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ON THE DIMENSION OF KAKEYA SETS AND
RELATED MAXIMAL INEQUALITIES

J. Bourgain

1 Introduction

A Kakeya set in Rd is a compact set E ⊂ Rd containing a line segment in
every direction, thus for all ξ ∈ Sd−1, there is a ∈ Rd so that

a+ tξ ∈ E for t ∈ [0, 1] . (1.1)
Such sets may be of zero measure. It seems reasonable to conjecture how-
ever that they are necessarily of full Hausdorff dimension, i.e.

dimE = d . (1.2)
This problem plays a major role in the theory of oscillatory integrals in
harmonic analysis. It is also of relevance to questions related to the distri-
bution of Dirichlet series (see [W2] for a survey). For d = 2, the conjecture
is affirmative as shown by Davies in 1971 ([D]). Research for d ≥ 3 is more
recent. For d = 3, the best result to date is

dimE ≥ 5
2 (1.3)

([W1]). In the same paper [W1], it is shown that in dimension d, one always
has

dimE ≥ d
2 + 1 . (1.4)

(1.4) is a small improvement on the “trivial” bound dimE ≥ d+1
2 and the

gap between (1.2) and (1.4) for large d is obviously substantial. Particularly
in this setting, it is tempting to try to improve further on (1.4).

We will prove here the following fact on the Hausdorff dimensionH-dim.

Proposition 1.5. If E is a Kakeya set in Rd, then
H-dimE ≥ 13

25d+ 12
25 . (1.6)

Proposition 1.5 will be derived from the following statement related to
Minkowski dimension M -dim.

Proposition 1.7. Assume E a compact set in Rd such that for each
ξ ∈ Sd−1 there are a, b ∈ E, a 6= b, satisfying

a− b // ξ (1.8)
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1
2(a+ b) ∈ E . (1.9)

Then
M -dim E ≥ 13

25(d− 1) . (1.10)
The trivial estimate here would be dimE ≥ 1

2(d − 1). Proposition 1.7
has clearly the flavor of certain number theoretic results on sizes of sumsets
and difference sets in the spirit of [Ru]. Of particular interest here is the
following result of Balog and Szemerédi (cf. [BS], [N]): Let A,B be finite
subsets of an Abelian group and R ⊂ A × B such that (|A| denoting the
cardinality of A)

|A| ≤ N (1.11)
|B| ≤ N (1.12)∣∣{a+ b | (a, b) ∈ R}

∣∣ ≤ N (1.13)

|R| > δN2 . (1.14)
Then there is a proportional subset A′ of A with small sumset A′ +A′, i.e.

|A′| > c(δ)N (1.15)
|A′ +A′| < C(δ)N . (1.16)

The proof of this fact as presented in [N] depends in particular on Sze-
merédi’s uniformity lemma and leads therefore to very poor dependence of
c(δ), C(δ) on δ, making it useless for our purpose. Very recently, T. Gowers
in his work on arithmetic progressions [G], give a new and very simple proof
of the Balog-Szemerédi theorem with moreover a powerlike dependence of
c(δ) and C(δ) on δ. This will be the main ingredient in our argument. We
have tried to run it efficiently and produce the explicit factor 13/25 > 1/2
in (1.6), (1.10). Very likely however, the same ideas may lead to better
results.

We will also consider certain maximal operators associated to the Kakeya
problem (cf. [Bo1], [W2]). Fix 1 > δ > 0 and define for a measurable func-
tion f on Rd, ξ ∈ Sd−1

f∗δ (ξ) = sup
τ

1
|τ |

∫
τ

∣∣f(x)
∣∣dx (1.17)

where the spectrum is taken over all tubes τ of unit length, width δ and ori-
ented in ξ-direction (there is the freedom of translation). Thus the measure
|τ | ∼ δd−1. One conjectures then the following inequality for 1 ≤ p ≤ d

‖f∗δ ‖Lp(Sd−1) ≤ Cε
(1
δ

) d
p
−1+ε ‖f‖p for all ε > 0 . (1.18)

This conjecture implies (1.2). In fact, if (1.18) holds for a certain p ≤ d,
then one may conclude that for any Kakeya set E in Rd

dimE ≥ p . (1.19)
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For d = 2, (1.18) is again true for all 1 ≤ p ≤ 2. For d > 2, the validity
of (1.18) was established in [W1] in the range p ≤ d

2 + 1, improving the
author’s result in [Bo1]. Based on Proposition 1.7, we obtain here for large
dimension d a further improvement.

Proposition 1.20. There is some constant c > 1/2 (independent of d)
such that (1.18) holds for p ≤ cd in any dimension d.

Applying Proposition 1.7 requires to generate triples in arithmetic pro-
gression. Standard results related to Roth’s theorem [R] and further im-
provements ([He], [S]) again produce estimates that are too weak for our
purpose. This forced us to investigate this issue independently consider-
ing our particular problem and produce ad hoc results of an independent
interest we believe.

The author is grateful to T. Wolff for some discussions on the subject
and to T. Gowers for making his preprint [G] available.

In section 2 of this paper, some combinatorial facts will be established
related to the Balog-Szeremédi theorem. In section 3, we prove Proposi-
tion 1.7 and Proposition 1.5. Section 4 contains a new Roth-type result
for the reciprocals of an arithmetic progression in sumsets. The proof of
Proposition 1.20 appears in sections 5 and 6 of the paper.

We will use the notation 0 < c < C < ∞ for various constants that
may depend on the dimension d, except of course when they appear as
exponents. We also will occasionally write “ < Aγ+” (resp. “> Aγ−”) for
“< CεA

γ+ε for all ε > 0” (resp. “> cεA
γ−ε for all ε > 0”).

2 Combinatorial Results

We will consider the setting of subsets of Zd but our results most likely
extend to arbitrary (torsion free) Abelian groups. We denote by |A| the
cardinality of A.

Lemma 2.1. Let A,B be finite subsets of Zd and G ⊂ A×B such that

|A|, |B| ≤ N (2.2)
|S| ≤ N where S=

{
a+b

∣∣ (a, b)∈G
}

is the G-sumset (2.3)

|G| > αN2 . (2.4)

Then there exist A′ ⊂ A, B′ ⊂ B satisfying the conditions∣∣(A′ ×B′) ∩ G∣∣ > α9N2− (2.5)

|A′ −B′| < N−1+α−13∣∣(A′ ×B′) ∩ G∣∣ . (2.6)
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Proof. It is a variant of [G, Proposition 1.2]

(i) Since, denoting ‖f‖2 the norm of f ∈ L2(Td), T = R/Z

|S|1/2
∥∥∥(∑

A

eiax
)(∑

B

e−ibx
)∥∥∥

2

≥
∫ (∑

A

eiax
)(∑

B

eibx
)(∑

S

e−inx
)
> |G| > αN2 (2.7)

by (2.4), we have by (2.3)∑
n

r(n;A,B)2 > α2N3 (2.8)

where

r(n;A,B) =
∣∣{(a, b) ∈ A×B | a− b = n}

∣∣ . (2.9)

