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Abstract
In social animals, disease management behaviors such as grooming occur in response to diverse stimuli, making it difficult to 
interpret the evolution and function of these phenotypes. The honey bee has a grooming repertoire that includes self-directed 
behaviors and allogrooming from nestmates. Many stimuli provoke these behaviors, and their impacts on individual and 
colony survivorship are unclear. We evaluated the effects of two different stressors on grooming frequencies and survivorship. 
We found that self-grooming frequency is activated in distinct ways in response to pathogen infection, pesticide treatment, 
and social context. Moreover, self-grooming frequency predicts individual survival. Allogrooming interactions were less 
common and did not predict individual survival. The honey bee highlights the difficulty inherent in interpreting the evolution 
and function of grooming interactions in highly social species.
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Introduction

Disease management is an integral component of social 
evolution, because proximity to conspecifics increases risk 
of pathogen spread. In many social species, individuals 
perform behaviors that provide their groupmates disease or 
parasite protection ("social immunity" behaviors; Silk et al. 
2003; Cremer et al. 2007, 2018; Smolinksy et al. 2009; 
Evans and Spivak 2010; Zhukovskaya et al. 2013; Stroey-
meyt et al. 2014; Pritchard 2016). Grooming is one such 
phenotype; in group living animals, it has both self-directed 
(self-grooming) and social (allogrooming) forms, each with 

distinct implications for disease transmission to the group, 
and for individual and group survivorship (Fefferman et al. 
2006; Boroczky et al. 2013; Zhukovskaya et al. 2013; Kalu-
eff et al. 2016).

Despite the ubiquity of grooming, the connections 
between grooming and disease resistance at the indi-
vidual or group level remain poorly understood. This is 
because a variety of stimuli induce self- and allogroom-
ing, and only some of these stimuli are relevant to dis-
ease spread. For example, in insects, self-grooming is 
stimulated by foreign objects such as parasites and pol-
len (Pettis and Pankiw 1998; Land and Seeley 2004), but 
also chemical irritants (Cox and Wilson 1984; Golenda 
and Forgash 1986), subtle changes in cuticular chemical 
profiles (Kovac and Maschwitz 1990), and microorgan-
isms (Yanagawa et al. 2012). Furthermore, the impacts 
of grooming activities on survival are sometimes indirect 
(Zhukovskaya et al. 2013): in mammals, allogrooming 
results in parasite removal, but it is also linked to bond-
ing, reciprocity, nurturing, social status, and immune func-
tion (DeVries et al. 2003; Silk et al. 2003; Li et al. 2016, 
2019; Eads et al. 2017; Schweinfurth et al. 2017; Chen and 
Hong 2018). Finally, in both vertebrate and invertebrate 
species, grooming is a common displacement behavior, 
often expressed in response to stress (Troisi 2002; Root-
Bernstein 2010); its frequency could indicate stress levels 
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or immune system status while having no clear immedi-
ate benefit. Thus, grooming is broadly linked to health, 
but its impacts on individual survivorship and/or disease 
spread among members of a social group may depend on 
the stimulus that elicits the behavior.

Grooming and other social immunity behaviors are 
common in the honey bee (Apis mellifera). Colonies are 
composed of a single queen and 20,000–40,000 highly 
physically interactive female workers (Winston 1987). 
Presumably as a result of strong selection for disease and 
parasite management, the honey bee has evolved a groom-
ing repertoire (Walker and Hughes 2009; Evans and Spi-
vak 2010; Hamiduzzaman et al. 2017; Cremer et al. 2018). 
Workers self-groom and allogroom diseased nestmates 
(spontaneously, but also in response to a dance signal; 
Land and Seeley 2004). Both behaviors are elicited by 
ectoparasites, but also infections with various pathogens 
(Waddington and Rothenbuhler 1975; Land and Seeley 
2004; Evans and Spivak 2010; Richard et al. 2012; Carr 
et al. 2020; Russo et al. 2020), suggesting a variety of 
potential functional outcomes for grooming, and perhaps a 
general connection between grooming and immune system 
activation in the recipient (Boroczky et al. 2013).

