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1 Introduction

The theory of word-hyperbolic groups has been a central topic in geometric
group theory. General references include [Gr1], [C], [GhH], [CoDP]. In this
paper we introduce a theory of relatively hyperbolic groups.

Fundamental groups of complex (resp. quaternionic, Cayley) hyperbolic
manifolds with cusps are examples of groups which are not word-hyperbolic
(or even automatic), and, indeed, which lie outside many of the techniques
in geometric group theory. The reason these groups differ so much from the
real hyperbolic case, where Epstein ([Ep-etal]) has proved that such groups
are (bi)automatic, is that in the real hyperbolic case the geometry of the
group turns out to be nonpositively curved. This is due essentially to the
fact that the cusp groups are abelian. The fundamental groups of complex
(resp. quaternionic, Cayley) hyperbolic manifolds with cusps do not exhibit
nonpositively curved geometry. Instead they combine a nontrivial mix of
both negatively curved and nilpotent geometry.

The techniques introduced in this paper are meant to provide some
machinery for dealing with groups which exhibit more than one type of
geometric behavior. Our methods pick out and exploit aspects of negative
curvature in a group Γ, when Γ itself is not a word-hyperbolic group. We
emphasize that we do not simply consider coset graphs, which is the naive
approach (and does not work for the motivating examples).

1.1 Definitions. Here is a rough idea of the definitions involved; for
details see §3. Although the general theory applies to groups which are
hyperbolic relative to a finite set of subgroups, we begin with the case of
only one subgroup.
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Let H be a finitely-generated subgroup of a finitely-generated group G.
For any Cayley graph of Γ of G we form a quotient graph Γ̂ of Γ by iden-
tifying, for each g ∈ G, all vertices of Γ corresponding to elements lying in
the left coset gH.

Definition (Relatively hyperbolic group). The group G is hyperbolic
relative to H if Γ̂ is a negatively curved metric space.

We also isolate a property that can be satisfied by a pair (G,H), where
G is hyperbolic relative to H: the Bounded Coset Penetration property
(or BCP property for short). The BCP property strengthens the notion
of malnormal subgroup, and will allow us to conclude information about
G from corresponding information about H (see, e.g., Theorem 3.7 and
Theorem 3.8).

1.2 Negatively curved manifolds with cusps. Eberlein, Gromov,
and Margulis greatly clarified the structure of the ends of noncompact,
complete, finite-volume Riemannian manifolds Mn with (pinched) negative
sectional curvatures −b2 ≤ K(Mn) ≤ −a2 < 0 ([E], [BGrS]). Their work
shows that Γ = π1(Mn) is finitely presented. We take their work as a
starting point for our analysis of the geometric and combinatorial structure
of the group Γ = π1(Mn). Such groups Γ are the motivating examples for
the ideas behind relatively hyperbolic groups.

For simplicity we assume that Mn has one cusp (see §5 for the general
statement). Associated to the fundamental group Γ of such a manifold Mn

is its cusp subgroup H, which is the unique (up to conjugacy) maximal
parabolic subgroup of Γ. The group H is a finitely-generated, virtually
nilpotent group.

Theorem 4.11. Let Γ = π1(Mn) be as above, and let H be the cusp
subgroup of Γ. Then Γ is hyperbolic relative to H and the pair (Γ,H) has
the BCP property.

Applying some of the general properties of relatively hyperbolic pairs
(Γ,H) which satisfy the BCP property, we obtain the following two results.

Theorem 4.14 (Fast solution to word problem). There is a curve-shortening
algorithm which solves the word problem for Γ in time O(n log n).

Theorem 4.12 (Dehn functions). Γ satisfies precisely the same isoperi-
metric inequality as its cusp subgroup H. That is, the Dehn functions for
Γ and H are equal.

Theorem 4.12 was claimed by Gromov in Section 5.6 of [Gr2].
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Our approach to understanding Γ involves studying the geometry of
“Electric Space” - a space X̂ canonically associated to Mn which models the
geometry of the coned-off Cayley graph Γ̂ (see §4). “First-order” geometric
properties of Γ̂ (e.g., what geodesics look like) translate into “second-order”
geometric properties of M̃ (e.g., visual sizes of sets such as horospheres
in M̃).

1.3 Connections with other work. In [Gr1,2] Gromov proposes a
different definition of hyperbolicity relative to a subgroup. We did not see
how to use that definition, so our approach is different. The two definitions
are compared in [Sz]. An additional (and central) idea in our approach is
the BCP property (see section 3.3).

We believe that the ideas of relative hyperbolicity and the BCP prop-
erty are applicable to many other examples. Indeed, since [F3], rela-
tive hyperbolicty and the BCP property have been applied to analyzing
certain Coxeter groups ([Kr]), noncocompact actions on hyperbolic met-
ric spaces and relative hyperbolization of polyhedra ([Sz]), mapping class
groups [MMin1,2], semiconjugacies between Kleinian group actions [K], and
metabolicity [G3].

1.4 Contents and acknowledgements. Section 3 contains the basic
properties and examples of relatively hyperbolic groups. In §4 we provide
some applications to the motivating examples of fundamental groups of neg-
atively curved manifolds with cusps. In §5 we discuss briefly the definition
of hyperbolicity relative to a finite set of subgroups.

The material in this paper was part of my PhD thesis [F3]. I am grateful
to my advisor Bill Thurston and to John Stallings. I also thank Noel
Brady, Martin Bridson, Mahan Mitra, and the many others who helped
me. Finally, I thank the referee for many useful comments and corrections.

2 Background to Hyperbolic Groups

In this section we briefly review some facts on hyperbolic groups which
we will need. For more details, background, and motivation, we refer the
reader to [Gr1], [GhH], [CoDP].

To a group G with finite generating set X, one associates the Cayley
graph Γ = Γ(G,X), which is a directed graph whose vertex set consists
of elements of G, with a directed edge labelled x going from g to g · x for
each g ∈ G, x ∈ X. We make Γ into a metric space by assigning each edge
length 1, and by defining the distance between two points to be the length
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of the shortest path between them.

Recall that a path-metric space X is hyperbolic if there exists some
δ > 0 so that the δ-neighborhood of any two sides of a geodesic triangle
in X contains the third side. A finitely generated group is called a (word)
hyperbolic group if its Cayley graph is a hyperbolic metric space. The
property of being a hyperbolic path-metric space is invariant under quasi-
isometry.

A (K,C)-quasi-isometry between metric spaces is a map f : X → Y
such that, for some constants K,C,C ′ > 0:

(1) 1
K dX(x1, x2) − C ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2) + C for all
x1, x2 ∈ X;

(2) the C ′-neighborhood of f(X) is all of Y .

A map satisfying (1) but not necessarily (2) is called a quasi-isometric
embedding of X into Y . A path α : [0, p]→ X is a K-quasi-geodesic if it is
a K-quasi-isometric embedding of [0, p] into X.

Let Γ be a finitely generated group with generating set X and relator
set R. Let A = X t X−1, and let A∗ denote the free monoid on A. For
a word w ∈ A∗, we denote by w̄ the image of w under the natural map
A∗ → Γ. For g ∈ Γ, we let ||g|| = d(1, g), where d = dΓ denotes the word
metric in Γ (with respect to X). A word w ∈ A∗ is identified with an
eventually constant w : [0,∞)→ Γ.

Let `(w) denote the length of w in A∗. Given w ∈ A∗ with w = 1, we
can write

w =
N∏
j=1

zjRjz
−1
j , zj ∈ F (X) , Rj ∈ R ∪R−1 , (1)

with the equality in F (X), the free group on X. A function f is an isoperi-
metric function for Γ if for every w ∈ F (X) with w = 1, the word w can
be written as in 1 with N ≤ f(`(w)). The smallest isoperimetric function
for a group G is called the Dehn function for the group G.

Isoperimetric functions give a measure of the complexity of the word
problem for groups. It is shown in [G2] that a finitely presented group
G has a solvable word problem iff there exists a recursive isoperimetric
function for G iff the Dehn function for G is recursive.
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3 Relatively Hyperbolic Groups

3.1 Definition and examples. Let G be a finitely generated group,
and let H be a finitely generated subgroup of G. We begin with the Cayley
graph Γ of G, and we form a new graph Γ̂ as follows: for each left coset
gH of H in G, add a vertex v(gH) to Γ, and add an edge e(gh) of length
1/2 from each element gh of gH to the vertex v(gH). We call this new
graph the coned-off Cayley graph of G with respect to H, and denote it by
Γ̂ = Γ̂(H). We give this graph the path metric. Note that Γ̂ is not a proper
metric space (i.e. closed balls are not always compact).

