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Introduction

The genetic structure of ant colonies varies widely between 
species and can impact colony immunity, reproduc-
tive output and division of labor (Crozier and Page 1985; 
Julian and Cahan 1999; Heinze and Keller 2000; Julian 
and Fewell 2004; Rheindt et al. 2005; Oldroyd and Fewell 
2007; Smith et al. 2008). Several studies have shown that 
in colonies where queens are multiply mated workers from 
different patrilines vary in their tendency to specialize in 
different tasks, thereby potentially affecting the efficiency 
of division of labor and colony homeostasis (Robinson 
1992; Rheindt et  al. 2005; Schwander et  al. 2005; Wier-
nasz et al. 2008; Waddington et al. 2010). Increased within-
colony genetic diversity due to multiple patrilines and/
or matrilines may also improve resistance to parasites and 
pathogens (Hughes and Boomsma 2004; Reber et al. 2008; 
Schmidt et  al. 2011) thereby enhancing the lifetime and 
reproductive output of a colony. Thus, knowledge of the 
genetic makeup of colonies provides insights into what fac-
tors might shape colony function.

Studies in several species of the genus Camponotus (C. 
herculeanus, Gertsch et  al. 1995; C. ligniperdus, Gertsch 
et al. 1995, Gadau et al. 1998; C. floridanus, Gadau et al. 
1996; C. nawai, Satoh et al. 1997; C. consobrinus, Fraser 
et  al. 2000; C. ocreatus, Goodisman and Hahn 2004 and 
C. festinatus, Goodisman and Hahn 2005) revealed that 
queens are generally singly mated with occasional instances 
of polyandry. A species of the genus Camponotus that has 
not yet been investigated is C. fellah. This species has 
been extensively used to study nestmate recognition (Bou-
lay et  al. 2000a, b; Katzav-Gozansky et  al. 2004; Katzav-
Gozansky et al. 2008), more recently to unravel the impact 
of social isolation (Boulay et  al. 1999; Koto et  al. 2015) 
and to decipher the organizational principles of division 
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of labor (Mersch et al. 2013; Greenwald et al. 2015; Kafsi 
et  al. 2016). The colonies exhibit pronounced division of 
labor with workers organized in distinct social groups that 
specialize in different tasks (Mersch et al. 2013). The pro-
pensity of a worker to join a social group, and preferentially 
execute some tasks might thus be dependent on a worker’s 
patriline. We developed and tested a set of nine microsatel-
lite loci to determine whether C. fellah queens are singly 
mated, or whether workers come from different fathers.

Materials and methods

Collection of ants

Adult workers were collected from 20 lab-reared colonies 
(A–T) by opening the nest and then collecting workers ran-
domly both near the brood and outside the nest. Each lab 
colony was established from a single queen collected dur-
ing a mating flight in 2007 on the campus of the Tel Aviv 
University, Tel Aviv, Israel, which is within the natural 
range of the species (Ionescu-Hirsch 2009).

Genetic analysis

PCR primers were developed for C. fellah microsatellite 
loci from a partial genomic library that was derived from 
10  µg of genomic DNA extracted with the BioSprint 96 
robot (QIAGEN #900852) from one worker, and sent to 
Ecogenics (http://www.ecogenics.ch/) for 454 sequencing 

and primer design. To determine which of the designed 
primers were polymorphic we tested nine primers on two 
workers from each of eight colonies (A–H). Six out of the 
nine microsatellites had five or more alleles in the workers 
tested (Table 1). We used these six microsatellites to assess 
queen-mating frequency in 20 colonies using 16 workers 
per colony. However, because there was a very high level of 
homozygosity in colony S, we increased the sample size to 
47 workers and also genotyped the queen using one of her 
legs. In this colony we also genotyped all individuals at the 
three remaining microsatellites (7275, 7207, 7300).

