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c© Birkhäuser Verlag, Basel 2003

GAFA Geometric And Functional Analysis

EXTREMAL SUBSPACES AND THEIR
SUBMANIFOLDS

D. Kleinbock

Abstract

It was proved in the paper [KM1] that the properties of almost all
points of R

n being not very well (multiplicatively) approximable are
inherited by nondegenerate in R

n (read: not contained in a proper
affine subspace) smooth submanifolds. In this paper we consider sub-
manifolds which are contained in proper affine subspaces, and prove
that the aforementioned Diophantine properties pass from a subspace
to its nondegenerate submanifold. The proofs are based on a corre-
spondence between multidimensional Diophantine approximation and
dynamics of lattices in Euclidean spaces.

1 Introduction

We denote by Mm,n the space of real matrices with m rows and n columns.
Ik ∈ Mk,k stands for the identity matrix. Vectors are named by lowercase
boldface letters, such as x = (xi | 1 ≤ i ≤ k). For x ∈ R

k we let ‖x‖ =
max1≤i≤k |xi|. 0 stands for a zero vector in any dimension, as well as a zero
matrix of any size. The Lebesgue measure in R

k will be denoted by | · |.
We start by recalling several basic facts from the theory of Diophantine

approximation. For v > 0 and m,n ∈ N, let us denote by Wv(m,n) the set
of matrices A ∈Mm,n for which there are infinitely many q ∈ Z

n such that

‖Aq + p‖ ≤ ‖q‖−v for some p ∈ Z
m . (1.1)

Clearly Wv1(m,n) ⊃ Wv2(m,n) if v1 ≤ v2. We will also use the notation

W+
v (m,n) def=

⋃

u>v

Wu(m,n) and W−
v (m,n) def=

⋂

u<v

Wu(m,n) .

One knows that Wn/m(m,n) = Mm,n by Dirichlet’s theorem, and that
the Lebesgue measure of Wv(m,n) is zero whenever v > n/m due to the
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Borel–Cantelli lemma. In particular, the set W+
n/m(m,n) has zero mea-

sure. Matrices from the latter set are called very well approximable, to be
abbreviated as VWA.

It follows from Khintchine’s transference principle, see e.g. [C, Chap-
ter V], that the statements A ∈ W+

n/m(m,n) and AT ∈ W+
m/n(n,m) are

equivalent. In particular, a vector y ∈ R
n interpreted as an n× 1 matrix is

VWA iff it is VWA when viewed as a 1×n matrix. Our goal in the present
paper is to look at VWA vectors in R

n, and it will be more convenient for
us to use the row vector approach, so that, for y as above and for q ∈ R

n,
yq will stand for y1q1 + · · · + ynqn. In view of the aforementioned duality,
this causes no loss of generality, and, hopefully, will cause no confusion.

We now specialize to the case m = 1; that is, consider Diophantine
properties of vectors (= row matrices) y ∈ R

n. Following the terminology
introduced by V. Sprindžuk, say that a submanifold M of R

n is extremal
if almost all y ∈ M (with respect to the natural measure class) are not
VWA. In other words, if the property of generic y ∈ R

n being not VWA is
inherited by the submanifold. Pushing this terminology a little further, let
us say that a map f from an open subset U of R

d to R
n is extremal if f(x)

is not VWA for a.e. x ∈ U .
Proving extremality of smooth manifolds/maps has been one of the

central topics of metric Diophantine approximation for the last 40 years,
the major driving force being Sprindžuk’s 1964 solution [Sp1] of a long-
standing problem of K. Mahler [M], that is, proving the extremality of the
so-called rational normal or Veronese curve

M =
{
(x, x2, . . . , xn) | x ∈ R

}
. (1.2)

See [Sp2,3], [BeD] for history and references.
In his 1980 survey of the field [Sp4], Sprindžuk conjectured that a real

analytic manifold M is extremal whenever it is not contained in any proper
affine subspace of R

n. The latter condition, loosely put, says that M ‘re-
members’ the dimension of the space it is imbedded into; and the conjecture
asserts that M must also ‘remember’ the law of almost all points being not
VWA.

This conjecture was proved by G.A. Margulis and the author [KM1] in a
stronger form, with the aforementioned geometric condition replaced by an
analytic one, and the real analytic class extended to Ck for large enough k.
We need the following definitions. Let U be an open subset of R

d, L an
affine subspace of R

n, and let f = (f1, . . . , fn) be a Ck map U → L. For
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l ≤ k and x ∈ U , say that f is l-nondegenerate in L at x if

the linear part of L is spanned by
partial derivatives of f at x of order up to l

(1.3)

(a linear subspace L0 of R
n is called the linear part of L if L = L0 + y for

some y ∈ R
n). We will say that f is nondegenerate in L at x if (1.3) holds

for some l. If M is a d-dimensional submanifold of L, we will say that M
is nondegenerate in L at y ∈ M if any (equivalently, some) diffeomorphism
f between an open subset U of R

d and a neighborhood of y in M is non-
degenerate in L at f−1(y). We will say that f : U → L (resp. M ⊂ L) is
nondegenerate in L if it is nondegenerate in L at almost every point of U
(resp. M, in the sense of the natural measure class on M).

One of the main results of [KM1] is the following:

Theorem 1.1. Let f : U → R
n, U ⊂ R

d, be a smooth map which is
nondegenerate in R

n. Then f is extremal.

In particular, smooth submanifolds of R
n which are nondegenerate in R

n

are extremal. Note that many special cases were proved before the general
case; see [KM1], [BeD] for a detailed account, and [BeKM], [BeBKM],
[KLW] for further developments.

The goal of the present paper is to study manifolds for which the afore-
mentioned non-degeneracy-in-Rn condition fails. In fact, the simplest ones,
namely proper affine subspaces of R

n themselves, have been the subject of
several papers [S2], [Sp3], [BeBDD], and certain conditions have been found
sufficient for their extremality. To the best of the author’s knowledge, no-
body has yet turned attention to proper submanifolds of affine subspaces
of R

n. Let us now state one of the main results of the present paper, which
addresses this gap.

Theorem 1.2. Let L be an affine subspace of R
n. Then:

(a) if L is extremal and f : U → L, U ⊂ R
d, is a smooth map which is

nondegenerate in L, then f is extremal;

(b) if L is not extremal, then all points of L are VWA (in particular, no
subset of L is extremal).

This result generalizes Theorem 1.1, showing that the extremality of
affine subspaces is inherited by their nondegenerate submanifolds. It also
implies that a manifold nondegenerate in some affine subspace of R

n is
extremal if and only if this subspace contains at least one not very well
approximable point. (Cf. a similar statement conjectured by B. Weiss in
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the context of interval exchange transformations and Teichmüller flows [W,
Conjecture 2.1].)

The proof is based on the methods of [KM1], that is, on the corre-
spondence between approximation properties of vectors and trajectories
of lattices in Euclidean spaces. Necessary background is reviewed in §2.
Then in §3 we use the language of lattices to give a necessary and sufficient
condition for a map f : U → R

n, U ⊂ R
d, within a certain class of good

maps to be extremal, and then show that this condition is inherited by
nondegenerate submanifolds of affine subspaces.

Dealing with an s-dimensional affine subspace of R
n, one can be more

specific and phrase the aforementioned condition in terms of coefficients
of an affine map parametrizing the subspace. By permuting variables one
can without loss of generality choose a parametrizing map of the form
x �→ (x,xA′ + a0), where A′ is a matrix of size s × (n − s) and a0 ∈ R

n−s

(here both x and a0 are row vectors). In an even more abbreviated way,
we will denote the vector (1, x1, . . . , xs) by x̃, and the matrix

( a0

A′
)

by
A ∈Ms+1,n−s; then L is parametrized by

x �→ (x, x̃A) . (1.4)

We show in §4 how the results of §3 allow one to write down a condition
on A (see Theorem 4.3) equivalent to the extremality of the map (1.4). On
the other hand, it easily follows from the definitions, as explained in §4,
that every point of L parametrized by (1.4) is VWA whenever A belongs to
W+
n (s + 1, n − s). We show that the converse is also true in the following

two cases, and by the following two methods:

s = n− 1 (that is, L is an affine hyperplane) , (1.5)

– as a consequence of Theorem 4.3, and
s = 1 and A is of the form

(
0
b

)
for a row vector b

(that is, L is a line passing through the origin) .
(1.6)

– using an argument borrowed from [BeBDD]. In other words, the following
can be proved:

Theorem 1.3. In the two special cases (1.5) and (1.6), the map (1.4) is
extremal if and only if

A /∈ W+
n (s+ 1, n− s) . (1.7)

Whether the same is true for an arbitrary affine subspace is not clear.
Since matrices A as above provide local coordinate charts to the set of s-
dimensional affine subspaces of R

n, and in view of M. Dodson’s [Do] formula
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for the Hausdorff dimension of the sets Wv(m,n), the affirmative answer
to the above question would imply that the dimension of the (null) set of
non-extremal s-dimensional affine subspaces of R

n is equal to

dim
(W+

n (s+ 1, n− s)
)

= (n− s− 1)(s + 1) + 1 , (1.8)

which is precisely 1 + the Hausdorff dimension of the set of ‘rational’
s-dimensional subspaces, i.e. of the set

{
A ∈Ms+1,n−s

∣∣ Aq + p = 0 for some p ∈ Z
s+1,q ∈ Z

n−s
� {0}} .

