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Abstract Behavioural studies make increasingly use of

the passive radio-frequency identification (RFID) technol-

ogy to monitor the foraging behaviour and activity patterns

of individual animals over extended periods of time. Central

place foragers, such as social insects, birds and many

rodents have proved particularly well suited for this tech-

nology. As yet, however, there is no standardized

methodology to filter and postprocess the data resulting

from RFID scanners. Here we present a new user-friendly,

publically available Java program named ‘‘Track-a-For-

ager’’ to analyse and rigorously filter RFID animal tracking

data. The program is particularly suited and has special

features to analyse social insect behaviour, but it is generic

enough to analyse data obtained from any species. The

implemented filtering algorithm consists of several well-

defined steps to cluster multiple temporally clustered RFID

scans of the same individual, determine events of leaving

and entering the nest and/or feeder and reconstruct foraging

trips for each individual. Track-a-Forager analyses RFID

data independent of the used scanner system for eight

different types of standard experimental setups that are

common in foraging behaviour research. These setups differ

with respect to whether or not foraging at an artificial feeder

is monitored and the specific placement of the RFID scan-

ners at the nest or feeder. As a real-life example, we show

how Track-a-Forager enables one to reconstruct 75 % more

foraging trips compared to if one were to use the raw data.
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Introduction

Radio-frequency identification (RFID) is a wireless sensor

technology that can be utilised for the identification of

goods, locations, animals, and even people (van Lieshout

et al. 2007). In its most commonly used form, the active

reader-passive tag (ARPT) system, the RFID tag transfers

its identity to the reader upon being activated by radio

signals or laser light (Fig. 1). There are three components in

the ARPT system: a tag, an antenna and a reader which is

connected to a computer (or data logger) to store the

recorded scans (Scheiner et al. 2013). Typically, the antenna

and reader are packed into a larger structure called the

scanner that controls the data communication of the system

(Kissling et al. 2013). When laser light is used to activate the

tag, the light is detected by the photocell in the tag and this

gives the antenna of the tag the energy to emit radio signals

specific for each tag such that the information on the tag’s

microchip can be read. When the radio signals emitted by

the scanner’s antenna at a specific frequency are used to

activate the tag, the tag backscatters the radio signals with a

modulated frequency such that the information on the tag’s

microchip can be read. In the case of passive tags, the power
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enabling of the tag to communicate with the reader is drawn

from the movement across the electromagnetic field of the

antenna or from the light activation of the tag’s photocell,

which means that no on-board batteries are required.

Passive RFID technology has become a popular tool for

tracking the foraging behaviour and movement of small

wildlife animals due to its ability to individually identify

each free-living animal without disturbing the animals’

movements (Robinson et al. 2009; Streit et al. 2003). The

use of small and light passive RFID tags that are do not

require any on-board batteries are particularly attractive as

their small size enables behavioural data to be collected

with minimal bias, and without any human interference

(Hou et al. 2015). Furthermore, it is a solution for beha-

vioural research which requires precise and long-term

observations of many individuals that are difficult or

unfeasible to obtain by direct human observation (Kurazono

et al. 2013).

As the scanner is stationary, RFID technology is most

frequently used to track the foraging activity of central place

foraging species and log the times of entering and leaving

the burrow or nest (Pinter-Wollman and Mabry 2010), e.g.

in birds (Kurazono et al. 2013; Naumowicz et al. 2008;

Sales et al. 2015), social insects (Henry et al. 2012;

Robinson et al. 2012; Stelzer et al. 2010; Tenczar et al.

2014) or small rodents (Scheibler et al. 2013; Scheibler et al.
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Fig. 1 Design of the passive RFID system. There are two different

ways in which the tag can be activated: via laser light (above the

dashed line) or via radio signals (under the dashed line). When laser

light is used to activate the tag, the light is detected by the photocell

and give the antenna of the tag the energy to emit radio signals specific

for each tag such that the information on the tag’s microchip can be

read. When the radio signals emitted by the scanner’s antenna at a

specific frequency are used to activate the tag, the tag backscatters the

radio signals with a modulated frequency such that the information on

the tag’s microchip can be read. For each tag the radio signals emitted/

backscattered will be different such that the tag can be identified based

on those radiosignals. It is the reader that will decode the signals and

send the data consisting of tag ID, scanner ID and time stamp to the

computer. The tag only gets activated when it is enters the field region

of the scanner’s antenna, i.e. when the distance between the antenna’s

is less than the max read range
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2014; Serra et al. 2012). In both ornithological and social

insect research (Fig. 2), RFID tracking has also been used to

study foraging performance by placing RFID scanners at

both the nest and feeding stations (Bonter and Bridge 2011;