From (2.8), there is clearly some

α2 < ρ1 < 1 (2.10)

such that if we let

D =
{
n | r(n;A,B)∼ρ1N

}
(popular differences) . (2.11)

then

|D| > α2ρ−2
1 N1− . (2.12)

(ii) Consider the graph R ⊂ A×B defined by

(a, b) ∈ R⇔ a− b ∈ D . (2.13)

Since by (2.11), (2.12)∑
b∈B
|Rb| =

∑
n∈D

∣∣{(a, b)∈A×B | a−b=n}∣∣ =
∑
n∈D

r(n;A,B) > α2ρ−1
1 N2−

(2.14)

the expectation when averaging b0 over B

Eb0 [|Rb0 |] > α2ρ−1
1

N2−

|B| . (2.15)

Choose 0 < ρ2 < 1 and define

Y =
{

(a, a′) ∈ A×A
∣∣ |Ra ∩Ra′ | < ρ2N

}
. (2.16)

Then

Eb0
[
|R2

b0 ∩ Y |
]

= 1
|B|
∑
b∈B

∑
(a,a′)∈Y

χ
Rb

(a)χ
Rb

(a′)

= 1
|B|

∑
(a,a′)∈Y

|Ra ∩Ra′ | < ρ2
N3

|B| .
(2.17)
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Define for some choice of

0 < ρ3 < 1 (2.18)
A′ = A′b0 =

{
a ∈ Rb0

∣∣ |{a′ ∈ Rb0 | (a, a′) ∈ Y }| < ρ3N
}
.

(2.19)
Then, by (2.17), (2.19), one gets clearly

Eb0
[
|Rb0\A′|

]
< (ρ3N)−1E

[
|R2

b0 ∩ Y |
]
< ρ2ρ

−1
3

N2

|B| . (2.20)

To ensure that, for some b0 ∈ B
|Rb0\A′| = o(|A′|) (2.21)

take thus, from (2.15), (2.20)

α2ρ−1
1 > ρ2ρ

−1
3 N0+ (2.22)

hence

ρ3 >
ρ1ρ2

α2 N0+ . (2.23)

In particular

|A′| ∼ |Rb0 | > α2

ρ1
N1− (2.24)

by (2.15).
Iteration of the construction permits us then to obtain A′ ⊂ A and ρ1

such that

|A′| ∼ α2

ρ1
N1− and

∣∣G ∩ (A′ ×B)
∣∣ > α2

ρ1
N−0|G| = α3ρ−1

1 N2− . (2.25)

(iii) Repeat the construction with B. Thus by (2.25), (2.3)

|S|1/2
∥∥∥(∑

A′

eiax
)(∑

B

e−ibx
)∥∥∥

2
≥
∫ (∑

A′

eiax
)(∑

B

eibx
)(∑

S

e−inx
)

> α3ρ−1
1 N2− (2.36)∑

n

r(n;A′, B)2 > α6ρ−2
1 N3− . (2.27)

There is thus, by (2.25)
α4

ρ1
N0− < ρ4 <

|A′|
N = α2

ρ1
(2.28)

such that if we define

D′ =
{
n
∣∣ r(n;A′, B) > ρ4N

}
(2.29)

then

|D′| > ρ−2
1 ρ−2

4 α6N1− . (2.30)

Consider the graph

R′ =
{

(a, b) ∈ A′ ×B
∣∣ a− b ∈ D′} . (2.31)
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Hence ∑
b∈B
|R′b| = |R′| =

∑
n∈D′

r(n;A′, B) > ρ−2
1 ρ−1

4 α6N2− (2.32)

and there exists
α2

ρ1
> ρ5 >

α6

ρ2
1ρ4

N0− (2.33)

and B′ ⊂ B satisfying

|R′b| ∼ ρ5N for b ∈ B′ (2.34)

|B′| > α6

ρ2
1ρ4ρ5

N1− . (2.35)

Our aim is to ensure moreover that if a ∈ A′, b ∈ B′, then∣∣{a′ ∈ R′b | (a, a′) 6∈ Y }∣∣ > 1
2ρ5N . (2.36)

The left member of (2.36) is at least

|R′b| −
∣∣{a′ ∈ A′|(a, a′) ∈ Y }∣∣
> ρ5N − ρ3N (2.37)

by definition of A′, cf. (2.19). Thus for (2.36) to hold it suffices that

ρ5 > 10ρ3 (2.38)

hence, by (2.33)

α6

ρ2
1ρ4

N0− > ρ3 (2.39)

and, from (2.29)
α6

ρ2
1
N0− > ρ3

α2

ρ1
. (2.40)

Choose thus

ρ3 ∼ α4

ρ1
N0− (2.41)

and in order to fulfill (2.23)

ρ2 ∼ α6

ρ2
1
N0− . (2.42)

Again by iteration, we get some B′ ⊂ B and ρ4, ρ5 such that (2.34),
(2.35) hold and, taking (2.25), (2.35) into account∣∣G ∩ (A′ ×B′)

∣∣ > α9

ρ3
1ρ4ρ5

N2− > α9N2− (2.43)

which is (2.5).
(iv) Finally, we evaluate |A′ −B′|.
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Take a ∈ A′, b ∈ B′. By (2.36)
C =

{
a′ ∈ R′b

∣∣ (a, a′) 6∈ Y
}

(2.44)
satisfies

|C| > 1
2ρ5N . (2.45)

By definition of Y ,
|Ra ∩Ra′ | ≥ ρ2N for a′ ∈ C . (2.46)

Write for a′ ∈ C, b′ ∈ Ra ∩Ra′
a− b = (a− b′)− (a′ − b′) + a′ − b . (2.47)

The number of representations of a−b′ in A−B is at least ρ1N (by definition
of R). Idem for a′ − b′.

The number of representations of a′ − b in A′ − B is at least ρ4N (by
definition of R′). Thus the number of representations of a− b as

a− b = (a1 − b1)− (a2 − b2) + a3 − b3 (2.48)
where

a1, a2 ∈ A , a3 ∈ A′ ; b1, b2, b3 ∈ B (2.49)
is at least (1

2ρ5N
)

(ρ2N)(ρ1N)2ρ4N . (2.50)
This implies that

|A′ −B′| ≤ 2|A|2|A′| |B|3
ρ2

1ρ2ρ4ρ5N5

by (2.25)
< α2ρ−3

1 ρ−1
2 ρ−1

4 ρ−1
5 N (2.51)

by (2.43)
< α−7ρ−1

2 N−1+∣∣G ∩ (A′ ×B′)
∣∣

(2.52)
by (2.42)
< α−13N−1+∣∣G ∩ (A′ ×B′)

∣∣
(2.53)

which is (2.6).
This proves Lemma 2.1.