Other open problems and generalizations are discussed in the last two
sections of the paper. This includes the so-called multiplicative modifica-
tion of the standard set-up, which is the subject of §5. Namely, there we
define not very well multiplicatively approximable (not VWMA, a property
stronger than ‘not VWA’ but still generic in R

n) vectors and strongly ex-
tremal manifolds (i.e. those for which almost all points are not VWMA).
It was proved in [KM1] that smooth nondegenerate submanifolds of R

n are
strongly extremal; we generalize this as follows:

Theorem 1.4. Let L be an affine subspace of R
n. Then:

(a) if L is strongly extremal and f : U → L is a smooth map which is
nondegenerate in L, then f is strongly extremal;

(b) if L is not strongly extremal, then all points of L are VWMA (in
particular, no subset of L is strongly extremal).

Similarly to Theorem 1.2, this is done by writing down a necessary
and sufficient condition (see Theorem 5.3) for a good map to be strongly
extremal, and then showing that condition to be inherited by nondegenerate
submanifolds of affine subspaces. Following the lines of §4, we are able to
simplify that condition in the case (1.5), thus explicitly describing strongly
extremal hyperplanes and identifying those which are extremal but not
strongly extremal. Whether this can be extended beyond the codimension
one case is an open question.

2 Diophantine Approximation and Lattices

In this section we introduce some notation and terminology which will help
us work with discrete subgroups Γ of R

k, k ∈ N. We define the rank rk(Γ)
of Γ to be the dimension of RΓ. Also define δ(Γ) to be the norm of a
nonzero element of Γ with the smallest norm, that is,

δ(Γ) def= inf
v∈Γ�{0}

‖v‖ .
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For 0 ≤ j ≤ k, let us denote by Sk,j the set of all subgroups of Z
k of rank j,

and by Sk the set of all nonzero subgroups of Z
k of rank smaller than k,

that is, Sk def= ∪k−1
j=1Sk,j.

It will be useful to consider exterior products of vectors generating Γ.
Namely, if Γ ∈ Sk,j, say that w ∈ ∧j(Rk) represents Γ if

w =

{
1 if j = 0
v1 ∧ · · · ∧ vj if j > 0 and v1, . . . ,vj is a basis of Γ .

Clearly the element representing Γ is defined up to a sign. With some
abuse of notation, we will also denote by Sk,j and Sk the set of w ∈ ∧

(Rk)
representing Γ ∈ Sk,j and ∈ Sk respectively.

The set of all lattices (discrete subgroups of maximal rank) in R
k of co-

volume one can be identified with the homogeneous space SLk(R)/SLk(Z),
which we will denote by Ωk. It is a noncompact space with finite SLk(R)-
invariant measure, and the restriction of the function δ(·) defined above
to this space can be used to describe its geometry at infinity. Namely,
Mahler’s compactness criterion [R, Corollary 10.9] says that a subset of Ωk

is relatively compact if and only if δ is bounded away from zero on this
subset. Further, it follows from the reduction theory for SLk(Z), see e.g.
[Si, Satz 4], that the ratio of 1 + log(1/δ(·)) and 1 + dist( · ,Zk) is bounded
between two positive constants for any right invariant Riemannian metric
‘dist’ on the space of lattices. In other words, a lattice Λ ∈ Ωk for which
δ(Λ) is small is approximately log(1/δ(Λ)) away from the base point Z

k.
The reader is referred to [K1] for more details.

This justifies the following definition: for γ ≥ 0 and any one-parameter
semigroup F = {gt | t ≥ 0} acting on Ωk, say that the F -trajectory of
Λ ∈ Ωk grows with exponent ≥ γ if there exist arbitrarily large positive t
such that

δ(gtΛ) ≤ e−γt .

Also define the growth exponent γF (Λ) of Λ with respect to F to be the
supremum of all γ for which the F -trajectory of Λ grows with exponent
≥ γ. In view of the preceding remark, one has

γF (Λ) = lim sup
t→∞

dist(gtΛ,Zm)
t

.

Now let us describe a correspondence, dating back to [S3] and [D], be-
tween approximation properties of vectors y ∈ R

n and dynamics of certain
trajectories in Ωn+1. Given a row vector y ∈ R

n one considers a lattice
uyZ

n+1 in R
n+1, where uy

def=
(

1 y
0 In

)
; that is, the collection of vectors of
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the form
(

yq+p
q

)
, where p ∈ Z and q ∈ Z

n. Then one reads Diophantine
properties of y from the behavior of the trajectory FuyZ

n+1, where

F = {gt | t ≥ 0} , with gt = diag(et, e−t/n, . . . , e−t/n) , (2.1)

is a one-parameter subsemigroup of SLn+1(R) which expands the first co-
ordinate and uniformly contracts the last n coordinates of vectors in R

n+1.
The passage from Diophantine approximation to growth exponents of

trajectories will be based on the following elementary lemma:

Lemma 2.1. Suppose we are given a set E ⊂ R
2 which is discrete and

homogeneous with respect to positive integers, that is, kE ⊂ E for any
k ∈ N. Also take a, b > 0, v > a/b, and define γ by

γ =
bv − a

v + 1
⇔ v =

a+ γ

b− γ
. (2.2)

Then the following are equivalent:

[2.1-i] there exist (x, z) ∈ E with arbitrarily large |z| such that |x| ≤ |z|−v ;
[2.1-ii] there exist arbitrarily large t > 0 such that for some (x, z) ∈ E�{0}

one has
max

(
eat|x|, e−bt|z|) ≤ e−γt . (2.3)

Proof. Assume [2.1-i], take (x, z) ∈ E with |x| ≤ |z|−v, and define t by
e−bt|z| = e−γt, that is, |z| = e(b−γ)t. (Note that it follows from (2.2) that
γ < b.) Then one has

eat|x| ≤ eat|z|−v = eat(e(b−γ)t)−v =
(2.2)

e−γt ,

that is, (2.3) holds for this choice of x, z and t. Taking |z| arbitrarily large
produces arbitrarily large t as well.

Assume now that [2.1-ii] holds. Then one can find a sequence tn → ∞
and (xn, zn) ∈ E � {0} such that

eatn |xn| ≤ e−γtn and e−btn |zn| ≤ e−γtn , (2.4)

and write
|xn| ≤

(2.4)
e−(a+γ)tn =

(2.2)
e−v(b−γ)tn ≤

(2.4)
|zn|−v .

If the sequence {zn} is unbounded, [2.1-i] is proved. Otherwise, note that
xn → 0 due to (2.4); by the discreteness of E, the sequence {(xn, zn)} must
stabilize, and thus one has (0, z) ∈ E for some z > 0. But then (0, kz) ∈ E
for any k ∈ N by the homogeneity, and the proof of [2.1-i] is finished. �
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Corollary 2.2. y ∈ Wv(1, n) iff the growth exponent γF (uyZ
n+1) of

uyZ
n+1 with respect to F as in (2.1) is not less than γ, the latter being

defined by

γ =
v − n

n(v + 1)
⇔ v =

n(1 + γ)
1 − nγ

. (2.5)

Proof. This corollary is in fact a special case of Theorem 8.5 from [KM2].
However one can easily derive it from the previous lemma by taking a = 1,
b = 1/n and

E =
{
(yq + p, ‖q‖) ∣∣ (p,q) ∈ Z

n+1
}
,

and noticing that the inequality
δ(gtuyZ

n+1) ≤ e−γt (2.6)
amounts to the validity of (2.3) for some (x, z) ∈ E � {0}. �

Corollary 2.3. The following are equivalent for y ∈ R
n and F as in (2.1):

[2.3-i] y is VWA;
[2.3-ii] γF (uyZ

n+1) > 0;
[2.3-iii] for some γ > 0 there exist infinitely many t ∈ N such that (2.6)

holds.

