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PERIODIC SOLUTIONS OF THE ABELIAN HIGGS
MODEL AND RIGID ROTATION OF VORTICES
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Abstract
The metric and potential energy on the reduced moduli space of self-
dual vortices in the Abelian Higgs model on S2 are computed in a
certain limit, first identified by Bradlow. In this limit it is proved
that the Higgs field is asymptotic to a standard holomorphic sec-
tion. These results are then used to prove a theorem asserting the
existence of time-periodic solutions of the Abelian Higgs model on
R × S2 which represent two vortices in rigid rotation about one an-
other. The theorem answers affirmatively the question, raised by Jaffe
and Taubes, of whether a balance between the inter-vortex attraction
and the centrifugal repulsion provides for the existence of such solu-
tions (as it does in the classical two body problem for point particles.)
The starting point of the analysis is the adiabatic limit system, i.e. the
Hamiltonian system defined by restricting the Abelian Higgs model
to the moduli space of self-dual vortices. The Hamiltonian consists of
a potential energy term and kinetic energy term which is given by the
metric on the moduli space induced from L2. It is shown under two
assumptions on the metric and potential energy that the adiabatic
limit system admits periodic solutions of the required type. Periodic
solutions to the full system are then obtained by an application of the
implicit function theorem. Explicit examples where the assumptions
on the adiabatic limit system hold are provided by the computations
of the metric and potential in the Bradlow limit.

1 Introduction

This paper is concerned with Abelian Higgs, or Ginzburg-Landau, vor-
tices in the Abelian Higgs model on R × S2; this is a hyperbolic system
of equations for a complex function, or section, Φ (the Higgs field) and
a connection (electromagnetic potential) A, with associated curvature or
magnetic field BA = dA. The main result is the construction of time pe-
riodic solutions of this system in which two vortices are in rigid rotation
about one another (Theorem III and Theorem 3.4.1 in section 3.4). These
solutions are obtained by continuation of periodic solutions to the adiabatic
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limit system (section 3.3). Information about this system is obtained from
explicit algebraic formulae for the L2 metric on the moduli space and for
the interaction potential energy between two vortices in a certain limit (see
Theorems I and II and sections 2.2, 2.3). In this introductory section the
setting for the problem will be explained and the main theorems stated.
Additional notation and background information is given in the appendix.
The theorems which compute the metric and potential energy are proved
in section 2, while the existence theorem for periodic solutions is proved in
section 3.

A vortex is usually defined as a finite action critical point of the static
energy:

Vλ,τ (A,Φ) =
1
2

∫
Σ

(
B2
A + |∇AΦ|2 +

λ

4
(τ − |Φ|2)2

)
dµg , (1.1)

where Σ is either an open set in R2 or a Riemann surface. Φ is a section of a
one dimensional complex vector bundle E and A is a connection on E. Let
Ak,Hk(E) be completions of the space of connections and sections with
respect to the Sobolev norm ‖ · ‖k (see section 4.1); then Vλ,τ defines a
smooth function:

Vλ,τ : Ak ×Hk(E)→ R
for all integers k ≥ 1. The gauge group, which acts on pairs (A,Φ) according
to (4.1), leaves Vλ,τ invariant.

The case λ = 1, called the self-dual or Bogomolny limit, is particularly
important. Computational studies ([JR]) indicated that when λ = 1 the
vortices “do not interact”, in the sense that there is no net force between
them. A precise mathematical justification of this notion was provided
by Taubes’ existence theorem (see [JaT]), which proved the existence of a
smooth manifold M of (gauge equivalence classes of) critical points repre-
senting nonlinear superpositions of N symmetric vortices. When λ = 1 if
(A,Φ) is a minimiser then Φ has isolated zeros {Zj}Nj=1 where N can be any
integer; the zeros of Φ are often identified with the centres of the vortices.
The unordered set of points {Zj} may be chosen arbitrarily, and determine
the solutions up to gauge equivalence, so thatM may be identified with the
symmetric product of N copies of the plane. Following Taubes’ theorem
the existence of these large families of minimisers was shown also to hold
when Σ is a compact Riemann surface:

Theorem ([B],[G]). For λ = 1 and τ × Area(Σ) > 4πN the minimum
value of Vλ,τ on the space of smooth connections A and smooth sections
Φ is attained on a non-empty set S whose quotient by the group of gauge



570 D.M.A. STUART GAFA

transformations, M, can be identified with the symmetric N -fold product
of Σ.

In the Sobolev setting defined in section 4.1 the manifold structure of
M can be described in the standard way in terms of the elliptic operator
defined by the Hessian of Vλ,τ (section 4.2). More recent studies have
provided formulae for the volume of the moduli space for arbitrary Σ ([M1],
[MN]). Bradlow found a new phenomenon in the compact case: a necessary
and sufficient condition for existence of the multi-vortices with N zeros
was that τ × Area(Σ) > 4πN . We shall refer to the limit τ → τcr =
4πN/Area(Σ) as the Bradlow limit. Throughout this paper N = 2. The
behaviour of the volume of the moduli space in the Bradlow limit on higher
genus surfaces is discussed in [N].

There are various dynamical models associated to the functional (1.1).
In the present paper the Abelian Higgs model is the object of study. Write
A for the smooth connections on E. The Abelian Higgs model is (subject to
the usual proviso about gauge invariance) a hyperbolic system of equations
for a map t 7→ (A(t),Φ(t)) ∈ A×C∞(E); thus, at each time t, (A(t),Φ(t))
are respectively, a connection and a section of E. The equations can be
expressed, writing ˙ for d

dt , as

(Ä, Φ̈) + V ′λ,τ (A,φ) = 0 (AH)

together with the constraint equation

d∗Ȧ+ (iΦ, Φ̇) = 0 , (C)

which is preserved by the evolution. This is the form of the equations in
temporal gauge; they are written out more explicitly and generally below
in (3.1).

Definition 1.1. A T-periodic solution to (AH) consists of a smooth map
t 7→ (A(t), Φ(t)) ∈ A×C∞(E) which satisfies (AH) and with the property
that for each t the configuration (A(t + T ),Φ(t + T )) is gauge equivalent
to (A(t),Φ(t)), i.e. there exists a smooth function χ such that A(t+ T ) =
A(t) + dχ and Φ(t+ T ) = Φ(t)eiχ.

It was suspected from numerical evidence ([JR]) that the vortices attract
or repel according to whether λ is less or bigger than one. Given two points
Z1, Z2 let (A,Φ) be a minimising multi-vortex in which Z1, Z2 are the zeros
of Φ. In [St1] it was proved (in the case Σ = R2) that for λ close to 1 the
integral

vλ,τ (Z1, Z2) =
(λ− 1)

8

∫
Σ

(
τ − |Φ|2

)2
dµg (1.2)
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determines a smooth function on M which acts as an interaction potential
energy between vortices. The precise meaning attached to this latter state-
ment in [St1] is as follows: the dynamics of vortices for λ ≈ 1 is proved to
be well approximated by a finite dimensional Hamiltonian system on M
with potential energy term given by (1.2). This is called the adiabatic limit
system; it is discussed further below and in section 3.3. This type of approx-
imation had been conjectured by Manton to provide a description of the
dynamics of BPS monopoles (see [M2], [U], [St2] for further information).
Numerical computation of (1.2) ([Sh]) indicated that vλ,τ is monotonically
decreasing or increasing depending upon whether λ is greater or less than
one. Theorem I provides an explicit formula which proves this for the case
when Σ is a sphere in the Bradlow limit. Theorems I and II allow a proof,
given in section 3.3, that the adiabatic limit problem admits periodic so-
lutions which represent vortices in rigid rotation. The implicit function
theorem is then employed in section 3.4 to yield periodic solutions to (AH)
in the sense of Definition 1.1: see Theorem III.