We extracted DNA from each individual using the Bio-
Sprint 96 DNA Blood Kit for tissue sample from QIA-
GEN and eluted the DNA in a final volume of 200 µl. We 
performed PCR amplifications for each ant sample in a 
total volume of 20 μl. To reduce the amount of work and 
sequencing, we multiplexed primers 1284, 6826 and 5134 
in one reaction, and primers 3186, 3675, 4380 in the other. 
Each reaction consisted of 4 μl of genomic DNA, 4 μl of 
10 × PCR buffer (QIAGEN), 1.92  μl of 25  mM MgCl2, 
0.32 μl of 25 mM dNTPs, 1 μl of each forward and reverse 
primer (10  μM), 0.3  µl of 5 U/µl Taq polymerase (QIA-
GEN), 3.2 µl of 5 × enhancers (Qsolution from QIAGEN), 
and 0.26 µl H2O. The PCR consisted of an initial denatur-
ing step of 5 min at 95 °C, followed by 35 cycles that each 
consisted of 30 s of denaturation at 95 °C, 30 s of annealing 
at 55 °C, and 60  s elongation at 72 °C. A final elongation 
step was performed at 72 °C for 10 min. We analyzed PCR 
products with the ABIprism3100 DNA sequencer and the 
GeneMapper Software (Applied Biosystems).

Table 1   Characteristics of the nine microsatellite loci from Camponotus fellah colonies

All forward primers are preceded with an 18-bp M13-tag: 5′-TGT​AAA​ACG​ACG​GCC​AGT​-3′

Locus Primer sequence (5′–3′) (F: forward; R: reverse) Ta (°C) Repeat type Size of cloned 
amplicon (bp)

No. of alleles Amplicon size range

1284 F: GTC​GGA​ATG​TTG​CAC​CTA​CG
R: CAG​ACC​GCG​AGA​GGA​GAT​AC

53.8 (AG) 226 5 230–237

3186 F: AAT​TGA​ACG​TTT​CGT​CCG​CC
R: AGT​CTT​TAC​GCC​CTC​CTA​CG

51.8 (AC) 190 8 194–206

3675 F: TTG​TAG​AGC​GAC​GAC​GAG​AG
R: TGA​GAG​GTG​AGA​GCA​CGA​AG

53.8 (CGT) 203 8 221–252

4380 F: TGG​CTA​CAG​TTG​TTG​TGC​AG
R: TTT​GTC​GCG​GCT​CGT​AAA​TC

54.8 (AC) 115 10 126–148

5134 F: TAC​AAT​CGA​GTG​GAC​GGG​AG
R: CAG​ATG​AAA​GGC​GAA​CGG​TG

53.8 (CGA) 247 9 246–299

6826 F: GTA​CGC​GGT​CAG​AAT​TAC​GC
R: ACC​TGA​TTT​CTG​GTT​GGC​AC

53.8 (AG) 176 14 178–207

7207 F: AGG​CAT​TCG​ATA​CTG​TCG​GC
R: TAC​GAC​AAG​GAT​GCT​ACC​GC

53.8 (TGC) 163 2 184–187

7275 F: CGC​ATC​GGG​AGC​ATA​AAC​AG
R: AAA​GCT​GGC​ATG​CAG​TTA​CG

53.8 (CA) 102 5 118–123

7300 F: AAT​TTG​CGG​AGA​ATC​CGT​GG
R: CAT​CGG​CAA​AGT​CGT​CCT​TC

51.8 (CT) 185 3 201–205

http://www.ecogenics.ch/
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Data analysis

We estimated linkage disequilibrium between each pair 
of loci using the Genepop software (Raymond and Rous-
set 1995; Rousset 2008). For each colony, we determined 
the number of worker patrilines. This was simplified by the 
fact that all colonies were lab raised with all workers being 
the offspring of a single queen. Further, in ants, males are 
haploid because of the haplodiploid sex determination sys-
tem of Hymenoptera. Thus, at each locus, a worker inherits 
one allele from her father and one of the two alleles of the 
queen. If two males share the same alleles at all genotyped 
loci, it is impossible to distinguish their offspring. The the-
oretical probability of such non-detection errors was esti-
mated as:

with qi as the frequency of the i allele (Boomsma and 
Ratnieks 1996). The sum is over all alleles at a locus, and 
the multiplication is over all loci.