Proof. The equivalence of [2.3-i] and [2.3-ii] is straightforward from Corol-
lary 2.2 and (2.5), while to derive [2.3-iii] one notices that the ratio of δ(gt·)
and δ(gt′ ·) is uniformly bounded from both sides when |t− t′| < 1. �

We return now to the setting of the Diophantine approximation on
subsets of R

n. More precisely, we consider a map f = (f1, . . . , fn) : U → R
n,

where U is an open subset of R
d, and study Diophantine properties of

vectors f(x) for a.e. x ∈ U . This calls for considering the corresponding
map from U into Ωn+1, namely x �→ uf(x)Z

n+1, where

uf(x)
def=

(
1 f(x)
0 In

)
, (2.7)

and then looking at growth of trajectories of lattices uf(x)Z
n+1 under the

action of gt as in (2.1).
In the next section we will describe a method, introduced in [KM1],

which is based on keeping track on what happens to every subgroup Γ of
Z
n+1 under the action by uf(x) and then by gt. Fix a basis e0, e1, . . . , en of

R
n+1, and for I = {i1, . . . , ij} ⊂ {0, . . . , n}, i1 < i2 < · · · < ij , let

eI
def= ei1 ∧ · · · ∧ eij ∈

∧j
(Rn+1) ,

with the convention e� = 1. We extend the norm ‖ · ‖ from R
n+1 to

the exterior algebra
∧

(Rn+1) by ‖∑
I⊂{1,...,j}wIeI‖ = maxI⊂{0,...,n} |wI |.
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Thus it makes sense to define the norm of Γ as above by ‖Γ‖ def= ‖w‖,
where w represents Γ. Note that the ratio of ‖Γ‖ and the volume of the
quotient space RΓ/Γ is uniformly bounded between two positive constants
(depending on n and on the choice of the norm). Also note that it follows
from Minkowski’s theorem that δ(Γ) must be small whenever ‖Γ‖ is small;
more precisely, for any j > 0 there exists a positive constant c(j) such that

δ(Γ) ≤ c(j)‖Γ‖1/j (2.8)
for any Γ of rank j.

As a preparation for the next section, let us write down a formula for
gtuf(x)w, where w represents a subgroup Γ of Z

n+1. Note that the action of
uf(x) leaves e0 invariant and sends ei to ei+fi(x)e0, i = 1, . . . , n. Therefore

uf(x)eI =

{
eI if 0 ∈ I

eI +
∑

i∈I(−1)l(I,i)fi(x)eI∪{0}�{i} otherwise ,
where one defines

l(I, i) def= the number of elements of I strictly between 0 and i.
Taking w of the form

∑
I wIeI , one gets

uf(x)w =
∑

0∈I

(
wI +

∑

i/∈I
(−1)l(I,i)wI∪{i}�{0}fi(x)

)
eI +

∑

0/∈I
wIeI ,

and, further, for w ∈ ∧j(Rn+1),

gtuf(x)w=e
n+1−j

n
t
∑

0∈I

(
wI+

∑

i/∈I
(−1)l(I,i)wI∪{i}�{0}fi(x)

)
eI+e−

j
n
t
∑

0/∈I
wIeI .

(2.9)
What is important here is that each of the coordinates of gtuf(x)w is ex-
pressed as a linear combination of functions 1, f1, . . . , fn.

3 Extremality Criteria for Good Maps

Let us recall the definition introduced in [KM1]. If C and α are positive
numbers and V a subset of R

d, let us say that a function f : V → R is
(C,α)-good on V if

for any open ball B ⊂ V and any ε > 0, one has∣∣{x ∈ B
∣∣ |f(x)| < ε · sup

x∈B
|f(x)|}∣∣ ≤ Cεα|B| . (3.1)

See [KM1], [BeKM] for various properties and examples of (C,α)-good
functions. One property will be particularly useful: it is easy to see that

fi, i ∈ I, are (C,α)-good on V ⇒ so is sup
i∈I

|fi| . (3.2)
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Now let f = (f1, . . . , fn) be a map from an open subset U of R
d to R

n.
We will say that f is good at x0 ∈ U if there exists a neighborhood V ⊂ U
of x0 and positive C,α such that any linear combination of 1, f1, . . . , fn is
(C,α)-good on V . We will say that f : U → R

n is good if the set of x0 ∈ U
such that f is good at x0 has full measure. Note that C,α do not have to
be uniform in x0 ∈ U ; however, once V � x0 is chosen, every function of
the form f = c0 + c1f1 + · · · + cnfn must satisfy (3.1) for some uniformly
chosen C and α.

Recall (see [KM1, Lemma 3.2]) that the basic example of (C,α)-good
functions is given by polynomials: any polynomial map f : R

d → R
n is

good at every point of R
d. A more general class of examples is given by

linear combinations of coordinate functions of nondegenerate maps:

Proposition 3.1 [KM1, Proposition 3.4]. Let f = (f1, . . . , fn) be a smooth
map from an open subset U of R

d to R
n which is l-nondegenerate in R

n

at x0 ∈ U . Then there exists a neighborhood V ⊂ U of x0 and positive C
such that any linear combination of 1, f1, . . . , fn is (C, 1/dl)-good on V .

In other words, f is good at every point at which it is nondegenerate
in R

n. From this one easily derives

Corollary 3.2. Let L be an affine subspace of R
n and let f = (f1, . . . , fn)

be a smooth map from an open subset U of R
d to L which is nondegenerate

in L at x0 ∈ U . Then f is good at x0.

Proof. Put dim(L) = s, choose any affine map h from R
s onto L, and define

g = (g1, . . . , gs) by g = h−1 ◦ f . It follows from the nondegeneracy of f in
L that g is nondegenerate in R

s at x0, hence, by Proposition 3.1, it is good
at x0. To finish the proof it suffices to observe that any linear combination
of 1, f1, . . . , fn is a linear combination of 1, g1, . . . , gs. �

Corollary 3.3. Let f be a real analytic map from a connected open
subset U of R

d to R
n. Then there exists an affine subspace L of R

n such
that f is nondegenerate in L at every point of U ; consequently, f is good
at every point of U .

Proof. For any x ∈ U , denote by L0(x) the linear space spanned by all
partial derivatives of f at x, and put L(x) = f(x) + L0(x). Then for any
x0,x ∈ U such that the Taylor series of f centered at x0 converges at x,
one has f(x) ∈ L(x0) and L(x) ⊂ L(x0). Since U is connected, for any
x′ ∈ U one can find a finite sequence x1, . . . ,xk = x′ such that the Taylor
series of f centered at xi−1 converges at xi for all i = 1, . . . , k. Therefore
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L(x′) = L(x0), and, by reversing the roles of x0 and x′, one sees that
L def= L(x) is independent of x ∈ U . It remains to notice that from the
construction it follows that f is nondegenerate in L at every x ∈ U , and
apply Corollary 3.2. �

Note that it follows from the proof that L can be defined as the inter-
section of all the affine subspaces of R

n containing f(U), or, equivalently,
as

f(x0) + Span
{
f(x) − f(x0) | x ∈ U

}

for any x0 ∈ U .
Example 3.4. It is instructive for better understanding of the class of
good maps to remark that the assumption of the analyticity of f cannot be
dropped. Indeed, let us sketch a construction of a C∞ function from [0, 1]
to R+ which is not good on a subset of [0, 1] of positive measure. First for
every J = (a, b) ⊂ [0, 1] define

ψJ(x)
def= ϕ(x− a)ϕ(b − x) , where ϕ(x) def=

{
0 , x ≤ 0 ,
e−1/x2

, x ≥ 0 .
One can easily verify that for every neighborhood V of either a or b it
is impossible to find C,α > 0 such that ψJ is (C,α)-good on V . Then
consider a Cantor set K ⊂ [0, 1] of positive measure, and for k ∈ N let Jk
be the collection of disjoint subsegments of [0, 1] thrown away at the kth
stage of the construction of K. (For example, one can divide every interval
left at the kth stage onto 3k+1 equal pieces and then throw away the middle
interval.) After that define

ψ(x) def=
∞∑

k=1

ck
∑

J∈Jk

ψJ(x) ,

where ck decays fast enough as k → ∞ to guarantee that ψ is C∞ (in the
aforementioned example, one can take ck = 3−3k

). Since every neighbor-
hood of every point of K contains an endpoint of J ∈ Jk for some k ∈ N,
it follows that ψ is not good at any x ∈ K.

We now state an estimate from [KM1], which will be used to derive
a criterion for the extremality of f once the latter is chosen within the
class of good maps. It will be convenient to use the following notation:
if B = B(x, r) is a ball in R

d and c > 0, we will denote by cB the ball
B(x, cr).