Bonter et al. 2013; Decourtye et al. 2011; Henry et al. 2012;

Hou et al. 2015), e.g. enabling researchers to measure the

impact of pesticides on the foraging performance of

honeybees (Decourtye et al. 2011; Henry et al. 2012; Gill

and Raine 2014; Schneider et al. 2012). Finally, complex

setups that combine several RFID scanners at fixed places

have also been used to spatially monitor European badgers

(Noonan et al. 2014), Norwegian lobsters (Aguzzi et al.

2011) and mice (Weissbrod et al. 2013), as well as nest-

drifting and intraspecific reproductive parasitism in tropical

paper wasps (Sumner et al. 2007) and stingless bees (Van

Oystaeyen et al. 2013).

Although the benefits of using RFID technology to log

foraging activity of small animals is clear, errors in the raw

RFID data can significantly complicate data analysis, and

extensive filtering is required before data can be interpreted.

Two problems that routinely arise in any RFID platform are

rapid-succession scans of the same individual and missed

scans. Rapid-succession scans are successive scans of the

same individual by the same scanner within a small time

range, and are one of the most common types of problems,

which can be caused by the lingering of the animal under-

neath the scanner or the animal moving around the nest

entrance (Scheiner et al. 2013). Rapid-succession scans are

a particularly severe problem in RFID-based studies of

social insects (Scheiner et al. 2013; Tenczar et al. 2014), as

their large colony sizes typically result in queues at the nest

entrance or exit, and in many workers, e.g. guards, moving

in and out of the nest in quick succession. A second major

problem can arise when some passages are missed by the

scanners (‘‘missed scans’’), as without adequate filtering,

this could lead to the erroneous inference of prolonged stays

outside the nest. Missed scans can arise when the distance

between the tag and scanner is too large (Kissling et al.

2013; Pinter-Wollman and Mabry 2010; Scheiner et al.

2013) or when the animal passes at a suboptimal angle in the

scanner tunnel (Scheiner et al. 2013). Indeed, detection

distance becomes a major constraint especially in the highly

miniaturized passive RFID tags used to study small insect

species, as there is a trade-off between detection distance

and the size of the tag. Hence, missed scans occur most

commonly and are particularly problematic in RFID studies

of small animal species, such as social insects (ants, bees or

wasps). Tags used for these kinds of animals are typically

around 1–2 mm2 large, but can be as small as 0.5 mm2 in

size, resulting in a detection range that is limited to a few

millimetres or less, and causing missed scans to be common

(Hou et al. 2015).

Previously, only few methods to apply standardized data

filtering to RFID tracking data have been developed to

analyse RFID data for studies on animal behaviour. These

existing interfaces, however, only handle data of one par-

ticular scanner system, are closed source, dependent on

particular networks of scanners to be able to analyse spatial

patterns or/and work as a black box, meaning that there are

no published details of their internal algorithm. Example of

such previously developed systems are IntelliCage

(Richardson 2012), a Web application by Catarinucci et al.

(2014), a LabVIEW application (Aguzzi et al. 2011), Bee-

group DB2Use (Streit et al. 2003), rfibee (www.nspyre.nl/

Fig. 2 Photos of RFID tag and the corresponding antenna and reader

used with different sized animals: a, b Puffinus puffinus (copyright

Robin Freeman, University of Oxford), c, d Polistes canadensis

(copyright Patrick Kennedy, University of Bristol), e, f Apis mellifera
(copyright Kristof Benaets, KU Leuven), g Monomorium pharaonis

(copyright Phil Roberts, University of York) and h Temnothorax

albipennis (copyright Elva Robinson, University of York). In

Monomorium pharaonis (g) and Temnothorax albipennis (h) the RFID
tags are activated by light instead of radio signals
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rfibee) and TimeBee� (CTIS, rillieux-la-pape, France;

Devillers 2014). Recently, standardised methods for the use

of RFID systems in animal behavioural research were

published in the COLOSS BEEBOOK (Scheiner et al.

2013). Nevertheless, given that the authors only present a

vague description of possible filtering algorithms and advise

to work with custom-made scripts, it is clear that there is an

urgent need for publically available software with well-

described algorithms to adequately analyse RFID tracking-

based behavioural data.