Remarks. 1. In general the graph Γ̂ is very different from the quotient
graph H \Γ obtained by quotienting out by the left action of H on Γ. This
is due to the difference between left and right cosets. When H C G, the
graphs Γ̂ and H\Γ are quasi-isometric.

2. It is easily seen that Γ̂ is quasi-isometric to the graph obtained from
Γ by identifying each left coset to a point.

Example. Let Γ = F (a, b) be the fundamental group of a punctured
torus, and let H be its cusp subgroup, which is the cyclic subgroup H =
〈aba−1b−1〉. The coned-off Cayley graph Γ̂ of Γ relative to H is quasi-
isometric to the 1-skeleton of the Farey tesselation. It is easy to check (see
section 4) that Γ̂ is a hyperbolic metric space.

H

aH

abH

aba-1H

smash left cosets
     of H in G

Figure 1: A finite part of the picture of what happens when each coset of
H= 〈aba−1b−1〉 in G = F (a, b) is identified to a point.

Definition (Relatively hyperbolic group). The group G is hyperbolic
relative to H if the coned-off Cayley graph Γ̂ of G with respect to H is a
negatively curved metric space.
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Note. There is a useful notion of hyperbolicity of a group relative to a
finite set of subgroups - see §5. This arises in many examples (e.g. manifolds
with several cusps, small cancellation theory over free products, etc.).

Examples. 1. Let Γ = π1(Mn), where Mn is a complete, finite volume
Riemannian manifold with (pinched) negative sectional curvatures and one
cusp, and let H be the fundamental group H of the cusp, which is virtually
a nilpotent group. Then Γ is hyperbolic relative to H. These examples are
discussed at length in section 4.

2. (Gromov) In [Gr1,2] Gromov proposes the following definition of
relative hyperbolicity. Let G be a group acting properly discontinuously by
isometries on a δ-hyperbolic metric space Y , such that the quotient X/G
is quasi-isometric to [0,∞). Let H denote the stabilizer subgroup of the
endpoint on ∂X of a lift of this ray to X. Then G is said to be hyperbolic
relative to H in the Gromov definition. Note that this example includes
the previous example.

A. Szczepanski has shown ([Sz]) that, if G is hyperbolic relative to H in
the Gromov defintion, then G is hyperbolic relative to H in our definition,
but not conversely.

3. If H is normal in Γ, then Γ is hyperbolic relative to H if and only
if Γ/H is a word-hyperbolic group. This follows from the fact that, when
H C Γ, the graph Γ̂ is quasi-isometric to the coset graph of Γ/H, which
in turn is just the Cayley graph of the word-hyperbolic group Γ/H. Note
that the property of being a hyperbolic metric space is a quasi-isometry
invariant ([GhH]).

4. Gersten has shown ([G1]) that a word-hyperbolic group is hyperbolic
relative to any quasi-convex subgroup. For example, a surface group is
hyperbolic relative to every (finitely generated) subgroup.

5. If H is any finitely generated group, then N ∗H is hyperbolic relative
to H if and only if N is word-hyperbolic (see Proposition 3.4).

6. Let B1,2 = 〈a, b : aba−1 = b2〉 be the (1, 2)-Baumslag-Solitar group,
and let H = 〈b〉 be the cyclic subgroup generated by b. Then Γ̂ is quasi-
isometric to the infinite tree of (uniform) valence three, so that G is hyper-
bolic relative to H.

Example (M. Mitra). Let M3 be an irreducible, non-Haken 3-manifold
finitely covered by a surface bundle over the circle. So there is a non-
embedded, immersed surface in M3 which lifts to a fiber S in a finite
surface-bundle cover p : N3 → M3, where without loss of generality N3

is a normal cover (this insures that all lifts of p(S) are embedded). Let
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Γ1 = π1(N3), Γ2 = π1(M3), H = π1(S), so H C Γ1 C Γ2 and Γ1 has
finite index in Γ2. Let Γ̂i, i = 1, 2 be the coned-off Cayley graph of Γi with
respect to H. Clearly Γ̂1 is quasi-isometric with the real line (cf. Example 3
above). We claim that Γ̂2 is finite.

Consider intersecting copies S and S′ of the lifts of the immersed surface
to N3. Denote by t the generator of the circle in the fundamental group
Γ1 ≈ π1(S)×φ Z of the bundle. There exists k > 0 so that stk ∈ π1(S′) for
some s ∈ π1(S). It follows that the diameter of Γ̂2 is finite.

If M3 is an irreducible, non-Haken 3-manifold with surface subgroup
π1(S), is π1(M3) hyperbolic relative to π1(S)? The answer to this question
is “yes” for hyperbolic 3-manifoldsM3 by work of Thurston-Bonahon. Note
that in this case, π1(M3) is hyperbolic relative to any surface subgroup S,
and the usual trichotomy is captured by the boundary ∂(Γ̂) of the negatively
curved metric space Γ̂:

1. S virtually fibers. ∂(Γ̂) is empty.
2. S is a true fiber. ∂(Γ̂) has 2 points.
3. S is geometrically finite, i.e. quasi-convex. ∂(Γ̂) contains infinitely

many points; cf. Example 4 on page 815.

Example (Masur-Minsky). Let Γg,r denote the mapping class group of
the surface Σg,r of genus g with r punctures. For any simple closed curve
C in Σg,r, let HC denote the subgroup of elements of Γg,r fixing C. One
of the main results of [MMin1] is that Γg,r is hyperbolic relative to the
subgroup H. In [MMin2] this fact is used to help give a fast solution to the
conjugacy problem for Γg,r.

3.2 Invariance and closure properties. In this section we show that
relative hyperbolicity is independent of choices for generating sets for G
and H. This will follow from the more general invariance under quasi-
homomorphisms quasi-preserving H. We also explore certain closure prop-
erties of the class of relatively hyperbolic groups.

The notion of quasi-homomorphism was introduced by Brooks and Gro-
mov ([Gr1]). A map φ : G1 → G2 between groups is called a quasi-
homomorphism if φ(1) = 1, and if there exists a constant E > 0 so that
dG2(φ(gh), φ(g)φ(h)) ≤ E for all g, h ∈ G1. We use the notation hd(A,B)
to denote the Hausdorff distance between A and B.

Proposition 3.1. Let f : G1 → G2, f ′ : G2 → G1 be a pair of quasi-
isometries, both of which are quasi-homomorphisms of groups. For i = 1, 2,
let Hi be a finitely generated subgroup of Gi, let Γ̂i be the coned-off Cayley
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graph of Gi with respect to Hi, and assume that there exists D > 0 so that
hd(f(H1),H2) ≤ D. Then Γ̂1 is quasi-isometric to Γ̂2; in particular, Γ̂1 is
negatively curved if and only if Γ̂2 is negatively curved.

Proof. It clearly suffices to show that G1 is quasi-isometric to G2 in the Γ̂i
metrics. Let f, f ′ be K-quasi-isometries. Note that

hd
(
f(gH1), f(g)H2

)
≤ hd

(
f(gH1), f(g)f(H1)

)
+ hd

(
f(g)f(H1), f(g)H2

)
≤ E + hd

(
f(H1),H2

)
≤ E +D .

Let x, y ∈ G1 ⊂ Γ̂1 be given, and let α be a Γ̂-geodesic from x to y.
There are two types of subsegments of α: those which lie in G1 ⊂ Γ̂1, and
those consisting of an edge-path of length 1 which begins in at some vertex
p ∈ gH1, goes to the vertex v(gH1), and ends in some vertex q ∈ gH1.
Segments of the first type are clearly stretched by a factor of at mostK. For
segments of the second type note that, since hd(f(gH1), f(g)H2) ≤ D+E,
there are vertices p′ ∈ f(g)H2, q′ ∈ f(g)H2 so that dG2(p, p′), dG2(q, q′) ≤
D + E. Since p′ lies in the same coset of H2 as q′, there is an edge-path
of length 1 in Γ̂2 from p′ to q′. Hence there is a path of length at most
2(D +E) + 1 in Γ̂2 from f(p) to f(q).

From these two observations it follows that

dΓ̂2

(
f(x), f(y)

)
≤
(
K + 2(D +E) + 1

)
· dΓ̂1

(x, y) for all x, y ∈ G1 .

