass functions ψ , ψ∗ ∈ L2(R) such that

∀f ∈ L2(R),
∑
n

〈
f, φ∗

1n

〉
φ1n =

∑
n

〈
f, τnφ

∗〉 τnφ +
∑
n

〈
f, τnψ

∗〉 τnψ . (6.11)

Remarks: a. We assume that the affine sequences involved in (6.11) are Bessel sequences. This
can be easily achieved by Theorem 1. The primary requirements are that the 1-periodic functions
�, �∗, , and ∗ are in L∞(T), for which a good sufficient condition, for example, is that φ (etc.)
belong to the Wiener amalgam space W(L2, l1) ≡ {f :

∑
k

‖f · 1[k,k+1]‖2 < ∞}.
b. (6.11) was easy in conventional MRAs or FMRAs. Because with the basis (or frame)

structure, the right-hand-side of (6.11) consists of two projections onto V0 andW0, respectively, and
the left-hand-side is a projection onto V1 [12]. This is no longer a simple case in GMSs.

c. (6.11) is also a more general decomposition scheme in light of subspace divisions in MRAs
and FMRAs. While the basis/frame structure for V0 are fixed by φ (in MRAs or FMRAs), the
structure ofW0 can be set free. That is, the 3rd term of (6.11) needs not be a projection, andψ needs
not be inW0. The 3rd term could well be a pseudoframe expression. The freedom gained translates
into the relaxed conditions for filter bank designs.

d. (6.11) and (6.1) are different. If only a two-stage decomposition is needed, (6.1) is a
simpler condition to work with.

Theorem 4.
Let {Vj , φ, φ∗} be a GMS. Assume that integer translates of each φ, φ∗, ψ , and ψ∗ are all

Bessel sequences in L2(R). Then, (6.11) holds if and only if

H0(γ )H
∗
0 (γ )�(γ )+H1(γ )H

∗
1 (γ )�(γ ) = 2�(γ ) a.e.

H0

(
γ + 1

2

)
H ∗

0 (γ )�(γ )+H1

(
γ + 1

2

)
H ∗

1 (γ )�(γ ) = 0 a.e.
(6.12)

Proof. Define as in Theorem 3

c0(n) = 〈
f, τnφ

∗〉 , c1(n) = 〈
f, φ∗

1n

〉
, d0(n) = 〈

f, τnψ
∗〉 . (6.13)

Then, equation (6.11) becomes∑
n

c1(n)φ1n =
∑
n

c0(n)τnφ +
∑
n

d0(n)τnψ ,
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whose Fourier transform is
√

2C1

(γ
2

)
φ̂
(γ

2

)
= C0(γ )φ̂(γ )+D0(γ )ψ̂(γ ) .

Using the equations (5.6) and (6.2) and their Fourier transform, we have

√
2C1

(γ
2

)
φ̂
(γ

2

)
= C0(γ )

√
2H0

(γ
2

)
φ̂
(γ

2

)
+D0(γ )

√
2H1

(γ
2

)
φ̂
(γ

2

)
or,

C1(γ )φ̂(γ ) = C0(2γ )H0(γ )φ̂(γ )+D0(2γ )H1(γ )φ̂(γ ) . (6.14)

Note that C0 and D0 were computed in the proof of Theorem 3 in equations (6.9) and (6.10).
Substituting (6.9) and (6.10) into (6.14), we have

2C1(γ )φ̂(γ ) =
(
C1(γ )H

∗
0 (γ )+ C1

(
γ + 1

2

)
H ∗

0

(
γ + 1

2

))
H0(γ )φ̂(γ )

+
(
C1(γ )H

∗
1 (γ )+ C1

(
γ + 1

2

)
H ∗

1

(
γ + 1

2

))
H1(γ )φ̂(γ )

=
(
H0(γ )H

∗
0 (γ )+H1(γ )H

∗
1 (γ )

)
C1(γ )φ̂(γ )

+
(
H0(γ )H

∗
0

(
γ + 1

2

)
+H1(γ )H

∗
1

(
γ + 1

2

))
C1

(
γ + 1

2

)
φ̂(γ ) . (6.15)

Equation (6.15) is to hold for all C1 ∈ L2(T). In particular, for C1 (derived from a function
f ∈ L2(R) by C∨

1 (n) = 〈f, φ1n〉) such that C1(γ )C1(γ + 1
2 ) = 0 a.e., equation (6.15) is true only if

H0(γ )H
∗
0 (γ )φ̂(γ )+H1(γ )H

∗
1 (γ )φ̂(γ ) = 2φ̂(γ )

H0(γ )H
∗
0

(
γ + 1

2

)
φ̂(γ )+H1(γ )H

∗
1

(
γ + 1

2

)
φ̂(γ ) = 0 .