We discarded from our patriline analyses 8 out of the 
351 workers genotyped. Two samples from colony B were 
contaminated during the PCR and six workers from four 
different colonies (colony B: 2 workers, colony G: 2 work-
ers, colony L: 1 worker, colony R: 1 worker) had genotypes 
incompatible with the genotype inferred for their queen. 
Because colonies were all lab raised and headed by a single 
queen, we suspect that these workers were intruders that 
had escaped from other colonies. Aggression toward non-
nestmates is often attenuated in the lab for two reasons. 
First, colonies, which are kept in proximity to each other, 
habituate to olfactory volatiles of other colonies, which 
reduces aggression (Katzav-Gozansky et al. 2008). Second, 
lab colonies are typically fed with the same diet, which can 
reduce inter-colony differences in hydrocarbon profiles 
(Richard et al. 2004, Ichinose et al. 2009).

Results

The six microsatellite loci were very polymorphic with an 
average of 7.11 alleles per locus (range: 2–14, Table 1), as 
estimated from all genotyped workers (n = 365). There was 
no sign of gametic linkage among the loci (p > 0.05 for all 
pair-wise comparisons of loci after sequential Bonferroni 
corrections), and all loci were in Hardy–Weinberg equilib-
rium (p > 0.4). Overall, the probability of not detecting a 
second male was extremely low (4.89 × 10−4).

Our patriline analysis showed that for all colonies 
and all loci, except one (locus 3675 in colony I), worker 
genotypes were consistent with workers originating from 
a queen mated to a single male (Table  2). In colony I, 

∏∑

q2
i

Table 2   Summary of all worker genotypes and inferred male and 
queen genotypes

Colony Locus Worker 
genotypes (# 
workers)

Inferred male Inferred queen

A 3675 224::230 (7)
221::224 (9)

224 221::230

1284 230::236 (8)
231::236 (8)

236 230::231

4380 128::128 (6)
128::132 (10)

128 128::132

5134 261::261 (9)
246::261 (7)

261 246::261

6826 188::188 (7)
188::190 (9)

188 188::190

3186 197::197 (11)
197::203 (5)

197 197::203

Ba 3675 221::221 (7)
221::228 (5)
221::224 (2) b

221 221::228

1284 232::236 (10)
236::236 (4)

236 232::236

4380 132::146 (6)
132::132 (7)
128::132 (1)b

128::132 (1)b

132 132::146

5134 246::261 (12)
246::246 (1) b
246::272 (1)b

246 or 261 246::246
or
261::261

6826 178::188 (8)
178::184 (4)
180::184 (2)b

178 184::188

3186 201::203 (5)
199::201 (7)
203::205(2)b

201 199::203

C 3675 221::224 (16) 221 or 224 221::221 or 
224::224

1284 230::230 (8)
230::236 (8)

230 230::236

4380 130::144 (8)
144::148 (8)

144 130::148

5134 246::270 (9)
249::270 (5)

270 246::249

6826 c(1) 186::190 (7)
186::196 (8)

186 190::196

3186 197::203 (9)
203::203 (7)

203 197::203
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Table 2   (continued)

Colony Locus Worker 
genotypes (# 
workers)

Inferred male Inferred queen

D 3675 c(2) 240::240 (5)
224::240 (9)

240 224::240

1284 c(1) 232::237 (10)
237::237 (5)

237 232::237

4380 c(1) 130::146 (9)
130::142 (6)

130 142::146

5134 c(1) 249::299 (5)
249::249 (10)

249 249::299

6826 184::194 (12)
194::203 (4)

194 184::203

3186 c(1) 196::203 (7)
196::196 (8)

196 196::203

E 3675 228::252 (11)
224::228 (5)

228 224::252

1284 230::232 (12)
232::236 (4)

232 230::236

4380 130::130 (4)
130::146 (12)

130 130::146

5134 246::246 (10)
246::249 (6)

246 246::249

6826 188::196 (7)
196::196 (9)

196 188::196

3186 197::205 (5)
197::197 (11)

197 194::205

F 3675 221::249 (9)
224::249 (7)

249 221::224

1284 231::231 (4)
231::236 (12)

231 231::236

4380 130::130 (10)
126::130 (6)

130 126::130

5134 246::249 (10)
246::261 (6)

246 249::261

6826 c(1) 194::198 (7)
184::198 (8)

198 184::194

3186 203::205 (7)
203::203 (9)