To state these results it is convenient to introduce co-ordinates by stereo-
graphic projection. Take Σ = S2

R to be a sphere of radius R in R3 and apply
the stereographic projection map to introduce a co-ordinate system x =
(x1, x2) ∈ R2, with a corresponding holomorphic co-ordinate z = x1 + ix2,
on S2; the domain of the co-ordinate z is the whole sphere except a single
point (the point at infinity). Recall that N = 2 so Φ is now a section of
a degree 2 line bundle E; on the domain of z a natural (holomorphic non-
unitary) frame for this bundle is ∂/∂z. Let h be the metric on E given,
with respect to this frame, by∣∣Φ(z)

∣∣2 =
Φ(z)Φ(z)
(1 + |z|2)2 . (1.3)

(This is proportional to the Riemannian metric on the sphere given by its
canonical embedding in R3.) In this instance ([B],[G]) the moduli space
M = CP 2; let M̃ ⊂M be the subset ofM for which both Z1, Z2 are finite
i.e. the zeros of Φ both lie in the domain of the co-ordinate z. It is proved
in section 4.3 that

P = Z1 + Z2

Q = Z1Z2
(1.4)

form a system of holomorphic co-ordinates on M̃ even when Z1 = Z2.
Define the reduced moduli space M̃0 ⊂ M by P = Z1 + Z2 = 0: it is
convenient to introduce co-ordinates ρ, θ by Q = −ρeiθ, so that for Q 6= 0
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this represents two vortices at Z1 =
√
ρeiθ/2, Z2 = −√ρeiθ/2. Define δ > 0

by

δ2 = 4π(τR2 −N) .

In terms of ρ, θ the metric induced from L2 (the kinetic energy) on M̃0
takes the form (see section 2.3):

1
2f(ρ)(ρ̇2 + ρ2θ̇2) . (1.5)

Periodic solutions will be obtained by perturbing periodic solutions to a
finite-dimensional Hamiltonian system obtained in the adiabatic limit of
(AH). This system is obtained by first restricting the action to S, the
space of finite-energy minimisers of the potential Vλ,τ , and then dividing
out by the action of the gauge group. This leads to a finite-dimensional
Hamiltonian system which is then further reduced by factoring out the
action of SO(3) to yield a two-dimensional system with Hamiltonian,

Hred(ρ, π) =
1

2f(ρ)

(
π2 +

J2

ρ2

)
+ vλ,τ (

√
ρ,−√ρ) . (1.6)

Here ρ is as above, π = f(ρ)ρ̇ is the corresponding momentum and J =
f(ρ)ρ2θ̇ is the angular momentum connected with rotation about the axis
of symmetry of the two vortices. The next two theorems provide explicit
information about the Hamiltonian (1.6) in the Bradlow limit.

Theorem I. There exists a positive number δ0 such that for δ ≤ δ0 the
interaction potential function vλ,τ (

√
ρ,−√ρ) defined in (1.2) satisfies

vλ,τ
(√
ρ,−√ρ

)
=

(λ− 1)
8

(
4πτN − τδ2 +

3δ4(3 + 2ρ2 + 3ρ4)
20πR2(1 + ρ2)2 + δ6vrem(ρ)

)
where ‖vrem‖C2[0,K] ≤ c = c(K,R).

Remark. The function (3 + 2ρ2 + 3ρ4)/(1 + ρ2)2 is strictly decreasing
for 0 < ρ < 1. This implies that the potential energy is attractive for all
such ρ for λ < 1 and δ sufficiently small. (Recall that ρ = 1 corresponds
to two diametrically opposite points on the sphere, so this is the maximum
possible separation.)

Theorem II. There exists a positive number δ1 such that for δ ≤ δ1 the
function f defined by (1.5) satisfies

f(ρ) =
2δ2(ρ2 + 4ρ+ 1)
(1 + ρ2)2(1 + ρ)2 + δ4frem(ρ) .

where ‖frem‖C2[0,K] ≤ c = c(K,R).
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Remarks. (i) The restriction ρ ≤ K in these theorems is not significant:
it arises from the fact that the co-ordinate system becomes ill-defined at
infinity. Using the co-ordinate w = 1/z allows a description of vλ,τ , f for
large ρ which will be exactly the same as that just given.

(ii) In principle the metric and potential energy in the Bradlow limit
could be computed for arbitrary N in the same way. A more general treat-
ment of this problem will be given in a later publication; in this article only
those aspects necessary to understand the existence of periodic solutions
will be discussed.

It was conjectured in the book of Jaffe and Taubes that in the attractive
case there may exist bound states of vortices rotating about one another in
which the attraction is balanced by a centrifugal repulsion.

Theorem III. For λ < 1 and δ, 1 − λ sufficiently small there exist time
periodic solutions of (AH). These solutions represent two vortices in rigid
rotation about one another in the sense of Definition 3.2.1.

Remarks. (i) This theorem is a consequence of Theorem 3.4.1, proved
in section 3.4. The proof actually holds if vλ,τ is attractive, regardless of
whether λ is bigger or smaller than one; however in accordance with the
discussion above it is conjectured that for λ > 1 it is repulsive.

(ii) There are two aspects to the question of existence of bound states
of vortices of this type. Firstly there is the question of whether vortices
behave like particles and in particular whether rotation produces a centrifu-
gal force in some sense. Since vortices are solitons not particles this cannot
be taken for granted; however the present result provides evidence that, at
least in some cases, vortices do behave like particles. Secondly there is the
aspect of radiation, which destabilises classical bound states such as the
Rutherford atom. This issue is here bypassed by working on the sphere. It
seems unlikely that bound states involving rigid rotation of vortices exist
for Σ = R2. Solutions of the type discussed in [EGeSe] however may well
exist. Various constraints on the existence of periodic solutions to nonlinear
wave equations and generic non-existence results are given in the articles
[C], [Si], [St3], [PySi], [SoWe1,2] and references therein.

(iii) The existence of rotating states in the Abelian Higgs model is a dif-
ferent phenomenon to their existence in the “non-linear Schrödinger type”
dynamics ([M3]) where forces produce velocities in a perpendicular direc-
tion.

(iv) The idea of periodic solutions appearing as orbits of the rotation
group has been successfully employed for two-dimensional skyrmions in
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[PScZ], as well as being suggested for monopoles in [Mo].

2 The Bradlow Limit

In this section an analysis is presented of the limiting behaviour of multi-
vortices in the Bradlow limit, and Theorems I and II are proved. Notation
from section 4.1 will be used freely.

2.1 The Bogomolny equations. Some facts about the minimisers of
Vλ,τ for λ = 1 are now collected for convenience; formulae are written for
general N . Some further facts about these minimisers used in the paper are
given in sections 4.2, 4.3 and 4.4. When λ = 1 Vλ,τ has many special prop-
erties and there is a good understanding of its critical points. It is known
from [B] that if τR2 > N there is, up to gauge equivalence, a smooth 2N
dimensional manifold M of minimisers of Vλ,τ called multi-vortices; these
are pairs (A,Φ) which satisfy the Bogomolny equations (2.1). M is known
as the moduli space and can be identified with the complex projective space
CPN . The actual space of minimisers of Vλ,τ in Hk(Ω1)×Hk(E) will be
denoted by Sk; thus M is the orbit space of Sk under the action of the
gauge group (see section 4.1), M ≡ Sk/Gk+1. These spaces are indepen-
dent of k for k ≥ 1, which is why the index k is suppressed. There is a
discussion of the manifold structure on these spaces in section 4.2, where
their tangent spaces are identified with kernels of linear operators in the
usual way.