Lemma 2.54. Let A,B be finite subsets of Zd and G ⊂ A×B such that
|A|, |B| ≤ N (2.55)

|S| ≤ N where S =
{
a+ b

∣∣ (a, b) ∈ G
}
. (2.56)

Then
|D| < N2− 1

13 + where D =
{
a− b

∣∣ (a, b) ∈ G
}
. (2.57)

Proof. Take G′ ⊂ G such that
D =

{
a− b

∣∣ (a− b) ∈ G′
}

(2.58)
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and the map G′ → D : (a, b)→ a− b is one to one.
Writing

|G′| = |D| = αN2 (2.59)

it follows from Lemma 2.1 (condition (2.3) remains valid replacing G by G′)
and (2.6), that∣∣G′ ∩ (A′ ×B′)

∣∣ ≤ |A′ −B′| < N−1+α−13∣∣G′ ∩ (A′ ×B′)
∣∣ . (2.60)

Hence

α < N−
1
13 + (2.61)

and (2.59), (2.61) imply (2.57).

Remark. Consider the special case G = A×B. Under the assumption

|A|, |B|, |A +B| ≤ N (2.62)

one may prove

|A−B| < CN3/2 . (2.63)

On the other hand, for all ε > 0, there are arbitrary large values of N and
sets A,B ⊂ Z such that

|A| = N , |A+B| < (1 + ε)N (2.64)

while

|A−B| > c(ε)N1+α , α =
log 7/6
log 7

(2.65)

(see [Ru] for these results).

Lemma 2.66. Let A,B be finite subsets of Zd, G ⊂ A×B and

|A|, |B| ≤ N (2.67)
|S| ≤ N where S =

{
a+ b

∣∣ (a, b) ∈ G
}

(2.68)

|G| = αN2 . (2.69)

Then there exists A′ ⊂ A, B′ ⊂ B such that

|A′ +A′| < α−33N1+ (2.70)
B′ is contained in a translate of A′ (2.71)∣∣G ∩ (A′ ×B′)

∣∣ > α30N2− . (2.72)

Proof. Let A1 ⊂ A, B1 ⊂ B be the sets obtained in Lemma 2.1. Thus from
(2.5), (2.6) ∣∣(A1 ×B1) ∩ G

∣∣ > α9N2− (2.73)

|A1 −B1| < α−12N1+ (2.74)
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Let A′ = A1. One has the general inequality, cf. [Ru].

|A′ +A′| < |A
′ −B1|2
|B1|

(2.75)

and hence, from (2.73), (2.74).

|A′ +A′| ≤ |A1| |A1 −B1|2
|(A1 ×B1) ∩ G| < α−33N1+ . (2.76)

We construct B′ by averaging. Define
B′ = B′n0

= B1 ∩ (A1 + n0) (2.77)
with thus n0 ∈ B1 −A1. Then, by (2.73)∑

n0∈B1−A1

∣∣(A′ ×B′) ∩ G∣∣ =
∑
n0

∑
(a,b)∈G

χ
A1

(a)χ
B1

(b)χb−A1(n0)

= |A1|
∣∣G ∩ (A1 ×B1)

∣∣ > α18N3− .
(2.78)

Thus, by (2.74), there is some n0 such that the set B′ will satisfy∣∣(A′ ×B′) ∩ G∣∣ > α18N3−

|A1 −B1|
> α30N2− . (2.79)

This proves Lemma 2.66.
Remark. If A ⊂ Zd satisfies

|A| = N , |A+A| < CN (2.80)
then, cf. [Ru], a general estimate asserts that for all h = 2, 3, . . .

|A±A±A · · · ±A︸ ︷︷ ︸
h terms

| < C2hN . (2.81)

Hence, in Lemma 2.66, we also have
|A′ ±A′ ± · · · ±A′︸ ︷︷ ︸

h terms

| ≤ α−CN1+ (2.82)

for all h.
We will also need to translate our lattice results to statements about

entropy numbers of subsets of Rd. If A ⊂ Rd, denote for δ > 0 by Nδ(A)
the metrical entropy numbers of A, i.e. the minimum number of δ-balls in
Rd needed to cover A.

Lemma 2.83. Let A,B be bounded subsets of Rd and G ⊂ A×B such that
Nδ(A),Nδ(B) ≤ N (2.84)
Nδ(S) ≤ N where S =

{
a+ b

∣∣ (a, b) ∈ G
}
. (2.85)

Then
Nδ(D) < cN2− 1

13 + where D =
{
a− b

∣∣ (a, b) ∈ G
}
. (2.86)
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Proof. Define

Ã =
{
a ∈ Zd

∣∣ (δa+Bδ) ∩A 6= φ
}

(2.87)

B̃ =
{
b ∈ Zd

∣∣ (δb+Bδ) ∩B 6= φ
}

(2.88)

G̃ =
{

(a, b) ∈ Z2d ∣∣ ((δa+Bδ)×(δb+Bδ))∩G 6= φ
}
. (2.89)

Then G̃ ⊂ Ã× B̃ and from (2.84)–(2.85)

|Ã| ≤ CNδ(A) ≤ CN (2.90)

|B̃| ≤ CNδ(B) ≤ CN (2.91)

|S̃| ≤ CN2δ(S) ≤ CN where S̃ =
{
a+ b

∣∣ (a, b) ∈ G̃
}

(2 .92)
(the constant C depends on dimension d).

Since clearly

G ⊂ δG̃ + (Bδ ×Bδ) (2.93)

we have

D ⊂ δ
{
a− b

∣∣ (a, b) ∈ G̃}+B2δ (2.94)

and thus from Lemma 2.54

Nδ(D) ≤ C
∣∣{a− b | (a, b) ∈ G̃}∣∣ < CN2− 1

13 + . (2.95)

Lemma 2.96. Let A,B be bounded subsets of Rd, G ⊂ A×B such that

Nδ(A),Nδ(B) ≤ N (2.97)
Nδ(S) ≤ N where S =

{
a+ b

∣∣ (a, b) ∈ G
}

(2.98)

Nδ(G) > αN2 . (2.99)

Then there exist A′ ⊂ A+BCδ, B′ ⊂ B +BCδ satisfying

Nδ(A′ +A′) < C.α−33N1+ (2.100)
B′ is contained in a translate of A′ (2.101)

Nδ
(
G ∩ (A′ ×B′)

)
> α30N2− . (2.102)

Proof. Define Ã, B̃ ⊂ Zd and G̃ as in the proof of Lemma 2.83. Thus, by
(2.93), (2.99)

|G̃| > cαN2 . (2.103)

Apply lemma 2.66 to get A1 ⊂ Ã, B1 ⊂ B̃ such that

|A1 +A1| < Cα−33N1+ (2.104)
B1 is contained in a translate of A1 (2.105)∣∣G̃ ∩ (A1 ×B1)

∣∣ > cα30N2− . (2.106)
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From (2.89)
δG̃ ⊂ G + (Bδ ×Bδ) (2.107)

hence, by (2.106)
Nδ
(
(G + (Bδ ×Bδ)) ∩ (δA1 × δB1)

)
> cα30N2− . (2.108)

Define
A′ = δA1 +Bδ ⊂ δÃ+Bδ ⊂ A+B2δ (2.109)
B′ = δB1 +Bδ ⊂ B +B2δ . (2.110)

Thus, by (2.104)
Nδ(A′ +A′) ≤ C|A1 +A1| < Cα−33N1+ (2.111)

(2.105) clearly implies (2.101) and from (2.108)–(2.110)
Nδ
(
G ∩ (A′ ×B′)

)
> cα30N2− . (2.112)

This proves the lemma.
For later use, we also need the following more technical version of

Lemma 2.96.