Theorem 3.5 (cf. [KM1, Theorem 5.2]). For any d, k ∈ N there exists a
positive constant C ′ (explicitly estimated in [KM1]) such that the following
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holds. Given C,α > 0, 0 < ρ ≤ 1/k, a ball B ⊂ R
d and a continuous map

h : 3kB → GLk(R), let us assume that

[3.5-i] for any Γ ∈ Sk, the function x �→ ‖h(x)Γ‖ is (C,α)-good on 3kB,
and

[3.5-ii] for any Γ ∈ Sk, supx∈B ‖h(x)Γ‖ ≥ ρ.

Then for any positive ε ≤ ρ one has
∣∣{x ∈ B | δ(h(x)Zk) < ε}∣∣ ≤ CC ′

(
ε
ρ

)α |B| .
Informally speaking, the conclusion of the above theorem says that the

‘orbit’ {h(x)Zk | x ∈ B} ⊂ Ωk ‘does not diverge’, that is, its very significant
proportion (computed in terms of Lebesgue measure on B) stays inside
compact sets {Λ ∈ Ωk | δ(Λ) ≥ ε}. We remark that such nondivergence
results have a long history, dating back to the work of Margulis [Ma] in the
1970s, and many applications in the theory of dynamics on homogeneous
spaces, see e.g. [KSS, Chapter 3] for a historical account.

The next lemma sharpens [KM1, Theorem 5.4], giving a condition suf-
ficient for the extremality of a good map f .

Lemma 3.6. Let B be a ball in R
d, and let f = (f1, . . . , fn) be a continuous

map from 3n+1B to R
n. Suppose that

[3.6-i] ∃C,α > 0 such that any linear combination of 1, f1, . . . , fn is (C,α)-
good on 3n+1B;

[3.6-ii] for any β > 0 there exists T = T (β) > 0 such that for any t ≥ T
and any Γ ∈ Sn+1 one has

sup
x∈B

‖gtuf(x)Γ‖ ≥ e−βt ,

where uf(x) is as in (2.7) and F = {gt} is as in (2.1).

Then f(x) is not VWA for a.e. x ∈ B.

Proof. We apply Theorem 3.5 with k = n + 1 and h(x) = gtuf(x). Our
goal is to show that for any γ > 0, the set {x ∈ B | γF (uf(x)Z

n+1) > γ}
has measure zero. As was observed in the preceding section, see (2.9), for
every w ∈ Sn+1 all the coordinates of h(x)w are linear combinations of
1, f1, . . . , fn, which, by (3.2), implies [3.5-i]. Now choose any β < γ, take
t ≥ max((T (β), log(n + 1)/β) and put ρ = e−βt. This guarantees ρ ≤ 1/k
and verifies condition [3.5-ii]. Thus, for t as above, the measure of each of
the sets {

x ∈ B | δ(gtuf(x)Z
n+1) < e−γt

}
(3.3)
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is not greater than CC ′e−α(γ−β)t. One then applies the Borel–Cantelli
lemma to conclude that almost every x ∈ B belongs to at most finitely
many of the sets (3.3) with t ∈ N, which completes the proof in view of
Corollary 2.3. �

The next lemma shows that assumption [3.6-ii] is in fact necessary for
the extremality of f ; furthermore, the consequences of [3.6-ii] being not true
are much stronger than positive measure of the set {x ∈ B | f(x) is VWA}.
Lemma 3.7. Let B be a ball in R

d, and let f be a map from B to R
n such

that [3.6-ii] does not hold. Then f(x) is VWA for all x ∈ B.

Proof. The assumption says that there exists β > 0 such that one has

sup
x∈B

‖gtuf(x)Γ‖ < e−βt

for arbitrarily large t (and Γ ∈ Sn+1 dependent on t). In view of (2.8), for
any x ∈ B this implies

δ(gtuf(x)Z
n+1) ≤ c(j)‖gtuf(x)Γ‖1/j < c(j)e−βt/j ,

where j is the rank of Γ. Hence γF (uf(x)Z
n+1) ≥ β/n, and an application

of Corollary 2.3 finishes the proof. �

We now combine the two lemmas above to obtain the desired extremal-
ity criterion.

Theorem 3.8. Let U be an open subset R
d, and let f be a map from U

to R
n which is continuous and good. Then the following are equivalent:

[3.8-i] the set {x ∈ U | f(x) is not VWA} is dense in U ;
[3.8-ii] f is extremal (that is, the above set has full measure);
[3.8-iii] for a.e. x0 ∈ U and any r > 0 there exists a ball B ⊂ U centered

at x0 of radius less than r satisfying [3.6-ii];
[3.8-iv] any ball B ⊂ U satisfies [3.6-ii].
Proof. Obviously [3.8-ii]⇒[3.8-i] and [3.8-iv]⇒[3.8-iii]. The implication
[3.8-i]⇒[3.8-iv] is immediate from Lemma 3.7. Assuming [3.8-iii] and using
the fact that f is good, for a.e. x0 ∈ U one finds a ball B centered at x0

such that the dilated ball 3n+1B is contained in U , and both [3.6-i] and
[3.6-ii] hold. Thus Lemma 3.6 applies, and [3.8-ii] follows. �

We remark that for the equivalence of [3.8-i] and [3.8-ii] it is essential
that f be chosen within the class of good maps. Indeed, one can consider
the map f(x) =

(
x, ψ(x)

)
, with ψ from Example 3.4. Clearly f(x) is VWA

for any x from K, which is assumed to have positive measure. On the other
hand, the restriction of f to any J ∈ Jk, k ∈ N, is nondegenerate in R

2,
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hence the set {x ∈ (0, 1) | f(x) is not VWA} has full measure in (0, 1)�K,
and the latter is dense in (0, 1).

Our next task is to rephrase [3.6-ii]. For any B ⊂ U let us denote by
FB the R-linear span of the restrictions of 1, f1, . . . , fn to B. Then, for any
ball B ⊂ U , let us assume that functions g1, . . . , gs : B → R are chosen
so that 1, g1, . . . , gs form a basis of FB (here the dimension s + 1 of FB
may depend on B). Further, the choice of functions 1, g1, . . . , gs defines a
matrix P ∈Ms+1,n+1 formed by coefficients in the expansion of 1, f1, . . . , fn
as linear combinations of 1, g1, . . . , gs. In other words, with the notation
f̃ def= (1, f1, . . . , fn) and g̃ def= (1, g1, . . . , gs), one has

f̃(x) = g̃(x)P ∀x ∈ B . (3.4)

This way, the restriction of f to B is described by two pieces of data: the
(s+ 1)-tuple g̃ and the matrix P . We now proceed to show that, assuming
the map f is good (which is an assumption involving g̃), a criterion for its
extremality can be written in terms of P .

Indeed, any f ∈ FB can be written as f(x) = g̃(x)v for some v ∈
R
n+1, and because of the linear independence of components of g̃ over R,

the ‘supremum-on-B’ norm of f , that is, f �→ supx∈B |f(x)|, is equivalent
to ‖v‖, the constant in the equivalence depending on B and the choice
of g̃. Now recall that for any w =

∑
I wIeI , the Ith component of uf(x)w

is equal to wI if 0 /∈ I, and to

wI +
∑

i/∈I
(−1)l(I,i)wI∪{i}�{0}fi(x)

if I contains 0. It will be convenient to simplify the latter expression by
introducing the following notation: given I ⊂ {0, . . . , n} containing 0 with
|I| = j, and an element w =

∑
I wIeI of

∧j(Rn+1), let us define a vector
cI,w ∈ R

n+1 by

cI,w
def=

∑

i/∈(I�{0})
(−1)l(I,i)wI∪{i}�{0}ei = wIe0+

∑

i/∈I
(−1)l(I,i)wI∪{i}�{0}ei .

(3.5)
Then the nonconstant components of uf(x)w can be written as
f̃(x)cI,w = g̃(x)PcI,w; therefore the ‘supremum-on-B’ norm of
each of the functions can be replaced by ‖PcI,w‖. Modifying all
the norms and using (2.9), one replaces supx∈B ‖gtuf(x)w‖ by

max(e
n+1−j

n
tmax0∈I ‖PcI,w‖, e− j

n
tmax0/∈I |wI |). We summarize the above

discussion as follows:
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Proposition 3.9. LetB be a ball in R
d, f a map fromB to R

n, {1, g1,...,gs}
a basis of FB , and P a matrix satisfying (3.4). Then [3.6-ii] is equivalent
to

∀ β > 0 ∃T > 0 such that ∀ t ≥ T , > ∀ j = 1, . . . , n and ∀w ∈ Sn+1,j

one has max
(
e

n+1−j
n

tmax
0∈I

‖PcI,w‖, e− j
n
t max

0/∈I
|wI |

)
≥ e−βt . (3.6)

In other words, we have shown that the extremality of a continuous
good map f : U → R

n is equivalent to the validity of certain Diophantine
conditions involving matrices P ‘coordinatizing’ f |B . These conditions will
be made more precise in the next section, and Theorem 1.2 will be obtained
as a corollary.