An indication that λ = 1 is special is given by the Bogomolny decom-
position formula:

V1,τ (A,Φ) = πτN+ =
1
2

∫
S2

4|D(0,1)
A Φ|2 +

∣∣∣∣BA − 1
2

(τ − |Φ|2)
∣∣∣∣2 ,

which leads to the study of the Bogomolny equations:

D
(0,1)
A Φ = 0

BA − 1
2

(
τ − |Φ|2

)
= 0

(2.1)

where D(0,1)
A Φ = 1

2((∂i−iA1)+i(∂2−iA2))Φdz. Following Taubes’ existence
theorem for the plane ([JaT]) the Bogomolny equations have been studied
on Riemann surfaces by a variety of methods ([B], [G]). One way, used
in the first of these references, to obtain the solutions of (2.1) is to reduce
them to the Kazdan-Warner equation (2.6), via the transformations (2.5).
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Integration of the second of (2.1) together with the fact that∫
S2
BAdµg = 2πN

implies that τ and the radius of the sphere are constrained by the inequality:
1
2τArea(S2) ≥ 2πN , (2.2)

with equality holding if and only if |Φ| ≡ 0. Fix the radius of the sphere S2

to be R then as τ approaches the critical value τcr = N/R2 it is clear that
‖Φ‖L2 → 0; this was called the Bradlow limit in the introduction. By a
precise description of the approach to this limit formulae for the metric on
the reduced moduli space and for the interaction potential energy between
two vortices will be obtained in the next two sections.

2.2 Proof of Theorem I. To start with assume there is given a trivi-
alisation of E over the domain of the co-ordinate z such that |Φ|2 = hΦΦ.
Write the covariant derivative as dA = d− iA, then the unitary connections
are of the form

A1 = i
2∂1 lnh+ Ã1 A2 = i

2∂2 lnh+ Ã2

with Ã1, Ã2 real. First consider the zeroth order expansion: it is clear from
the comments following (2.2) that in this limit Φ = 0, and so by (2.1) the
limiting connection a must satisfy

Ba = 1
2τcr = N

2R2 ,

i.e. the limiting connection has constant curvature. Writing h(z, z) =
1/(1 + |z|2)2 the corresponding connection a, which is unique up to gauge
transformation, is given by

a1 = 1
2(∂2 lnh+ i∂1 lnh) a2 = 1

2(−∂1 lnh+ i∂2 lnh) .

In accordance with the remark above this is a unitary connection but is
expressed relative to the non-unitary holomorphic frame provided by ∂/∂z.
Given h, (a1, a2) is the unique compatible unitary connection such that

D(0,1)
a = ∂

∂z .

Now to zeroth order Φ is zero; however it is to be expected on account of
the first equation of (2.1) that asymptotically it will approach a section of
E holomorphic with respect to a. Such sections are determined (up to a
constant) by a choice of an unordered pair of points on S2; write these as
[Z] = [Z1, Z2]. Assuming neither of these is the point at infinity in our
co-ordinates the corresponding holomorphic section is written as

s[Z] = c[Z](z − Z1)(z − Z2) . (2.3)
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Fix the normalization constant so that
∫
|s[Z]|2dµg = 1; this ensures that

if φ = δs[Z] then the integrated form of the second equation of (2.1) holds:

2πN =
1
2

∫ (
τ − |φ|2

)
dµg .

The case of interest is Z1 =
√
ρ, Z2 = −√ρ in which case c−2

[
√
ρ,−√ρ] =

4πR2(1 + ρ2)/3 and

s ≡ s[
√
ρ,−√ρ] =

√
3(z2 − ρ)

2
√
πR
√

(1 + ρ2)
. (2.4)

Now, following [JaT], [B], search for a solution in which Φ has zeros as√
ρ,−√ρ of the form

A1(δ) = a1 + 1
2∂2w

A2(δ) = a1 − 1
2∂1w

Φ(δ) = δse
1
2w ,

(2.5)

where w is a real-valued function on the sphere (depending also upon ρ).
Substitution of this into (2.1) yields the single equation,

d∗dw + δ2|s|2ew =
δ2

4πR2 . (2.6)

This equation has been carefully analysed by Kazdan and Warner and
admits a C∞ solution in the present setting (see [KW, section 10].) Ap-
plication of the maximum principle to this equation gives immediately the
following upper bound:

|s|2ew ≤ 1
4πR2 .

Decompose w,
w = w + δ2ŵ

where w is the average of w over S2 and δ2ŵ = w − w. Then ‖d∗dŵ‖L2 ≤
c = c(R), and so since

∫
S2 ŵ = 0:

‖ŵ‖W 2,2 ≤ c = c(R) . (2.7)

Finally for every δ

ew
∫
|s|2eŵ = 1 (2.8)

which together with the normalisation
∫
|s|2 = 1 implies that

|w| ≤ δ2c(R) . (2.9)
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Differentiation of (2.6) with respect to ρ twice and estimating in the same
way gives bounds

‖w‖W 2,2 + ‖wρ‖W 2,2 + ‖wρρ‖W 2,2 = O(δ2) . (2.10)

The proof of the theorem is now completed by integrating
λ− 1

8

∫
S2

(
τ − |s|2

)2
dµg ,

with s given by (2.4); this may be done explicitly and leads to the formula
given in the statement of Theorem I.

2.3 Proof of Theorem II. First of all as a general remark, in order
to compute the L2 metric on the reduced moduli space directly three steps
are required:

(i) Obtain a complete set of solutions depending upon the parameters
which are co-ordinates on the moduli space, and differentiate these
with respect to the parameters; this provides elements of the kernel
of the linearised operator.

(ii) Project these elements onto the subspace orthogonal to the gauge
flow, i.e. at the point (a, φ) they must be projected onto Ker δ∗(a,φ)
(see (4.2)); call the resulting objects the zero modes.

(iii) Compute the L2 inner products of all the zero modes obtained in (ii).

In the present situation (i) has been carried out in the limit δ → 0 in the
proof of Theorem I. Step (ii) can here be done explicitly using the formula
(see section 4.3 for explanations):

Φ̇
Φ =

(
Żj

∂
∂Zj

) (
ln |Φ|2

)
(Ȧ1 − iȦ2) = i(∂1 − i∂2)

(
Żj

∂w
∂Zj

)
which follows from [S]. Thus it remains to compute the L2 inner products
of the zero modes. Since the aim is only to compute the metric on the
reduced moduli space M̃0 there is only one zero mode to consider, namely,
that generated by variation of ρ,

Φ̇
Φ =

(
∂
∂ρ

)
(ln |Φ|2)

(Ȧ1 − iȦ2) = i(∂1 − i∂2)
(
∂w
∂ρ

)
.

where A,Φ are as in (2.5). Using the fact that w = O(δ2) it is possible
to evaluate the largest contribution to the L2 norm of (Ȧ, Φ̇) which comes
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from Φ̇ only. This gives the following integral:∫ ∞
0

∫ +π

−π

6δ2(ρ(1− r4) + (ρ2 − 1)r2 cos 2θ)2

π(1 + ρ2)2(1 + r2)4(r4 − 2ρr2 cos 2θ + ρ2)
rdrdθ .

Evaluating this integral explicitly gives the stated formula and the error is
bounded in C2 as stated by (2.10). �

3 The Abelian Higgs Model on R× S2

3.1 The equations. Attention is now turned to the Abelian Higgs
model (AH) on R× S2 endowed with the Lorentzian metric

dt2 − g ,

where g is the metric induced on the sphere of radius R in R3 from the
standard Euclidean structure. The bundle E extend to a bundle over R×S2

which we denote Ẽ; −iA0dt − iAjdxj is a connection on Ẽ while Φ is a
section of Ẽ. Restricting to S2 the covariant derivative operator is dA =
(d− iA) : Ωp(E)→ Ωp+1(E) and the associated curvature is written −iFA
so that FA = dA in local co-ordinates; also as in section 2 BA = ∗FA,
∗ being the Hodge operator on S2. The equations are obtained as the
(formal) critical points of the action

Sλ,τ (A,Φ) =
∫

(T − Vλ,τ )dt

with

T (A,Φ) =
1
2

∫
S2

(
|∂tA− dA0|2 + |∂tΦ− iA0Φ|2

)
dµg

and Vλ,τ is as in (1.1). In these formulae the integration is taken with
respect to the standard area two-form dµg = ∗1 induced from g.