Lemma 2.113. Let A,B be bounded subsets of Rd, G ⊂ A×B such that
Nδ(A),Nδ(B) ≤ N (2.114)

Nδ(G) > αN2 . (2.115)
Let ζ`, η` (` = 1, . . . , `0) be positive numbers satisfying

δτ < ζ`, η` < δ−τ (1 ≤ ` ≤ `0) (2.116)
for some (small) τ > 0. Here `0 is fixed (`0 = 6 in the application).

Assume for each ` = 1, . . . , `0
Nδ
(
{ζ`a+ η`b | (a, b) ∈ G}

)
≤ N . (2.117)

Then there are A′ ⊂ A+BCδ1−3τ , B′ ⊂ B +BCδ1−τ satisfying
Nδ(A′ +A′) < α−Cδ−CdτN (2.118)
η`B

′ is contained in a translate of ζ`A′ (1 ≤ ` ≤ `0)
(2.119)

N
(
G ∩ (A′ ×B′)

)
> αCδCdτN2 (2.120)

(the constant C in the exponent depends only on `0.)

Proof. Take ` = 1 and define
A1 = ζ1A , B1 = η1B ,

G1 =
{

(ζ1a, η1b)
∣∣ (a, b) ∈ G

}
⊂ A1 ×B1 .

(2.121)

Thus, by (2.114), 2.115), (2.116)
Nδ(A1) < Cδ−dτNδ(A) < Cδ−dτN (2.122)
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Nδ(B1) < Cδ−dτN (2.123)

Nδ(G1) > cδ2dταN2 . (2.124)
Apply Lemma 2.96 with N replaced by Cδ−dτN and α by cδdτα. This
gives A′′1 ⊂ A1 +BCδ, B′′1 ⊂ B1 +BCδ satisfying

Nδ(A′′1 +A′′1) < C(αδdτ )−CN (2.125)
B′′1 is contained in a translate of A′′1 (2.126)

Nδ(G1 ∩ (A′′1 ×B′′1 )
)
> c(αδdτ )CN2 . (2.127)

Put
A′1 = ζ−1

1 A′′1 ⊂ A+BCζ−1
1 δ ⊂ A+BCδ1−τ (2.128)

B′1 = η−1
1 B′′1 ⊂ B +BCδ1−τ . (2.129)

Thus, from (2.125), (2.116)
Nδ (A′1+A′1) < Cδ−dτNδ(A′′1+A′′1) < C(αδdτ )−CN . (2.130)

From (2.116)
η1B

′
1 is contained in a translate of ζ1A

′
1 . (2.131)

From (2.127)
Nδ
(
G ∩ (A′1 ×B′1)

)
> c(αδdτ )CN2 . (2.132)

Replace next A,B,G by A′1, B
′
1,G1 = G ∩ (A′1 ×B′1). Then (2.114), (2.115)

still hold with N replaced by Cδ−dτN and α by (αδdτ )C . From (2.117) for
` = 2, one gets by the preceding B′2 ⊂ B′1 +BCδ1−τ ⊂ B+BCδ1−τ such that

η2B
′
2 is contained in a translate of ζ2A

′
1 (2.133)

Nδ
(
G ∩ (A′1 ×B′2)

)
> c(αδdτ )CN2 . (2.134)

Also η1B
′
2 ⊂ η1B

′
1 + BCη1δ1−τ is contained in a translate of

ζ1(A′1 +BCζ−1
1 η1δ1−τ

) ⊂ ζ1A
′
2, where we define

A′2 = A′1 +BCδ1−3τ ⊂ A+BCδ1−3τ . (2.135)
From (2.130), (2.134)

Nδ(A′2 +A′2) < C(αδdτ )−CN (2.136)
and

Nδ
(
G ∩ (A′2 ×B′2)

)
> c(αδdτ )CN2 . (2.137)

Iterating `0 times clearly produces the required sets A′ = A′`0 , B′ = B′`0 .
Remark. Taking the previous remark on multiple sums and differences
(2.80)–(2.82) into account, one may again in Lemma 2.96, replace (2.100)
by

Nδ(A′ ±A′ ± · · · ±A′︸ ︷︷ ︸
h terms

) < Cα−ChN1+ (2.138)
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for any fixed h. Similarly in Lemma 2.113, (2.118) has the following
strengthening

Nδ(A′ ±A′ ± · · · ±A′) < C(αδdτ )−CN . (2.139)

3 Proof of Propositions 1.5 and 1.7

Consider first Proposition 1.7. By Baire’s theorem there is a nonempty
open subset O ⊂ Sd−1 and γ = 0 such that for ξ ∈ O, there are points
aξ, bξ in E satisfying

|aξ − bξ| > γ (3.1)
aξ − bξ//ξ (3.2)

1
2(aξ + bξ) ∈ E . (3.3)

Apply Lemma 2.83 with A = B = E and

G =
{

(aξ, bξ) ∈ E ×E
∣∣ ξ ∈ O} . (3.4)

Choose δ > 0 small. In (2.84), (2.85), we may take N = Nδ(2E) < CNδ(E).
On the other hand, by (3.1), (3.2)

Nδ
(
{aξ − bξ | ξ ∈ O}

)
> c(O, γ)δ−(d−1) (3.5)

and (2.86) implies thus that for δ → 0

c(O, γ)δ−(d−1) < Nδ(E)
25
13 + (3.6)

Nδ(E) > c
(1
δ

) 13
25 (d−1)−

. (3.7)

This proves (1.10).
The main new difficulty to derive Proposition 1.5 is that Minkowski-

dimension is replaced by Hausdorff-dimension. Fix a small number κ > 0.
One may then write

E =
⋃
δ<δ0

Eδ where we take δ of the form δ = 2−(1+κ)j (j ∈ Z+) (3.8)

with

Nδ(Eδ) >
(1
δ

)ν+κd
, ν = H − dimE . (3.9)

For each ξ ∈ Sd−1, denote Iξ//ξ a line segment of unit length contained
in E.