The consequences of honey bee grooming behaviors 
remain unclear, and have not been thoroughly investigated 
across the variety of contexts that stimulate the behavior. 
For example, in studies focused on ectoparasites, there 
is relatively weak evidence that elevated allogrooming 
impacts mortality or parasite infestation at the colony level 
(at least for A. mellifera; Pettis and Pankiw 1998; Boecking 
and Spivak 1999; Evans and Spivak 2010; Pritchard 2016). 
Moreover, to our knowledge, no study has assessed mor-
tality impacts of allogrooming or self-grooming for other 
contexts that elicit the behavior, e.g., pathogen infection 
(see Waddington and Rothenbuhler 1975). In the current 
study, we use a lab-based approach to assess whether allo-
grooming or self-grooming are associated with increased 
individual worker bee survival in the face of two differ-
ent types of stressors. The first is a yeast (Saccharomyces 
cerevisiae) injection, which broadly and rapidly activates 
the immune system, stimulates self- and allogrooming, 
and results in behavioral and mortality effects over 24 h 
(Carr et al. 2020). The second is topical treatment with the 
metabolic pesticide tetradifon, which alters behavior and 
causes mortality in a stress-dependent manner (Li-Byarlay 
et al. 2014). We chose these stressors, because there are 
established methods to apply them without 100% mortal-
ity, as well as known relationships to behavior. They are 
also distinct in terms of their application method (Barron 
et al. 2007) and mode of action, allowing us to investigate 
whether there are relationships between grooming and sur-
vivorship that can be generalized across contexts.

Materials and methods

We performed experiments on August 5–8, 2020 at the Uni-
versity of Kentucky Research Farm (Lexington, Kentucky, 
USA), using full-sized colonies advertised as Italian, Carni-
olan, and Russian hybrids (Schoolhouse Bees, Covington, 
KY, USA). No colonies were undergoing Varroa destructor 
mite treatment at the time of the experiment.

On the morning of the experiments, we collected focal 
bees at the entrance of the colonies using a vacuum. Focal 
bees are likely a combination of foragers, guards, and other 
middle-aged bees (Winston 1987). We targeted these indi-
viduals, because they could be collected easily without 
tracking individual behavior. Notably, these individuals are 
older than the bees that typically specialize on allogrooming 
(Cini et al. 2020). Prior to treatment (described below), focal 
bees were kept in cages (~ 40 bees per colony) in a 34 °C 
incubator and fed ad libitum 50% sucrose.

Individual bees were assigned haphazardly to one of four 
treatment groups (N = 10/group) representing all combina-
tions of yeast treatment (yes/no) and pesticide treatment 
(yes/no, Table 1). Bees with no yeast or pesticide treatment 
were handled for a timeframe resembling other treatment 
combinations. We duplicated this set up across two social 
treatments, one where focal bees were placed in a social 
group after treatment (allowing allogrooming interactions), 
and one where treated focal bees were kept in isolation (pre-
venting such interactions). Thus overall, this experiment 
included 80 focal bees (N = 10 for each of four treatments 
across two social conditions). Each source colony (N = 10) 
was represented by one individual per treatment combina-
tion per social condition (N = 8 focal bees per colony). All 
treatment combinations are outlined in Table 1.

Due to the large number of treatment combinations in 
this study, we did not evaluate the impacts of our pesticide 
vehicle alone, or the effects of a yeast-free sham injection. 

Table 1   Focal bee treatment combinations

Each of 10 colonies was represented by one focal bee per treatment 
combination. We collected self-grooming data for all focal individu-
als, and allogrooming data for group social treatments

Number of 
focal bees

Yeast treatment Pesticide 
treatment

Social treatment

10 No No Isolated
10 No No Group
10 Yes No Isolated
10 Yes No Group
10 No Yes Isolated
10 No Yes Group
10 Yes Yes Isolated
10 Yes Yes Group
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Though we cannot rule out impacts of the vehicle (dimethyl 
formamide, DMF; Hewlett et al. 2018) and sham injection, 
in previous work, we found that saline injection did not alter 
self-grooming or allogrooming compared to a no-stab con-
trol (Carr et al. 2020). Similarly, DMF has been shown in 
other studies to have minimal impacts on behavior compared 
to a sham control (Sovik et al. 2013).