4 Extremality Criteria for Affine Subspaces

Note that in general, as was mentioned above, it may not be possible to
choose the same matrix P uniformly for all balls B in U . Let us now
consider an important special case when this is possible.

Theorem 4.1. Let U ⊂ R
d be an open subset, and let g = (g1, . . . , gs) :

U → R
s be a continuous good map such that

∀x ∈ U (equivalently, ∀x from a dense subset of U)

the germs of 1, g1, . . . , gs at x are linearly independent over R .
(4.1)

Also fix P ∈Ms+1,n+1, and let f be given by (3.4). Then (3.6) is equivalent
to each of the following conditions:

[4.1-i] the set {x ∈ U | f(x) is not VWA} is non-empty;

[4.1-ii] f is extremal (that is, the above set has full measure).

Proof. It is clear from (3.4) that f is also continuous and good. [4.1-ii]
follows from (3.6) in view of Proposition 3.9 and the implication [3.8-iii]⇒
[3.8-ii]. On the other hand, if (3.6) is violated, Lemmas 3.7 and Proposi-
tion 3.9 imply that every point of U has a neighborhood B such that f(x)
is VWA for all x ∈ B, contradicting [4.1-i]. �

Informally speaking, the assumption of Theorem 4.1 says that f is not
‘assembled from several pieces unrelated to each other’. Without that
assumption, one can easily construct examples of good continuous (and
even C∞) maps f satisfying [4.1-i] but not [4.1-ii].

Now suppose that f is real analytic and U is connected, or, more gen-
erally, that f is nondegenerate in some affine subspace L of R

n. Then one



452 D. KLEINBOCK GAFA

can easily find s ≤ n and a good s-tuple g satisfying (4.1). Specifically,
one takes s = dim(L) and, as in the proof of Corollary 3.2, defines g to be
equal to h−1 ◦ f where h is any affine map from R

s onto L. Furthermore,
one easily recovers the corresponding matrix P by writing h in the form

h̃(x) = x̃P , (4.2)

where as usually we have h̃ def= (1, h1, . . . , hn). It follows that for fixed L, any
f which is nondegenerate in L will satisfy the assumptions of Theorem 4.1
with some uniformly chosen P . In particular, Theorem 4.1 applies to the
map f = h given by (4.2), that is, to the subspace L itself. Thus we have
proved

Theorem 4.2. Let L be an s-dimensional affine subspace of R
n paramet-

rized as in (4.2) with P ∈Ms+1,n+1. Then each of the following conditions
below is equivalent to (3.6):

[4.2-i] L contains at least one not very well approximable point;

[4.2-ii] L is extremal;

[4.2-iii] any smooth submanifold of L which is nondegenerate in L is ex-
tremal.

One then recovers Theorem 1.2 as the implications [4.2-ii]⇒[4.2-iii] and
[4.2-i]⇒[4.2-ii] above. Note also that Theorem 1.1 is obtained by taking
s = n and P = In+1.

Now recall that, as described in the introduction, one can by permut-
ing variables without loss of generality parametrize L by (1.4) for some
A ∈Ms+1,n−s; that is, take P of the form P =

(
Is+1 A

)
. In order to

restate Theorem 4.2 in terms of A, let us denote by c+
I,w (resp. c−I,w) the

column vector consisting of the first s+ 1 (resp. the last n− s) coordinates

of cI,w. In other words, we have cI,w =
(

c+
I,w

c−I,w

)
where

c+
I,w =

∑

i∈{0}∪({1,...,s}�I)
(−1)l(I,i)wI∪{i}�{0}ei

= wIe0 +
∑

i∈{1,...,s}�I
(−1)l(I,i)wI∪{i}�{0}ei

and
c−I,w =

∑

i∈{s+1,...,n}�I
(−1)l(I,i)wI∪{i}�{0}ei .

Then one has



Vol. 13, 2003 EXTREMAL SUBSPACES AND THEIR SUBMANIFOLDS 453

Theorem 4.3. Let L be an s-dimensional affine subspace of R
n parametrized

as in (1.4) with A ∈Ms+1,n−s. Then the following are equivalent:

[4.3-i] L is extremal (⇔ [4.2-i] and [4.2-iii] hold);
[4.3-ii] for any β > 0 there exists T > 0 such that for any t ≥ T , j = 1, . . . , n

and w ∈ Sn+1,j one has

max
(
e

n+1−j
n

tmax
0∈I

‖c+
I,w +Ac−I,w‖, e− j

n
tmax

0/∈I
|wI |

)
≥ e−βt ;

[4.3-iii] ∀ j = 1, . . . , n and ∀ v > n+1−j
j , ∃N > 0 such that for any

w ∈ Sn+1,j with max0/∈I |wI | > N , one has

max
0∈I

‖c+
I,w +Ac−I,w‖ >

(
max
0/∈I

|wI |
)−v

.

Proof. The preceding argument shows the equivalence [4.3-i]⇔[4.3-ii], while
the fact that [4.3-ii] and [4.3-iii] are equivalent is a special case of Lemma 2.1,
where for each j = 1, . . . , n one considers

E =
{(

max
0∈I

‖c+
I,w +Ac−I,w‖,max

0/∈I
|wI |

) ∣∣∣ w ∈ Sn+1,j

}
. �

It is instructive to write down a special case of the above inequality
corresponding to j = 1. That is, let us take v ∈ Z

n+1
� {0} = Sn+1,1

in place of w; one sees that the only one-element subset I of {0, . . . , n}
for which cI,v is defined is I = {0}, and it easily follows from (3.5) that
c{0},v = v. Writing v = ( p

q ), where p ∈ Z
s+1 and q ∈ Z

n−s, one gets
c+
{0},v = p and c−{0},v = q. Then denoting by p′ the vector with components
p1, . . . , ps, one writes the j = 1 case of [4.3-iii] as follows:

[4.3-iii]j=1 for any v > n there exist at most finitely many q ∈ Z
n−s such

that for some p ∈ Z
s+1 one has

‖p +Aq‖ ≤
∥∥∥∥

(
p′

q

)∥∥∥∥
−v

. (4.3)

Now observe that one can safely replace the latter inequality by

‖p +Aq‖ ≤ ‖q‖−v , (4.4)

perhaps slightly changing v. Indeed, (4.4) clearly follows from (4.3). On
the other hand, (4.4) implies that ‖p‖ ≤ C‖q‖ for some C dependent only
on A; thus, for a slightly smaller v and large enough ‖q‖, (4.3) would follow.
We arrive to the conclusion that [4.3-iii]j=1 is equivalent to (1.7).

However, let us point out that one does not need the full strength of
Theorem 4.3 to see that (1.7) is one of the conditions necessary for the
extremality of L as in (1.4). Indeed, as shown above, the assumption
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A ∈ W+
n (s+ 1, n− s) amounts to the existence of v > n such that for

infinitely many q ∈ Z
n−s one can find p ∈ Z

s+1 satisfying (4.3). Then one
can take any x ∈ R

s and write
∣∣p0 + (x, x̃A)

(
p′
q

)∣∣ = |p0+xp′+x̃Aq| =
∣∣x̃(Aq+p)

∣∣ ≤ (s+1)‖x̃‖‖Aq+p‖ .
Slightly decreasing v if needed, one gets infinitely many solutions of

∣∣∣∣ p0 + (x, x̃A)
(
p′

q

)∣∣∣∣ ≤
∥∥∥∥

(
p′

q

)∥∥∥∥
−v

,

that is, (x, x̃Ã) is proved to be VWA for all x.

Let us now ask the following question: could it be the case that the
remaining n − 1 conditions of Theorem 4.3 are redundant, that is, follow
from [4.3-iii]j=1? The affirmative answer to this question would provide a
very easy to state extremality criterion, i.e. the validity of (1.7), for affine
subspaces and their submanifolds.

The answer to this question is (in general) not known to the author.
However, the next result shows that the case j = n of [4.3-iii] is indeed
redundant.