Clearly, there is j > j0 ∼ log log 1/δ0 such that for δ = 2−(1+κ)j

mes(Iξ ∩Eδ) > 1
j2

(3.10)

for ξ in a subset D of Sd−1 of measure

mesD > 1
j2
. (3.11)
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We will moreover assume that∣∣Pe⊥d (ξ)
∣∣ < 1

10 for ξ ∈ D (3.12)

where ed is the d unit vector.
Define q = [δ−1+κ] and for r = 0, 1, . . . , q − 1

Er =
{
x ∈ Rd

∣∣ [δ−1xd] ≡ r(mod q)
}
. (3.13)

Let

Erδ = Eδ ∩ Er , Irξ = Iξ ∩ Er (3.14)

Eδ =
q−1⋃
r=0

Erδ , Iξ =
q−1⋃
r=0

Irξ . (3.15)

Hence, from (3.10), (3.11)

mes Irξ . q−1 ;
∫
D

q−1∑
r=0

mes(Irξ ∩Eδ)σ(dξ) > 1
j4
. (3.16)

Thus there is a set R ⊂ {0, 1, . . . , q − 1} satisfying

|R| > q
2j4 (3.17)

and for r ∈ R ∫
D

mes(Irξ ∩Eδ)σ(dξ) > 1
2qj4 . (3.18)

For r ∈ R, there is a subset Dr ⊂ D such that

mesDr >
1

4j4 (3.19)

mes(Irξ ∩Eδ) > 1
4j4q for ξ ∈ Dr . (3.20)

Fix ξ ∈ Dr. Consider the set

Q =
{1
q ([δ−1xd]− r)

∣∣ x ∈ Irξ ∩Eδ} (3.21)

contained in an arithmetic progression of M ∼ δ−κ consecutive integers.
By (3.20)

|Q| > cNδ(Irξ ∩Eδ) > c
j4qδ

= c
j4
M . (3.22)

At this point, we invoke results of Heath-Brown and Szemerédi (cf. [He], [S])
on existence of triples in arithmetic progression in subsets Q0 ⊂ {1, . . . ,M}
satisfying a density condition |Q0| > M/(logM)c (for some explicit con-
stant c > 0). The original result of Roth [R] required |Q0| > M/log logM
and is a bit too weak for our purpose. Observe indeed that by (3.8)

j ∼ κ−1 (log log 1
δ

)
∼ κ−1 log logM < (log logM)2 (3.23)
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for δ < δ0 small enough. Thus (3.22) largely suffices to ensure that Q
contains a triple in progression. This means that for each ξ ∈ Dr, there
exist arξ 6= brξ in Irξ ∩Eδ satisfying

1
2(arξ + brξ) ∈ Erδ +B2δ . (3.24)

Clearly
arξ − brξ//ξ (3.25)

|arξ − brξ| > δq ∼ δκ . (3.26)
Next we apply again Lemma 2.83. Let

A = B = Erδ +B2δ (3.27)
G =

{
(arξ, b

r
ξ)
∣∣ ξ ∈ Dr} (3.28)

N = CNδ(Erδ ) . (3.29)
From (2.86), we conclude that

Nδ
(
{aξ − bξ | ξ ∈ Dr}

)
< cNδ(Erδ )

25
13 + . (3.30)

Recalling (3.19), (3.26), the left of (3.30) is at least

Nδ
(
{aξ − bξ | ξ ∈ Dr}

)
> c

(1
δ

)d−1 (δκ)d−1(mesDr) > cj−4 (1
δ

)(1−κ)(d−1)

(3.31)
and (3.30) implies for r ∈ R

Nδ(Erδ ) > cj−3 (1
δ

) 13
25 (1−κ)(d−1)−

. (3.32)
Thus, from (3.9), (3.14), (3.15), (3.17), (3.32), (3.23)(1

δ

)ν+κd+
> Nδ(Eδ) > c|R|j−3 (1

δ

) 13
25 (1−κ)(d−1)−

> j−7 (1
δ

)(1−κ)( 13
25d+ 12

25 )−

=
(1
δ

)(1−κ)( 13
25d+ 12

25 )−
. (3.27)

Consequently
ν + κd > (1− κ)

(13
25d+ 12

25

)
− (3.34)

and (2.6) follows by letting κ→ 0.
This proves Proposition 1.5.

4 Reciprocals of Arithmetic Progressions in Sumsets

Another ingredient in the proof of Proposition 1.20 is the following.

Lemma 4.1. Let f ≥ 0 be a function on R such that
supp f ⊂ [−1, 1] (4.2)∫
fdx > ε (4.3)
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f̂ ≥ 0 (4.4)∫
f̂ ≤ 1 . (4.5)

Then, for some absolute constant C

I =
∫∫

f

(
1− 1

λ

)
f

(
1− 1

λ+ µ

)
f

(
1− 1

λ+ 2µ

)
ϕ1(λ)ϕ2(µ)dλ dµ > εC

(4.6)
where we assume 0 ≤ ϕα ≤ 1 localizing functions s.t.{

ϕ1 = 1 on a neighborhood of 1
ϕ2 = 1 on a neighborhood of 0 .

Proof. Write
λ = 1 + x , µ = y (4.7)

where x, y = o(1). Thus

I =
∫∫

f

(
1− 1

1+x

)
f

(
1− 1

1+x+y

)
f

(
1− 1

1+x+2y

)
ϕ2(x)ϕ2(y)dx dy .

(4.8)
For 0 < γ < 1/10, define

Iγ =
∫∫

f

(
1− 1

1 + γx

)
f

(
1− 1

1 + γx+ γy

)
f

(
1− 1

1 + γx+ 2γy

)
· ϕ2(x)ϕ2(y)dx dy . (4.9)

Thus
I ≥ γ2Iγ . (4.10)

Write Iδ in Fourier. Thus

Iγ =
∫∫∫

dk1dk2dk3 f̂(k1)f̂(k2)f̂(k3) Iγ(k1, k2, k3) (4.11)

where Iγ (̄k) denotes the integral

Jγ (̄k) =
∫∫

ei[k1(1− 1
1+γx )+k2(1− 1

1+γx+γy )+k3(1− 1
1+γx+2γy )]ϕ(x)ϕ(y)dx dy .

(4.12)
Write

θ(x, y) = k1

(
1− 1

1+γx

)
+k2

(
1− 1

1+γx+γy

)
+k3

(
1− 1

1+γx+2γy

)
= γ(k1+k2+k3)x+γ(k2+2k3)y−1

2γ
2[k1x

2+k2(x+y)2+k3(x+2y)2]
+ 0(γ3K) (4.13)

where
K = |k1|+ |k2|+ |k3| . (4.14)
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It follows from (4.13) that∣∣∣Jγ (̄k)−
(∫

ϕ
)2∣∣∣ ≤ [γ(|k1 + k2 + k3|+ |k2 + 2k3|) + γ2K

]( ∫
ϕ
)2
.