Since dG2(f ′ ◦ f(x), x) is bounded (independently of x), it is easy to
show that hd(f ′(gH2), f ′(g)H1) is finite. By the same argument as above,

dΓ̂1

(
f ′(x), f ′(y)

)
≤
(
K + 2(D +E) + 1

)
· dΓ̂2

(x, y) for all x, y ∈ G2

hence Γ̂1 is quasi-isometric to Γ̂2. Since both Γ̂1 and Γ̂2 are geodesic metric
spaces, one is negatively curved if and only if the other is (see [GhH], and
note that the proof does not require the spaces in question to be proper). �

Proposition 3.1 has two immediate corollaries.

Corollary 3.2. The property of a group G being hyperbolic relative to a
subgroup H is independent of the choice of (finite) generating sets for both
G and H.

Corollary 3.3. Suppose that N < H < G are finitely generated groups
with [H : N ] < ∞. Then G is hyperbolic relative to H if and only if G is
hyperbolic relative to N .

Finally, we list two “combination theorems” for relatively hyperbolic
groups. We leave their straightforward proofs as an exercise.
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Proposition 3.4. Let H be any finitely generated group. Then H ∗N
is hyperbolic relative to N if and only if H is a word-hyperbolic group.

Proposition 3.5. Suppose that H is a subgroup of the groups G1 and
G2, and that each Gi is hyperbolic relative to H. Then the free product of
G1 and G2 amalgamated over H is hyperbolic relative to H.

3.3 Bounded coset penetration. For a fixed generating set S of Γ,
choose a fixed set of words yi ∈ F (S) representing generators of the sub-
group H. A path w in Γ gives a path ŵ in Γ̂ as follows: search through w,
reading from left to right, for the subwords yi (choose only the left-most
word in case of overlaps). For each maximal substring z of yi’s, say z goes
from g to g ·z in Γ, replace the path given by z with one edge from the ver-
tex g to the cone point v(gH), and an edge from v(gH) to the vertex g · z.
Do this for each substring of yi’s. We will call such paths z coset subwords,
for we think of z as “moving along a coset”. Note that this depends on
the choice of generators for the subgroup H. We denote this replacement
which takes a path in Γ and gives a path in Γ̂ by

Γ→ Γ̂ ,
w 7→ ŵ .

Note that this map is clearly a surjection. If ŵ passes through some cone
point v(gH), we say that w (or ŵ) penetrates the coset gH.

Remark. In the special case when the generating set for Γ contains
the generating set for H, the substrings z above are simply the maximal
subwords of generators of H.

Definition (Relative (quasi)geodesic). If ŵ is a geodesic in Γ̂, we call
w a relative geodesic in Γ. If ŵ is a P -quasi-geodesic in Γ̂, we call w a
relative P -quasi-geodesic in Γ. A path w in Γ (or ŵ in Γ̂) is said to be
a path without backtracking if, for every coset gH which ŵ penetrates, ŵ
never returns to gH after leaving gH.

Definition (Bounded coset penetration). The pair (Γ,H) is said to
satisfy the bounded coset penetration property (or BCP property for short)
if, for every P ≥ 1, there is a constant c = c(P ) > 0 so that if u and v are
relative P -quasigeodesics without backtracking with dΓ(u, v) ≤ 1, then the
following conditions hold:

1. If u penetrates a coset gH but v does not penetrate gH, then u travels
a Γ-distance of at most c in gH.
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2. If both u and v penetrate a coset gH, then the vertices in Γ at which
u and v first enter gH lie a Γ-distance of at most c from each other;
similarly for the vertices u(t0) and v(s0) at which u and v last exit
gH (i.e. u(t) 6∈ gH and v(s) 6∈ gH for all t > t0, s > s0).

Examples. 1. Suppose Γ is torsion free. Then the BCP property implies
that the subgroup H is malnormal; that is, gHg−1 ∩ H = {1} for all
g ∈ Γ\H. For otherwise gHg−1 ∩H would be infinite for some g, and then
it is not difficult to construct a pair of relative geodesics with the same
endpoint, one of which moves far in H, while the other does not penetrate
H but moves far in gH, violating the BCP property.

2. If Γ = π1(M) is the fundamental group of a complete, finite volume,
(pinched) negatively curved Riemannian manifold M with a cusp, and if
H < Γ is the cusp subgroup, then (Γ,H) has the BCP property (Theorem
4.11).

3. The free abelian group of rank 2: Γ = 〈a, b : ab = ba〉 is hyperbolic
relative to the subgroup H = 〈a〉, but (Γ,H) does not have the BCP
property: the paths b3an and b4an are relative geodesics (of Γ̂-length 4 and
5, respectively) ending a distance 1 apart in Γ, but clearly violate condition
(1) of the BCP property when n is large enough.

4. (D. Allcock) As noted in Example 6 on page 815, the group B1,2 =
〈a, b : aba−1 = b2〉 is hyperbolic relative to the infinite cyclic subgroup H =
〈b〉 generated by b. It is easy to check that (B1,2,H) does not satisfy the
BCP property. The cyclic subgroup H = 〈a〉 is an example of a subgroup
which is malnormal in B1,2, but the pair (B1,2,H) does not have the BCP
property.

3.4 A curve-shortening algorithm. Suppose that Γ is hyperbolic
relative to the subgroup H, and that (Γ,H) has the BCP property. In this
section we describe a curve-shortening algorithm for paths in Γ in the spirit
of J. Cannon’s “Dehn’s algorithm” for hyperbolic groups [C].

Recall that a path w in a path metric space X is called a k-local geodesic
if every subpath of w of length at most k is a geodesic. We need the following
fact about k-local geodesics:

Lemma 3.6 ([C, Sh]). Let X be a δ-hyperbolic metric space, and let
k = 4δ. If u is a k-local geodesic in X, and if v is a geodesic connecting the
endpoints of u, then u lies in a 3δ-neighborhood of v.

We now describe a curve-shortening process for closed loops in Γ; this
will provide a solution to the word problem for Γ. As always, we are
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assuming that H is a finitely generated subgroup, and that H has solvable
word problem.

The pair (Γ,H) provides us with two constants: the geodesic metric
space Γ̂ is a δ-hyperbolic metric space, and let c = c(2) be the constant given
for 2-quasi-geodesics in the definition of the BCP property. Let k = 4δ.
Now suppose we are given a closed loop w ∈ F (X), where X is the given
generating set for Γ. Let Y be a finite set of words in F (X) representing
the given set of generators for the subgroup H. We form the following finite
sets:

L1 =
{
z ∈ F (Y ) : `Y (z) ≤ c

}
L2 =

{
w ∈ F (X) : `X(w) ≤ (8δ − 1) · c

}
We first run through w from left to right and find each coset subword.

Recall that coset subwords are chosen to be maximal. We then perform
the following procedure:

Coset subword reduction. For each coset subword z, considered as
a word in Y ∗, check to see if z = α for some α ∈ L1; this can be done since
H has solvable word problem. If this is the case, replace the coset subword
z of w by the word α. Of course, we are really replacing z by the word α
with each letter of α itself being written out as a word in F (X).

Now, either ŵ is or is not a k-local geodesic.
If ŵ is not a k-local geodesic, then there exists a subsegment û of ŵ of

length `Γ̂(û) ≤ k which is not a geodesic, and so that any subsegment of û
is a geodesic. Note that this implies that û is a path without backtracking,
and also that û is a 2-quasi-geodesic. Let v̂ be a geodesic between the
endpoints of û with the property that the length of the shortest path v in
Γ projecting to v̂ (under the natural map Γ→ Γ̂) is minimal.

If û and v̂ penetrate some coset gH, say at û(t) and v̂(s), then it must
be that s = t since v̂ and any subsegment of û are geodesics. But then
v̂([t + 1,∞]) would be shorter than û([t + 1,∞]), contradicting the fact
that every subsegment of û is geodesic. Hence û and v̂ penetrate distinct
cosets. By the BCP property for 2-quasi-geodesics, both û and v̂ travel
a Γ-distance of at most c in any coset. By the coset subword reduction
procedure and by the minimality of v, every coset subword of û (and v̂) has
Γ-length at most c. Hence

`Γ(vu−1) ≤ c · `Γ̂(v̂û−1)
≤ c ·

(
k + (k − 1)

)
= c · (8δ − 1) ,
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so that vu−1 ∈ L2. So, after performing the coset subword reduction pro-
cedure, we need only search through w for more than half of a word in L2:
if we find it, replace it by the other (shorter!) half. This gives a new word
w′ with w′ = w with `Γ̂(ŵ′) < `Γ̂(ŵ).