(6.16)

The “if” part is obvious, i.e., (6.16) implies (6.15). We will only need to substitute γ + k for γ
in (6.16) and sum over k ∈ Z to obtain (6.12).

Remarks: a. In special cases, if the support of φ̂ is large enough or φ̂ is discontinuous (but
φ /∈ PW�) so that � ≥ A > 0 on the support of �, then {τnφ}, while being a pseudoframe for
V0 ≡ PW�, has become a frame or basis for sp{τnφ}. In many such occasions, the GMS built upon
the Vj s can be equivalent to a conventional FMRA or MRA based on subspaces sp{φjk}k and related
frames/basis structures. This is reflected in the condition (6.12) we just derived.

It is also important to note that even in cases when {τnφ} becomes a frame for sp{τnφ}, the
pseudoframe structure of GMSs will still include cases of multiresolution structures that are more
general than conventional MRAs. The author has recently come to realize that a typical example
can be found in [5], where everything can by well described using pseudoframes. We refer to [15]
for detail discussions on pseudoframes.

b. Notice that since � can be a continuous function and may vanish in the context of pseud-
oframes, a sufficient condition for (6.16) to hold is clearly,

H0(γ )H
∗
0 (γ )+H1(γ )H

∗
1 (γ ) = 2 a.e. on supp(�)

H0(γ )H
∗
0 (γ + 1

2 )+H1(γ )H
∗
1

(
γ + 1

2

)
= 0 a.e. on supp(�) .

(6.17)
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The self-similarity of a GMS also passes on to equation (6.11).

Corollary 3.
Let {τnφ, τnψ} be an affine pseudoframe for V1 w.r.t. {τnφ∗, τnψ∗} such that conditions in

Theorem 4 and (6.12) holds. Then for all j ∈ Z,

∀f ∈ L2(R),
∑
n

〈
f, φ∗

j+1,n

〉
φj+1,n =

∑
n

〈
f, φ∗

j,n

〉
φj,n +

∑
n

〈
f,ψ∗

j,n

〉
ψj,n . (6.18)

Consequently, a given function in any subspace Vj can be decomposed recursively using the
“band-pass” functions {ψjk}.
Corollary 4.

Assume functions φ, φ∗, ψ , andψ∗ inL2(R) are such that (6.11) holds. Then for any integers
j and J with j < J ,

∀f ∈ VJ , f =
∑
n

〈
f, φ∗

jn

〉
φjn +

J−1∑
m=j

∑
n

〈
f,ψ∗

mn

〉
ψmn . (6.19)

Proof.

∀f ∈ VJ , f =
∑
n

〈
f, φ∗

J−1,n

〉
φJ−1,n +

∑
n

〈
f,ψ∗

J−1,n

〉
ψJ−1,n . (6.20)

Hence, (6.19) is the result of (6.18) applied to the first term of (6.20) recursively.

Theorem 5.
Let φ, φ∗, ψ , and ψ∗ be functions in L2(R) defined by (5.6), (5.7), (6.2), and (6.3), respec-

tively. Assume that conditions in Theorem 4 are satisfied. Then, for all functions f ∈ L2(R),

∑
n

〈
f, φ∗

Jn

〉
φJn =

J−1∑
m=−∞

∑
n∈Z

〈
f,ψ∗

mn

〉
ψmn in L2(R) . (6.21)

Moreover,

∀f ∈ L2(R), f =
∞∑

m=−∞

∞∑
n=−∞

〈
f,ψ∗

mn

〉
ψmn in L2(R) . (6.22)

Consequently, if {ψmn} and {ψ∗
mn} are also Bessel sequences, they are actually a pair of affine frames

for L2(R).