(4.15)
Further

|∂xθ| > γ|k1 + k2 + k3| − γ2K (4.16)

|∂yθ| > γ|k2 + k3| − γ2K . (4.17)
Hence, integrating in x (resp. in y), we get∣∣Jγ (̄k)

∣∣ < C
(
1+γ|k1+k2+k3|

)−1 if |k1+k2+k3| > 10γK (4.18)
resp. ∣∣Jγ (̄k)

∣∣ < C
(
1+γ|k2+2k3|

)−1 if |k2+k3| > 10γK . (4.19)
Assume next

|k1 + k2 + k3| ≤ 10γK , |k2 + 2k3| ≤ 10γK . (4.20)
Hence

k1 = k3 + 0(γK) , k2 = −2k3 + 0(γK) (4.21)
and

k1x
2 + k2(x+ y)2 + k3(x+ 2y)2 = 2k3y

2 + 0(γK)(x2 + y2) . (4.22)
Thus

|∂2
yyθ| ∼ Kγ2 (4.23)

and stationary phase implies the bound∣∣Jγ (̄k)
∣∣ < C(γ2K)−1/2

by (4.20)
= C

[
γ(|k1 + k2 + k3|+ |k2 + 2k3|) + γ2K

]−1/2
. (4.24)

Hence, from (4.18), (4.19), estimate (4.24) is clearly always valid.
Define

ν(γ, k̄) = γ
(
|k1 + k2 + k3|+ |k2 + 2k3|

)
+ γ2K (4.25)

and introduce the following subsets of R3

Sγ =
{

(k1, k2, k3) ∈ R3 ∣∣ ν(γ, k̄) < 1
10

}
(4.26)

Sγ,r =
{

(k1, k2, k3) ∈ R3 ∣∣ ν(γ, k̄) ∼ 1
102r

}
. (4.27)

By (4.15) ∣∣∣Jγ (̄k)−
(∫

ϕ
)2∣∣∣ < 1

10

(∫
ϕ
)2

for k̄ ∈ Sγ . (4.28)

By(4.24) ∣∣Jγ (̄k)
∣∣ ≤ C2−r/2 for k̄ ∈ Sγ,r . (4.29)
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Rewrite (4.11) as

Iγ =
∫

Sγ

d̄k f̂(k1)f̂(k2)f̂(k3)Jγ (̄k)

+
∑
r≥0

∫
Sγ,r

d̄kf̂(k1)f̂(k2)f̂(k3)Jγ (̄k) . (4.30)

By (4.28) and (4.4)

(4.30) ∼
∫

Sγ

d̄k f̂(k1)f̂(k2)f̂(k3) = ργ . (4.32)

where by (4.2), (4.3), (4.4)
ργ ≥ ε3 . (4.33)

By (4.29)

(4.31) ≤ C
∑
r≥0

2−r/2
∫

Sγ,r

d̄k f̂(k1)f̂(k2)f̂(k3) . (4.34)

Assume first that for all r∫
Sγ,r

d̄k f̂(k1)f̂(k2)f̂(k3) < c2r/10ργ (4.35)

for an appropriate constant c > 0. Then

(4.31) ≤ cC
∑
r≥0

2−r/22r/10ργ <
1
2 (4.30) (4.36)

and hence by (4.32), (4.33), (4.36)
Iγ >

1
2(4.30) & ργ & ε3 . (4.37)

Otherwise, denote

r0 = max
{
r
∣∣∣ ∫

Sγ,r

f̂(k1)f̂(k2)f̂(k3)d̄k > c2r/10ργ

}
(4.38)

and let
γ1 = 2−r0γ . (4.39)

By (4.25)

ν(γ1; k̄) ≤ 2−r0ν(γ; k̄) < 1
10 for k̄ ∈ Sγ ∪

⋃
r≤r0

Sγ,r . (4.40)

It follows that
Sγ ∪

⋃
r≤r0

Sγ,r ⊂ Sγ1 (4.41)

and thus, by (4.4)

ργ1 ≥ ργ +
∫

Sγ,r0

f̂(k1)f̂(k2)f̂(k3) > (1 + c2r0/10)ργ > (1 + c)ργ . (4.42)
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Consequently, by (4.39), (4.42)
γ
γ1
≤ C

(ργ1
ργ

)10
<
(ργ1
ργ

)C
. (4.43)

Starting from γ1 = 1/10, ργ1 & ε3, we construct a decreasing sequence {γs}
as follows.

By (4.37), if
Iγs � ε3 (4.44)

we get r0 and let
γs+1 = 2−r0γs (4.45)

for which, by (4.42), (4.43)
ργs+1 > (1 + c)ργs (4.46)

γs
γs+1

>

(
ργs+1

ργs

)C
. (4.47)

Since ργ ≤ 1 by (4.5) it follows from (4.46) that
Iγs∗ & ε

3 (4.48)
has to hold for some s = s∗. By (4.47), (4.33)

1
γs∗

=
γs∗−1

γs∗

γs∗−2

γs∗−1
· · · γ1

γ2

1
γ1
≤ 10

(
ργs∗
ργs∗−1

)C(ργs∗−1

ργs∗−2

)C
· · ·
(
ργ2

ργ1

)C
< ε−C .

(4.49)
Recalling (4.10), (4.48), (4.49) imply that

I ≥ γ2
s∗Iγs∗ & ε

2C+3 (4.50)
and thus (4.6).

This proves Lemma 4.1.
Lemma 4.1 is the result that will be applied in the next section. We

want however to point out the following consequence.

Lemma 4.51. Let A be a measurable subset of [0, 1] of measure
mesA > δ (4.52)

(i) Given ρ ∈ R, |ρ| < 1, there are λ, µ ∈ R such that
1
λ
,

1
λ+ µ

,
1

λ+ 2µ
∈ A−A+ ρ (4.53)

|µ| > δC . (4.54)
(ii) In particular, there are λ, µ ∈ R satisfying

1
λ
,

1
λ+ µ

,
1

λ+ 2µ
∈ A−A+A (4.55)

|µ| > δC . (4.56)
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Proof. Statement (ii) obviously follows from (i). Rescaling arguments per-
mit us to take ρ = 1 in (i). Apply then Lemma 4.1 with f = χ

A
∗ χ−A

satisfying (4.2), (4.5) with ε = δ2 (in fact, we consider ρ−1A ∩ I with I an
interval of unit length, such that |ρ−1A ∩ I| > δ). Hence, by (4.6), there
are λ, µ ∈ R, |µ| > δC s.t.

1
λ
,

1
λ+ µ

,
1

λ+ 2µ
∈ 1 + supp f ⊂ 1 +A−A . (4.57)

Remarks. (i) By similar stationary phase arguments, the preceding may
be extended to arithmetic progressions of arbitrary length.

(ii) It is remarkable to notice that if we consider instead the problem of
separated progressions

λ, λ+ µ, λ+ 2µ ∈ A+A−A (4.58)

or, more generally

λ, λ+ µ, λ+ 2µ ∈ A±A± · · · ±A︸ ︷︷ ︸
h terms

(4.59)

with A satisfying (4.52), the known results only permit us to get (4.58),
(4.59) with µ satisfying a much weaker property when δ → 0

|µ| > exp
(
−
(1
δ

)c) (4.60)

for some c > 0. In this context, we mention for instance the result of
[FHRu] (see also [Bo2]): Let Q ⊂ [1,N ] be a set of integers and write
δ = |Q|/N . Then 3Q = Q + Q + Q contains an arithmetic progression of
length at least

[cδN cδ3
] (4.61)

for some c > 0. It is reasonable to conjecture that the true dependence on
δ in (4.61) only should involve log 1/δ in the exponent.

