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Allee effect in termite colony formation: influence of alate density
and flight timing on pairing success and survivorship
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Abstract The Allee effect is a positive relationship

between any component of individual fitness and the density

of conspecifics. Theoretical models predict that monogamy,

where males and females are constrained from having

multiple mates, is more susceptible to the Allee effect. In

most termite species, including Reticulitermes spp., found

new colonies by monogamous pairs (i.e., primary king and

queen); however, little is known about the effects of alate

density and flight timing on pairing and colony foundation

success. In this study, a positive relationship between alate

density and pairing success was observed in the subter-

ranean termite, Reticulitermes speratus. Upon release of

dealates (individuals after shedding wings) every 3 days for

9 days at 10, 20, 40, or 80 pairs/m2/day in a semi-natural

field, no pairs were observed for the 10 pairs/m2/day treat-

ment after 3 months. However, 7.5, 13.8, and 18.1% of

dealates formed pairs in the 20, 40, and 80 pairs/m2/day

groups, respectively. Most pairs (78.7%) comprised deal-

ates released simultaneously, and 17.3 and 4% comprised

dealates released 3 and 6 days apart, respectively. R. sper-

atus also preferred brown rotten pine for colony foundations

to white rotten oak. This study provides important new

insights into the density effects and nest-site preference for

termite colony foundation.
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Introduction

Individuals of many species benefit from the presence of

conspecifics. The inverse density dependence at low den-

sity, which is broadly referred to as the Allee effect (1931),

has gained considerable attention in population and com-

munity ecology (Courchamp et al. 1999), conservation

biology (Lande 1988; Groom 1998; Stephens and Suther-

land 1999), and invasion biology (Liebhold and Bascompte

2003; Taylor and Hastings 2005; Tobin et al. 2011; Wang

et al. 2011; Luque 2013). There are a lot of mechanisms that

can cause the inverse density dependence in plants and

animals including increased risk of predation (Andrewartha

and Birch 1954; Clark 1974), inbreeding depression, loss of

heterozygosity (Frankel and Soulé 1981; Charlesworth and

Charlesworth 1987; Lamont et al. 1993), and the lack of

cooperation (Courchamp et al. 1999; Stephens and Suther-

land 1999; Stephens et al. 1999). The most notable cause of

the Allee effect is the difficulty among sexually reproducing

species in finding mates in low-density populations (An-

drewartha and Birch 1954; Dennis 1989; McCarthy 1997;

Kuussaari et al. 1998; Courchamp et al. 1999; Boukal and

Berec 2002).

Allee effects play an important role in the evolution of

mating systems and reproductive phenology (Stephens et al.

1999; Calabrese and Fagan 2004), and theoretical models

predict that monogamy is more susceptible to the Allee

effect, where males are constrained from having more than

one mate (Legendre et al. 1999; Bessa-Gomes et al. 2003).

In termites, monogamous pairs of primary reproductives
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(primary king and queen) found colonies and form lifetime

partnerships (Nutting 1969; Nalepa and Jones 1991; Shell-

man-Reeve 1997). The phenomenon of a general

synchronized flight from colonies has been reported for

multiple termite species (Weesner 1960). Such synchro-

nized flights reduce predation due to predator satiation

(Nutting 1979), increase the likelihood of mate finding

(Thorne 1983), and increase breeding between members of

different colonies (Wynne-Edwards 1962; Luykx 1986). In

the life cycle of termites, alates are at greatest risk of pre-

dation during the period from swarming to colony

foundation, as they are away from nest-associated soldier

defenses (Sheppe 1970; Deligne et al. 1981). After landing,

males and females are also exposed to high predation risks

from ants, resulting in limited mate-searching periods on the

ground. Therefore, termite alates are highly susceptible to

the Allee effect. However, little is known about this phe-

nomenon in respect to termite mating and colony

foundation.