There is the following possibility (caused by backtracking): it may hap-
pen that a subword z1uz2 of w is shortened to z1z2, where each zi is a coset
subword (with `Y (zi) possibly greater than c). If this ever happens, we
apply coset subword reduction to z1z2.

As an illustration, suppose we begin with w = z1uz2 where w = 1, each
zi is very long, and u is a loop in Γ leaving H. Then the first time we
perform the coset subword reduction procedure, neither of the zi will be
shortened. Our algorithm eventually shortens u to the empty word, and we
are left with a long loop z1z2 in H. Applying the coset subword reduction
procedure then reduces z1z2 to the empty word.

By continuing the above process (re-applying the coset subword re-
duction procedure when necessary), we can shorten (the path in Γ̂ cor-
responding to) the given word until we are left with a word w with ŵ a
k-local geodesic in Γ̂. By Lemma 3.6, ŵ stays in a 3δ-neighborhood of any
geodesic, which in this case (if w = 1) can be taken to be the null path
beginning and ending at 1 ∈ Γ. But then `Γ̂(ŵ) ≤ 3δ, since if ŵ had an
initial subpath of length 3δ + 1, this subpath would be a geodesic (since
3δ+1 ≤ 4δ = k) and hence would leave the 3δ-neighborhood of the identity.
But since `Γ̂ ≤ 3δ < k, ŵ is a geodesic; that is, w is the empty word.

The above gives a simple algorithm in the spirit of Dehn’s algorithm
to solve the word problem in Γ; namely, given a word w, we perform the
coset subword reduction procedure, then continue to shorten w as much as
possible. The above discussion shows that we are left with the empty word
if and only if w = 1 in Γ. Doing these procedures in an efficient way, we
may deduce the following:
Theorem 3.7. Suppose Γ is hyperbolic relative to H, the pair (Γ,H)
has the BCP property, and H has word problem solvable in time O(f(n)).
Then the curve-shortening algorithm gives an O(f(n) log n)-time solution
to the word problem for Γ.

Proof. By the above discussion, the only thing to check is the time bound.
Let w ∈ F (X) with `X(w) = n be given. Clearly we can identify all coset
subwords of w (with respect to a given generating set for H) in time O(n).

Recall that, after we perform the coset subword reduction procedure to
the initially input word, we only repeat this procedure when we see that two



822 B. FARB GAFA

coset subwords come together. The maximal possible number of times this
procedure needs to be repeated occurs for an input word w with `X(w) = n
when w has approximately log2(n) coset subwords of length ∼ n/ log2(n),
each separated by small loops leaving H. After deleting these trivial loops,
the coset subword combine into half as many coset subwords, each of twice
the length – suppose these had actually been separated by small loops
leaving H. Again after these small loops are killed, these coset subwords
combine. Repeating this procedure, we see that the number of steps to
reduce w to the empty word takes at most (approximately)
n+ f(n) + 2f(n/2) + 4f(n/4) + · · ·+ log2(n)f

(
n/ log2(n)

)
� O(f(n) log n)

steps. �

By counting the number of small loops needed to reduce a big loop to
the empty word in the curve-shortening algorithm above, one immediately
obtains the following:
Theorem 3.8. Suppose Γ is hyperbolic relative to H and that the pair
(Γ,H) has the BCP property. Then any isoperimetric function for H is an
isoperimetric function for Γ.

Gromov showed ([Gr1]) that word-hyperbolic groups are characterized
by the property that they have a linear isoperimetric function (for details,
see [Sh]). It follows from Theorem 3.8 that if, in addition to the hypotheses
of the theorem, the subgroup H is a word-hyperbolic group, then Γ is a
word-hyperbolic group.

4 Applications to Negatively Curved Manifolds
with a Cusp

In this section we apply the theory of relatively hyperbolic groups to analyze
fundamental groups Γ = π1(Mn) of (noncompact) complete, finite-volume
Riemannian manifolds with pinched negative sectional curvatures. The
most important examples are when Mn admits a complex (resp. quater-
nionic, Cayley) hyperbolic metric, in which case the curvatures are pinched
between −4 and −1. In these cases Γ is not automatic, or even combable
([F2]). For simplicity we assume that Mn has only one cusp, with cusp
group H. All of our results hold in the case of several cusps (see §5).

4.1 Negatively curved manifolds.

Pinched hadamard manifolds. Let H be a Hadamard manifold;
that is, H is a connected, simply connected, complete Riemannian manifold
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with nonpositive sectional curvatures. We will be most interested in the
case when H is the universal cover H = M̃ of a complete, finite-volume
negatively curved Riemannian manifold M , and where M (hence H) has
pinched negative sectional curvatures: −b2 ≤ K(M) ≤ −a2 < 0. When the
latter condition is satisfied, H is called a pinched Hadamard manifold. See
[BGrS], [Kl] as general references for Hadamard manifolds.

We begin by recalling precisely how orthogonal projection onto a geodesic
in a Hadamard manifold changes lengths of paths.

Proposition 4.1 [Kl, Prop. 3.9.11]. Let H be a Hadamard manifold with
−b2 ≤ K(H) ≤ −a2 ≤ 0. Let γ(t) be a geodesic in H, and let β(t), 0 ≤ t ≤
r be any curve from p = β(0) to q = β(r) with dH(p, γ) = dH(q, γ) = K
and dH(β(t), γ) ≥ K for all t ∈ [0, r]. Let p′ (resp. q′) denote the foot of
the perpindicular from p (resp. q) to γ. Then `(β) ≥ dH(p′, q′) cosh(aK);
hence

dH(p′, q′) ≤ `(β) · cosh−1(aK) ≤ `(β) · e−aK .
In order to analyze negatively curved manifolds with cusps, it is first

necessary to understand the geometry of horospheres in pinched Hadamard
manifolds. So suppose x ∈ H, z is a point at infinity, and γ is the geodesic
ray from x to z. Then the horosphere through x with center z is defined
to be the limit as t → ∞ of the sphere of radius t in H with center γ(t).
More formally, horospheres are the level surfaces of the Busemann function
F = limFt, where Ft is defined by Ft(p) = dH(p, γ(t))−t. For a horosphere
S in H, we denote by dS the induced path metric on S; that is, dS(x, y) is
the infimum of the lengths of all paths in S from x to y. We will need the
following fact about projections onto horospheres:

Proposition 4.2 [HI, Thm. 4.9]. Let H be a Hadamard manifold with
−b2 ≤ K(H) ≤ −a2 < 0. If γ is a geodesic tangent to a horosphere S, and
if p and q are the projections of γ(±∞) onto S, then

2
b ≤ dS(p, q) ≤ 2

a .

We will also need the following:

Proposition 4.3 (Projections of horospheres on horospheres are bounded).
Let H be a Hadamard manifold with −b2 ≤ K(H) ≤ −a2 < 0. Let S and
S′ be nonintersecting horospheres based at distinct points of ∂H. Then the
S-diameter of the projection πS(S′) is at most 4/a.

Proof. Suppose S′ is based at x ∈ ∂H. By Proposition 4.2, any geodesic
segment γ emanating from x and intersecting S in at most 1 point has the
property that the S-diameter of πS(γ) is at most 2/a. But every point of



824 B. FARB GAFA

S′ intersects such a γ, and all the sets πS(γ) have a common point, namely
πS(x). The proposition clearly follows. �

Finally, we note that, since dH(S, ∗) is a convex function ([BGrS]), a
geodesic intersects a horosphere S in 0,1, or 2 points.

Finite-volume, negatively curved manifolds. Our analysis of
complete, finite-volume Riemannian manifolds M with pinched negative
sectional curvatures relies on information about the structure of the ends
(cusps) of M . Such results are due to Eberlein, Gromov and Margulis. In
this subsection we recall, following Eberlein ([E]), the basic picture of what
the cusps of M look like. We refer the reader to [E] and [BGrS] for details
and proofs.

