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Abstract

We show that there are separated nets in the Euclidean plane which
are not biLipschitz equivalent to the integer lattice. The argument is
based on the construction of a continuous function which is not the
Jacobian of a biLipschitz map.

1 Introduction

A subset X of a metric space Z is a separated net if there are constants
a, b > 0 such that d(x, x′) > a for every pair x, x′ ∈ X, and d(z,X) < b
for every z ∈ Z. Every metric space contains separated nets: they may
be constructed by finding maximal subsets with the property that all pairs
of points are separated by some distance a > 0. It follows easily from the
definitions that two spaces are quasi-isometric if and only if they contain
biLipschitz equivalent separated nets. One may ask if the choice of these
nets matters, or, in other words, whether any two separated nets in a
given space are biLipschitz equivalent. To the best of our knowledge, this
problem for R2 was first suggested by H. Furstenberg in the late 60s in a
dynamical context; namely, the separated net arises as the set of return
times to a section of an R2-action. M. Gromov posed the problem in
the general geometric set-up in connection with quasi-isometries in [G1,
p. 23]. The answer is known to be yes for separated nets in non-amenable
spaces (under mild assumptions about local geometry), see [G2], [W]; more
constructive proofs in the case of trees or hyperbolic groups can be found
in [P], [B].

In this paper, we prove the following theorem:
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Theorem 1.1. There exists a separated net in the Euclidean plane which
is not biLipschitz equivalent to the integer lattice.

The proof of Theorem 1.1 is based on the following result:

Theorem 1.2. Let I := [0, 1]. Given c > 0, there is a continuous function
ρ : I2 → [1, 1 + c], such that there is no biLipschitz map f : I2 → E2 with

Jac(f) := Det(Df) = ρ a.e.

Remarks. 1. Although we formulate and prove these theorems in the 2-
dimensional case, the same proofs work with minor modifications in higher
dimensional Euclidean spaces as well. We only consider the 2-dimensional
case here to avoid cumbersome notation.

2. Theorem 1.2 also works for Lipschitz homeomorphisms; we do not use
the lower Lipschitz bound on f . Also, since any modulus of continuity on a
map between separated nets implies that it is Lipschitz, the nets described
in Theorem 1.1 are not equivalent to the integer lattice even if we work in
the larger category of maps with a modulus of continuity.

3. After the first version of this paper had been written, Curt McMullen
informed us that he also had a proof of Theorems 1.1 and 1.2. See [M] for a
discussion of the the linear analog of Theorem 1.2, and the (homogeneous)
Hölder analogs of the mapping problems in Theorems 1.1 and 1.2.

The problem of prescribing Jacobians of homeomorphisms has been
studied by several authors. Using the idea of [Mo], [DMo] proved that
every α-Holder continuous function is locally the Jacobian of a C1,α home-
omorphism, and they then raised the question of whether any continuous
function is (locally) the Jacobian of a C1 diffeomorphism. [RY],[Y] consider
the prescribed Jacobian problem in other regularity classes, including the
cases when the Jacobian is in L∞ or in a Sobolev space.

Overview of the Proofs.

Theorem 1.2 implies Theorem 1.1. Let ρ : I2 → R be measurable with
0 < inf ρ ≤ sup ρ < ∞. We will indicate why ρ would be the Jacobian
of a biLipschitz map f : I2 → E2 if all separated nets in E2 were biLip-
schitz equivalent. Take a disjoint collection of squares Si ⊂ E2 with side
lengths li tending to infinity, and “transplant” ρ into each Si using ap-
propriate similarities αi : I2 → Si, i.e. set ρi := ρ ◦ α−1

i . Then construct
a separated net L ⊂ E2 so that the “local average density” of L in each
square Si approximates ρ−1

i . If g : L → Z2 is a biLipschitz homeomor-
phism, consider “pullbacks” of g|Si to I2, i.e. pre and post-compose g|Si
with suitable similarities so as to get a sequence of uniformly biLipschitz
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maps gi : I2 ⊃ Zi → E2. Then extract a convergent subsequence of the gi’s
via the Arzela-Ascoli theorem, and obtain a limit map f : I2 → E2 with
Jacobian ρ.

Theorem 1.2. The observation underlying our construction is that if
the Jacobian of f : I2 → E2 oscillates in a rectangular neighborhood U
of a segment xy ⊂ I2, then f will be forced to stretch for one of two
reasons: either it maps xy to a curve which is far from a geodesic between
its endpoints, or it maps xy close to the segment f(x)f(y) but it sends
U to a neighborhood of f(x)f(y) with wiggly boundary in order to have
the correct Jacobian. By arranging that Jac(f) oscillates in neighborhoods
of a hierarchy of smaller and smaller segments we can force f to stretch
more and more at smaller and smaller scales, eventually contradicting the
Lipschitz condition on f .