Let j, k = 1, 2 and Λ2 = 4R2/(1 + |x|2)2 so that dµg = Λ2dx1dx2.
Writing the components of A as (A0, A1, A2) the action can be written:∫ ( 2∑

j=1

(Ȧj − ∂jA0)2 + Λ2|Φ̇− iA0Φ|2 − 1
Λ2 (∂1A2 − ∂2A1)2

−
2∑
j=1

∣∣(∂j − iAj)Φ∣∣2 − Λ2

4
(
1− |Φ|2

)2)
dxdt .
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The equations are then (using a dot or ∂t to denote the time derivative):

∂jȦj −∆A0 − Λ2(iΦ, (∂t − iA0)Φ
)

= 0 ,

(∂t − iA0)2Φ− h−1Λ−2
2∑
j=1

(∂j − iAj)
(
h(∂j − iAj)Φ

)
− λ

2
Φ
(
1− |Φ|2

)
= 0 ,

Äj − ∂j∂tA0 + εjk∂k(Λ−2B)−
(
iΦ, (∂j − iAj)Φ

)
= 0 .

(3.1)

3.2 The ansatz for rigid rotation. The aim is to find time-periodic
solutions which map out an orbit of the group S1, acting as the subgroup
of SO(3) which leaves some axis fixed. This action of S1 is written using
the stereographic co-ordinate x as x 7→ R(θ)x, the rotation by θ about the
origin. In order to define a notion of rigid rotation for vortex configurations
it is necessary to lift this action to an action on the bundle E. There is
not in general a canonical choice for this lifting; however in the present
situation since E can be identified with the tangent bundle it is natural
to use this identification to obtain a lifting. This leads to the following
formula for the induced action of S1 on a configuration:(

aj(x), φ(x)
)
→
(
ak(R(θ)x)Rkj(θ), φ(R(θ)x)eiθ

)
.

Other choices of the lifting would lead to actions which differ from this
by a gauge transformation. In making an ansatz for a time-dependent
configuration which represents vortex rotation this extra freedom may be
absorbed into a time component of the connection Ã0(t, x) = A0(R(Ωt)x);
if this term is non-zero the present solution will not be exactly time-periodic
in temporal gauge, but will rather have the property that after time 2π/Ω
the configuration is gauge equivalent to the initial configuration. Thus in
the present context we make the following definition:

Definition 3.2.1. An S1 orbit of the rotation group in A × C∞(E) at
frequency ω consists of a smooth function a0 ∈ C∞(S2) and a smooth map

R→ A× C∞(E)

t 7→ (Ã1dx
1 + Ã2dx

2, Φ̃)

of the form:
Ãj(t, x) = Ak

(
R(ωt)x

)
Rkj(ωt)− ∂jχ(t, x)

Φ̃(t, x) = Φ
(
R(ωt)x

)
eiωteiχ(t,x) ,

(3.2)

where

χ(t, x) =
∫ ωt

0
a0
(
R(ωs)x

)
ds ,
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and

δ∗(Ã,Φ̃)

(
dÃ
dt ,

dΦ̃
dt

)
= 0 . (3.3)

Here δ∗
(Ã,Φ̃)

is as in (4.2), A = A1dx
1 +A2dx

2 is a smooth connection on E

and Φ is a smooth section of E.

Remark. The condition (3.3) is a gauge condition which is included
in the definition for later convenience; it is always possible to choose a0
so that (3.3) holds. It will transpire that condition (3.3) ensures that the
orbit, as a time-dependent configuration, is in temporal gauge. The geo-
metrical significance of this condition (section 4.1) is that it is equivalent to
the requirement that d

dt(Ã, Φ̃) be L2-orthogonal to the infinitesimal gauge
transformations, the tangent space to the orbit of the gauge group, at
(Ã, Φ̃). Using the Lie derivatives defined in section 4.1 the condition (3.3)
can be rewritten:

δ∗(A,Φ)(La0A,La0Φ) = 0 . (3.4)

3.3 The adiabatic limit. The adiabatic limit of the Abelian Higgs
model is the restriction of the system to the space of minimisers Sk defined
in section 2.1. This then projects down to a well defined dynamical sys-
tem on the moduli space M. This can be reformulated as the statement
that a one parameter family of pairs t 7→ (A,Φ)(t) ∈ Sk is a solution of
the adiabatic limit of (AH) if it is critical point of the action function Sλ,τ
restricted to curves lying in Sk. Thus in deriving the Euler-Lagrange equa-
tion we make variations only in the direction of the tangent space of Sk.
This condition is particularly clear with the requirement that the curve
satisfies the gauge condition (see 4.2):

δ∗(A,Φ)(Ȧ, φ̇) = 0 (3.5)

(Combined with the constraint equation, this implies that A0 = 0 (temporal
gauge). It follows from (4.3) that given a differentiable curve in Sk it is
always possible to obtain a gauge equivalent curve which satisfies (3.5).)
Differentiation of (3.5) gives

δ∗(A,Φ)(Ä, Φ̈) = 0 . (3.6)

Using this gauge the condition that a curve (A(t),Φ(t)) ∈ Sk be a critical
point of the action with respect to other curves in Sk now implies that the
quantity

− ∂2

∂t2
(A,Φ) +

(
0,
λ− 1

2
Φ
(
τ − |Φ|2

))
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be L2-orthogonal to the tangent space of Sk at each time. But according
to the discussion in section 4.2 the tangent space to Sk at (A,Φ) may be
identified with the kernel of the Hessian Hess(A,Φ); this gives the following
explicit formulation of the adiabatic limit:(
− ∂

∂t2
(A,Φ) +

(
0,
λ− 1

2
Φ
(
τ − |Φ|2

))
, n

)
L2

= 0

for all n ∈ L2 ∩Ker L̃(A,Φ) .

where L̃(A,Φ) is the second order elliptic operator defined in (4.8). Using
(3.6) and the definition of the operator L(A,Φ) in (4.10) this condition can
be expressed as(
− ∂2

∂t2
(A,Φ) +

(
0,
λ− 1

2
Φ
(
τ − |Φ|2

))
, n

)
L2

= 0

for all n ∈ L2 ∩KerL(A,Φ) . (3.7)

Recall that the tangent space to M at the orbit of (A,Φ) can be identified
with KerL(A,Φ). From this it follows that the equations (3.7) are those of
a Hamiltonian system (3.8) defined on the cotangent bundle toM. Indeed
the metric onM induced from L2 described in Theorem II (see the remarks
in section 2.3) determines a kinetic energy Tad; the adiabatic Hamiltonian

Had = Tad + vλ,τ (3.8)

is then obtained by adding to Tad the potential energy function vλ,τ defined
by:

vλ,τ : M → R

vλ,τ ([A,Φ]) =
(λ− 1)

8

∫
S2

(
τ − |Φ|2

)2
dµg .

(3.9)

which is a smooth function on M. Any integral curve of this Hamiltonian
system determines a curve in Sk which satisfies (3.5), (3.7) and vice-versa.

Theorem 3.3.1. For τ − τcr sufficiently small and λ < 1 there exists an
S1 orbit of the rotation group in A×C∞(E) at frequency ω which satisfies
(3.5), (3.7). This orbit is of the form

Ãj(t, x) = ak
(
R(ωt)x

)
Rkj(ωt)− ∂jχ(t, x)

Φ̃(t, x) = φ
(
R(ωt)x

)
eiωteiχ(t,x) .