Reticulitermes speratus Kolbe is the most common

and widespread termite species in Japan. In Western

Japan, R. speratus alates swarm during the day in May,

and although the complete dispersal term lasts 1 week in

each specific area, a massive synchronized flight from

multiple colonies occurs on sunny days following rain

(Matsuura 2002, 2006). An alate breaks off its wings

upon alighting, and the resulting dealate travels ran-

domly until it encounters a partner with whom it forms a

tandem running pair. The pair then relocates to a suit-

able nest site, with the male following the female

(Matsuura and Nishida 2001). Both heterosexual and

homosexual tandems are formed (Matsuura et al.

2002b, 2004); female–female pairs are able to found new

colonies by parthenogenesis (Matsuura and Nishida

2001; Matsuura et al. 2002a) and male–male pairs pro-

mote survivorship and provide the chance to replace a

male in an incipient colony after colony fusion (Mizu-

moto et al. 2016).

In this study, we investigated the effects of flight timing

and alate density on pairing and colony foundation success

in R. speratus by a release–recapture experiment in a semi-

natural field. The effects of alate density on nest-site pref-

erence were also assessed by providing different types of

rotten wood at different depths within each experimental

section.

Materials and methods

Termite collection

The nest wood of four mature R. speratus colonies (A, B, C,

and D) were collected from late April to early May 2014

from pine forests at Hieidaira, Takaragaike, Okamotoguchi

and Daigo, in Kyoto, Japan. The colonies were maintained

primarily at 20 �C, and the temperature was subsequently

raised to 25 �C to control alate maturation and flight timing.

Following the emergence of alates from the wood, they were

separated by sex and maintained in Petri dishes containing

moist filter paper. Wings were removed at the basal struc-

ture to mimic dealation (wing shedding) behavior (Matsuura

and Nishida 2002). Alates were isolated from the wood just

before experiment and used in the experiment within 8 h.

Colony foundation experiment under semi-natural

conditions

In an open-air greenhouse (3.0 9 7.2 m, plastic roof and

fine mesh walls), four 1.0 9 1.0-m experimental sections (I,

II, III, and IV) were established consisting of three layers of

humus and soil, which was covered by litter (Fig. 1). Sec-

tion bottoms and surrounding walls were covered by

polyvinyl sheets, and the seams were sealed with waterproof

tape. Adhesives were also applied to the outer wall to pre-

vent ants and other predatory arthropods from entering the

field. Thirty-six wood pieces consisting of brown rotten pine

Pinus densiflora (100 9 100 9 30 mm), and thick (60-mm

diameter 9 150 mm), medium-sized (30-mm diame-

ter 9 150 mm), and thin branches (15-mm diameter

9 150 mm) of white rotten oak Quercus serrate were

arranged within each of the three layers. The wood species

were arranged in a 6 9 6 lattice in each of the three layers in

patterns based on random numbers generated by R software

(Fig. 1).

To investigate the relationship between release timing

and pairing probability, dealates were released from four

different colonies at 3-day intervals. Sib and non-sib deal-

ates showed no difference in pair formation or in their time

to excavation (Matsuura and Nishida 2001). On the day of

the first release, 10, 20, 40, and 80 pairs of dealates from

colony A were released into sections I, II, III, and IV,

respectively. Male and female dealates were scattered

throughout the entire surface of each section. Three days

later, 10, 20, 40, and 80 pairs of dealates from colony Bwere

released in the same manner. The dealates from colonies C

and D were also released at 3-day intervals in the same

manner. In total, 40 males and 40 females were released into

section I (10-pair section), 80 males and 80 females into

section II (20-pair section), 160 males and 160 females into

section III (40-pair section), and 320 males and 320 females

into section IV (80-pair section). One month following the

last release, all males and females were collected from each

wood pieces (Table S1). Males and females were extracted

from the same nest so that all members of an incipient

colony were preserved together in a 2.0-ml tube and then

used for colony identification by microsatellite analysis.
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Microsatellite genotyping for colony identification

DNA was extracted from ten alates from each original col-

ony and from all males and females isolated from the wood

pieces. Multiple microsatellite loci were analyzed, including

Rf21-1, Rf24-2, Rf6-1 (Vargo 2000), and Rs15 (Dronnet

et al. 2004), and compared among samples from the original

(Table S2) and incipient colonies (Table S3). One primer

from each pair was fluorescent-labeled for detection

purposes. TermiteDNAwas extracted from alate legs using a

modified Chelex extraction protocol (Walsh et al. 1991).