5 Proof of Proposition 1.20 (I)

Consider next the validity of a maximal inequality

‖f∗δ ‖Lp(Sd−1) �
(1
δ

) d
p
−1+ε ‖f‖p . (5.0)

Hence, using for simplicity the notation | · | to denote the measure in the
appropriate spaces,

λp|D| �
(1
δ

)d−p+ε |A| (5.1)

where

D =
{
ξ ∈ Sd−1

∣∣ χ∗δ(ξ) > λ
}

(5.2)
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χ = χA = indicator function of A ⊂ Rd . (5.3)
We claim that (5.0), (5.1) may be fulfilled for some

p =
(1

2 + c
)
d (5.4)

for some constant c > 0.
Since f∗δ is obtained by averaging on some tube of width δ, we may

clearly in our problem replace f by f ∗ (δ−dχBδ) and thus assume the set
A considered above is a union of δ-balls.

If then for a δ-tube τ in direction ξ we have

χ∗δ(ξ) = |τ |−1
∫
τ
χ > λ (5.5)

it follows from Hölder’s inequality that

|τ |−1(λ|τ |)1− 1
p |A|1/p > λ

thus
|A| > λ|τ | ∼ λδd−1 . (5.6)

Hence, if λ < δ, (5.6) implies for p ≥ 1
|A| > δd−pλp (5.7)

and we may thus assume
1 > λ > δ . (5.8)

Assume first
λ > δτ (5.9)

where τ > 0 is a small number (independent of the dimension and to be
specified in the next section).

Case (5.9) is the most difficult one. In the next section, we will prove

Lemma 5.10. With previous setup, assume
|A| = Mδd/2 and |D| = κ . (5.11)

Then there exist positive numbers τ > 0, c > 0 (independent of d) such
that if

χ∗δ(ξ) > δτ for ξ ∈ D (5.12)
one has

M > κδ−cd . (5.13)
Consequently, one may take p =

(1
2 + c

)
d in case (5.9).

Next, consider the general case (5.8).
For ξ ∈ D = [χ∗δ > λ], let Lξ//ξ satisfy

|Lξ ∩A| > λ . (5.14)
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Write

D = D1 ∪ D2 (5.15)

where we define

ξ ∈ D1 if diam(Lξ ∩A) >
(
λ
δ

)τ
λ (5.16)

ξ ∈ D2 if diam(Lξ ∩A) ≤
(
λ
δ

)τ
λ . (5.17)

Distinguish the following cases.

Case (i):

|D1| > 1
2 |D| . (5.18)

Consider the map

Φ :
{

(a, a′) ∈ A×A
∣∣ |a− a′| > (λδ )τ λ}→ (

λ
δ

)τ
λSd−1

given by

Φ(a, a′) =
(
λ

δ

)τ
λ
a− a′
|a− a′| . (5.19)

Since Φ is Lipschitz and Im Φ ⊃ (λ/δ)τλD1, we have for the δ-entropy-
numbers

Nδ(A)2 ≥ Nδ
((

λ
δ

)τ
λD1

)
> c
((

λ
δ

)τ
λ
)d−1 mes(D1) .δ1−d (5.20)

hence, by (5.18) and the assumption on A

Nδ(A) > c
( (

λ
δ

)τ
λ
) d−1

2 |D|1/2δ
1−d

2 (5.21)

|A| > c
( (

λ
δ

)τ
λ
) d−1

2 |D|1/2δ
1+d

2 . (5.22)

Thus, from (5.22), in order to fulfill (5.1), it suffices that

λp �
(1
δ

)d−p+ε ( (λ
δ

)τ
λ
) d−1

2 δ
1+d

2 (5.23)

λp−
d−1

2 (1+τ) � δp−
d−1

2 (1+τ)−ε (5.24)

hence, by (5.8)

p ≤ d− 1
2

(1 + τ) . (5.25)

For d sufficiently large, this gives again (5.4).

Case (ii): |D2| > 1
2 |D|.

Rescale the problem multiplying by (λ/δ)−τλ−1. Thus

δ → δ′ =
(
δ
λ

)1+τ (5.26)

λ→ λ′ =
(
δ
λ

)τ
(5.27)

A → A′ = λ−1 ( δ
λ

)τ A . (5.28)
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For ξ ∈ D2, (5.14), (5.17) imply
(χA′)

∗
δ′(ξ) > λ′ > (δ′)τ . (5.29)

If τ is choosen as in (5.10), it follows from (5.26)–(5.28) that for p =
(1

2 +c
)
d

(λ′)p|D2| <
( 1
δ′
)d−p |A′|(

δ
λ

)τp |D| . (λδ )(1+τ)(d−p) (
λ−1 ( δ

λ

)τ )d|A|
hence

λp|D| .
(1
δ

)d−p |A| (5.30)
which is (5.1). This proves Proposition 1.20.

6 Proof of Proposition 1.20 (II)

It remains to prove Lemma 5.10.
Assume thus A ⊂ B(0, 1) ⊂ Rd a union of b-balls such that, letting

χ = χA

χ∗δ(ξ) > δτ for ξ ∈ D ⊂ Sd−1 (6.1)
with τ > 0 small (independently of d).

Thus for ξ ∈ D, there are aξ, bξ ∈ A such that
aξ − bξ//ξ (6.2)

‖aξ − bξ‖ > δτ (6.3)
mes

(
[aξ, bξ] ∩A

)
> δτ . (6.4)

Define a function F = F (λ, ξ) as follows
F (λ, ξ) = 1 if λaξ + (1− λ)bξ ∈ A (6.5)

= 0 otherwise . (6.6)
We may by (6.4) clearly assume that∫ 1

1/2
F (λ, ξ)dλ > δτ for ξ ∈ D (6.7)

and restrict F to [1/2, 1].
Define

f(x, ξ) =
∫ 2

1
F

(
1

x+ x′
, ξ

)
F

(
1
x′
, ξ

)
dx′ . (6.8)

Hence
supp fξ ⊂ [−1, 1] (5.9)∫

fξ(x)dx =
(∫ 2

1
F
(

1
y , ξ
)
dy

)2

& δ2τ (6.10)
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and also

f̂ξ(k) = F̂ξ
(1
·
)
(k)F̂ξ

(1
·
)
(−k) =

∣∣∣F̂ξ (1
·
)
(k)
∣∣∣2 ≥ 0 (6.11)∫

f̂ξ(k)dk =
∫ 2

1
F
(

1
y , ξ
)
dy ≤ 1 . (6.12)

Thus f = fξ satisfies (4.2)–(4.5) with ε ∼ δ2τ .
Applying then Lemma 4.1 gives for ξ ∈ D fixed∫∫
f

(
1−1

λ
, ξ

)
f

(
1− 1

λ+µ
, ξ

)
f

(
1− 1

λ+2µ
, ξ

)
ϕ1(λ)ϕ2(µ)dλdµ > δCτ .