(3.10)

Here χ(t, x) =
∫ ωt

0 a0(R(ωs)x)ds and (a, φ) ∈ ∩k≥1Sk is such that φ = 0 at
±√ρ for suitable ρ > 0. The numbers ρ and ω = ω(ρ) are determined in
the succeeding lemma.
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Proof. This is proved by applying symplectic reduction to obtain a reduced
two-body Hamiltonian Hred which is shown to have periodic solutions in
the Bradlow limit, discussed in section 2. The phase space of the Hamilto-
nian system (3.8) is the cotangent bundle, T ∗M which is eight dimensional;
however, the solutions in which we are interested can be obtained by re-
stricting to the reduced moduli space M̃0 i.e. the submanifold defined by
the condition Z1 + Z2 = 0. To write this explicitly use the co-ordinates
(ρ, θ) on M̃0 described in the introduction. The momenta conjugate to ρ, θ
are

π = f(ρ)ρ̇ J = f(ρ)ρ2θ̇

in terms of which the reduced Hamiltonian takes the familiar “reduced
two-body” form of (1.6):

Hred(ρ, π) = 1
2f(ρ)

(
π2 + J2

ρ2

)
+ vλ,τ (ρ) .

(This Hamiltonian can be obtained by symplectic reduction with respect
to the group SO(3) which acts by rigid rotation on S2 and hence on the
system (AH) and its adiabatic limit. The momentum map is a smooth map
from the cotangent bundle to the dual of the lie algebra of the symmetry
group

µ : T ∗M → so(3)∗

such that for ξ ∈ so(3) = R3 the function µ(ξ) is the conserved momentum
associated to rotation about the axis ξ ∈ R3. Let e1, e2, e3 be three ortho-
normal unit vectors, the third being in the direction of the axis passing
through the mid-point of the two vortices, i.e. the origin of the stereographic
co-ordinate system. Let µi = µ(ei) be the components of µ. Then we define
the reduced Hamiltonian Hred system by restricting the Hamiltonian Had

to µ−1(0, 0, J)/SO(3). The phase space for this reduced system is two
dimensional.)

Lemma 3.3.2. Assume ρ is such that

(Condition i) v′λ,τ (ρ) < 0,

(Condition ii) d
dρ

(
ρ2f(ρ)

)
> 0.

Then there will exist a solution to the adiabatic limit problem (3.7) which is
an S1 orbit of the rotation group with ρ constant and J = J(ρ) determined
by

1
2
J(ρ)2 d

dρ

(
1

ρ2f(ρ)

)
+ v′λ,τ (ρ) = 0
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and at angular frequency θ̇ = ω(ρ) determined by

ω(ρ) =
J(ρ)
f(ρ)ρ2 . (3.11)

Now by reference to Theorem I if τ−τcr is sufficiently small Condition (i)
holds for λ < 1. Also Condition (ii) holds for small τ − τcr by Theorem II.
So let ρ be such that Lemma 3.3.2 holds and let (a, φ) ∈ ∩Sk be a corre-
sponding smooth minimising configuration, i.e. φ = 0 at ±√ρ. To complete
the proof of the theorem define a0 by the requirement (see (4.2))

δ∗(a,φ)(La0a,La0φ) = 0 .

This leads to the equation

d∗da0 + |φ|2a0 = δ∗(a,φ)(La,Lφ)

which has a smooth solution since d∗d+|φ|2 is a strictly positive self-adjoint
elliptic operator with smooth coefficients. �

Remarks. (i) Theorem 3.3.1 is stated with the restriction that τ − τcr is
small because in this case Theorems I and II imply that Conditions (i) and
(ii) in Lemma 3.3.2 are satisfied. It can be stated more generally that if ρ is
such that these two conditions hold then the conclusions of Theorem 3.3.1
and also Theorem 3.4.1 are still valid.

(ii) Given such a periodic solution at frequency ω and with λ = 1 − l,
rescaling provides a periodic orbit with frequency Ω = εω and λ = 1− ε2l.

3.4 Existence theorem for periodic solutions. In this section the
main existence theorem is stated and proved. Terminology and notation
will be used from Definitions 1.1 and 3.2.1 and the appendix.

Theorem 3.4.1. Assume there exists an S1 orbit of the rotation group at
frequency ω0 as in (3.10) which satisfies (3.5), (3.7) with λ = 1−l, and such
that v′λ,τ (ρ) 6= 0. Then there exists ε∗ > 0 and a function ω(ε), satisfying
ω(0) = ω0 such that for ε < ε∗ there exists an S1 orbit of the rotation group
at frequency εω(ε) which is a smooth 2π/εω(ε)-periodic solution of (AH)
with λ = 1− ε2l (in the sense of Definition 1.1).

Proof. Step one. Regard (3.10) as an approximate solution and search
for an exact solution which is close to this. It is convenient to depart from
temporal gauge for the time being so a time component to the connection
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Ã0 is also introduced:

Ã0(t, x) = A0(R(Ωt)x) = εΩβ0
(
R(Ωt)x

)
Ãj(t, x) = Ak

(
R(Ωt)x

)
Rkj(Ωt)− ∂jχ(t, x)

=
(
ak(R(Ωt)x) + ε2βk(R(Ωt)x)

)
Rkj(Ωt)− ∂jχ(t, x)

Φ̃(t, x) = Φ
(
R(Ωt)x

)
eiχ(t,x) =

(
φ(R(Ωt)x) + ε2η(R(Ωt)x)

)
eiχ(t,x) ,

(3.12)

with

χ(t, x) =
∫ ωt

0
a0
(
R(ωs)x

)
ds .

Due to gauge invariance it is possible to restrict (β, η) to satisfy the slice
condition (see 4.2):

δ∗(a,φ)(β, η) = d∗β + (iφ, η) = 0 .

Substitution of (3.10) into (3.5) and (3.7) gives (respectively):

δ∗(a,φ)(La0a,La0φ) = 0 (3.13)

and(
−ω2(LLa0a, (La0)2φ

)
+
(

0,
λ− 1

2
φ
(
τ − |φ|2

))
, n

)
L2

= 0

for all n ∈ L2 ∩KerL(a,φ) . (3.14)

As proved in Lemma 4.4.1 we may assume that (a, φ) is smooth and that

φ(−x) = φ(x) a(−x) = −a(x) . (3.15)

The adiabatic limit describes slow motion, so apply the scaling described
in Remark (ii) in section 3.3, and write:

Ω(ε) = εω(ε) λ = 1− ε2l .
Substitution of the ansatz (3.12) into the equations and a direct calculation
leads to

ε2ω2(LL(a0+εβ0)A, (L(a0+εβ0))2Φ
)

+ Vλ,τ
′(A,Φ) = 0

d∗(L(a0+εβ0)A) + 〈iΦ,L(a0+εβ0)Φ〉 = 0 . (3.16)

Equations (3.16) are to be considered as a deformation of equations (3.13),
(3.14); thus the implicit function theorem will be used to prove that a
solution to (3.16) exists in the form (3.12) for small ε. The difficulty arises
from the fact that the linearised operator L̃(a,φ) has a cokernel, described
in section 4.2. In Step two it is explained how to “remove” this cokernel;
see Lemma 3.4.3.
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Step two. The next lemma gives a set of equations (3.17) which can be
solved and whose solutions generate periodic solutions of the Abelian Higgs
model. The point about the new system is the addition of two new terms
on the right-hand side which “fill out” the part of the cokernel of L̃(a,φ)
generated by gauge transformations and rotations.

Lemma 3.4.2. Assume ω, µ are real numbers, and (a0, β0, A,Φ, g) ∈ C∞×
C∞ ×A× C∞(E)×H1 are such that

ε2ω2(LL(a0+εβ0)A, (L(a0+εβ0))2Φ
)

+ V ′λ,τ (A,Φ)

= ε2µ(L(a0+εβ0)A,L(a0+εβ0)Φ) + ε2δ(A,Φ)g

d∗(L(a0+εβ0)A) + 〈iΦ,L(a0+εβ0)Φ〉 = 0 .