Proof. a. Consider, for M > 0, the operator TM : H → H such that

TMf ≡ fM ≡
∑
n∈Z

〈
f, φ∗−M,n

〉
φ−M,n .

Then the operators TM are well defined and uniformly bounded in the operator norm on H. In order
to show that fM → 0 as M → ∞, it is therefore sufficient to show that, for all g in any dense
subspace of band-limited functions in H,

∑
n∈Z

〈
g, φ∗−M,n

〉
φ−M,n → 0 as M → ∞ .
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In particular, we may choose the dense set of functions g whose Fourier transform have compact
support, is continuous, and vanishes in a neighborhood of 0,∥∥∥∥∥

∑
n

〈
g, φ∗−M,n

〉
φ−M,n

∥∥∥∥∥
2

= sup
‖y‖=1

∑
n

〈
g, φ∗−M,n

〉 〈
φ−M,n, y

〉

≤ sup
‖y‖=1

(∑
n

∣∣〈g, φ∗−M,n
〉∣∣2)1/2 (∑

n

∣∣〈y, φ−M,n
〉∣∣2)1/2

≤ B1/2

(∑
n

∣∣〈g, φ∗−M,n
〉∣∣2)1/2

,

where B is the Bessel bound of {φ−M,n}n.
Standard calculation of the right-hand side shows

∑
n

∣∣〈g, φ∗−M,n
〉∣∣2 =

∫ (∑
k

ĝ
(
γ + 2−Mk

)
φ̂∗ (2Mγ + k

))
φ̂∗ (2Mγ

)
ĝ(γ ) dγ

≤
∫ (∑

k

∣∣∣ĝ (γ + 2−Mk
)∣∣∣2

)1/2 (∑
k

∣∣∣φ̂∗ (2Mγ + k
)∣∣∣2

)1/2

φ̂∗ (2Mγ
)
ĝ(γ )dγ

≤ B∗1/2
∫ (

2−M ∑
k

∣∣∣ĝ (γ + 2−Mk
)∣∣∣2

)1/2

· 2M/2φ̂∗ (2Mγ
)
ĝ(γ ) dγ ,

whereB∗ is the Bessel bound of {φ∗−M,n}n. Following the lead of [16] and since ĝ is continuous with

compact support, the term 2−M ∑
k

|ĝ(γ + 2−Mk)|2 ≤ C2 < ∞, being a Riemann sum to the finite

integral
∫

|ĝ(γ + x)|2 dx. Furthermore, since ĝ vanishes in a neighborhood of 0, i.e., ĝ(γ ) = 0 for

all |γ | < δg , we have

∑
n

∣∣〈g, φ∗−M,n
〉∣∣2 ≤ B∗1/2C

∫ ∣∣∣2M/2φ̂∗ (2Mγ
)
ĝ(γ )

∣∣∣ dγ
≤ B∗1/2C‖g‖2

(∫
|γ |≥δg

∣∣∣2M/2φ̂∗ (2Mγ
)∣∣∣2

)1/2

.

Observe that the last integral at the right-hand side tends to 0 as M → ∞. This proves the first part
of the theorem since, by (6.19),

fM =
∑
n

〈
f, φ∗

Jn

〉
φJn −

J−1∑
m=−M

∑
n∈Z

〈
f,ψ∗

mn

〉
ψmn .

b. Now that ∪Vj = L2(R), for any f ∈ L2(R) and any ε > 0 there exists J0 = J0(ε) > 0,
and for any J > J0 there exists g ∈ VJ0 ⊆ VJ such that

g =
∑
n

〈
g, φ∗

Jn

〉
φJn .

Furthermore, for K = BB∗,

‖f − g‖2 <
ε

1 +K
.
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Now, by (6.21), for all J > J0,∥∥∥∥∥f −
J−1∑

m=−∞

∑
n∈Z

〈
f,ψ∗

mn

〉
ψmn

∥∥∥∥∥
2

=
∥∥∥∥∥f −

∑
n∈Z

〈
f, φ∗

Jn

〉
φJn

∥∥∥∥∥
2

≤ ‖f − g‖2 +
∥∥∥∥∥g −

∑
n∈Z

〈
f, φ∗

Jn

〉
φJn

∥∥∥∥∥
2

= ‖f − g‖2 +
∥∥∥∥∥
∑
n

〈
g − f, φ∗

Jn

〉
φJn

∥∥∥∥∥
2

≤ ‖f − g‖2 +K‖f − g‖2 = ‖f − g‖2(1 +K) < ε .