Polymerase chain reaction (PCR) amplifications were per-

formed in 15.25-ll reactions containing 0.3 ll of 25 mM

MgCl2, 0.3 ll of 10 mM dNTPs, 1.5 ll of 10X PCR Buffer,

0.2 ll of 5 U/ll Taq DNA Polymerase (Qiagen, Valencia,

CA, USA), 5 pmol of each of themultiplex primers, and 1 ll
of the DNA template. Amplification consisted of initial

denaturation at 95 �C for 5 min, followed by 35 cycles
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Fig. 1 Diagram and photograph

of the experimental setup. a A

diagram showing the setup from

above (left), accompanied by a

photo image (right). Density

sections (I, II, III, and IV) are

arranged in order; 10, 20, 40, and

80 pairs of alates, respectively,

were released at each time.

b Vertical arrangement of the

experimental field, consisting of

three layers of humus and soil

covered by litter. The upper and

middle layers consisted of

humus, and the bottom layer of

soil. Thirty-six wood samples

were arranged in each layer. The

seams of a polyvinyl sheet and

the plastic board were sealed

using waterproof tape to prevent

termites from escaping the field.

Similarly, to prevent ants and

other predatory arthropods from

entering the field, adhesive

sealed the outer wall. c The
arrangement of the four types of

wood within each layer. Pieces

of brown rotten pine and three

size classes of white rotten oak

were arranged in a 6 9 6 lattice

in each of the three layers

following random numbers

generated by the R program
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consisting of denaturation at 98 �C for 12 s, annealing at

60 �C for 30 s, and an extension at 72 �C for 1 min. Fol-

lowing amplification, 1 ll of product was combined with

0.5 ll of GS-600 (LIZ) size standard and 10 ll of HI-DI
formamide. Samples were denatured at 95 �C and snap-

cooled on ice for 5 min. Sample detection was performed

using an Applied BioSystems 3500 Genetic Analyzer. Raw

data were analyzed using GeneMapper 5.0 software (Ap-

plied Biosystems, Inc., Foster City, CA, USA).

Data analysis

To investigate whether alate density had an effect on pairing

success (binary variable: success or failure), a generalized

linear model (GLM) with a binomial distribution and logit

link function was performed using STATISTICA 10 (Stat-

Soft Inc., Tulsa, OK, USA).

In allmodels, colony of origin, sex and alate densitywere

treated as fixed factors and the effects of the fixed factors

were tested using the likelihood ratio test. Similarly, alate

density effect on survival (binary variable: dead or alive)

was tested using aGLMwith binomial distribution and logit

link function. To examine the effects of release timing on

pairing probability, the proportion of the combinations of

monogamous pairs formed by the alates released on the

same day (0-day gap) was assessed and compared to those

with 3-, 6-, and 9-day gaps. The proportions were then

compared to the null hypothesis, i.e., that the proportion of

pairs formed would be the same as that expected from

random pairings. A three-way ANOVA was used to

investigate nest-site preference, and the effects of alate

density, layer, and wood type on the number of males and

females extracted from each piece of wood were examined.

For these analyses, the density section was included as a

categorical variable, and the distribution of individuals

among wood types was compared using v2 tests.