Now M̃ is a (pinched) Hadamard manifold with a properly discontinuous
action of Γ = π1(M) by isometries. Now M has finitely many ends, and
each end is a parabolic, Riemannian collared end. It follows that Γ is finitely
presented. An end E is parabolic if there exists a divergent geodesic ray
γ : [0,∞)→M that converges to E and can be expressed as π◦γ̃, where π :
M̃ →M denotes the covering projection and the geodesic ray γ̃ determines
a point at infinity in M̃ which is the fixed point of a parabolic isometry
of Γ. An end is Riemannian collared if there exists a neighborhood U of E, a
compact C2 codimension 1 submanifold N of M and a C1 diffeomorphism
F : N × (0,∞) → U such that the curves t → F (n, t), n ∈ N are unit
speed distance minimizing geodesics of M that intersect each hypersurface
F (N × {s}) orthogonally.

N is the projection of a precisely invariant horosphere S in M̃ at a point
at infinity x fixed by some parabolic isometry in Γ, and U is the projection
of the corresponding open horoball in M̃ . The stabilizer subgroup Γx is
a maximal virtually nilpotent subgroup of Γ (indeed every such nilpotent
subgroup is of this form), and Γx is finitely generated. The compact man-
ifold N is diffeomorphic to S/Γx. We call the group π1(N) ≈ Γx the cusp
subgroup of Γ.

Finite-volume quotients of the (real) rank one symmetric spaces pro-
vide the most explicit examples of negatively curved manifolds. Gromov-
Thurston ([GrT]) have constructed examples, in dimension 4 and higher, of
manifolds M (compact and noncompact) with metrics of pinched negative
curvature which are not quotients of any rank one symmetric space. It still
seems to be open whether or not the fundamental group of a negatively
curved manifold is linear. We will work out some combinatorial properties
of these groups.
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4.2 The electric space associated to a cusped manifold. Our
combinatorial study of the fundamental group Γ = π1(M) of a negatively
curved manifold with one cusp takes place in the coned-off Cayley graph
Γ̂ of Γ with respect to the cusp subgroup H (see section 2). It is much
easier to do geometry in a “thicker” space which is quasi-isometric to Γ̂,
and where some Riemannian geometry is available. We now introduce such
a space.

Recall that Γ acts freely by isometries on the pinched Hadamard man-
ifold M̃ with one orbit of parabolic fixed points. Choose a Γ-invariant set
of disjoint horoballs centered on the parabolic fixed points (see [BGrS]).
These horoballs can be thought of as lifts of the cusps of M . Let X be
the space formed by deleting the interiors of all of these horoballs, and give
X the path metric. This makes each component of the boundary of X a
totally geodesic horosphere. Now Γ acts freely and cocompactly by isome-
tries on X. Choosing a basepoint x ∈ X lying on a horosphere, the natural
map γ 7→ γ · x gives a quasi-isometry of Γ with X; each distinct coset gH
sits on its own horosphere.

Definition (Electric space). To the group Γ = π1(M) we have already
associated a space X which is quasi-isometric to Γ. The electric space1

X̂ is the quotient of X obtained by identifying points which lie in the
same horospherical boundary component of X. As a quotient X̂ has a
path pseudo-metric d

X̂
induced from the path metric dX . Another way to

describe the pseudometric d
X̂

is as follows: First let

dY (x, y) =


0 if x, y ∈ S for some horosphere boundary

component of X ,
dX(x, y) otherwise .

Then dX̂(x, y) is defined to be the infimum of
∑
dY (xi, xi+1) over all

sequences of points x = x1, x2, . . . , xn = y. Hence the pseudo-metric dX̂
can be thought of as a pseudo-metric on X, where the distance between
two points is the length of the shortest path between them, but path-length
along a horosphere boundary component of X is measured as zero length.
Locally dX̂ agrees with d

M̃
outside these horospheres.

When drawing a path γ in X̂, called an electric path, we will for simplic-
ity always draw any subsegment of γ lying on a horosphere S as a geodesic
on S, even though it is only the endpoints and not the path that matters.

1The term electric space was suggested to me by Bill Thurston, since geodesics in this
space behave like lightning bolts shooting between metal plates (the horospheres).
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The electric length of an electric path γ, denoted by `
X̂

(γ), is just the sum
of the X-lengths of the subpaths of γ lying outside every horosphere.

An electric geodesic between x, y ∈ X̂ is a path γ in X̂ from x to
y such that `

X̂
(γ) is minimal. It is not hard to see that for an electric

geodesic γ between x and y, the subpaths of γ lying outside every horo-
sphere qualitatively consist of the following: the shortest X-path from x to
some horosphere, followed by a union of paths which are shortest X-paths
between two horospheres, followed by the shortest X-path from some final
horosphere to y. By looking at the first variation of a path, it is clear
that each of these subpaths intersects the horospheres at right angles (how-
ever we will never use this fact). An electric P -quasi-geodesic is simply a
P -quasi-geodesic in the (pseudo-)path-metric space X̂.

We have seen that the cocompact, properly discontinuous action by
isometries of Γ on the neutered space X gives a (P, ε) quasi-isometry f :
Γ → X for some P, ε > 0. The quasi-isometry f can be used to define a
quasi-isometry f̂ : Γ̂→ X̂ by simply defining f̂(v) = f(v) for all v ∈ Γ (we
define ĝ similarly). Recall that quasi-isometries need only be defined on
nets, and Γ is clearly a net in Γ̂. Hence we have the following commutative
diagram:

Γ
f−→ X

↓ ↓

Γ̂
f̂−→ X̂

Noting that paths in Γ̂ correspond via f to paths in X̂, it is not difficult to
verify that f̂ is a (2RP, ε+ 1)-quasi-isometry, where R > 0 is such that the
M̃ -distance between any two horospheres of the Γ-equivariant collection
of chosen horospheres is at least R. The fact that Γ̂ is quasi-isometric
to X̂ allows us to prove (quasi-)geometric facts about Γ̂ by first proving
them in X̂, which is done by doing geometry in M̃ (see section 4.3). But
(quasi-)geometric properties of Γ̂ give us combinatorial properties of Γ̂,
which in turn give combinatorial properties of the group Γ.

4.3 Electric geometry. In this section we study the behavior of quasi-
geodesics in the electric space X̂. This gives corresponding properties for
(quasi)geodesics in Γ̂. Throughout this section we assume that any two of
the deleted horoballs in X̂ are a distance (in the M̃ metric) of at least 1
from each other.

We will prove the following key facts about quasi-geodesics in the Elec-
tric Space X̂:
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• Electric quasi-geodesics electrically track M̃ -geodesics (Lemma 4.5).
• Electric Space is a δ-hyperbolic pseudo-metric space (Proposition 4.6).
• The way that electric quasi-geodesics without backtracking penetrate

horospheres is close to the way that their tracking M̃ -geodesics pen-
etrate those horospheres (Lemmas 4.8 and 4.9).
• Electric quasi-geodesics satisfy an analog of the BCP property, where

‘coset’ is replaced by ‘horosphere’ (Proposition 4.10).

We begin with a simple property of horospheres in a pinched Hadamard
manifold Y .

Definition (Visual size of a horosphere). Let S be a horosphere in Y ,
and let γ be a geodesic in Y not intersecting S. Let T be the set of points
s ∈ S so that there exists some t for which γ(t)s ∩ S = {s}. Then the
visual size of S (with respect to γ) is defined to be the diameter of T in
the metric dS . The visual size of the horosphere S is defined to be the
supremum of the visual size of S with respect to γ, where the supremum is
taken over all geodesics γ which do not intersect S.

Lemma 4.4 (Horospheres are visually bounded). Horospheres in a pinched
Hadamard manifold Y have (uniformly) bounded visual size.

Proof. Let S be a horosphere in Y determining a horoball T , let πS be
orthogonal projection onto S, and let γ be a geodesic not intersecting S.
First off, Proposition 4.2 implies that diam(πS(γ)) ≤ 2/a.

Now consider any geodesic from a point x ∈ γ to some point y ∈ S.
Consider the triangle in Y with vertices x, y, πS(X). Triangles in Y are
uniformly thin: there exists δ = δ(a, b) so that the δ-neighborhood of the
union of two sides of any triangle in Y contains the third side. This follows
easily from the corresponding fact in hyperbolic space, using comparison
triangles (see [GhH]). Since xy and xπS(x) lie in the complement of T , the
geodesic yπS(x) lies within a Hausdorff distance δ of S. On the other hand,
this Hausdorff distance is pinched between the corresponding distances in
the spaces of constant curvatures −a2 and −b2 ([HI, Lemma 4.2]). In
particular it approaches ∞ as dS(y, πS(x))→∞. Hence dS(y, πS(x)) ≤ C
for some constant C, independent of x, β, γ. Hence the visual size of S is
bounded by 2/a+ 2C. �

The following lemma is a generalization of the fact that a quasi-geodesic
in a pinched Hadamard manifold lies in a uniformly bounded neighborhood
of a geodesic. This fact was first noticed by Morse in the 1920’s, and
rediscovered/exploited later in the proof of Mostow Rigidity. Lemma 4.5
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says that, even if you are allowed to move without cost in horospheres, it is
still more efficient to travel close to a geodesic (as long as there is a uniform
bound on the distance between any two of the horospheres).