The second part of the theorem is therefore established.
If {ψmn} and {ψ∗

mn} are Bessel sequences (which can be easily achieved since both ψ and ψ∗
have a band-pass nature, i.e., satisfy ψ̂(0) = ψ̂∗(0) = 0), then equation (6.22) implies that both
{ψmn} and {ψ∗

mn} will be affine frames due to Proposition 2.

7. Fast Affine Frame Decompositions

Generally speaking the numerical implementations of a frame decompositions may be time
consuming due to the non-orthogonality of frames. In contrast, for the affine frame of L2(R)
constructed under a GMS there is a naturally associated fast tree-structured algorithm, namely, the
pyramid filter bank decomposition and reconstruction algorithm. This is a valuable feature of affine
frames constructed via GMSs.

For any given signal f , and any small ε > 0, there is a J and a signal g ∈ Vj such that

‖f − g‖ ≤ ε .

Without loss of generality, we assume that f ∈ V0. Then from (6.19), we have, for a given j > 0,

∀f ∈ V0, f =
∑
n

〈
f, τnφ

∗〉 τnφ =
∑
n

〈
f, φ∗−jn

〉
φ−jn +

−1∑
m=−j

∑
n

〈
f,ψ∗

mn

〉
ψmn . (7.1)

For decomposition, define

cm(n) = 〈
f, φ∗

mn

〉
, dm(n) = 〈

f,ψ∗
mn

〉
, ∀m ∈ Z .

Using equations (5.7) and (6.3) we have the following decompositions:

cm−1(n) =
∑
k

h∗
0(k − 2n)cm(k), ∀m ∈ Z . (7.2)

dm−1(n) =
∑
k

h∗
1(k − 2n)cm(k), ∀m ∈ Z . (7.3)

For the reconstruction, assume that the decomposition is performed for j > 0 steps. From the
inner product of (7.1) with τkφ∗ we have

c0(k) = 〈
f, τkφ

∗〉 = ∑
n

c−j (n)
〈
φ−jn, τkφ∗〉 + −1∑

m=−j

∑
n

dm(n)
〈
ψmn, τkφ

∗〉 . (7.4)
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Now, define

rj (k) = 〈
φj0, τkφ

∗〉 , ∀j ; gm(k) = 〈
ψm0, τkφ

∗〉 , ∀m .
Then

rj = h0 ∗ rj−1, ∀j ; gm = h1 ∗ gm−1, ∀m ,
and 〈

φjn, τkφ
∗〉 = rj

(
k − 2j n

)
, (7.5)

and 〈
ψmn, τkφ

∗〉 = gm
(
k − 2mn

)
. (7.6)

Therefore, the reconstruction is provided by the combination of equations (7.4), (7.5), and (7.6),
namely, the following filtering operation:

c0(k) =
∑
n

c−j (n)rj
(
k − 2j n

)
+

−1∑
m=−j

∑
n

dm(n)gm
(
k − 2mn

)
. (7.7)

To obtain the original signal f , one would do:

f =
∑
n

c0(n)τnφ .

Conclusion

We have introduced and studied the notion of a Generalized Multiresolution Structure more
general than FMRAs. The filtering mechanism behind the affine structure of a GMS can be con-
structed using fast decaying filters. This facilitates the design of narrow band multiresolution struc-
ture such as FMRAs, e.g., [3], and adds to multiresolution analysis a broader constructive approach
for generating affine frames. This new approach includes (but not limited to) a particular biorthog-
onal method in [5]. The study of GMSs thus constitutes another integrate part of the concept of
multiresolution analysis.

As an important part of the theory of GMSs, there are constructible affine frames associated
with GMSs. Systematic constructions of affine frames based on GMSs are presented. An immediate
benefit of these affine frames is that there is an associated fast filter-bank-based decomposition and
reconstruction algorithm. Our study of GMSs and the construction of affine frames based on an
GMS uses a notion of pseudoframes of translates which plays a role as basis or frames in MRAs or
FMRAs – simple, flexible, and essential to the theory.
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