203 203::205

G 3675 221::228 (14)
221::224 (2)b

221 or 228 221::221 or
228::228

1284 231::236 (8)
232::236 (6)
230::230 (2)b

236 231::232

4380 128::128 (6)
128::130 (9)
130::130 (1)b

128 128::130

5134 246::272 (10)
246::249 (6)

246 249::272

6826 186::198 (8)
186::207 (6)
188::188 (1)b

188::199 (1)b

186 198::207

3186 201::203 (10)
203::203 (4)
197::201 (1)b

201::205 (1)b

203 201::203

Table 2   (continued)

Colony Locus Worker 
genotypes (# 
workers)

Inferred male Inferred queen

H 3675 c(1) 221::221 (15) 221 221::221
1284 231::236 (10)

231::231 (6)
231 231::236

4380 128::130 (6)
130::132 (10)

130 128::132

5134 246::261 (8)
246::246 (8)

246 246::261

6826 186::186 (16) 186 186::186
3186 c(1) 203::203 (11)

203::205 (4)
203 203::205

I 3675d 240::240 (8)
224::224 (8)

d d

1284 c(2) 230::236 (12)
232::236 (2)

236 230::232

4380 128::135 (16) 128 or 135 128::128 or
135::135

5134 c(1) 246::246 (6)
246::267 (9)

246 246::267

6826 192::192 (7)
192::199 (9)

192 192::199

3186 c(1) 201::203 (9)
203::206 (6)

203 201::206

J 3675 221::224 (16) 221 or 224 221::221 or
224::224

1284 230::231 (10)
231::236 (6)

231 230::236

4380 130::133 (9)
133::148 (7)

133 130::148

5134 246::246 (16) 246 246::246
6826 190::198 (7)

186::198 (9)
198 186::190

3186 197::203 (16) 197 or 203 197::197 or
203::203

K 3675 c(2) 221::221 (5)
221::236 (9)

221 221::236

1284 231::236 (16) 231 or 236 231::231
236::236

4380 c(2) 144::144 (9)
130::144 (5)

144 130::144

5134 246::261 (16) 246 or 261 246::246 or
261::261

6826 184::201 (8)
184::192 (8)

184 192::201

3186 c(2) 203::205 (14) 203 or 205 203::203 or 
205::205
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Table 2   (continued)

Colony Locus Worker 
genotypes (# 
workers)

Inferred male Inferred queen

L 3675 c(1) 221::224 (10)
221::221 (5)

221 221::224

1284 236::236 (9)
232::236 (6)
230::236 (1)b

236 232::236

4380 c(5) 128::132 (4)
128::128 (6)
132::133 (1) b

128 128::132

5134 246::261 (16) 246 or 261 246::246 or 
261::261

6826 184::184 (8)
184::188 (7)
186::194 (1)b

184 184::188

3186 c(1) 203::203 (6)
199::203 (8)
197::199 (1)b

203 199::203

M 3675 221::221 (7)
221::224 (8)
221::--- (1)

221 221::224

1284 c(1) 231::236 (8)
231::231 (7)

231 231::236

4380 130::130 (7)
130::146 (9)

130 130::146

5134 246::275 (10)
246::246 (6)

246 246::275

6826 194::196 (12)
196::207 (4)

196 194::207

3186 197::201 (16) 197 or 201 197::197 or 
201::201

N 3675 c(1) 221::221 (9)
221::224 (6)

221 221::224

1284 236::237 (6)
231::236 (9)
231::--- (1)

236 231::237

4380 128::132 (10)
128:.146 (6)

128 132::146

5134 c(1) 246::246 (15) 246 246::246
6826 186::194 (16) 186 or 194 186::186 or

194::194
3186 c(1) 197::203 (5)

199::203 (10)
203 197::199

O 3675 c(1) 221::221 (15) 221 221::221
1284 c(1) 232::232 (9)

231::232 (6) f
232 231::232

4380 c(1) 130::142 (6)
128::130 (9)

130 128::142

5134 c(1) 246::270 (6)
246:.246 (9)

246 246::270

6826 c(1) 178::194 (9)
178::188 (6)

178 188::194

3186 c(1) 201::203 (3)
203::203 (12)

203 201::203

Table 2   (continued)

Colony Locus Worker 
genotypes (# 
workers)