This study presents a user-friendly, publically available,

clear box Java program called ‘‘Track-a-Forager’’ for the

analysis and filtering of RFID-based behavioural data. As

missed scans are major problems occurring in RFID data,

the algorithm of Track-a-Forager deals with them by also

allowing incomplete sequences of scans as foraging trips.

For each type of setup, these incomplete sequences and their

details will be different. Eight different types of standard

experimental setups (Fig. 3) are the particular strength of

the software and have been used in studies of foraging

behaviour and intraspecific social parasitism (Abou-Shaara

2014; Gill et al. 2012; Meikle and Holst 2014; Seeley 1995;

Sumner et al. 2007; Van Oystaeyen et al. 2013). Further-

more, the application domain of the program is not limited

to small insects, such as bees, ants or wasps, for which error

rates of existing RFID systems tend to be high and extensive

data filtering is required, but can equally be used for the

analysis of RFID data of larger animals, such as small

mammals, fish or birds, for which fewer artefacts are

expected. In our manuscript, however, we will use social

insects as a standard example, because of the inherent

complexity in analysing RFID-data in such systems.

Track-a-Forager

The different standard experimental setups supported by

Track-a-Forager differ in the way in which foraging beha-

viour is monitored and in the number and position of RFID

scanners at the nest and/or feeder (Fig. 3). In particular, we

make a distinction between setups where only the leaving

and entering the nest by each individual is monitored

(‘‘natural foraging’’, upper panel in Fig. 3) and setups where

the nest scanners are complemented with a scanner at an

artificial feeder (‘‘artificial foraging’’, lower panel in

Fig. 3). Setups with monitoring at the feeder have more

details about the foraging trip and, therefore, tolerate more

missed scans when reconstructing the foraging trips. In

addition, we make a distinction between situations where

the nest entrance and exit are separated using one-way

tunnels and those where the nest entrance and exit are

shared (Fig. 3), and between situations where one or two

scanners are placed at each nest entrance, nest exit or feeder

(Fig. 3). The use of two RFID scanners enables one to infer

the direction of motion of the animal and distinguish events

of leaving or entering the nest hereby more missed scans can

be tolerated when reconstructing the foraging trips. In set-

ups where the entrance and exit of the nest are separated by

one-way tunnels, the entrance and exit, however, can in

principle each be monitored by a single scanner. Similarly,

for applications where no inferences about the direction of

movement are required, e.g. in some social parasitism

experiments or in strictly controlled environments with

tunnels from nest to feeder, only one scanner per nest

opening can be sufficient. However, by using two scanners

more data points are added to the analysis which enables
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Fig. 3 Overview of the eight experimental setups that can be analysed

by the Track-a-Forager software. They differ in the monitoring of the

foraging behaviour which can be natural (only scanners at nest) or

artificial (scanners at nest and artificial feeder), the nest entrance/exit

(separated or shared) and in the number of RFID scanners at the nest

and feeder (one or two)
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Track-a-Forager to tolerate missed scans when recon-

structing the foraging trips. To avoid interference between

the two scanners, they should be placed in series at a dis-

tance recommended by the manufacturer of the scanner

system.

Algorithm

Track-a-Forager has a clear, well-defined algorithm to filter

the raw data of scans. Each scan in the RFID dataset com-

prises three types of data: the unique identifier of the tag, the

label of the scanner that retrieved the tag identifier, and the

time point the tag was detected. The Track-a-Forager

algorithm, which handles the RFID data filtering, is divided

into three stages (Fig. 4a), with user-defined filtering steps

being applied at each stage. In the first stage, the raw,

chronologically ordered scans are filtered to cluster the

rapid-succession scans via a sliding window approach based

on all three available data points (Fig. 5). This is done by

comparing each scan of a unique tag registered by a specific

scanner (currentScan), and clustering the two if the time

difference between them is smaller than a user-defined cut-

off value. This results in a number of unique clusters of

scans representing a unique passage of an individual at any

one of the scanners in the setup. The default value for the

user-defined cut-off to cluster scans is 20 s and we don’t

recommend to set it lower since scans will be treated as

separated clusters. When there are enough tagged foraging

bees, the distinction between the clusters will mainly be

determined by the sequence of the transponder IDs and less

by the time points of the scans.