(3.17)

where δ(A,Φ) is the differential operator defined in (4.2). Then (Ã0, Ãj , Φ̃)
defined by (3.12) gives a smooth 2π/εω periodic solution of the Abelian
Higgs model (in the sense of Definition 1.1) after passage to temporal gauge.

Proof. By comparison with (3.16) it is necessary to prove that µ = 0 and
g = 0; the result then follows. Recall (see (4.3)) that the condition

δ∗(A,Φ)(β, η) = d∗β + 〈iΦ, η〉 = 0

is equivalent to the requirement that (β, η) ∈ C∞(Ω1×E) be L2-orthogonal
to δ(A,Φ)g for all g ∈ H1. Now SO(3) invariance of the metric on S2 ensures
that differentiation of the second equation of (3.17) leads to:

d∗(LL(a0+εβ0)A) +
〈
iΦ, (L(a0+εβ0))2Φ

〉
= 0 ,

and so δ(A,Φ)g is orthogonal to the first terms on both sides of the first of
equations (3.17). But gauge invariance of Vλ,τ ensures that δ(A,Φ)g is L2-
orthogonal to V ′λ,τ (A,Φ) and hence g = 0. Next the fact that µ = 0 follows
from rotational invariance which implies that L(a0+εβ0)(A,Φ) is orthogonal
to the two remaining terms on the left hand side. Finally recall that it is
always possible to go into temporal gauge by applying the time-dependent
gauge transformation generated by −

∫ t
0 A0. �

The introduction of µ, ν in this way will handle the subspace of the
cokernel generated by the gauge transformations and by the action of the
S1 subgroup of SO(3) which leaves the centre of the vortices fixed. To
deal with the remaining two dimensional subspace of the kernel generated
by SO(3) it is expedient to work in the space of functions which have the
same symmetry properties as the basic two vortex solution, as described in
section 4.4 and (3.15). Indeed the action of SO(3) in directions orthogonal
to the S1 subgroup breaks this symmetry. Therefore restricting to the
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symmetric subspace removes the remaining part of the cokernel. To make
this explicit introduce the spaces

X+
1 ≡

{
β0 ∈ H3 : β0(−x) = β0(x)

}
X+

2 ≡
{

(β, η) ∈ H2(Ω1)×H2(E) : η(−x) = η(x), βj(−x) = −βj(x)
}
.

The + here designates the symmetry property of the functions; the same
notation will be used below, thus, for example:

H1,+ ≡
{
β0 ∈ H1 : β0(−x) = β0(x) a.e.

}
L2,+(Ω1 ×E) ≡

{
(β, η) ∈ L2(Ω1 ×E) : η(−x) = η(x) ,

βj(−x) = −βj(x) a.e.
}
.

Another piece of notation used below is that if Y is a subspace of L2(Ω1×E)
then

X+
2 ∩ Y ⊥ =

{
(β, η) ∈ X+

2 :
∫ 〈

(β, η), n
〉
dµg = 0 ∀ n ∈ Y

}
,

and similarly for L2,+ ∩ Y ⊥. Also as noted in section 4.4 the symmetry
operation induces a decomposition

KerL(a,φ) = KerL+
(a,φ) ×KerL−(a,φ)

into a subspace sharing the symmetry property of L2,+ and one with the
opposite symmetry.

Lemma 3.4.3. Assume that (a, φ) satisfies the symmetry property (3.15)
and L̃(a,φ) is the Hessian defined in (4.8).

(i) The operator d∗d+ |φ|2 defines a bounded linear bijection from H3,+

to H1,+.
(ii) The operator L̃(a,φ) defines a bounded linear bijection

L̃(a,φ) : X+
2 ∩Ker δ∗(a,φ) ∩ (KerL+

(a,φ))
⊥

→ L2,+(Ω1 ×E) ∩Ker δ∗(a,φ) ∩ (KerL+
(a,φ))

⊥ .

Proof. The operator in (i) is a strictly positive second order elliptic operator
with smooth coefficients and |φ|2 is even, so the first statement follows from
standard arguments. For the second statement, notice that the operator
L̃ is a continuous map X+

2 → L2,+ by (3.15). Also by (4.11) L̃(a,φ) maps
Ker δ∗(a,φ) to itself. But on Ker δ∗(a,φ) it follows from (4.10) that L̃(a,φ) =
L(a,φ). Therefore the result follows from Lemma 4.2.1. �
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Step three. The equations are now solved to zeroth order. Substitution of
the ansatz (3.12) leads to the following two equations for (β0, β1, β2, η):

ε2ω2((LLa0β,La0)2η
)

+ L̃(a,φ)(β, η) = −ω2((LLa0a,La0)2φ
)

+ l
2φ
(
τ−|φ|2

)
+ε
(
ωdLβ0, 2iωβ0Lφ+ iφLβ0 + εβ2

0(φ+ ε2η)
)

(3.18)

−ε2N(a,φ)(β, η) + µL(a0+εβ0)(a+ ε2β, φ+ ε2η) + νδ(a+ε2β,φ+ε2η)g ,

and

d∗dβ0 + |φ|2β0 + εω
(
〈iη,La0φ〉+ 〈iφ,La0η〉

)
−

ε2〈φ, β0η〉+ ε3〈iη,La0η〉 − ε4β0|η|2 = 0 . (3.19)

In (3.18) l = (λ− 1)/ε2 and

ε2N(a,φ)(β, η) = 1
ε2

(
Vλ,τ

′(a+ ε2β, φ+ ε2η)− V1,τ
′(a, φ)− ε2L̃(a,φ)(β, η)

)
.

(Of course in this case V1,τ
′(a, φ) = 0.)

To start with, when ε = 0, β0 = 0 and (3.18) reduces to the equation:

L̃(a,φ)(β, η) = −ω2(LLa0a, (La0)2φ
)

+ lφ
(
τ − |φ|2

)
. (3.20)

Lemma 3.4.5. There is a smooth solution (β(0), η(0)) of equation (3.20)
which is unique in

X+
2 ∩Ker δ∗(a,φ) ∩ (KerL(a,φ))

⊥ .

Proof. This follows by an application of statement (ii) of the lemma in Step
two. Indeed the fact that the orbit (3.10) satisfies (3.5), (3.7) ensures that
the right-hand side of (3.20) lies in the range of L̃(a,φ) by (3.14). �

Step four. The implicit function theorem is now used to obtain solutions to
(3.18), (3.19) for small ε. Regard (3.19) as an equation F1(β0, β, η, µ, ω, ε) =
0 where F1 : H3,+×X+

2 ×R3 → H1,+; similarly regard (3.18) as an equation
F2(β0, g, β, η, µ, ω, ε) = 0 where F2 : H3,+ ×H1,+ ×X+

2 × R3 → L2,+. The
implicit function theorem is now applied to the equation F = (F1, F2) = 0
where F is a smooth map,

F : H3,+ ×X+
2 ×R3 → H1,+ × L2,+ .

The following formulae give the derivatives of F1, F2 at (β0 = 0, g = 0,
β = β(0), η = η(0), µ = 0, ω = ω0, ε = 0):

Dβ0F1 = d∗d+ |φ|2

D(β,η)F2 = L̃(a,φ)

DµF2 = (La0a,La0φ)
DgF2 = δ(a,φ)

DωF2 = ω
(
LLa0a, (La0)2φ

)
.

(3.21)
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Notice first of all that (i) of Lemma 3.4.3 implies that Dβ0F1 is an isomor-
phism H3,+ → H1,+. Next by (4.3)

DgF2(H1,+)⊕Ker δ∗(a,φ)

∣∣
L2,+ = L2,+ .