Inferred male Inferred queen

P 3675 221::221 (16) 221 221::221
1284 231::236 (7)

231::232 (9) f
231 232::236

4380 128::128 (16) 128 128::128
5134 261::275 (16) 261 or 275 261::261 or

275::275
6826 180::196 (10)

196::207 (6)
196 180::207

3186 197::203 (8)
203::203 (8)

203 197::203

Q 3675 221::221 (16) 221 221::221
1284 232::232 (6)

231::232 (10) f
232 231::232

4380 128::130 (4)
130::130 (12)

130 128::130

5134 249::249 (8)
249::272 (8)

249 249::272

6826 184::203 (16) 184 or 203 184::184 or
203::203

3186 199::201 (8)
199::199 (8)

199 199::201

R 3675 224::224 (15)
221::224 (1)b

224 224::224

1284 230::236 (9)
230::231 (7)

230 231::236

4380 c(1) 128::128 (7)
128::146 (7)
126::128 (1) b

128 128::146

5134 246::246 (8)
246::263 (7)
246::275 (1) b

246 246::263

6826 188::196 (9)
184::196 (6)
188::207 (1)b

196 184::188

3186 197::203 (15)
197::197 (1)b

197 or 203 197::197 or
203::203

Se 3675 c(3) 221::221 (44) 221 221::221 e

1284 236::236 (47) 236 236::236e

4380 130::130 (47) 130 130::130e

5134 246::246 (47) 246 246::246e

6826 184::188 (47) 184 188::188e

3186 203::203 (47) 203 203::203e

7275 118::120 (23)
120::120 (24)

120 118::120e

7207 184::184 (47) 184 184::184e

7300 203::203 (47) 203 203::203e
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eight workers were homozygous for allele 224 at locus 
3675 and the remaining worker homozygous for allele 
240 (Table 2). Given that workers of this colony had nor-
mal genotypes at other loci, this pattern is most likely 
explained by the queen having a 224/240 genotype, and 
the male having a null allele at this locus.

In colony S, all 16 workers had identical genotypes. 
They were homozygous at five of the six loci while at 
locus 6826 they were all heterozygotes. This pattern 
could be explained by workers being clonally produced 
or by the mother being homozygous at the six loci and 
mated with a male having an identical allele at five of the 
six loci. To discriminate between these two hypotheses 
we genotyped all workers at three additional loci, ana-
lyzed another 31 workers from the same colony at the 
nine loci and also genotyped the queen. The 31 additional 
workers had identical genotypes as the initial 16 work-
ers at the six first loci. For two of the additional loci all 
47 workers had again identical homozygous genotypes, 
but for the third additional locus (locus 7275) 24 workers 
were homozygotes and 23 were heterozygotes. The queen 
was homozygote for all loci except locus 7275 for which 
she was heterozygote. Because workers were heterozy-
gote at locus 6826 where the queen was homozygote, and 
varied in their genotypes for locus 7275, they were appar-
ently sexually produced. The most parsimonious explana-
tion for the genotypic composition of this colony is that 

the queen was inbred and that she mated with a brother 
that shared the same allele at all but locus 6826.

Discussion

The genotypic data from a total of 343 workers from 20 
colonies suggest that C. fellah queens mate with a single 
male, and thus all workers produced by the queen are full 
sisters. This, together with previous studies in C. hercule-
anus (Gertsch et  al. 1995), C. ligniperdus (Gertsch et  al. 
1995; Gadau et al. 1998), C. floridanus (Gadau et al. 1996), 
C. nawai (Satoh et al. 1997), C. consobrinus (Fraser et al. 
2000), C. ocreatus (Goodisman and Hahn 2004) and C. fes-
tinatus (Goodisman and Hahn 2005) indicate that queens 
are mostly singly mated in the genus Camponotus.

Estimates of patrilines can be inaccurate due to non-
detection errors and small sample size (Pedersen and 
Boomsma 1999). Given the microsatellites were very 
polymorphic, the probability of non-detection of a second 
father was very low (<0.1%). Our sample size of 16 work-
ers per colony enabled us to detect a second patriline with 
a high probability (>95%) if the second male contributed 
to about 20% of the workers (Boomsma and Ratnieks, 
1996). In colony S we genotyped 47 workers enabling us 
to detect a second patriline with a probability of more than 
90% even if the second male fathered only 5% of the work-
ers (Boomsma and Ratnieks, 1996). However, also in this 
colony we only detected one patriline.