We now give a more detailed sketch of the proof.
We first observe that it is enough to construct, for every L > 1, c̄ > 0, a

continuous function ρL,c̄ : I2 → [1, 1 + c̄] such that ρL,c̄ is not the Jacobian
of an L-biLipschitz map I2 → E2. Given such a family of functions, we can
build a new continuous function ρ : I2 → [1, 1+c] which is not the Jacobian
of any biLipschitz map I2 → E2 as follows. Take a sequence of disjoint
squares Sk ⊂ I2 which converge to some p ∈ I2, and let ρ : I2 → [1, 1+c] be
any continuous function such that ρ|Sk = ρk,min(c, 1

k
)◦αk where αk : Sk → I2

is a similarity.
Also, note that to construct ρL,c̄, we really only need to construct a mea-

surable function with the same property: if ρkL,c̄ is a sequence of smooth-
ings of a measurable function ρL,c̄ which converge to ρL,c̄ in L1, then any
sequence of L-biLipschitz maps φk : I2 → E2 with Jac(φk) = ρkL,c̄ will
subconverge to a biLipschitz map φ : I2 → E2 with Jac(φ) = ρL,c̄.

We now fix L > 1, c > 0, and explain how to construct ρL,c. Let R
be the rectangle [0, 1] × [0, 1/N ] ⊂ E2, where N � 1 is chosen suitably
depending on L and c, and let Si =

[
i−1
N , iN

]
×
[
0, 1

N

]
be the ith square in

R. Define a “checkerboard” function ρ1 : I2 → [1, 1+c] by letting ρ1 be 1+c
on the squares Si with i even and 1 elsewhere. Now subdivide R into M2N
squares using M evenly spaced horizontal lines and MN evenly spaced
vertical lines. We call a pair of points marked if they are the endpoints of
a horizontal edge in the resulting grid.

The key step in the proof (Lemma 3.2) is to show that any biLips-
chitz map f : I2 → E2 with Jacobian ρ1 must stretch apart a marked pair
quantitatively more than it stretches apart the pair (0, 0), (1, 0); more pre-
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cisely, there is a k > 0 (depending on L, c) so that d(f(p), f(q))/d(p, q) >
(1 + k)d(f(0, 0), f(1, 0)) for some marked pair p, q. If this weren’t true,
then we would have an L-biLipschitz map f : I2 → E2 which stretches
apart all marked pairs by a factor of at most (1 + ε)d(f(0, 0), f(0, 1)),
where ε � 1. This would mean that f maps horizontal lines in R to
“almost taut curves”. Using triangle inequalities one checks that this
forces f to map most marked pairs p, q so that vector f(q) − f(p) is
≈ d(p, q)(f(1, 0)−f(0, 0)); this in turn implies that for some 1 ≤ i ≤ N , all
marked pairs p, q in the adjacent squares Si, Si+1 are mapped by f so that
f(q)−f(p) ≈ d(p, q)(f(1, 0)− f(0, 0)). Estimates then show that f(Si) and
f(Si+1) have nearly the same area, which contradicts the assumption that
Jac(f) = ρ1, because ρ1 is 1 on one of the squares and 1 + c on the other.

Our next step is to modify ρ1 in a neighborhood of the grid in R: we
use thin rectangles (whose thickness will depend on L, c) containing the
horizontal edges of our grid, and define ρ2 : I2 → [1, 1 + c] by letting ρ2
be a “checkerboard” function in each of these rectangles and ρ1 elsewhere.
Arguing as in the previous paragraph, we will conclude that some suitably
chosen pair of points in one of these new rectangles will be stretched apart
by a factor > d(f(0, 0), f(1, 0))(1 + k)2 under the map f . Repeating this
construction at smaller and smaller scales, we eventually obtain a function
which cannot be the Jacobian of an L-biLipschitz map.

The paper is organized as follows. In section 2 we prove that Theo-
rem 1.2 implies Theorem 1.1. Section 3 is devoted to the proof of Theo-
rem 1.2.