Lemma 4.5 (Electric quasi-geodesics electrically track M̃ -geodesics). Let
P > 0 be given. Then there exist constants K = K(P ), L = L(P ) > 0,
with the following property: let β be any electric P -quasi-geodesic from x
to y, and let γ be the M̃ -geodesic from x to y. Then any subsegment of
β which lies outside Nbhd

X̂
(γ,K) must have electric length at most L. In

particular, any electric P -quasigeodesic from x to y stays completely inside
Nbhd

X̂
(γ,K + L/2).

Proof. We assume that β does not lie in an electric unit neighborhood of a
horosphere, since this case is trivial.

Choose K so that K ≥ 1
a log(10P ). Suppose that β′ is a subsegment of β

lying completely outside Nbhd
X̂

(γ,K); say z = β′(0) satisfies d
X̂

(z, γ) = K
and and let w be the last point of β′ with d

X̂
(w, γ) = K. Note that since

β′ lies outside Nbhd
X̂

(γ,K), in particular any horoball which β′ penetrates
must also lie outside this neighborhood, so that any such horoball must not
intersect γ.

Recall that we have chosen the horoballs so that each horoball is at
least a distance 1 away from any other horoball. Also recall that M̃ -lengths
of paths lying outside of Nbhd

M̃
(γ,K) (hence outside NbhdX̂(γ,K)) de-

crease by a factor of at least e−aK under orthogonal projection onto γ ([Kl,
Prop. 3.9.11]). We know from Lemma 4.4 that horospheres have visual size
at most D for some constant D > 0.

Let z′ (resp. w′) denote the image of z (resp. w) under orthogonal pro-
jection onto γ. Now β (hence β′) is an electric P -quasi-geodesic, so

`
X̂

(β′) ≤ P ·
[
d
X̂

(z, z′) + d
X̂

(z′, w′) + d
X̂

(w′, w)
]

≤ P ·
[
d
M̃

(z, z′) + d
M̃

(z′, w′) + d
M̃

(w′, w)
]

≤ P ·
[
K + `X̂(β′) · e−aK +D · ( # of horospheres) · e−aK +K

]
(∗)

where “(# of horospheres)” means the number of horospheres penetrated by
β′. The third inequality holds since orthogonal projection onto γ decreases
lengths of paths outside Nbhd

M̃
(γ,K) by a factor of at least e−aK , and

since the visual size of a horoball is at most D by Lemma 4.4, where D
depends only on M̃ . Now horoballs are separated by an M̃ -distance of at
least 1, so

1 · (# of horospheres +1) ≤ `
X̂

(β′)
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and so
(# of horospheres ) ≤ `

X̂
(β′)− 1 .

Plugging back into the inequality (∗) above gives

`
X̂

(β′) ≤ P ·
[
2K + `

X̂
(β′) · e−aK +D · (`

X̂
(β′)− 1) · e−aK

]
and so

`
X̂

(β′) ·
[
1− (D + 1)Pe−aK

]
≤ 2KP −DPe−aK .

Choosing K large enough, we can make [1− (D+ 1)Pe−aK ] ≥ 1/2 > 0,
so then

`
X̂

(β′) ≤ 2KP −DPe−aK
1/2

≤ 4PK

Now let L = 4PK, and we are done. �

Note. It is easy to see that Lemma 4.5 is not true if the horoballs used
to construct the Electric Space are allowed to be arbitrarily close to each
other.

Lemma 4.5 is a useful tool for determining the behavior of geodesics and
quasi-geodesics in the electric space. To begin with, we have the following
proposition, which is central to our approach to analyzing the structure of
fundamental groups of (pinched) negatively curved manifolds with cusps.

Proposition 4.6 (Electric Space is δ-hyperbolic). The electric space X̂
is a δ-hyperbolic pseudometric space for some δ > 0.

Proof. Suppose we are given an electric triangle ∆(x, y, z). By ‘triangle’
we mean the union of the 3 electric geodesics xy, yz, and xz. Now consider
the M̃ -geodesics between each pair of vertices. The resulting triangle in M̃
is δ′′-thin (measured in the M̃ metric) for some δ′′ > 0.

Let K = K(1), L = L(1) be the constants given by Lemma 4.5. Now
suppose we are given a point p on xy. Then there is a point p′ on the
M̃ -geodesic from x to y so that d

X̂
(p, p′) ≤ K + L/2, and there is a point

q′ on, say, the M̃ -geodesic from x to z with

d
X̂

(p′, q′) ≤ dH(p′, q′) ≤ δ′′
(see, Figure 2).

Now Lemma 4.5 implies that there is a point q on xz so that d
X̂

(q, q′) ≤
K + L/2; without changing we may assume that q′ does not lie on a horo-
sphere. It follows from these observations that

d
X̂

(p, q) ≤ (K + L/2) + δ′′ + (K + L/2) .

Hence triangles in X̂ are (electrically) (2K + L+ δ′′)-thin. �
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k+L /2

δ

Figure 2: Why electric triangles are (uniformly) electrically thin.

Penetration properties of electric quasi-geodesics. We have just
seen that electric quasi-geodesics electrically track M̃ -geodesics. The rest of
this section is devoted to understanding more precise information: namely,
how the sequence of horospheres which an electric quasi-geodesic β pene-
trates compares to the the sequence penetrated by the M̃ -geodesic α which
β (electrically) tracks. Furthermore, if both β and α penetrate a certain
horosphere, do they have to enter and exit close-by to each other?

Before answering these questions we need
Lemma 4.7 (Projections of electric quasi-geodesics onto horospheres). Sup-
pose β is an electric P -quasi-geodesic which does not penetrate S. Then
there exists a constant D = D(P ) so that the projection of β onto S has
S-length at most D · `

X̂
(β).

Proof. Recall that we are assuming that any two deleted horoballs are an
M̃ -distance of at least 1 from each other. It follows that the the projection
of any other horosphere onto the horosphere S has S-length bounded by
some D′ > 0. Furthermore, the subsegments of β connecting two horo-
spheres are P -quasi-geodesics in the M̃ -metric, so they stay a bounded
distance from an M̃ -geodesic. As M̃ -geodesics have projections of length
at most 2/a (by Proposition 4.2), these subsegments of β have projections
of S-length at most D′′ for some D′′ > 0. Hence the S-length of the pro-
jection of β onto S is bounded by
(# of horospheres+1)·D′+(# of horospheres+1)·D′′≤`

X̂
(β)·D′+`

X̂
(β)·D′′

where the inequality comes from the fact that the number of horospheres
that β penetrates is at most `

X̂
(β)− 1 (this fact was noted in the proof of



Vol. 8, 1998 RELATIVELY HYPERBOLIC GROUPS 831

Lemma 4.5). Choosing D = D′ +D′′ completes the proof. �

Definition. An electric quasi-geodesic β is said to be a quasi-geodesic
without backtracking if β is a quasi-geodesic in X̂, and if, for each horosphere
S in X̂ which β penetrates, β never returns to S after leaving S.

In order to simplify statements concerning how paths penetrate horo-
spheres, we will only consider paths without backtracking. When faced
with a situation where paths may backtrack, we will be careful to reduce
the problem to this simpler case. Note that the image under f̂ : Γ̂→ X̂ of
a geodesic in Γ̂ is a quasi-geodesic without backtracking in X̂.

Lemma 4.8 (Comparing penetration patterns I). Let β be an electric
P -quasi-geodesic (without backtracking) from x to y, and let γ be the M̃ -
geodesic from x to y. Then there exists some constant D = D(P ) so that
if precisely one of {β, γ} penetrates S, then the S-distance from the point
of entry of this path into S to its exit point is at most D.

Proof. First suppose γ intersects S and β does not intersect S. Let x′ and
y′ be the points of intersection of γ with S (the case x′ = y′ is trivial);
we must bound dS(x′, y′). Denote by πS the orthogonal projection onto S,
and denote by S′ the complement of the horoball corresponding to S. Note
that πS is length decreasing on paths in S′ (exponentially so, in fact).