Once rapid-succession scans are clustered together, a

second processing step—also based on a sliding window

approach—is used to detect events of leaving (OUT) or

entering (IN) the nest and/or feeder in the setups with two

scanners (Fig. 4b) or with separated nest entrance and exit

(Fig. S1). For setups with a single scanner at a shared nest

entrance and exit, this processing step is not applied; as such

setups do not allow one to discriminate between OUT and

IN events. The idea of this stage of the analysis is to use

information on the direction of motion to annotate succes-

sive scan clusters at paired scanners as either an OUT or an

IN event, and to do this only if the time difference between

the scan clusters is smaller than a user-defined cut-off value.

As missed scans can occasionally occur, there are also scan

clusters which cannot be classified as OUT or IN events in

the setups with paired scanners. These unclassified scan

clusters; however, can still be useful to detect the occur-

rence of foraging trips. Subsequently, in setups with one or

two scanners placed at an artificial feeder, we also use a

sliding window approach to annotate events of going from

the nest to the feeder (GO) or from the feeder to the nest

(RETURN) based on classified OUT and IN events as well

as any unclassified scan clusters (Fig. S1). The default value

for the user-defined IN–OUT cut-off is 20 s but we rec-

ommend to change it according to distance between the two

scanners. For example, it takes an individual more time to

travel between scanners placed 20 cm apart than when the

distance between the scanners is 4 cm. Also the number of

foragers in the colony can have an effect on the time nec-

essary to move from one scanner to the other as queues can

occur when a lot of foragers want to enter the nest at the

same time.

In the third and last stage of the algorithm, the order of

the OUT, IN, GO, and RETURN events is used to recon-

struct foraging trips (Fig. S2), again based on a sliding

window approach. In setups that do not involve scanners at

feeders, these foraging trips are reconstructed solely based

on OUT and IN events. By contrast, in setups with two

scanners, we also use information from unclassified scan

clusters. Figure S1 gives an overview how we infer OUT,

IN, GO and RETURN events from the scan order and how

they are used to reconstruct foraging trips. Finally, to

A
B

OUT

IN
Reconstructed foraging trips

Inferred IN-OUT 
and/or GO-RETURN events

Clustered scans

Raw scans sorted by time

ba

Fig. 4 a The general three-step Track-a-Forager algorithm for

filtering the RFID scan data which leads to reconstructed foraging

trips for the eight experimental setups. b The inferring of the OUT and

IN events in setups with two scanners at the nest entrance/exit and/or

the feeder depends on the order of the scanners: the OUT event has the

order AB while the IN event has a BA order
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remove short-duration stays of the animals outside the nest

(e.g. due to the movement of guard bees in honeybee

studies) and to remove trips of exceptionally long duration,

the user can specify a minimal threshold and a maximal cut-

off value for the length of each foraging trip. The default

minimal foraging trip length threshold is 300 s (i.e. 5 min)

to avoid identifying the movement of guards as foraging

trips. The default maximal foraging trip length cut-off is

86,400 s (i.e. 24 h) but this includes overnight stays outside

the hive. This can be overcome by lowering the cut-off

value depending on the hours of daylight during the

experiment or by selecting the foraging trips in the output

file on the indication whether or not the foraging trip

spanned more than one day.

As Track-a-Forager is a ready-to-use software program

several additional output options are implemented to make

it as user-friendly as possible. These options include

exporting the foraging frequency per individual over time

and exporting the detailed foraging durations and the ‘‘age’’

relative to the start date of the experiment of each individual

at the first and last scan and trip. For maximum ease of

operation, any annotation information, e.g. any treatments

which were given to particular sets of individuals, the col-

ony to which each individual belongs, its age at the time of

START

previousScan = empty
currentScan = first scan

Do previousScan and 
currentScan have 
same transponder 

identifier?

Is the time difference between 
previousScan and currentScan 

smaller than cut-off value?

New cluster ID for currentScan 

New cluster ID for currentScan 

New cluster ID for currentScan 

Same cluster ID as previousScan for currentScan 

Is currentScan 
last scan? 

END

previousScan = currentScan 
currentScan = next scan

yes

no

yes

yes

no

no

yes

no

Are previousScan and 
currentScan recorded 

by same scanner?

Fig. 5 Flowchart of the first

step of the Track-a-Forager

algorithm: clustering of the

scans to treat rapid-succession

scans (of the same tag identifier

made by the same scanner) as

one scanning event when these

scans occur within a certain,

user-defined timespan (cut-off

value which can be given in the

graphical user interface). By

comparing each scan

(currentScan) with the previous

(previousScan) scan a sliding

window approach is used

180 A. Van Geystelen et al.

123



starting the experiment, etc., provided by the user is also

integrated in these output files.