Treatments

All bees were anesthetized in a 4 °C refrigerator. Bees were 
removed from the refrigerator, treated (or handled), and 
marked on the thorax with paint (Testors, Rockford, IL, 
USA). The paint allowed observers to set up the experiment 
while remaining blind to treatment during the assays. Bees 
treated with both yeast and pesticide received the yeast treat-
ment first and the pesticide immediately after. Following 
treatment or handling, we placed focal bees in 100 mm by 
20 mm plastic dishes provisioned with 50% sucrose. Focal 
bees assigned to the isolated social treatment were placed 
in a dish alone, while bees from the group treatment were 
placed in a dish with three untreated nestmates from the 
same colony (Rittschof et al. 2018; Carr et al. 2020). Two 
observers treated and then observed 10 dishes at a time each, 
performing the set up and observations twice a day for 2 
days (resulting in 80 total focal bees observed).

Yeast-treated bees were injected under the third abdomi-
nal tergite with 2 µL of a solution of Saccharomyces cerevi-
siae. Dehydrated S. cerevisiae (Dadant & Sons, Frankfort, 
KY, USA) was cultured in 10% glucose and diluted to an 
OD600 of ~ 0.56 using bee saline (Yang and Cox-Foster 
2007; 0.156 M NaCl, 0.003 M KCl, 0.002 M CaCl2, pH 
7.0). Injections were performed using a 30-gauge 50 µL 
hand-injector syringe (Hamilton Company, Reno, NV, USA; 
Kucharski and Maleszka 2003; Carr et al. 2020). In a previ-
ous study, this dosage resulted in 2% mortality after 1 h, and 
90% mortality after 24 h (Carr et al. 2020).

Pesticide-treated bees received a 1 µL thorax topical 
application of tetradifon (Sigma-Aldrich, St. Louis, MO, 
USA) dissolved in DMF (Sigma-Aldrich). Tetradifon inhib-
its Complex V of mitochondrial oxidative phosphorylation, 
which means that, much like neonicotinoids, it modulates 
immune system function by altering reactive oxygen species 
production (James and Xu 2012). Because of its metabolic 
effects, this pesticide has social-context-dependent impacts 
on aggression, a behavior that is correlated with allogroom-
ing activity and immune activation (Rittschof et al. 2019; 
Carr et al. 2020). We reasoned that this pesticide may exac-
erbate the mortality impacts of yeast treatment, especially 
in combination with variation in grooming activity (Huang 
and Robinson 1992). We applied a concentration of 21.1 µg/
µL, which typically results > 95% survivorship (Li-Byarlay 

et al. 2014). Thus, we did not expect the pesticide alone to 
impact mortality.

Behavioral observations

All bees were given 1 h to acclimate after treatment. At 
this point, all bees were standing and moving, allowing us 
to start the 1 h observation period. We watched each dish 
for 1 min at a time, tallying grooming behaviors (described 
below). Observers rotated through each dish throughout the 
hour and collected data for a total of 6, 1 min observation 
periods per focal bee. We assessed survivorship following 
the 1 h observation period (2 h total after treatment) and 
24 h after treatment.

A self-grooming event occurred when the focal bee 
pulled on her antennae, rubbed her head with her forelegs, or 
rubbed her thorax or abdomen with her middle or hind legs. 
An allogrooming event occurred when a groupmate stroked 
the focal bee with its antennae or legs, licked her, or ran her 
antennae through her mandibles (Carr et al. 2020). Com-
pared to other behavioral contexts, such as aggression, where 
interactions are sudden and rapid, allogrooming behaviors 
are slow and the receiving bee typically remains stationary. 
We did not observe any allogrooming solicitation dances, 
nor did we keep a record of the dances. We also recorded 
allogrooming behaviors directed towards groupmates by 
the focal bee. However, because our goal in this experiment 
was to assess whether experiencing allogrooming improved 
survivorship, we did not keep track of groupmates individu-
ally, nor did we assess whether allogrooming in these cases 
impacted mortality.

Statistics

Self-grooming and allogrooming behaviors were summed 
separately across the 6 observation periods. Source hive is 
a blocking factor and, therefore, is included as a random 
effect in all analyses. We performed simple regressions and 
linear mixed models (LMMs) in JMP Pro 13.2.0 and gen-
eralized linear mixed models (GLMMs) in R 4.0.3 using 
the glmer function (lme4 package; significant main effects 
in GLMMs were assessed using the anova function). We 
examined the distributions of model residuals for normality 
to confirm quality of model fits. We used LMMs to assess 
the impacts of pesticide treatment, yeast treatment, and their 
interaction on self-grooming behavior. For allogrooming, 
because events were rarer, we used separate LMMs to indi-
vidually assess the impacts of each treatment on allogroom-
ing behavior. We used binomial GLMMs for all analyses of 
survivorship. The tests used are described in the appropriate 
location in the Results. Due to the multiple statistical tests 
performed on our data set, we performed a Benjamini–Hoch-
berg correction to check which P values less than 0.05 (four 
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P values, please see below) remained below the threshold 
for significance with a false discovery rate of 5%.