Choose K = K(P ) and L = L(P ) as in Lemma 4.5, and E = E(P ) as
in Lemma 4.7.

We claim that the S-length of the orthogonal projection πS(β) is bounded
by a constant depending only on P . To prove this, first note that by Lem-
ma 4.2 and Lemma 4.7, we have that each component of πS(Nbhd

X̂
(γ,K))

has S-diameter at most E + 4/a. Hence each component of

πS
(
β ∩ (Nbhd

X̂
(γ,K) ∩ S′)

)
has S-diameter at most E+ 4/a. By Lemma 4.5, β ∩ (Nbhd

X̂
(γ,K))c∩S′)

has electric length at most L. So by Lemma 4.7,

`S
(
πS(β ∩ (NbhdX̂(γ,K))c ∩ S′)

)
≤ EL .

These two projection estimates immediately imply (since β is connected)
that

`S(πS(β)) ≤ (E + 4/a) +EL+ (E + 4/a) ≤ L′ ,
for L′ = (L+ 2)E + 8/a.

Now Lemma 4.2 shows that dS(πS(x), x′) ≤ 2/a and dS(πS(y), y′) ≤
2/a. Since πS(β) is a path from πS(x) to πS(y), the lemma now follows
setting D = 2/a+ L′ + 2/a.
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The proof of the case when β intersects S and γ does not intersect S is
similar. �

Lemma 4.9 (Comparing penetration patterns II). Let β be an electric
P -quasi-geodesic (without backtracking) from x to y, and let γ be the M̃ -
geodesic from x to y. Then there exists a constant D = D(P ) so that if
both β and γ penetrate some horosphere S, the point of entry of β into S
is an S-distance of at most D from the point of entry of γ into S; similarly
for the exit points.

Proof. Let γ(s0) denote the first point of entry of γ into S, and let β(t2)
denote the first point of entry of β into S; we need to bound dS(β(t2), γ(s0)).

Choose K = K(P ) as in Lemma 4.5, and let t1 be the largest element
of {t ≤ t2 : β(t) ∈ Nbhd

X̂
(γ,K)}.

By Lemma 4.5, β([t1, t2]) has electric length at most L = L(K) for
some constant L; hence π(β([t1, t2])) has S-length at most L′ = L′(P ) for
some constant L′, by Lemma 4.7. Also note that Lemma 4.2, together with
the fact that π is distance decreasing outside the horoball corresponding to
S, that dS(π(β(t1)), γ(s0)) ≤ K + 2/a. Hence we have dS(β(t2), γ(s0)) ≤
L′ + (K + 2/a), as desired.

The same argument works for the points where β and γ exit S. �

We are now ready to prove the analogue of the BCP property for electric
quasi-geodesics. From this it will actually follow that the pair (Γ,H) has
the BCP property (Theorem 4.11).

Proposition 4.10 (Bounded horosphere penetration). Let P,R > 0 be
given. Suppose u and v are electric P -quasi-geodesics (without backtrack-
ing) which begin at the same point and end an M̃ -distance of at most R
from each other. Then there exists a constant C = C(P,R) so that, for
any horosphere S:

1. If u enters S but v does not enter S, then u travels an S-distance of
at most C.

2. If both u and v enter S, then the point at which u enters (exits) S
is an S-distance of at most C from the point at which v enters (resp.
exits) S.

Proof. Let γu and γv be the M̃ -geodesics between the endpoints of u and v,
respectively. Note that since M̃ is a negatively curved path-metric space,
γu and γv are so-called k-fellow travellers in M̃ ; that is, there exists a
constant k > 0, depending only R and on the pinching constants for the
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curvature of M̃ , so that
d
M̃

(
γu(t), γv(t)

)
≤ k for all t . (∗∗)

First suppose that u enters S but v doesn’t enter S. By Lemma 4.8,
there is a constant D = D(P ) so that the point of entry (if any) of γv into
S is within an S-distance of at most D from the point at which γv exits S.
By (∗∗) above, there exists a constant D′ = D′(P ) so that the point (if
any) of entry of γu into S is within an S-distance of at most D′ of its exit
point. Hence, by either Lemma 4.8 or Lemma 4.9 (depending on whether
γu penetrates S or not), u travels a bounded distance in S.

Now suppose that both electric P -quasi-geodesics u and v enter S. If
one of γu or γv does not enter S (say γu does not enter), then by (∗∗) the
entry point of γv into S (if there is one) is a bounded distance from its exit
point. It follows from Lemma 4.8 that u travels a bounded amount in S,
and it follows from either Lemma 4.8 or Lemma 4.9 (depending on whether
or not γv penetrates S) that v also travels a bounded distance in S.

Now if both γu and γv enter S, it follows from (∗∗) and two applications
of Lemma 4.9 that the entry (exit) point of u into S is a bounded S-distance
from the entry (resp. exit) point of v into S, and we are done. �

4.4 Hyperbolicity of π1(M) relative to the cusp subgroup. As
always, M will denote a complete Riemannian manifold of finite-volume,
pinched negative sectional curvatures, and with a single cusp. Γ = π1(M)
will denote the fundamental group of M , and H <Γ will denote the cusp
subgroup. With the geometry of the electric space X̂ in hand, we are ready
to prove the main theorem of this section.
Theorem 4.11. The group Γ is hyperbolic relative to H, and the pair
(Γ,H) has the bounded coset Penetration property.

Proof. Recall (section 4.2) that there is a quasi-isometry f̂ : Γ̂ → X̂ with
the following property : there is a correspondence between left cosets gH
of Γ ⊂ Γ̂ and horospheres gS ⊂ X, where X is the neutered space. Since
we have the commutative diagram

Γ
f−→ X

↓ ↓

Γ̂
f̂−→ X̂

it follows that if a Γ̂-geodesic u enters a coset gH at x ∈ Γ and exits gH at
y ∈ Γ, then the electric quasi-geodesic f̂(u) enters the horosphere S corre-
sponding to gH at f̂(x) = f(x), and exits S at f̂(y) = f(y). In particular,



834 B. FARB GAFA

since u is a geoedesic and so only enters and exits any coset at most once, it
follows that f̂(u) is an electric quasi-geodesic without backtracking. More
generally, the image under f̂ of a quasi-geodesic without backtracking in Γ̂
is a quasi-geodesic without backtracking in X̂.

From these observations it easily follows from Proposition 4.6 (Electric
Space is hyperbolic) that Γ̂ is a δ-hyperbolic metric space for some δ > 0,
and it follows from Proposition 4.10 (bounded horosphere penetration) the
pair (Γ,H) has the bounded coset penetration property. �

Applications to isoperimetric functions for Γ. Let Mn denote a
complete, finite-volume, (pinched) negatively curved Riemannian manifold
with a single cusp. Let Γ = π1(Mn), and let H denote the cusp subgroup.

Recall that the Dehn function for a group Γ is a minimal isoperimetric
function for Γ. Gromov claims in Section 5.6 of [Gr2] that the Dehn function
for Γ equals the Dehn function for H.
Theorem 4.12. The Dehn function for Γ = π1(Mn) equals the Dehn
function for the cusp subgroup H.

Proof. It follows immediately from Theorem 4.11 and Theorem 3.8 that any
isoperimetric function for the cusp subgroup is an isoperimetric function
for Γ.

For the converse direction, first note that the Dehn function for Γ is
equivalent to that of the neutered space associated to Γ (by a slight variation
of [Bu]). But there is a length-decreasing (hence area-decreasing) retraction
of the neutered space X associated to Γ onto a single horosphere S ⊂ X.
Hence if γ ⊂ S is a loop, the minimal area disk D with ∂D = γ must
also lie in S. Hence the Dehn function of the neutered space is at least
as big as that of the horosphere S, which is equivalent to that of the cusp
subgroup. �

If M2n, n > 2 is a finite volume complex-hyperbolic n-manifold with
cusps (here 2n is the real dimension), the cusp subgroup of Γ = π1(M) is
commensurable with the Heisenberg group

H2n−1 =
〈
x1, y1, . . . , xn−1, yn−1, z : [xi, yi] = z, z central

〉
.