2 Reduction of Theorem 1.1 to Theorem 1.2

Recall that every biLipschitz map is differentiable a.e., and the area of the
image of a set is equal to the integral of the Jacobian over this set. We
formulate our reduction as the following lemma:
Lemma 2.1. Let ρ : I2 → [1, 1 + c] be a measurable function which is not
the Jacobian of any biLipschitz map f : I2 → E2 with

Jac(f) := det(Df) = ρ a.e. (2.2)
Then there is a separated net in E2 which is not biLipschitz homeomorphic
to Z2.

Proof. In what follows, the phrase “subdivide the square S into subsquares
will mean that S is to be subdivided into squares using evenly spaced lines
parallel to the sides of S. Let S = {Sk}∞k=1 be a disjoint collection of
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square regions in E2 so that each Sk has integer vertices, sides parallel to
the coordinate axes, and the side length lk of Sk tends to∞ with k. Choose
a sequence mk ∈ (1,∞) with limk→∞mk =∞ and limk→∞mk/lk = 0. Let
φk : I2 → Sk be the unique affine homeomorphism with scalar linear part,
and define ρk : Sk → [1, 1 + c] by ρk = (1/ρ) ◦ φ−1

k . Subdivide Sk into m2
k

subsquares of side length lk/mk. Call this collection Tk = {Tki}
m2
k

i=1. For
each i in {1, . . . ,m2

k}, subdivide Tki into n2
ki subsquares Ukij where nki is

the integer part of
√∫

Tki
ρkdL. Now construct a separated net X ⊂ E2 by

placing one point at the center of each integer square not contained in ∪Sk,
and one point at the center of each square Ukij .

We now prove the lemma by contradiction. Suppose g : X → Z2 is
an L-biLipschitz homeomorphism. Let Xk = φ−1

k (X) ⊂ I2, and define
fk : Xk → E2 by

fk(x) =
1
lk

(
g ◦ φk(x)− g ◦ φk(?k)

)
(2.3)

where ?k is some basepoint in Xk. Then fk is an L-biLipschitz map from
Xk to a subset of E2, and the fk’s are uniformly bounded. By the proof
of the Arzela-Ascoli theorem we may find a subsequence of the fk’s which
“converges uniformly” to some biLipschitz map f : I2 → E2. By the con-
struction of X, the counting measure on Xk (normalized by the factor 1/l2k)
converges weakly to 1/ρ times Lebesgue measure, while the (normalized)
counting measure on fk(Xk) converges weakly to Lebesgue measure. It
follows that f∗((1/ρ)L) = L|f(I2), i.e. Jac(f) = ρ. �

3 Construction of a Continuous Function which is not a
Jacobian of a BiLipschitz Map

The purpose of this section is to prove Theorem 1.2. As explained in the
introduction, Theorem 1.2 follows from

Lemma 3.1. For any given L and c > 1, there exists a continuous function
ρ : S = I2 → [1, 1 + c], such that there is no L-biLipschitz homeomorphism
f : I2 → E2 with

Jac(f) = ρ a.e.

Proof of Lemma 3.1. From now on, we fix two constants L and c and
proceed to construct a continuous function ρ : I2 → [1, 1+ c] which is not a
Jacobian of an L-biLipschitz map. By default, all functions which we will
describe, take values between 1 and 1 + c.
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We say that two points x, y ∈ I2 are A-stretched (under a map f :
I2 → E2) if d(f(x), f(y)) ≥ Ad(x, y).

For N ∈ N, let RN be the rectangle [0, 1] × [0, 1/N ] and define a
“checkerboard” function ρN : RN → [1, 1 + c] by ρN (x, y) = 1 if [Nx]
is even and 1 + c otherwise. It will be convenient to introduce the squares
Si =

[
i−1
N , iN

]
×
[
0, 1

N

]
, i = 1, . . . ,N ; ρN is constant on the interior of

each Si.
The cornerstone of our construction is the following lemma:

Lemma 3.2. There are k > 0, M, µ, and N0 such that if N ≥ N0,
ε ≤ µ/N2 then the following holds: if the pair of points (0, 0) and (1, 0)
is A-stretched under an L-biLipschitz map f : RN → E2 whose Jacobian
differs from ρN on a set of area no bigger than ε , then at least one pair of
points of the form

(( p
NM ,

s
NM

)
,
( q
NM ,

s
NM

))
is (1 + k)A-stretched (where

p and q are integers between 0 and NM and s is an integer between 0
and M).

Proof of Lemma 3.2. We will need constants k, l,m, ε ∈ (0,∞) and
M,N ∈ N, which will be chosen at the end of the argument. We will assume
that N > 10 and c, l < 1. Let f : RN → E2 be an L-biLipschitz map such
that Jac(f) = ρN off a set of measure ε. Without loss of generality we
assume that f(x) = (0, 0) and f(y) = (z, 0), z ≥ A.