Results

No focal bees died 2 h after yeast and pesticide treatment 
(similar to previous studies), and only 18% died after 24 h, 
which is far fewer than expected based on a previous study 
using the same yeast treatment (Carr et al. 2020). This dis-
crepancy could reflect the time of year during which the 
experiments were performed, or other unexplained varia-
tion in stress susceptibility (Corby-Harris et al. 2018; Carr 
et al. 2020). Models with single fixed effects showed that 
pesticide, yeast, and social treatments failed to significantly 
impact mortality (binomial GLMMs; yeast: X2

1 = 3.2, 
P = 0.07, pesticide: X2

1 = 1.4, P = 0.24, social: X2
1 = 1.4, 

P = 0.24). More complex models containing combinations 
of these factors did not have improved Akaike Information 
Criterion (AIC) values nor did they impact the significance 
of treatment main effects (data not shown).

All treatments impact self‑grooming frequency, 
which is correlated with survivorship

Self-grooming was common and uncorrelated with allog-
rooming events in the group social treatment (R2 = 0.002, 
P = 0.77). All but two focal bees self-groomed (0–17 
events, mean = 6.2). Because we wanted to test the 
hypothesis that yeast, pesticide, and/or social treatment 
have cumulative impacts on grooming and mortality, we 
built an LMM including yeast, pesticide, social treat-
ment and all two- and three-way interaction terms. We 
found that pesticide treatment (F1,63 = 16.4, P = 0.0001), 
yeast treatment (F1,63 = 6.7, P = 0.01), and the interac-
tion of yeast and social treatment (F1,63 = 5.0, P = 0.03) 
significantly predicted the total number of self-grooming 
events (Fig. 1). The significant yeast and social treatment 
interaction suggests the main effect of yeast cannot be 
separated from the social effects (notably, this P-value 
did not survive the Benjamini–Hochberg correction, see 
Methods). There was no main effect of social treatment 
(F1,63 = 0.0, P = 1.0), and no interaction between yeast and 
pesticide treatment (F1,63 = 2.4, P = 0.13), pesticide and 
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Fig. 1   Yeast, pesticide, and social treatments impact self-grooming 
events. Topical pesticide treatment significantly impacted self-groom-
ing (left). These effects were similar across social treatments. Yeast 

injection significantly impacted self-grooming, but with a significant 
interaction with social context (right)
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social treatment (F1,63 = 0.04, P = 0.83), or the three-way 
interaction (F1,63 = 0.1, P = 0.73). A comparison of other 
models containing all combinations of main effects and 
interaction terms gave three models with similarly low 
AIC values. Like our hypothesis-based model, each con-
tained all main effects and the yeast and social treatment 
interaction effect, but with different combinations of the 
other two-way interaction effects. Analyses of these sim-
pler models did not impact the significance of any factors 
(data not shown).

Pesticide treatment increased self-grooming by 60%. 
Yeast treatment decreased self-grooming by about 25% in 
the isolated social treatment only. These results demon-
strate that multiple types of factors (e.g., chemical expo-
sure, immune system stimulation from injection or activa-
tion of the olfactory system by yeast presence) induce a 
grooming response in the honey bee. In addition, despite 
low overall mortality, self-grooming was a significant 
predictor of mortality at 24 h (Fig. 2, binomial GLMM, 
X2

1 = 6.8, P = 0.009), suggesting this behavior either 
enhances survival or serves as an indicator of a resilient 
physiology among those who express it.

Allogrooming did not respond to treatment and did 
not predict survivorship

Rates of allogrooming were similar to our previous study 
using yeast treatment (Carr et al. 2020). 48% of focal bees 
were allogroomed at least once by a groupmate. The total 
number of allogrooming events directed at the focal bee 
ranged from 0 to 5. Because of the low occurrence of allo-
grooming, we performed simple analyses with single main 
effects to determine whether either pesticide or yeast treat-
ment alone impacted the occurrence of these behaviors 
(social treatment is not relevant for allogrooming as all bees 
were in groups). The number of allogrooming events did not 
differ as a function of yeast (LMM, F1,29 = 0.42, P = 0.52) or 
pesticide treatment (F1,29 = 0.02, P = 0.90). Analyses of allo-
grooming activity directed by the focal bee towards group 
members yielded similar non-significant results (data not 
shown).