Therefore by (ii) of Lemma 3.4.3 in order to apply the implicit function the-
orem it is left to prove that the range of the derivative contains KerL+

(a,φ).
As explained in section 4.4 this is a two dimensional subspace spanned by
the two vectors

(La0a,Laφ) and Π(a,φ)
∂
∂ρ(a, φ)

where Π(a,φ) is the projection operator onto Ker δ∗(a,φ) (which is well-defined
by (4.3)). The first of these is just DµF2 so this is certainly in the range
of the derivative of F . For the second notice that (3.7) implies that ω is
determined by the equation,

ω2
∫ 〈

Π(a,φ)
∂
∂ρ(a, φ),

(
LLa0a, (La0)2φ

)〉
dµg = d

dρv1−l,τ .

It follows from this that as long as d
dρv1−l,τ 6= 0∫

S2

〈
Π(a,φ)

∂
∂ρ(a, φ),DωF2

〉
dµg 6= 0 .

Therefore the derivative of F is surjective and the implicit function theorem
can be applied to prove existence of solutions for small ε. For small ε the
system (3.18)–(3.19) is elliptic and all solutions in H2 are smooth. Finally
to obtain the result as stated it is necessary to go back to temporal gauge
by application of the time-dependent gauge transformation −

∫ t
0 A0.

4 Appendix

4.1 Notation and background information. Given a surface Σ with
metric g and co-ordinates (x1, x2) we have a basis ∂x1 , ∂x2 for the tangent
space, and dual basis dx1, dx2 for the cotangent space. The co-ordinates de-
termine an expression for the metric at each point as a non-degenerate sym-
metric matrix gij(x). The associated area measure is dµg =

√
det gdx1dx2.

Write the inverse matrix of gij as gij ; this determines the inner product on
1-forms. Given a function f the Hodge operator gives a 2-form ∗f = fdµg;
the inverse operator maps 2-forms to functions according to ∗dµg = 1, so
that (∗)2 = 1 on functions and two-forms. On one-forms, on the other
hand, the Hodge operator acts as a complex structure i.e. (∗)2 = −1.

The p-forms are denoted Ωp and for any vector bundle V (with norm)
over S2 write Hk(V ) for the Hilbert space obtained by completing the space
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of smooth sections with respect to the kth Sobolev norm ‖ · ‖k. The space
of connections is an affine space modelled on Ω1; we define the space of
Sobolev connections by Ak = a+Hk(Ω1), where a is an arbitrary smooth
connection. The group of gauge transformations can be identified in the
present abelian context with real-valued functions χ which act according
to

(A,Φ) 7→ (A+ dχ,Φeiχ) . (4.1)

From this formula it follows that if we consider the group Gk+1 defined by
functions χ ∈ Hk+1 then Gk+1 acts smoothly on Ak×Hk(E) for k ≥ 1. The
derivative of the action gives an action of the Lie algebra Lie Gk+1 which
gives the tangent space to the orbit

T(a,φ)
(
Gk+1 · (a, φ)

)
=
{

(dχ, iφχ) : χ ∈ Hk+1} .
It is convenient to define the differential operator

δ(a,φ) : Hk+1 → Hk(Ω1)×Hk+1(E)

χ 7→ (dχ, iφχ).

and its adjoint:

δ∗(a,φ) : Hk(Ω1)×Hk(E)→ Hk−1

(β, η) 7→ d∗β + (iφ, η) .
(4.2)

As usual there is an L2-orthogonal decomposition of Helmholtz-Hodge type:

Hk(Ω1)×Hk(E) = T(a,φ)
(
Gk+1 · (a, φ)

)
⊕Ker δ∗(a,φ) . (4.3)

Lie derivatives and “covariant Lie derivatives” are now defined, using
the stereographic co-ordinates (x1, x2) as in the introduction. For a one-
form β ∈ Ω1 the Lie derivative with respect to the vector field generated
by rotation about the origin is given by:

ω(Lβ)j = d
dt

∣∣
t=0

(
βl(R(ωt)x)Rlj(ωt)

)
.

This gives an operator L : Hk(Ω1) → Hk−1(Ω1). In the gauge theoretic
setting this generalises as follows. Let

χ(t, x) ≡
∫ ωt

0
A0
(
R(ωτ)x

)
dτ ,

then the corresponding Lie derivatives are defined by:

ωLA0φ = d
dt

∣∣
t=0

(
φ(R(ωt)x)e+iχ(t,x)) ,

ω(LA0a)j = d
dt

∣∣
t=0

(
ak(R(ωt)x)Rkj(ωt)− ∂jχ(t, x)

)
.

(4.4)
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Since difference of any two connections is a one-form LA0 : Ak → Hk−1(Ω1).
Notice that we use the same notation LA0 for the operators:

LA0 : Hk(E)→ Hk−1(E) LA0 : Ak → Hk−1(Ω1) . (4.5)

4.2 Static solutions. In this section some formulae for derivatives of
the functional Vλ,τ and associated operators are given, together with some
of their analytical properties. This is used to obtain the standard descrip-
tion of the manifold structure of S and M. Differentiation of the Bogo-
molny equations at (a, φ) in the direction (β, η) defines a linear operator

D̃(a,φ) : Hk(Ω1)×Hk(E)→ Hk−1 ×Hk−1(Ω0,1(E)
)

(β, η) 7→
(
∗ dβ + (φ, η),D(0,1)

A η − i
2(β1 + iβ2)φdz̄

) (4.6)

where DA(0, 1) is as defined in section 2.1. Gauge invariance of the Bo-
gomolny equations implies that D̃(a,φ) has an infinite dimensional kernel
which contains T(a,φ)(Gk+1 · (a, φ)). It will now be shown that orthogonal
to T(a,φ)(Gk+1 ·(a, φ)) the kernel of D̃(a,φ) has fixed dimension 2N , and that
T(a,φ)Sk, the tangent space at (a, φ) to Sk, is given by

T(a,φ)Sk =
{

(β, η) ∈ Hk(Ω1)×Hk(E) : D̃(a,φ)(β, η) = 0
}
.

The first derivative of Vλ,τ determines a nonlinear differential operator,
the Euler-Lagrange operator, which is a smooth function,

V ′λ,τ : Ak ×Hk(E)→ Hk−2(Ω1)×Hk−2(E)

(A,Φ) 7→
(
d∗dA+ (iΦ, dAΦ), d∗AdAΦ− λ

2 Φ(τ − |Φ|2)
)
.

(4.7)

It should be mentioned that the adjoint operators d∗, d∗A depend, respec-
tively, on g and g, h. The second derivative of V1,τ at (a, φ) defines a sym-
metric quadratic form Hess(a,φ), with associated symmetric operator L̃(a,φ).
Clearly

Hess(a,φ)(β, η) =
∫ 〈

(β, η), L̃(a,φ)(β, η)
〉
dµg. =

∫
S2

∣∣D̃(a,φ)(β, η)
∣∣2dµg .

(4.8)

Since the Hessian has an infinite dimensional kernel the corresponding sec-
ond order differential operator is not elliptic. If, however, following Taubes,
we introduce a modified Hessian

Hess(a,φ)(β, η) = Hess(a,φ)(β, η) +
∥∥δ∗(a,φ)(β, η)

∥∥2
L2

=
∫ ∣∣D(a,φ)(β, η)

∣∣2dµg (4.9)

=
∫ 〈

(β, η), L(a,φ)(β, η)
〉
dµg .
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then D(a,φ) and L(a,φ) are, respectively, first and second order elliptic oper-
ators given by the formulae

D(a,φ) : Hk(Ω1)×Hk(E)→ Hk−1 ×Hk−1 ×Hk−1(Ω0,1(E)
)

(β, η) 7→
(
∗ dβ + (φ, η), d∗β + (iφ, η),D(0,1)

A η − i
2(β1 + iβ2)φdz̄

)
and

Hess(a,φ)(β, η) =
∫
S2

(
|dβ|2 + |d∗β|2 + |∇aη|2 + |φ|2

(
|β|2 + |η|2

)
+ 4β · 〈i∇aφ, η〉 − 1

2

(
1− |φ|2

)
〈φ, η〉2

)
dµg . (4.10)

Remark. It can be checked directly that L(a,φ) preserves the decomposi-
tion (4.3); in fact on T(a,φ)(Gk+1 · (a, φ)) it acts as

L(a,φ)
(
δ(a,φ)χ = δ(a,φ)(−∆ + |φ|2)χ

)
, (4.11)

while on Ker δ(a,φ) by definition L(a,φ) = L̃(a,φ).