Lemma 4.5. For any s = 1, . . . , n − 1, any A ∈ Ms+1,n−s and any
w ∈ Sn+1,n one has

max
0∈I

‖c+
I,w +Ac−I,w‖ ≥ 1 . (4.5)

Proof. Denote by Ji the set {0, . . . , n} � {i}. Then any w ∈ Sn+1,n can
be written in the form w =

∑n
i=0wieJi , and from (3.5) it follows that for

i = 1, . . . , n one has

cJi,w = wie0 + (−1)i−1w0ei . (4.6)

Therefore for any i = 1, . . . , s one has c−Ji,w
= 0, and hence

c+
Ji,w

+Ac−Ji,w
= c+

Ji,w
= wie0 + (−1)i−1w0ei .

Consequently, (4.5) is satisfied whenever w0 �= 0. On the other hand,
w0 = 0, in view of (4.6), implies that c−Ji,w

= 0 for any i. Taking i > s for
which wi �= 0, one gets ‖c+

Ji,w
+Ac−Ji,w

‖ = |wi|. �

This, in particular, gives an affirmative answer to the above question in
the case n = 2: a line in R

2 given by y = a0 + a1x is extremal if and only
if ( a0a1 ) /∈ W+

2 (2, 1).
It turns out that an argument similar to the proof of Lemma 4.5 pro-

duces an analogous extremality criterion for (n−1)-dimensional affine sub-
spaces of R

n for arbitrary n:
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Lemma 4.6. Let A ∈ Mn,1 be given by a column vector a ∈ R
n (this

corresponds to s = n−1). Then (4.5) holds for any w ∈ Sn+1,j with j > 1.

Proof. Our choice of s implies that for any w ∈ Sn+1,j and any I � 0 of
size j, the vector c−I,w consists of a single component, namely

c−I,w =

{
(−1)l(I,n)wI∪{n}�{0} if n /∈ I

0 otherwise.
(4.7)

Therefore for 0, n ∈ I one can write

c+
I,w + ac−I,w = c+

I,w = wIe0 +
∑

i∈{1,...,n−1}�I
(−1)l(I,i)wI∪{i}�{0}ei .

Consequently, (4.5) is satisfied whenever wI �= 0 for some I containing n.
(Here we use the fact that j > 1: indeed, such an I must also contain
some i = 0, . . . , n− 1, and thus the ith coordinate of c+

gI∪{0}�{i},w is equal
to wgI .) On the other hand, the assumption wgI = 0 for all I � n, in
view of (4.7), implies that c−I,w = 0 for any I; thus (4.5) is satisfied again.
Hence one can take an arbitrary I for which wgI �= 0 and observe that for
any i ∈ I, the absolute value of the ith coordinate of c+

I∪{0}�{i},w is equal
to |wgI |. �

Combining the above lemma with Theorem 4.3 and the equivalence of
[4.3-iii]j=1 and (1.7), one easily obtains Theorem 1.3 under assumption
(1.5). In particular, in view of (1.8), one sees that the set of a ∈ R

n for
which the (n− 1)-dimensional affine subspace of R

n parametrized by

x = (x1, . . . , xn−1) �→ (x, x̃a) = (x1, . . . , xn−1, a0 + a1x1 + · · · + an−1xn−1)
(4.8)

is not extremal, has Hausdorff dimension 1.

As was mentioned above, we are unable to show the equivalence of (1.7)
and [4.3-iii] in the general case. However, let us now turn to assumption
(1.6), under which that equivalence can be demonstrated by a direct proof
(that is, without a reference to lattices).

Until the end of this section, let us assume s = 1, take A of the form(
0
b

)
for a row vector b = (b1, . . . , bn−1) ∈ R

n−1, and let L be parametrized
by (1.4); that is, L is a line passing through the origin given by

x �→ (x, b1x, . . . , bn−1x) . (4.9)

It is clear that A ∈ W+
n (2, n−1) if and only if b ∈ W+

n (1, n−1). Therefore in
order to prove Theorem 1.3 assuming (1.6), it suffices to prove the following
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Proposition 4.7. A line given by (4.9) is extremal whenever

b /∈ W+
n (1, n − 1) . (4.10)

Proof. We follow an argument from the paper [BeBDD], where a stronger
(than the extremality) property was proved for L as in (4.9) under the
stronger (than (4.10)) assumption b /∈ W−

n (1, n − 1).
The goal is to prove that for any v > n, the set
{
x ∈ R

∣∣∣∣∣
|p+ q0x+ q1b1x+ · · · + qn−1bn−1x| ≤ ‖q‖−v

for infinitely many q = (q0, q1, . . . , qn−1)T ∈ Z
n, p ∈ Z

}

(4.11)
has measure zero. Clearly without loss of generality one can restrict x to
lie in the unit interval. Also, our usual notation b̃ = (1,b) will be helpful,
since the left-hand side of the inequality in (4.11) will be then written as
|p+ (b̃q)x|.

Let us now state a lemma from which the desired result will easily
follow. For b ∈ R

n−1 and Q, v > 0, define the set A(b, v,Q) to be the set
of x ∈ [0, 1) for which the inequality

∣∣p+ (b̃q)x
∣∣ < Q−v (4.12)

holds for some p ∈ Z,q ∈ Z
n with Q ≤ ‖q‖ < 2Q.

Lemma 4.8. For any b satisfying (4.10) and any v > n there exists a
positive constant C = C(b, v) such that for any Q > 1 one has

∣∣A(b, v,Q)
∣∣ < CQ

n−v
2 .

It is easy to see that the intersection of the set (4.11) with [0, 1) is
contained in

{
x

∣∣ x ∈ A(b, v, 2k) for infinitely many k ∈ N
}
. (4.13)

Assuming Lemma 4.8, one has |A(b, v, 2k)| < C2−
v−n

2
k ∀ k, and the fact

that the set (4.13) has measure zero is then immediate from the Borel–
Cantelli lemma. �

It remains to write down the

Proof of Lemma 4.8. Define A0(b, v, 2k) to be the set of x ∈ [0, 1) for
which (4.12) holds for some q ∈ Z

n with Q ≤ ‖q‖ < 2Q and with p = 0. It
is contained in a union of intervals of the form [0, Q−v/|b̃q|]. Due to (4.10),
there exists c = c(v) > 0 such that the denominator of the above fraction
is not less than

c · max(q1, . . . , qn−1)−
n+v

2 ≥ c · ‖q‖−n+v
2 < c · (2Q)−

n+v
2 .
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Therefore one has
∣∣A0(b, v,Q)

∣∣ < c−1Q−v(2Q)
n+v

2 = c−12
n+v

2 Q
n−v

2 .

Now let us estimate the measure of A(b, v,Q)�A0(b, v,Q). Note that,
assuming p �= 0, inequality (4.12) can be solvable in x ∈ [0, 1) only if
|b̃q| > 1−Q−v > 1−1/Q ≥ 1/2. For fixed p and q, (4.12) defines an interval
of length at most 2Q

−v

|b̃q| , and, for fixed q, the number of different centers of

those intervals, that is, points p/|b̃q|, is at most 1 + |b̃q|. Therefore one
can write
∣∣A(b, v,Q) � A0(b, v,Q)

∣∣ ≤
∑

‖q‖<2Q,
|b̃q|>1/2

2Q−v

|b̃q|
(
1+|b̃q|) = 2Q−v ∑

‖q‖<2Q,
|b̃q|>1/2

(
1+ 1

|b̃q|

)

≤ 2Q−v(4Q)n + 2Q−v ∑

‖q‖<2Q,
|b̃q|>1/2

1
|b̃q| .

To estimate the sum in the right-hand side of the above formula, note that
for fixed q1, . . . , qn−1 and variable q0, the values of b̃q form an arithmetic
progression. Thus, fixing q1, . . . , qn−1, one gets

∑

‖q0‖<2Q ,
|b̃q|>1/2

1
|b̃q| ≤ 2

(
1

1/2
+

1
1/2 + 1

+ · · · + 1
1/2 + 2Q− 1

)

= 4
(

1 +
1
3

+ · · · + 1
4Q− 1

)
< 4

(
1 + log(4Q− 1)

)
.

Summing the above estimate over all q1, . . . , qn−1, one obtains
∣∣A(b, v,Q) � A0(b, v,Q)

∣∣ ≤ 22n+1Qn−v + 8Q−v(4Q)n−1
(
1 + log(4Q− 1)

)
,

which is not greater than the right-hand side of the desired inequality for
an appropriate value of C . �

5 Multiplicative Approximation

The dynamical approach to Diophantine problems described above has an
advantage of being quite general to allow various modifications of the set-
up. In particular, most of the ideas described in this paper work for the
so-called multiplicative approximation. Let us briefly list all the relevant
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definitions. For x ∈ R
n we let

Π+(x) =
n∏

i=1

|xi|+ , where |x|+ = max
(|x|, 1) .