Results

Allee effect on pairing success and survivorship

Pairing efficiency was low at low alate densities. In the

10-pairs/m2/day section, two single males and two single

females were recovered from the wood, and no successful

pairs were observed (Fig. 2). Alate density was positively

correlated with pairing success (general linear model

(GLM): estimate ± SE = 0.016 ± 0.0030, likelihood

ratio v2 = 18.93, P\ 0.0001; Fig. 3a). The colony of ori-

gin also had a significant effect on pairing success

(likelihood ratio v2 = 20.83, P\ 0.0001). There was no

significant difference in pairing success between the sexes

(likelihood ratio v2 = 0.021, P = 0.88). The survival rates

of alates were also significantly affected by alate density

(estimate ± SE = 0.016 ± 0.0038, likelihood ratio

v2 = 29.63, P\ 0.0001; Fig. 3b) and colony (likelihood

ratio v2 = 33.50, P\ 0.001), whereas sex had no signifi-

cant effect (likelihood ratio v2 = 0.91, P = 0.34).

Flight timing and pairing

The Rf21-1, Rf24-2, Rf6-1 (Vargo 2000), and Rs15

(Dronnet et al. 2004) microsatellites were allele-rich, con-

taining four to six alleles each (Table S2). Given that the

first three loci exhibited sufficient diversity for source col-

ony identification, Rf21-1, Rf24-2, and Rf6-1 were used for

profiling (Table S3).

The timing of alate release significantly affected pair-

ing probability, with pair combinations being significantly

different from expectations of random pairing regardless

of release timing (v2 = 127.74, df = 3, P\ 0.0001).

Among 75 monogamous pairs recovered from wood, 59

(78.7%) contained males and females released on the

same day (0-day gap), 13 (17.3%) showed the 3-day gap,

3 (4.0%) showed the 6-day gap, and no pairs showed the

9-day gap (Fig. 4). The density effects on pairing success

and alate survival rate remained highly significant even

when the data of 3- and 6-day-gap pairs were excluded

from the analyses (pairing success: likelihood ratio

v2 = 11.05, P\ 0.001; survival rate: likelihood ratio

v2 = 21.94, P\ 0.0001).
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(n = 11)
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(n = 150)

Fig. 2 Composition of surviving units extracted from the wood. The

number of units observed in each density section is shown in

parenthesis. F, single female; M, single male; MF, male–female pair;

MM, male–male pair; FF, female–female pair; MMF, a female with

two males; MFF, a male with two females; MMM, three males
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Nest-site preference

Males and females were found in the upper and middle nest

layers, but none was found in the bottom layer (Fig. 5). The

number of individuals extracted from each piece of wood

was significantly influenced by alate density, layer, and

wood type (density: F3,384 = 10.29, P\ 0.0001; layer:

F2,384 = 10.53, P\ 0.0001; wood type: F3,384 = 4.06,

P\ 0.01; Fig. 5). An association between density and layer

was also observed (F6,384 = 6.51, P\ 0.0001 by three-way

ANOVA), indicating that layer preference differed

according to density. The observed distribution among

wood types differed from a random distribution

(v2 = 103.02, P\ 0.0001), and also differed according to

wood size (v2 = 97.70, P\ 0.0001). In general, termites

preferred rotten brown pine for colony foundation to rotten

white oak.
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Discussion

A positive density-dependent relationship was observed

between the number of alates released in each section and

the rate of pairing, indicating the Allee effect. Surprisingly,

however, no pairs were observed in the 10-pair/m2/day

density section, where 10 males and 10 females were

released at four different times (i.e., 40 males and 40

females in total) in a 1.0 9 1.0-m area. These data suggest

that termites have low pairing efficiencies at low densities.

Since this experiment was performed without predators

such as ants and spiders, the Allee effect observed may be

conservative.

The Allee effect could select for specific termite behav-

iors during swarming and colony foundation, as it is known

to influence dispersal in other animals (Serrano et al. 2005;

Fowler 2009; Travis and Dytham 2002). The intercolonial

synchrony of swarming would increase alate density, and

thus should limit the Allee effect. In addition, synchronized

flight would also increase the chance for mating with an

alate from a different colony of origin and therefore increase

the chance for outbreeding. This study revealed that most

pairs were formed by males and females released on the

same day (Fig. 4). This result suggests that a colony which

disperses alates at a different timing from the synchronous

flight of the other colonies would have a reduced fitness.