Unlike self-grooming, allogrooming was not predictive 
of focal bee mortality (Fig. 2, binomial GLMM, X2

1 = 0.04, 
P = 0.84). Results were the same when allogrooming was 
treated as a yes/no binomial variable (data not shown).
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grooming could only take place in the social group treatment (N = 40 
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Discussion

In the current lab-based study, an immune-stimulating 
yeast treatment and topical pesticide treatment both mod-
ulated self-grooming behaviors, though impacts of yeast 
were dependent on social context. Individuals displaying 
more self-grooming had higher survivorship after 24 h 
even though the yeast and pesticide treatments had no 
significant impacts on mortality. Neither yeast infection 
nor topical pesticide application impacted allogrooming, 
despite its occurrence in about 50% of focal bee observa-
tions. Similarly, allogrooming did not predict focal bee 
survivorship.

Our results support other studies showing that groom-
ing behaviors are triggered by a variety of stimuli, includ-
ing foreign body and microorganism presence, immune 
activation, and chemical contact. It is thus reasonable to 
hypothesize that the function of these behaviors extends 
beyond foreign particle removal (Zhukovskaya et  al. 
2013). Better knowledge of the mechanisms that regulate 
grooming could provide new insights into its function. 
Possible regulatory mechanisms include immune system 
activation (Carr et al. 2020), a change in an individual’s 
perception of her own odor profile (Richard et al. 2012), 
or stimulation of mechanosensory hairs (Land and Seeley 
2004; Nicholls et al. 2016).

Variation in self-grooming could reflect differences 
in individual perceptual abilities, sensory thresholds, or 
activity levels. The association between self-grooming and 
survival supports the hypothesis that self-grooming is cor-
related with internal immune state and health resilience. 
It is important to note that we assessed grooming behav-
iors shortly after infection, but immune system dynamics 
can result in mortality and behavioral consequences over 
a longer timeframe (e.g., 24 h). In future studies, it would 
be interesting to examine the temporal dynamics of the 
immune system response and grooming behaviors, espe-
cially in the context of a replicating virus or other trans-
missible pathogen. This would help clarify the connection 
between immune activation, grooming activity, and the 
functional consequences at the group level.

Our results showing a correlation between positive 
health outcomes and self-grooming activity parallel a 
recent study showing that allogrooming specialists have 
elevated immune system activity, presumably as protection 
against potential infection (Cini et al. 2020). It is inter-
esting to note that while pesticide and yeast treatments 
induced self-grooming, and self-grooming was associated 
with increased survival, neither yeast nor pesticide treat-
ment impacted mortality. This could suggest that some 
aspect of the focal bee physiology predisposed it to groom 
or not, but that our treatments were not the main cause of 

death. Another possibility is that our low mortality rate, 
though sufficient to detect highly significant effects of self-
grooming, masked mortality impacts of either treatment.

In our study, we focused our behavioral analyses on a 
mixed group of middle-aged and older worker bees, and we 
did not control for variation in individual age or task spe-
cialization. This choice could impact the observed rate of 
allogrooming, as it is unlikely we gathered allogrooming 
specialists (Pettis and Pankiw 1998; Cini et al. 2020). Our 
approach may have also added behavioral variation within 
and among groups in our study (Cini et al. 2020). Though 
death rates in our experiment were extremely low compared 
to treatments provoking altruistic suicide, it is important to 
consider that the adaptive value of social immunity behav-
iors could change depending on the cost of losing specific 
individuals relative to the cost of infection spread; the cost of 
individual mortality decreases with age as productive work-
ing time decreases (Kuszewska and Woyciechowski 2014). 
This could result in age-dependent infection responses. For 
example, there is evidence that foragers stressed with CO2 
exposure and growth inhibitors spontaneously leave the col-
ony prior to their own deaths, evidence of “altruistic suicide” 
(Rueppell et al. 2010). Future studies should investigate the 
mechanisms that link physical grooming processes to inter-
nal immune function or other measures of stress or disease, 
including the ways in which these relationships change with 
age and task. A better understanding of these mechanisms 
could help explain why the levels of some other behaviors, 
e.g., nest defense behaviors (performed by a similar cohort 
of bees to those used in our study), are correlated with 
immune system function and grooming activity (Rittschof 
et al. 2019; Carr et al. 2020).