For v > 0 let us denote by WMv(1, n) the set of row vectors y ∈ R
n for

which there are infinitely many q ∈ Z
n such that

|yq + p| ≤ Π+(q)−v/n for some p ∈ Z . (5.1)

Since the right-hand side of (5.1) is not less than that of (1.1), one clearly
has WMv(1, n) ⊃ Wv(1, n); in particular, WMn(1, n) = R

n by Dirichlet’s
theorem. Also it can be shown using the Borel–Cantelli lemma that the
Lebesgue measure of WMv(1, n) is zero whenever v > n. Therefore, with
the definition of very well multiplicatively approximable (VWMA) vectors
as those y ∈ R

n which are in WMv(1, n) for some v > n, one has that
almost all y ∈ R

n are not VWMA.
Let us now say, following the terminology of [Sp4], that a submanifold

M of R
n (resp. a smooth map f from an open subset U of R

d to R
n)

is strongly extremal if almost all y ∈ M (resp. f(x) for a.e. x ∈ U) are
not VWMA. It is clear that strong extremality implies extremality, and to
prove a manifold to be strongly extremal is usually a harder task than just
to prove extremality. For example, the strong extremality of the curve (1.2)
(that is, the multiplicative analogue of Mahler’s problem) was conjectured
by A. Baker in 1975 [B], and the only proof that exists as of now is based
on the dynamical approach of [KM1]. In fact, the main result of the latter
paper ([KM1, Theorem A], of which Theorem 1.1 is a special case) is the
strong extremality of manifolds nondegenerate in R

n (in the analytic case
this was conjectured in [Sp4]).

With the help of the approach developed in [KM1], let us now try
to investigate multiplicative approximation properties of generic points of
proper affine subspaces and their submanifolds by first describing the set
of VWMA vectors in a dynamical language. It turns out that the actions
that are relevant for this case are multi-parameter. Namely, one replaces
(2.1) by

gt = diag(et, e−t1 , . . . , e−tn) ,

where t = (t1, . . . , tn), ti ≥ 0, and t =
n∑

i=1

ti .
(5.2)

The latter notation is used throughout the section, so that whenever t and
t appear in the same context, t stands for

∑n
i=1 ti.
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For the rest of this section, we mostly sketch our argument, as it is very
similar to what is done in §§2–4, and only highlight important modifica-
tions. The following is a multi-parameter version of Lemma 2.1:

Lemma 5.1. Suppose we are given a set E of pairs (x, z) ∈ R
n+1, which

is discrete and homogeneous with respect to positive integers. Then the
following are equivalent:

[5.1-i] for any v > n there exist (x, z) ∈ E with z arbitrarily far from 0
such that

|x| ≤ Π+(z)−v/n; (5.3)

[5.2-ii] for any γ > 0 there exists an unbounded set of t ∈ R
n
+ for which

one has

et|x| ≤ e−γt and e−ti |zi| ≤ e−γt, i = 1, . . . , n . (5.4)
for some (x, z) ∈ E � {0}.

Proof. We follow the lines of the proof of Lemma 2.1. Assuming [5.1-i],
take v > n and (x, z) ∈ E satisfying (5.3), and define t by

e(1−nγ)t = Π+(z) , (5.5a)
where γ < 1/n is as in (2.5). Then for every i define ti by

eti = eγt|zi|+ . (5.5b)
Note that, since |zi| ≤ |zi|+, this implies e−ti |zi| ≤ e−γt; and note also that
multiplying all the equalities (5.5b) and comparing the result with (5.5a)
one can verify that t =

∑n
i=1 ti. Then one has

et|x| ≤ etΠ+(z)−v/n = et(e(1−nγ)t)−v/n =
(2.5)

e−γt ,

that is, (5.4) is satisfied for this choice of x, z and t; taking z with arbitrarily
large Π+(z) produces arbitrarily large values of t.

Assume now that [5.1-ii] holds, and take γ < 1/n. Then one can find an
unbounded sequence of vectors t and a sequence of points (x, z) ∈ E � {0}
satisfying (5.4). Since for any t one has ti ≥ γt for at least one i, passing to
a subsequence and reshuffling the coordinates of t and z if necessary, one
can assume that for some k = 1, . . . , n and all entries t of that sequence,
one has

ti ≥ γt for i ≤ k, and ti < γt for i > k . (5.6)
It follows from (5.6) and (5.4) that |zi|+ ≤ eti−γt for i ≤ k, and |zi| < 1 for
i > k, hence

Π+(z) ≤
k∏

i=1

|zi|+ ≤ et1+···+tk−kγt ≤ e(1−kγ)t . (5.7)
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Now it is time to find an appropriate v. However, because of an extra
parameter k, we have to modify (2.5), namely define v > n by

γ =
v − n

kv + n
⇔ v =

n(1 + γ)
1 − kγ

. (5.8)

Then the right-hand side of (5.7) is equal to e
n
v
(1+γ)t, and (5.4) implies

|x| ≤ e−(1+γ)t = (e(1−kγ)t)−v/n ≤
(5.7)

Π+(z)−v/n .

which is exactly what was needed. After that, as in the proof of Lemma 2.1,
one notices that a uniform bound on ‖z‖, by the discreteness of E, implies
that (0, z0) ∈ E for some z0, and integral multiples of (0, z0) give infinitely
many (x, z) ∈ E satisfying (5.3). To finish the proof, it remains to observe
that (5.8) forces v to tend to n uniformly in k as γ → 0. �

Corollary 5.2. For y ∈ R
n and gt as in (5.2), the following are equivalent:

[5.2-i] y is VWMA;
[5.2-ii] for some γ > 0 there exists an unbounded set of t ∈ R

n
+ such that

δ(gtuyZ
n+1) ≤ e−γt ; (5.9)

[5.2-iii] for some γ > 0 there exist infinitely many t ∈ Z
n
+ such that (5.9)

holds.

Note that Corollary 2.2 in [KM1] provides the implication [5.2-i]⇒
[5.2-iii].
Proof. Taking E = uyZ

n+1, one sees that (5.9) amounts to the validity of
(5.4) for some (x, z) ∈ E� {0}. The rest of the argument mimics the proof
of Corollary 2.3. �

From the above corollary and Theorem 3.5 it is not hard to derive
multiplicative analogues of extremality criteria of §3 and §4. The crucial
condition to consider is an analogue of [3.6-ii]: if B ⊂ R

d is a ball and f a
map from B to R

n, it is important to check whether or not
∀ β > 0 ∃T = T (β) > 0 such that for any t ∈ R

n
+ with t ≥ T

and any Γ ∈ Sn+1, one has sup
x∈B

‖gtuf(x)Γ‖ ≥ e−βt . (5.10)

The following can be proved by a straightforward repetition of the argument
of §3:

• (cf. Lemma 3.7) if (5.10) does not hold, then f(x) is VWMA for all
x ∈ B;

• (cf. Lemma 3.6) if f is continuous, defined on 3n+1B and satisfies
[3.6-i] and (5.10), then f(x) is not VWMA for a.e. x ∈ B.

Therefore one has
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Theorem 5.3. For U and f as in Theorem 3.8, the following are equivalent:

[5.3-i] the set {x ∈ U | f(x) is not VWMA} is dense in U ;
[5.3-ii] f is strongly extremal (that is, the above set has full measure);
[5.3-iii] for a.e. x0 ∈ U and any r > 0 there exists a ball B ⊂ U centered

at x0 of radius less than r satisfying (5.10);
[5.3-iv] any ball B ⊂ U satisfies (5.10).

In order to express (5.10) in Diophantine language, we need some more
notation: for t ∈ R

n
+ and I ⊂ {0, . . . , n}, let

tI
def=

∑

i∈I�{0}
ti .

Then, taking f , B, {1, g1, . . . , gs} and P as in Proposition 3.9, one can
observe that (5.10) can be written in the form

∀ β > 0 ∃T > 0 such that ∀ t ∈ R
n
+ with t ≥ T and ∀w ∈ Sn+1

one has max
(
et−tI max

0∈I
‖PcI,w‖, e−tI max

0/∈I
|wI |

) ≥ e−βt . (5.11)

Thus Theorem 5.3 implies

Theorem 5.4. Let U , f , g and P be as in Theorem 4.1. Then (5.11) is
equivalent to each of the following conditions:

[5.4-i] the set {x ∈ U | f(x) is not VWMA} is non-empty;
[5.4-ii] f is strongly extremal (that is, the above set has full measure).