Therefore, the Allee effect may be a selective force behind

the maintenance of synchronous flight. The Allee effect may

also reduce selection for mate choice because alates have

little or no opportunity to choose a mate at low density

(Møller and Legendre 2001), although it is known that

males prefer larger females in laboratory experiments

(Matsuura and Nishida 2001).

The finding that termites are susceptible to the Allee

effect following dispersal enhances our understanding of

termite invasion. Although alate flight is considered limited,

alates aided by the wind can travel long distances, such as

between islands, and be introduced to new regions (Nutting

1969). In such situations, however, it is unlikely that alates

will successfully locate partners. Our empirical data support

earlier studies, suggesting termite invasions are mediated by

human transportation of infested timber and that the

capacity to generate new colonies from colony fragments

facilitates the spread of subterranean termites (Dronnet et al.

2005; Vargo and Husseneder 2009). Indeed, the introduced

populations of R. flavipes in Europe exhibit a particular

colony breeding structure that is characterized by hundreds

of inbreeding neotenic reproductives (Perdereau et al.

2015). In introduced populations or peripheral areas, neo-

tenic-headed colonies are more common than primary-

headed colonies of Reticulitermes (Vieau 1996) and Cop-

totermes (Lenz and Barrett 1982). Strong Allee effects in

conjunction with low population-level genetic diversity

must diminish the advantage of alate production during

invasion. Therefore, as suggested by theoretical models

(Travis and Dytham 2002) and empirical studies (Dronnet

et al. 2005; Vargo and Husseneder 2009; Lenz and Barrett

1982; Husseneder et al. 2012), termites should exhibit

reduced dispersal rates and lower rates of spread during

invasion and early range expansion, while human trans-

portation would mediate range expansion. Once established,

swarm densities increase rapidly with the additional mature

colonies founded in a given location, which would con-

tribute to weaken the Allee effect.

In addition to monogamous pairs, other types of surviv-

ing units were observed, including single males, single

females, male–male pairs, female–female pairs, a female

with two males, a male with two females, and three males

(Fig. 2). Although female-only units can reproduce by

parthenogenesis (Matsuura and Nishida 2001), single males

and male-only units cannot reproduce. However, fusion of

the units may provide an opportunity to reproduce, as

multiple units were observed in individual wood pieces

(Table S1). For example, single males and single females

may pair following wood excavation, or fusion of male–

male and female–female pairs may also lead to monoga-

mous relationships. Among the 75 monogamous pairs, three

pairs showed the 6-day gap of release timing (Fig. 4). Thus,

it is unlikely that those males and females stayed in a

specific test site for 6 days. These data suggest that pair

formation is rare following excavation, but not impossible.

In this study, major alate predators, including ants, spi-

ders, and lizards, were eliminated. Thus, the Allee effect

observed may be conservative. Additional studies are nee-

ded to evaluate the influence of predators on the Alee effect.

Additionally, the sex ratio of alates released into each sec-

tion was balanced throughout the study. Controversy

remains over the prediction that monogamy is more sus-

ceptible to the Allee effect than other mating systems are.

Although some theoretical models predict that monogamy is

more susceptible to the Allee effect (Legendre et al. 1999;

Bessa-Gomes et al. 2003), one recent study claimed that

susceptibility to the Allee effect is not a general property of

a given mating system but depends largely on the sex ratio

(Engen et al. 2003; Bessa-Gomes et al. 2004; Lee et al.

2011). The alate sex ratio varies among Reticulitermes spp.,

such that species with an asexual queen succession (AQS)

system (Matsuura et al. 2009; Vargo et al. 2012; Luchetti

et al. 2013) have female-biased sex ratios, whereas non-

AQS species have equal sex ratios (Kobayashi et al. 2013).

Therefore, susceptibility to the Alee effect differs between

AQS and non-AQS species in Reticulitermes termites. It

must also be noted that sex ratios involves other unidentified

factors in other termite taxa. In conclusion, termites provide

22 A. Kusaka, K. Matsuura

123



an ideal system to further understand the relationship

between the Allee effect and sex ratio.
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