Despite its self-directed nature, our results suggest a 
social component to self-grooming: yeast-injected individ-
uals showed decreased self-grooming activity when kept 
in isolation. Isolated individuals may lack a motivation to 
groom, e.g., if grooming restores perceptual abilities (Boroc-
zky et al. 2013) or socially relevant odor profiles (Richard 
et al. 2012). Alternatively, social isolation is a form of stress 
that impacts self-directed grooming behaviors in other spe-
cies (Cinini et al. 2014). Isolation alters individual physiol-
ogy in honey bees, but over a much longer timescale than 
that encompassed by the current study (Huang and Robinson 
1992). We did not find evidence that social isolation alone 
induced differential mortality, suggesting that it does not 
cause severe acute stress. Future studies could explore how 
the presence of nestmates, or the frequency of interaction 
with nestmates, alters grooming behaviors.

Self-grooming is a critical component of the honey bee 
grooming solicitation dance (Bozic and Valentincic 1995). 
We did not notice or record dances in the current study, 
and the lack of correlation between self-grooming and allo-
grooming suggests very few occurred (Pettis and Pankiw 
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1998) despite a substantial overall rate of allogrooming. 
Though the dance is highly effective at inducing allogroom-
ing (Bozic and Valentincic 1995), past studies suggest that 
the self-grooming component may play a larger role in para-
site and pathogen resistance than the allogrooming response 
from nestmates (Pettis and Pankiw 1998). Our results sup-
port this finding, though it is important to note that our 
sample size, coupled with the low frequency of allogroom-
ing, may have limited our ability to detect the relationships 
between health challenges, allogrooming, and survivorship.

Particularly for allogrooming, its function, triggers, and 
impacts at the colony level remain unclear (Aumeier 2001; 
Evans and Spivak 2010). Allogrooming is a widespread trait 
that appears very early in social insect evolution (Fefferman 
et al. 2006). However, modeling studies suggest allogroom-
ing only increases colony survival when disease exposure is 
periodic, not constant (Fefferman et al. 2006). Allogrooming 
may have evolved under very different disease and parasite 
conditions than present day, and as a result, the behavior 
could persist without a clear survival benefit. Alternatively, 
it is possible that the benefits of allogrooming emerge only 
under very specific contexts, e.g., when an individual is sick 
with a pathogen that is capable of spreading amongst indi-
viduals, or in cases where honey bees couple grooming with 
other parasite defense capabilities, for example the ability 
to injure ectoparasites once removed (Guzman-Novoa et al. 
2012; Smith et al. 2021). Exposure route (e.g., injection or 
parasite-mediated versus feeding) is known to impact viral 
pathogenicity and immune function (Yang and Cox-Foster 
2007; Grozinger and Flenniken 2019; Al Naggar and Paxton 
2020), and thus may be tied to the efficacy of allogrooming. 
Future studies could evaluate these possibilities by moni-
toring the extent to which, e.g., virus-infected bees direct 
behaviors towards healthy individuals, and the consequences 
for these interactions. Studies could also evaluate grooming 
interactions and their consequences across genotypes that 
differ in, for example, mite-biting behaviors. The honey bee 
highlights the complexity of interpreting the evolution and 
function of grooming interactions in highly social species.

The weak positive impacts of allogrooming could suggest 
that self-grooming (a key feature of the grooming repertoire 
that is also part of the allogrooming dance signal) may be the 
more critical disease management or survival component of 
the grooming repertoire (Pettis and Pankiw 1998; Aumeier 
2001; Bąk and Wilde 2016). Such a pattern would be signifi-
cant, because self-grooming does not put nestmates at risk 
of contracting a disease or becoming parasitized through 
contact (Bozic and Valentincic 1995; Richard et al. 2012). 
Though some studies show self-grooming is an important 
component of parasite defense (Aumeier 2001; Guzman-
Novoa et al. 2012), to our knowledge, no study has assessed 
whether self-grooming modulates individual survivorship in 
other contexts that elicit the behavior. Here we demonstrate 

that self-directed behaviors may serve important individual 
and social functions, and perhaps should be considered 
alongside allogrooming in studies of the evolution of social 
immunity behaviors.
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