In one of the 20 colonies analyzed, worker and queen 
homozygosity was very high with only one heterozygote 
locus in workers and another one in the queen. Given the 
high polymorphism of the microsatellites, the most likely 
explanation for this high homozygosity is that the queen 
was inbred and that she mated with a brother. In ants, there 
is usually a low level of inbreeding due to the high syn-
chronization of mating flight among colonies of the same 
populations (Tabot 1945; McCluskey 1965; Boomsma and 
Leusink 1981). Queens and males from C. fellah colonies 
typically leave their nest in the evenings of the first warm 
and dry spring days where individuals of many nests join 
in a mating flight (Hefetz A, personal communication). 
However, instances of inbreeding due to sib-matings have 
been reported in two Camponotus species (C. ocreatus, 
Goodisman and Hahn 2004 and C. yamaokai, Satoh et al. 
1997) as well as several species of other genera (e.g., Car-
diocondyla batesii, Schrempf et  al. 2005; Cardiocondyla 
nigra, Schrempf 2014; Cardiocondyla shuckardi, Heinze 
et  al. 2014; and Formica exsecta, Sundström et  al. 2003; 
Vitikainen et al. 2015). Interestingly, the inbred queen that 
we found had apparently mated with a brother. A similar 
pattern has been uncovered in Formica exsecta where more 
inbred queens are also more likely to have mated with a 

Table 2   (continued)

Colony Locus Worker 
genotypes (# 
workers)

Inferred male Inferred queen

T 3675 c(1) 221::224 (16) 221 or 224 221::221 or 
224::224

1284 236::236 (10)
230::236 (6)

236 230::236

4380 128::132 (14)
128::128 (2)

128 128::132

5134 246::263 (16) 246 or 263 246::246 or
263::263

6826 180::207 (7)
180::203 (9)

180 203::207

3186 203::203 (11)
197::203 (5)

203 197::203

a Two samples were discarded because they had been contaminated
b Worker genotype is incompatible with the queen genotype and thus 
the worker(s) likely comes from another nest
c (X) number of samples that did not amplify
d All workers are homozygous for this locus, but there are two alleles 
in the colony, thus we could not infer the queen and male genotype
e We genotyped 47 workers and the queen for all nine primers
f Genotype profile is ambiguous, possibly homozygous
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brother (Vitikainen et al. 2015). An association between the 
level of inbreeding of queens and their likelihood of mating 
with siblings could occur if there is a genetic basis influenc-
ing dispersal propensity. Females that are genetically less 
inclined to disperse may be more likely to mate with males 
of their nest and, therefore, become more inbred. Alterna-
tively, the propensity to disperse may be directly influenced 
by the level of inbreeding (Vitikainen et al. 2015). Because 
more inbred queens may be smaller and less fit than out-
bred queens (Coltman et al. 1999; Keller and Waller 2002; 
McQuillan et al. 2012), they might disperse less (Wolf and 
Seppa 2016), thereby increasing their likelihood to mate 
with a sibling.

Mating has several costs that may select monoan-
dry over polyandry (Daly 1978; Keller and Reeve 1995). 
For example, when mating with several males, females 
increase their risk of contracting sexually transmitted dis-
eases (Knell and Webberley 2004; Peng et  al. 2016), and 
also spent more time outside the nest exposed to predators 
(Lafaille et al. 2010; Alem et al. 2011). In addition, multi-
ple mating results in sperm competition (Keller and Reeve 
1995; den Boer et al. 2010) and associated conflict of inter-
est between the sexes, which can reduce female lifespan 
and reproductive output (Chapman et al. 1995; Crudging-
ton and Siva-Jothy 2000; Lessells 2005; Alonza and Pizzari 
2013). Consequently, if mating with a single male can pro-
vide sufficient sperm to cover for the lifetime reproduction 
of the colony, and the benefits obtained from polyandry fail 
to compensate the endured mating costs, then queens might 
benefit more from being monoandrous.
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