Taking P of the form P =
(
Is+1 A

)
, one deduces

Theorem 5.5. The following are equivalent for an s-dimensional affine
subspace L of R

n parametrized as in (1.4) with A ∈Ms+1,n−s :

[5.5-i] L contains at least one not VWMA point;
[5.5-ii] L is strongly extremal;
[5.5-iii] any smooth submanifold of L which is nondegenerate in L is strongly

extremal;
[5.5-iv] for any β > 0 there exists T > 0 such that for any t ∈ R

n
+ with

t ≥ T , and any w ∈ Sn+1 one has

max
(

max
0∈I

et−tI ‖c+
I,w +Ac−I,w‖,max

0/∈I
e−tI |wI |

)
≥ e−βt . (5.12)

This, in particular, proves Theorem 1.4, as well as gives a criterion for
the strong extremality of L written in terms of Diophantine properties of
the parametrizing matrix A.

In general, it seems to be a hard problem to simplify condition [5.5-iv].
However, in view of computations made in §4, this can be easily done in
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the case s = n−1, that is, when L is a codimension one subspace. Namely,
due to Lemma 4.6, one knows that (5.12) always holds when s = n− 1 and
w ∈ Sn+1,j with j > 1; thus it suffices to handle the case j = 1. As in §4, one
then uses v = ( p

q ) ∈ Z
n+1

�{0} in place of w (here p ∈ Z
n and q ∈ Z) and

notices that cI,v is defined only for I = {0}, with c{0},v = v, c+
{0},v = p and

c−{0},v = q. Replacing A by a column vector a = (a0, a1, . . . , an−1)T ∈ R
n−1

and letting p = (p0, p1, . . . , pn−1)T and p′ = (p1, . . . , pn−1)T , one gets

Corollary 5.6. The following are equivalent for an (n − 1)-dimensional
affine subspace L of R

n parametrized by (4.8):
[5.6-i] L is strongly extremal;
[5.6-ii] for any β > 0 there exists T > 0 such that for any t ∈ R

n
+ with

t ≥ T and any ( p
q ) ∈ Z

n+1
� {0} one has

max
(
et‖p + aq‖, e−t1 |p1|, . . . , e−tn−1 |pn−1|, e−tn |q|

) ≥ e−βt .
[5.6-iii] for any v > n there exists K > 0 such that for any p ∈ Z

n and
q ∈ Z with max(‖p′‖, |q|) > K, one has

‖p + aq‖ > Π+(p′, q)−v/n .
Proof. The only part that requires a comment is the equivalence
[5.6-ii]⇔[5.6-iii], which is a special case of Lemma 5.1 with

E =
{
(‖p + aq‖,p′, q) | p ∈ Z

n, q ∈ Z
}
. �

Corollary 5.7. Let L be parametrized by (4.8), and let

k = #{1 ≤ i ≤ n− 1 | ai �= 0} .
Then L is strongly extremal iff a /∈ W+

k+1(n, 1).

Proof. By the previous corollary, the fact that L is not strongly extremal
is equivalent to saying that for some v > n there exist (p, q) ∈ Z

n with
arbitrarily large max(‖p′‖, |q|) such that

‖p + aq‖ ≤ Π+(p′, q)−v/n. (5.13)
Equivalently, there exists a sequence of solutions of (5.13) with pi arbitrarily
close to aiq for all i = 1, . . . , n− 1, which in particular happens if and only
if pi is equal to zero for any i with ai = 0. Hence the ratio of Π+(p′, q)
and |q|k+1 is bounded from both sides, and, slightly changing v, one gets
infinitely many solutions of ‖p + aq‖ ≤ |q|− v

n
(k+1). �

In particular, one can see that the set of vectors a ∈ R
n for which

the map (4.8) is not strongly extremal is slightly bigger than the one cor-
responding to non-extremality, agrees with the latter outside of all the
coordinate planes, and still has Hausdorff dimension 1.
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6 Further Generalizations and Open Questions

6.1 As was mentioned before, it would be very interesting to find out
whether Theorem 1.3 can be extended to the cases when the rank of A
is greater than one. If it cannot, it would be nice to find a reasonable
description of the set of non-extremal subspaces, e.g. such that would allow
to compute its Hausdorff dimension. Similar questions are open in the case
of multiplicative approximation; in particular, it is not clear, except for the
case of hyperplanes, how much smaller than the set of extremal subspaces
is the set of strongly extremal ones.

6.2 Given that one of the main results of this paper is that the ex-
tremality of an affine subspace is inherited by its nondegenerate subman-
ifolds, one can ask whether any ‘passage of information’ takes place when
the subspace is not extremal. Let us introduce the following definition: for
A ∈Mm,n(R), define the Diophantine exponent ω(A) of A by

ω(A) def= sup
{
v

∣∣ A ∈ Wv(m,n)
}
.

Clearly n/m ≤ ω(A) ≤ ∞ for all A, and A is VWA iff ω(A) > n/m. Now,
for a map f : U → R

n define ω(f) to be the essential infimum of ω(f(·)),
i.e.

ω(f) def= sup
{
v

∣∣ |{x ∈ U | f(x) ∈ Wv(1, n)}| > 0
}
.

Naturally, if M is a smooth manifold, we let the Diophantine exponent
ω(M) of M to be the Diophantine exponent of its parametrizing map.

Clearly a manifold (map) is extremal iff its Diophantine exponent is
the smallest possible, i.e. is equal to n = ω(Rn). Now the following two
questions arise:

• Is it true that the Diophantine exponent of an affine subspace L of
R
n is inherited by manifolds nondegenerate in L?

• how to efficiently describe the class of affine subspaces with a given
Diophantine exponent?

The answer to the first question is ‘yes’, which can be proved by a
refinement of the ‘dynamical’ approach developed in [KM1] and the present
paper. Furthermore, similarly to Theorems 3.8 and 4.2–4.3, for any v ≥ n
one can write down necessary and sufficient conditions for a good (resp.
affine) map f to have ω(f) ≤ v.

The answer to the second question is as obscure as the problem of
extending Theorem 1.3 beyond the cases (1.5) and (1.6). Indeed, the con-
clusion of the latter theorem amounts to saying that, for L parametrized
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as in (1.4), ω(A) ≤ n implies ω(L) = n. In general, one can easily prove
that ω(L) ≥ ω(A); thus one is left to ask whether ω(L) is always equal to
max

(
n, ω(A)

)
(this can be verified in the ‘rank-one’ cases (1.5) and (1.6)).

All this is going to be the topic of a forthcoming paper [K2].

6.3 Even more generally, one can replace the right-hand side of (1.1) by
an arbitrary function of ‖q‖. Let us specialize to the case of row vectors
and introduce the following definition: for a non-increasing function ψ :
N → (0,∞), define Wψ(1, n) to be the set of y ∈ R

n for which there are
infinitely many q ∈ Z

n such that

‖yq + p‖ ≤ ψ(‖q‖) for some p ∈ Z .

It is a theorem of A.V. Groshev ([G], see also [S1]) that almost no (resp.
almost all) y ∈ R

n belong to Wψ(1, n) if the series
∞∑

k=1

kn−1ψ(k) (6.1)

converges (resp. diverges). (The case of convergence easily follows from
the Borel–Cantelli lemma.) It has been recently proved, see [BeKM] for
the convergence part and [BeBKM] for the divergence part, that the same
dichotomy takes place for any nondegenerate submanifold of R

n; in other
words, for a smooth map f : U → R

n which is nondegenerate in R
n, one

has
f(x) ∈ Wψ(1, n) for almost no (resp. almost all) x ∈ U

if the series (6.1) converges (resp. diverges).
(6.2)

It is natural to expect a similar dichotomy for any smooth submanifoldM of
R
n, with the convergence/divergence of (6.1) replaced by another ‘dividing

line’ condition, possibly involving the Diophantine exponent of M. The
following problems remain open:

• Is it true that the aforementioned ‘dividing line’ condition of an affine
subspace L of R

n is inherited by manifolds nondegenerate in L?
• Given an affine subspace, find its ‘dividing line’ condition; or, vice

versa, describe the class of subspaces with a given ‘dividing line’.

The only result along these lines known to the author is the paper
[BeBDD], where it is shown that the convergence/divergence of (6.1) serves
as the ‘dividing line’ condition for one-dimensional subspaces of R

n of the
form (1.9) with b /∈ W−

n (1, n − 1).
Finally, let us note that the paper [BeKM] also contains a more general

(in particular, multiplicative) version of the convergence case of (6.2), and
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it is of considerable interest to see if the argument from that paper can be
applied to the set-up of proper affine subspaces and their nondegenerate
submanifolds.
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