Since the Dehn functions for these groups have been determined in
[Ep-etal] for n = 2 and [A] for n > 2, we may draw the following conse-
quence from Theorem 4.12.
Corollary 4.13 (Dehn functions for complex hyperbolic manifolds).
Let Γ be the fundamental group of a complete, finite volume, complex-
hyperbolic n-manifold M2n, where n ≥ 2. Then the Dehn function for Γ



Vol. 8, 1998 RELATIVELY HYPERBOLIC GROUPS 835

is linear if M is compact, and otherwise is cubic if n = 2, and quadratic if
n > 2.

We believe the technique of [A] can be generalized to other two-step
nilpotent groups, so that Theorem 4.12 should also imply an analogue of
Corollary 4.13 for Quaternionic and Cayley hyperbolic manifolds.

4.5 A fast solution to the word problem for Γ = π1(M). Let
M be a complete Riemannian manifold of finite-volume, pinched negative
sectional curvatures, and with a single cusp. In this section we use the fact
that γ is hyperbolic relative to its cusp subgroup H to give a fast solution to
the word problem for Γ. Since H is (virtually) nilpotent, it is first necessary
to discuss normal forms in nilpotent groups.

Nilpotent groups. Let N be a nilpotent group with an ordered set
{a1, . . . , am} of generators so that ai occurs further down in the lower cen-
tral series than ai+1 for each i. There is a normal form as11 a

s2
2 · · · asmm for

elements of N . We keep track of this normal form by a counter (s1, . . . , sm),
with each si written in binary. Given a word w in normal form, the normal
form of w · ai is determined by a simple polynomial equation which tells
you how the numbers (s1, . . . , sm) are to be updated; this polynomial is
a polynomial in m variables, of degree depending only on the nilpotency
class of N . For example, for the 3-dimensional integral Heisenberg group
N = 〈a, b, c : [a, b] = c, [a, c] = [b, c] = 1〉, the updates look like:

(i, j, k) a7−→ (i+ 1, j, k + j) ,

(i, j, k) b7−→ (i, j + 1, k) ,

(i, j, k) c7−→ (i, j, k + 1) .

Now suppose we are given a word w of length n, and we want to put
w into normal form. We start out with (0, 0, 0), read in one letter at
a time, and simply update the counter. How many steps are needed in
each update? If we choose a model of computation where multiplication
of arbitrary numbers takes constant time, then each update takes constant
time. Since we are using a Turing machine as our model of computation,
updating counters with large entries takes time. Using crude estimates on
multiplying numbers in binary, it is not hard to see that any individual
update takes O((logn)p) for some integer p > 0. Jin-yi Cai (a complexity
theorist) has informed me that, in terms of the fastest asymptotic estimates
of Strassen-Schonhage, each update can be done in time

s(n) = O(log n · log log n · log log log n) .
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Let T (n) denote the time needed to put a word of length n into normal
form. By using the “divide and conquer” method, we find that

T (n) = 2T (n/2) + s(n) .

It is now easy to show by induction that this gives a time bound of, say

(constant) · n− (log n)2 = O(n) .

To check whether or not a given word represents the identity element
of N , one simply puts the word into normal form, and checks whether or
not the counter reads (0, . . . , 0). Hence the word problem for N is solvable
in linear (in word length) time.

The word problem for Γ. The curve-shortening algorithm for rel-
atively hyperbolic groups provides a fast solution to the word problem for
fundamental groups of finite-volume, negatively curved manifolds.

Theorem 4.14. Let Γ = π1(Mn), where Mn is a complete, finite-volume
(pinched) negatively curved Riemannian manifold with one cusp. Then
there is an O(n log n)-time solution to the word problem in Γ.

Proof. The theorem follows immediately from Theorem 4.11, Theorem 3.7,
and the fact that there is a linear time algorithm to solve the word problem
for nilpotent groups. �

Theorem 4.14 also holds in the case when Mn has more than one cusp
(see §5). This immediately implies the following special, though interesting
consequence:

Corollary 4.15. There is an O(n log n)-time algorithm to solve the
word problem for hyperbolic knot and link complements.

Corollary 4.15 is useful because most link complements are hyperbolic;
i.e. they have the structure of a complete, finite-volume, hyperbolic 3-
manifold, with a cusp for each component of the link. This is the fastest
algorithm we know of for hyperbolic link groups.

5 Groups Hyperbolic Relative to a Finite Set of Subgroups

In this section we define what it means for a group to be hyperbolic relative
to a finite set of subgroups. This occurs in many examples, and is meant to
make the methods described above more widely applicable. An important
example to keep in mind is the fundamental group of a complete, (non-
compact) finite volume, (pinched) negatively curved Riemannian manifold
relative to its (finite set of nonconjugate) cusp subgroups. The theory for
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more than one subgroup is also needed, for example, for the inclusion of
small cancellation theory over free products (with amalgamation) into the
framework of relatively hyperbolic groups.

Let G be a finitely generated group with Cayley graph Γ, and let
{H1, . . . ,Hr} be a finite set of finitely generated subgroups of Γ. We form
a new graph Γ̂ = Γ̂({H1, . . . ,Hr}) as follows: for each coset gHi, 1 ≤ i ≤ r
of Hi in G, add a vertex v(gHi) to Γ, and add an edge e(ghi) of length
1/2 from each element ghi of gHi to the vertex v(gHi). We call this the
coned-off Cayley graph of G with respect to {H1, . . . ,Hr}.
Definition. The group G is hyperbolic relative to {H1, . . . ,Hr} if the
coned-off Cayley graph Γ̂ of G with respect to {H1, . . . ,Hr} is a negatively
curved metric space.

It is clear how to define the bounded coset penetration property in this
context, as the BCP property was defined in terms of paths in Γ̂ penetrating
a coset gH. Now we make the definition for each coset gH1, . . . , gHr. With
these alterations in mind, the properties of relatively hyperbolic groups
easily extend to the case of a finite set of subgroups.

Note that this more general concept applies to negatively curved man-
ifolds with several cusps. As an illustrative example, suppose that Γ is the
fundamental group of a finite-volume hyperbolic 3-manifold with 2 cusps;
let H1 and H2 be the two cusp subgroups. We form the space X consisting
of hyperbolic 3-space with an equivariant union of horoballs deleted (with
the path metric); here there are two types of horoballs, which we shall call
H1-horoballs and H2-horoballs. By adjusting the sizes of these horoballs,
we may assume that any H1-horoball touches any H2-horoball in at most
1 point. Choosing a point x ∈ X which lies at one of these intersection
point, we obtain the quasi-isometry of Γ with X given by g 7→ g · x.

Now the left cosets of Hi in Γ are sitting on the copies of the boundaries
of Hi-horoballs. As each g ∈ Γ is contained in a left H1-coset and a left
H2-coset, each vertex g · x of the Cayley graph is contained in precisely
two horospheres - an H1-horosphere and an H2-horosphere. So touching
each H1-horoball are infinitely many H2-horoballs, and touching each H2-
horoball are infinitely many H1-horoballs. This pattern of horoballs is
illustrated for dimension 2 in Figure 3.

Now shrink the horoballs so that any two of them are a hyperbolic
distance of at least one apart; this gives a new space X ′ quasi-isometric
to X. For each vertex of the Cayley graph Γ, think of it as splitting into
two (one copy following anH1-horosphere, one following an H2-horosphere)
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Figure 3: This figure is a schematic of the pattern of horoballs which must
be deleted from the hyperbolic plane in forming the space X which is
quasi-isometric to the fundamental group of a hyperbolic 2-manifold with
two cusps.

under this shrinking process, with an edge of finite length connecting the
two copies of the vertex. This gives a graph Γ′ which is quasi-isometric
to Γ. From these observations it is clear that the coned-off Cayley graph
Γ̂ = Γ̂(H1,H2) is quasi-isometric to the electric space X̂ ′.

All of the results on electric geometry (§4.2 and §4.3) then go through
for the case of several cusps. For completeness we state the following.

Theorem 5.1 (Multiple cusps). Let Γ = π1(Mn), where Mn is a complete,
(noncompact) finite-volume Riemannian manifold with (pinched) negative
sectional curvatures. Let {H1, . . . ,Hr} denote the cusp subgroups of Γ.
Then the following are true:

1. Γ is hyperbolic relative to the set {H1, . . . ,Hr} of cusp subgroups,
and the pair (Γ, {H1, . . . ,Hr}) has the BCP property.

2. There is a curve-shortening algorithm which solves the word problem
for Γ in time O(n log n).

3. Γ satisfies precisely the same isoperimetric inequality as any of its
cusp subgroups.
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