(6.13)
Next, substituting (6.8) and integrating (6.13) in ξ ∈ D, gives∫

ϕ1(λ)ϕ2(µ)dλ dµ

·
∫ 2

1
dx0dx1dx2

∫
D
dξΠ`=0,1,2F

(
1

1− 1
λ+`µ + x`

, ξ

)
F

(
1
x`
, ξ

)
> δCτ |D| . (6.14)

Thus, by Fubini, there are λ, µ, x0, x1, x2 and D1 ⊂ D such that
|µ| > δCτ (6.15)

|D1| > δCτ |D| (6.16)

F

(
1
x`
, ξ

)
= 1 = F

(
1

1− 1
λ+`µ + x`

, ξ

)
, ` = 0, 1, 2 and ξ ∈ D1 .

(6.17)
Denote then

λ` = 1
x`

(` = 0, 1, 2) (6.18)
1

λ+ `µ
= 1 +

1
λ`
− 1
∧`

(` = 0, 1, 2) . (6.19)

Thus 1/2 ≤ λ`,∧` and we clearly assume also (from the Fubini argument)
1
2 ≤ λ` , ∧` < 1− δCτ . (6.20)

(Recall that in exponent notation C refers to a constant independent of d).
It follows from (6.17) that for ξ ∈ D1

F (λ`, ξ) = 1 = F (∧`, ξ) (` = 0, 1, 2)
which means that, by (6.5)–(6.6), for ξ +D1

λ`aξ + (1− λ`)bξ ∈ A (6.21)
∧`aξ + (1− ∧`)bξ ∈ A . (6.22)

Recall (5.11)
|A| = Mδd/2 (6.23)
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|D| = κ (6.24)
hence, by (6.16)

|D1| > δCτκ . (6.25)
At this stage, apply Lemma 2.113 with A = B = A, G ⊂ {(aξ, bξ) |

ξ ∈ D1} and considering the positive numbers
ξ` = λ` η` = 1− λ` (` = 0, 1, 2) (6.26)
ξ` = ∧`−3 η` = 1− ∧`−3 (` = 3, 4, 5) (6.27)

(thus `0 = 6). Since A was assumed a collection of δ-balls, (6.23) implies
Nδ(A) < CMδ−d/2 ≡ N . (6.28)

By (6.20), condition (2.116) holds with τ replaced by Cτ . Condition
(2.117) is implied by (6.21), (6.22). By (6.25), there is a finite subset
D2 ⊂ D1 ⊂ Sd−1 such that

‖ξ − ξ′‖ > δ for ξ 6= ξ′ in D2 (6.29)
and

|D2| > c
(1
δ

)d−1
δCτκ . (6.30)

Define
G =

{
(aξ, bξ)

∣∣ ξ ∈ D2
}
. (6.31)

Again considering the Lipschitz map {(a, b)∈A×A | ‖a−b‖>δτ} Φ→ δτSd−1.

Φ(a, b) = δτ
a− b
‖a− b‖ (6.32)

and recalling (6.2), (6.3), it follows thus from (6.29), (6.30) that
Nδ(G) ≥ Nδ(δτD2) > cδτ(d−1)|D2| > cδτ(d+C)+1κδ−d . (6.33)

Therefore, from (6.28), (6.33), condition (2.115) holds with
α = κM−2δτ(d+C)+1 . (6.34)

Lemma 2.113 gives then
A′ ⊂ A+BCδ1−Cτ

B′ ⊂ A+BCδ1−Cτ
(6.35)

such that the following properties hold (cf. also (2.139)).
Nδ(A′ +A′ −A′) < (αδdτ )−CN (6.36)
(1−λ`)B′ is contained in a translate of λ`A′ (`=0, 1, 2) (6.37)
(1−∧`)B′ is contained in a translate of ∧` A′ (`=0, 1, 2) (6.38)∣∣{ξ ∈ D2 | aξ ∈ A′, bξ ∈ B′}

∣∣ ≥ Nδ(G ∩ (A′ ×B′)
)
> (αδdτ )CN2 .

(6.39)
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Returning then to (6.19), it follows that for ` = 0, 1, 2

A′ +
(

1
λ+ `µ

− 1
)
B′ ⊂ A′ +

(
1
λ`
− 1
)
B′ −

(
1
∧`
− 1
)
B′ (6.40)

is contained in a translate of A′ +A′ −A′. Hence, from (6.36)

Nδ
(
A′ +

(
1

λ+ `µ
− 1
)
B′
)
< (αδdτ )−CN (6.41)

Nδ
(
(λ+ `µ)A′ + (1− λ− `µ)B′

)
< C(αδdτ )−CN (6.42)

for ` = 0, 1, 2.
Next, we will apply Lemma 2.83. Take

A = λA′ + (1− λ)B′ (6.43)
B = (λ+ 2µ)A′ + (1− λ− 2µ)B′ (6.44)

G =
{

(λa′+(1−λ)b′, (λ+2µ)a′+(1−λ−2µ)b′)
∣∣ a′∈A′, b′∈B′} ⊂ A×B

(6.45)

satisfying (2.84), 2.85) with N replaced by (αδdτ )−CN , from (6.42).
Consequently, (2.86) implies that

Nδ
(
{a− b | (a, b) ∈ G}

)
< CN

25
13 + (6.46)

hence, from (6.43)–(6.45) and (6.15)

Nδ(A′ −B′) < Cµ−dN
25
13 + < Cδ−CdτN

25
13 . (6.47)

Define

D3 = {ξ ∈ D2 | aξ ∈ A′, bξ ∈ B′} (6.48)

which satisfies thus, by (6.29), (6.39)

|D3| > (αδdτ )CN2 (6.49)

Nδ(D3) > c(αδdτ )CN2 . (6.50)

Hence, by (6.47), (6.50) and (6.2), (6.3)

Cδ−CdτN25/13 > Nδ
(
{aξ − bξ | ξ ∈ D3}

)
> cNδ(δτD3)

> cδdτNδ(D3) > c(αδdτ )CN2 . (6.51)

Substituting (6.28), (6.34) in (6.51) implies

(CMδ−
d
2 )

1
13 =N

1
13<C(αδdτ )−C<C(κM−2δ1+Cdτ )−C

(6.52)(1
δ

)d( 1
26−Cτ)−C

<
(
M
κ

)C
. (6.53)

Assuming τ small enough and d large enough, (5.13) clearly follows. This
completes the proof of Lemma 5.10 and hence of Proposition 1.20.
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Remark. The improvement p ≤
(1

2 + c
)
d obtained in Proposition 1.20

over the known result p ≤ d
2 + 1 [W1] requires d to be sufficiently large

and in particular does not improve on he p = 5/2 exponent for d = 3. It
is based on some different combinatorial aspects however and establishes
a connection between the Besicovitch problem and a collection of classical
results in additive number theory, cf. [N].
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