Real-life example

To demonstrate the usefulness of the Track-a-Forager

software in behavioural research and to compare several

values for the parameters in the algorithm, a real-life

example is provided. The RFID data used in this real-life

example came from observations of Apis mellifera carnica

honeybees that were kept in a 3-frame observation hive at

the laboratory’s apiary in Leuven, Belgium. The host colony

contained two frames of brood, one frame with stored pollen

and honey, a queen and around 3000 host colony workers

and was placed indoors at room temperature and were

connected to the outside via a single entrance tunnel to

allow free foraging. At the end of the tunnel two iID�

MAJA 4.1 RFID scanner modules (Microsensys, Germany)

were placed in series, which were connected to a MAJA 4.1

host computer (Microsensys, Germany) to record and log

the timing of all RFID tagged honeybees leaving or entering

the hive. The scanners were separated from each other by a

4 cm wooden tunnel block to prevent interference between

the scanners. Bees were allowed to emerge by placing brood

frames in a MIR-253 incubator (Sanyo, Belgium) at 34 �C
and 60 % humidity, after which newly eclosed workers

were collected daily. A total of 400 bees were tagged with a

mic3� 64-bit read-only RFID transponder (Microsensys,

Germany) by gluing the tag to the bee’s thorax using Kombi

Turbo two-component glue (Bison, Netherlands). The tags

measured 2.0 9 1.7 9 0.5 mm, weighed less than 5 mg

and transmitted at 13.56 MHz. The RFID codes of all tag-

ged workers, together with time of introduction, were added

to a transponder information database by reading each code

using the iID� PENmini USB pen. Up to 50 tagged indi-

viduals were kept in 15 9 10 9 7 cm cages kept at 34 �C
and 60 % humidity, and contained a 10 9 8 cm piece of

honey-filled comb and drinking water, to allow the bees to

settle down before introducing them into the host colonies.

Before introduction, the cages were placed on top of the

observation hives, separated only by a wire mesh, for a

30 min period to increase acceptance rates. The workers

were introduced over the course of a period of 5 days, and

foraging behaviour was monitored from 1 August until 26

August 2012 whereby there were on average 14.64 h of

daylight.

Track-a-Forager was used to analyse the raw data, using

the setup of natural foraging with two adjacent scanners at a

shared hive entrance/exit (top right panel in Fig. 3) and

using the default time constraint parameters. The raw data

consisted of almost 44,000 raw scans of 281 bees. In the first

processing step, rapid-succession scans were eliminated,

resulting in the grouping of the raw scan into 17,117 scan

clusters. In the second processing step, 1561 leaving (OUT)

and 1968 entering (IN) events were detected, whereas the

remaining scan clusters stayed unclassified. Finally, in the

last stage, a total of 2101 foraging trips of 183 bees were

reconstructed of which 488 were complete, being based on a

successive OUT and IN event pair. The incomplete recon-

structed foraging trips which are based on an unclassified

scan cluster and an IN or OUT event show that relatively

more OUT events were missed since 894 trips miss an OUT

event while 719 trips miss an IN event. Overall, in this

dataset, fewer than 25 % of the reconstructed trips were

complete. This means that the use of Track-a-Forager

resulted in a much more complete analysis than would have

been possible based on simpler manual analysis of the data.

The bees were on average 9.57 ± 1.61 days (mean ± SD)

old on their first foraging trip and spend on average

1.00 ± 1.04 h (mean ± SD) outside the hive.