Lemma 4.2.1. There exists γ > 0 such that, for all (a, φ) ∈ S1 and
(β, η) ∈ H1(Ω1)×H1(E) orthogonal in L2 to KerL(a,φ),∫

S2

〈
(β, η), L(a,φ)(β, η)

〉
dµg ≥ γ

∥∥(β, η)
∥∥2
H1(Ω1)×H1(E) . (4.12)

KerL(a,φ) = KerD(a,φ) is a 2N dimensional vector space.

Proof. A direct calculation as in [St1], which goes back to E. Weinberg,
shows that KerD∗(a,φ) = {0}. On the other hand an examination of the
principal term in the formula for D(a,φ) indicates that its index will be the
same as that of the sum of twisted Dolbeault operators:(

∂
∂z ⊕

∂
∂z

)
: Ω0(E)×Ω1,0 → Ω0,1(E)×Ω1,1 ,

which may be computed to be 2N (over R). The inequality (4.12) is now
proved by contradiction using (4.8) and the fact that L(a,φ) is non-negative.
The following lemma, which describes the manifold structure of M and
Sk, is now proved by standard methods (see [DSt] for details in the case
Σ = R2):

Lemma 4.2.2. For k = 1, 2 . . . the space of minimisers Sk is a smooth
submanifold of Ak ×Hk(E), with tangent space at (a, φ),

T(a,φ)Sk = T(a,φ)
(
Gk+1 · (a, φ)

)
⊕KerL(a,φ)

∣∣
Hk(Ω1)×Hk(E) .

The quotient spaces Sk/Gk+1 =M are isomorphic smooth manifolds with
tangent space at the orbit of (a, φ) identified with KerL(a,φ).
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Remark. As discussed in section 2.1 M is in fact complex projective
space. Complex analytic co-ordinates are obtained in section 4.3.

4.3 Co-ordinates onM. There is a 1-1 correspondence between points
onM and unordered pairs of points on S2. Choosing the stereographic co-
ordinate z = x1 + ix2 let M̃ be that part ofM on which neither of the two
points Z1, Z2 is the point at infinity.

Lemma 4.3.1.
P = Z1 + Z2 Q = Z1Z2

form a holomorphic system of co-ordinates on M̃.

Proof. Indeed for any δ > 0 a representative of the equivalence class of
solutions determined by [Z1, Z2] is given by (2.5) with s as in (2.3). Thus
s = c[Z](z2 − Pz + Q) so that w and hence (A,Φ) are smooth functions
of P,Q. Now it is standard that the moduli space is a smooth manifold
whose tangent space at the orbit of A,Φ can be identified with KerD(A,Φ),
the operator defined in (4.6). By an index calculation

dimRKerD(A,Φ) = 2N = 4 .

Using the stereographic co-ordinate z = x1 + ix2 the condition that
KerD(A,Φ)(Ȧ, Φ̇) = 0 reads:

∂1Ȧ2 − ∂2Ȧ1 = −Ω2(Φ, Φ̇)

∂1Ȧ1 + ∂2Ȧ2 = Ω2(iΦ, Φ̇) (4.13)

D
(0,1)
A Φ̇− i

2(Ȧ1dx
1 + iȦ2dx

2)Φ = 0 .

Notice that these equations define a complex vector space with complex
structure

J : (Φ̇, Ȧ1, Ȧ2)→ (iΦ̇,−Ȧ2, Ȧ1).
Now, following [S], it is shown how to obtain solutions of (4.13); write
Zj = Xj + iYj for j = 1, 2. If it were not for the gauge condition (i.e. the
second of equations (4.13) this would just be a matter of differentiating with
respect to the parameters Xj , Yj . A calculation however shows that that
given a complex number Żj an element Ȧ, Φ̇ of KerD(A,Φ) can be obtained
from the formula,

Φ̇
Φ =

(
Żj

∂
∂Zj

)
(ln |Φ|2)

(Ȧ1 − iȦ2) = i(∂1 − i∂2)
(
Żj

∂w
∂Zj

) (4.14)
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This follows using the fact that differentiation of (2.6) with respect to Xj

gives
d∗d ∂w

∂Xj
+ |Φ|2 ∂

∂Xj

(
ln |Φ|2

)
= 0 (4.15)

and there is a similar equation with Yj replacing Xj . Next it follows
from the fact that the map (Z1, Z2) → (P,Q) is holomorphic that given
(Ṗ , Q̇) ∈ C2

Φ̇
Φ =

(
Ṗ ∂
∂P + Q̇ ∂

∂Q

) (
ln |Φ|2

)
(Ȧ1 − iȦ2) = i(∂1 − i∂2)

(
Ṗ ∂w
∂P + Q̇∂w

∂Q

)
.

(4.16)

generates elements of KerD(A,Φ). It follows from (4.15) that ∂w/∂P 6=
∂w/∂Q, and therefore (4.16) provides a complex linear isomorphism C2 →
KerD(A,Φ) for all P,Q. Therefore since the moduli space is locally diffeo-
morphic to KerD(A,Φ) this proves that P,Q form holomorphic co-ordinates
on M̃. �

4.4 Symmetry properties of vortices. The following fact about the
symmetry properties of the vortex solutions for N = 2 is needed.

Lemma 4.4.1. Choose co-ordinates by stereographic projection with the
origin midway between the two zeros of Φ; then the solution to (2.1) gen-
erated according to (2.5), (2.6) has the symmetry properties:

φ(−x) = φ(x) , aj(−x) = −aj(x) . (4.17)
Proof. Firstly solutions of (2.6) are unique. Indeed let w1, w2 be two
solutions then they are bounded by (2.7, 2.9), and therefore

(ew1 − ew2)(w1 − w2) ≥ c(w1 − w2)2 .

Next it follows by subtracting the two equations and multiplying by
(w1−w2) and then integrating that (using the same notation as in sec-
tion 2.2) ∥∥d(w1 − w2)

∥∥2
L2 + cδ2

∫
|s|2(w1 − w2)2 ≤ 0 .

The operator d∗d+ cδ2|s|2 is a strictly positive operator since s vanishes at
only two points. Therefore w1 = w2.

Now to prove the given symmetry property notice that since s is even it
follows that if w(x) is a solution then so is w(−x). Therefore by uniqueness
of the solution w(x) = w(−x). �

With respect to the symmetry operation in (4.17) the kernel of L(a,φ) ad-
mits an L2-orthogonal decomposition into two two dimensional subspaces,

KerL(a,φ) = KerL+
(a,φ) ×KerL−(a,φ) . (4.18)
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Indeed inspection of the formulae (4.14) shows that KerL+
(a,φ) is spanned by

the zero modes arising from varying the distance between the vortices and
from the action of the S1 subgroup which leaves fixed the origin. On the
other hand KerL−(a,φ) arises from the (infinitesimal) action of SO(3) in the
directions orthogonal to that which fixes the origin. KerL+

(a,φ) is spanned
by (β, η) ∈ Ω1 × Ω0(E) which satisfy the same symmetry conditions as
(4.17), while in KerL−(a,φ) the conditions are reversed,

η(−x) = −η(x) , βj(−x) = βj(x) . (4.19)
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