Beside running Track-a-Forager with the default

parameters (i.e. 20 s for the cluster cut-off, 20 s for the IN–

OUT cut-off, 300 s for the flight minimal threshold and

86,400 s for the flight maximal cut-off), we also ran it with

no limitations regarding the minimal and maximal flight

lengths while the default values for the cluster and IN–OUT

cut-off remain. In a third analysis no restriction is put on the

IN–OUT cut-off which means that any consecutive clusters

of scans of the same RFID made by two different scanners

will be considered as IN/OUT event regardless the time

difference between the clusters. The last analyses are done

with a larger (35 s) and smaller (5 s) value for the cluster

cut-off while using the default values for the other param-

eters. As expected there are more reconstructed trips when

there are no restrictions on the trip length (Fig. S3). The

need to filter for guarding bees is shown by the fact that

there are much more reconstructed trips with a length

smaller than 300 s than there are with a length larger than

86,400 s, i.e. 498 trips compared to 17. When there is no

time constraint on the determination of the IN/OUT events,

the number of reconstructing foraging trip is lower than with

the default IN–OUT cut-off value of 20 s (Fig. 3). One

might expect the opposite, i.e. more reconstructed trips,

however, this is explained by the fact that if there is no time

restriction on which cluster of scans to group in an IN/OUT

event, ‘wrongly’ grouped clusters have an influence on the

consecutive clusters. For example, the time differences

between four consecutive clusters A, B, C and D are 830, 5

and 37 s. Clusters A and C come from scanner 1 while

clusters B and D are from scanner 2. Under default setting,

cluster A and D would be an UNKNOWN event while the

group of clusters B and C is an IN event. Therefore, cluster

A and the group of clusters B and C would be a recon-

structed foraging trip. When using no IN–OUT cut-off,

clusters A and B are grouped in an OUT event while also
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clusters C and D are grouped in an OUT event. Hereby no

foraging trip can be reconstructed since there are both OUT

events. Changing the cluster cut-off to a larger or smaller

values does not have a significant impact on the number of

reconstructed trips (Fig. 6) as the distinction between the

clusters will mainly be determined by the sequence of the

transponder IDs and less by the time points of the scans

when there are enough tagged foraging bees. It seems that

the IN–OUT cut-off, flight minimal length threshold and

maximal length cut-off have a larger effect on the number

reconstructed foraging trips than the cluster cut-off (Fig. 6,

Fig. S4 and Fig. S5). The different analyses show that the

used parameters in the Track-a-Forager algorithm are useful

and that their default values are appropriate.

Information to download the Track-a-Forager
software

Track-a-Forager can be downloaded as a ready-to-use Java

interface with a detailed manual from our website: https://

perswww.kuleuven.be/*u0072398/. The Java code itself is

available upon request from the corresponding author.
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Henry M, Béguin M, Requier F, Rollin O, Odoux JF, Aupinel P, Aptel

J, Tchamitchian S, Decourtye A (2012) A common pesticide

decreases foraging success and survival in honey bees. Science

336:348–350

Smaller
cluster cut-off

Larger
cluster cut-off

No IN-OUT
cut-off

No trip length
constraintDefault

0

500

1000

1500

2000

2500

3000
OUT-IN

OUT-UNKNOWN

UNKNOWN-IN

N
um

be
ro

f f
or

ag
in

g
tri

ps

Fig. 6 Number of the reconstructed foraging trips for each analysis

using different values for the parameters. The black indicates the

foraging trips with a complete sequence of scans, i.e. both OUT and IN

events consist of two clusters of scans. The dark grey colour points out

that there was only one cluster of scans for the IN event while the light

grey indicates the opposite, i.e. there was only one cluster of scans for

the OUT event. The default setting are 20 s for the cluster cut-off, 20 s

for the IN–OUT cut-off, 300 s for the flight minimal threshold and

86,400 s for the flight maximal cut-off. In the analysis ‘No trip length

constraint’ the limitations regarding the minimal and maximal flight

lengths are omitted while the default values for the cluster and IN–

OUT cut-off remain. In the third analysis no restriction is put on the

IN–OUT cut-off which means that any consecutive clusters of scans of

the same RFID made by two different scanners will be considered as

IN/OUT event regardless the time difference between the clusters. The

last analyses are done with a larger (35 s) and smaller (5 s) value for

the cluster cut-off while using the default values for the other

parameters

182 A. Van Geystelen et al.

123

https://perswww.kuleuven.be/%7eu0072398/
https://perswww.kuleuven.be/%7eu0072398/


Hou L, Verdirame M, Welch KC (2015) Automated tracking of wild

hummingbird mass and energetics over multiple time scales using

radio frequency identification (RFID) technology. J Avian Biol

46:1–8

Kissling DW, Pattemore DE, Hagen M (2013) Challenges and

prospects in the telemetry of insects. Biol Rev Camb Philos Soc

89:511–530

Kurazono H, Yamamoto H, Yamamoto M, Nakamura K, Yamazaki K

(2013) RFID and ZigBee sensor network for ecology observation

of seabirds. In: Proceedings of the 15th international conference

on advanced communication technology (ICACT), 2013,

pp 211–215

Meikle WG, Holst N (2014) Application of continuous monitoring of

honeybee colonies. Apidologie 46:10–22

Naumowicz T, Freeman R, Heil A, Calsyn M, Hellmich E, Brändle A,
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