We will use the notation xipq :=
(p+M(i−1)

NM , q
NM

)
, where i is an integer

between 1 and N , and p and q are integers between 0 and M . We call these
points marked. Note that the marked points in Si are precisely the vertices
of the subdivision of Si into M2 subsquares. The index i gives the number
of the square Si, and p and q are “coordinates” of xipq within the square Si.

We will prove Lemma 3.2 by contradiction: we assume that all pairs of
the form xipq, x

j
sq are no more than (1 + k)A-stretched.

If xipq ∈ Si is a marked point, we say that xi+1
pq ∈ Si+1 is the marked

point corresponding to xipq; corresponding points are obtained by adding
the vector (1/N, 0), where 1/N is the side length of the square Si. We are
going to consider vectors between the images of marked points in Si and
the images of corresponding marked points in the neighbor square Si+1.
We denote these vectors by W i

pq := f(xi+1
pq )−f(xipq). We will see that most

of the W i
pq’s have to be extremely close to the vector W := (A/N, 0), and,

in particular, we will find a square Si where W i
pq is extremely close to W

for all 0 ≤ p, q ≤ M . This will mean that the areas of f(Si) and f(Si+1)
are very close, since f(Si+1) is very close to a translate of f(Si). On the
other hand, except for a set of measure ε, the Jacobian of f is 1 in one of
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the square Si, Si+1 and 1 + c in the other. This allows us to estimate the
difference of the areas of their images from below and get a contradiction.

If l ∈ (0, 1), we say that a vector W i
pq = f(xi+1

pq )−f(xipq) (or the marked
point xipq), is regular if the length of its projection to the x-axis is greater
than (1−l)A

N . We say that a square Si is regular if all marked points xipq in
this square are regular.

Claim 1. There exist k1 = k1(l) > 0, N1 = N1(l), such that if k ≤ k1,
N ≥ N1, there is a regular square.

Proof. Reasoning by contradiction, we assume that all squares are irregular.
By the pigeon-hole principle, there is a value of s (between 0 and M) such
that there are at least N

2M+2 irregular vectors W ij
pjs, j = 1, 2, . . . , J ≥ N

2M+2 ,
where ij is an increasing sequence with a fixed parity. This means that we
look for l-irregular vectors between marked points in the same row s and
only in squares Si’s which have all indices i’s even or all odd. The latter
assumption guarantees that the segments [xijpjs, x

ij+1
pjs ] do not overlap. We

look at the polygon with marked vertices
(0, 0), x0

0s = (0, s/MN), xi1p1s, x
i1+1
p1s , x

i2
p2s, x

i2+1
p2s , . . . , x

iJ
pJs
, xiJ+1
pJs

, xNMs

= (1, s/MN), (1, 0)
The image of this polygon under f connects (0, 0) and (z, 0) and, therefore,
the length of its projection onto the x-axis is at least z ≥ A. On the other
hand, estimating this projection separately for the images of l-irregular
segments [xijpjs, x

ij+1
pjs ], the “horizontal” segments [xij+1

pjs , x
ij+1
pj+1s] and the two

“vertical” segments [(0, 0), x0
0s] and [xNMs, (1, 0)] , one gets that the lengths

of this projection is no bigger than(
N

2M + 2

)(
(1− l)A

N

)
+
(

(1 + k)A
N

)(
N − N

2M + 2

)
+ 2

L

N
.
(3.3)

The first term in (3.3) bounds the total length of projections of images of
irregular segments by the definition of irregular segments and their total
number. The second summand is the maximum stretch factor (1 + k)A
between marked points times the total length of remaining horizontal seg-
ments. The third summand estimates the lengths of images of segments
[(0, 0), x0

0s] and [xNMs, (1, 0)] just by multiplying their lengths by our fixed
bound L on the Lipschitz constant.

Recalling that this projection is at least z, which in its turn is no less
than A, we get(

N

2M + 2

)(
(1− l)A

N

)
+
(

(1 + k)A
N

)(
N − N

2M + 2

)
+ 2

L

N
≥ A .
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One easily checks that this is impossible when k is sufficiently small and N
is sufficiently large. This contradiction proves Claim 1. �

Let W = (A/N, 0).

Claim 2. Given any m > 0, there is an l0 = l0(m) > 0 such that if l ≤ l0
and k ≤ l, then |W −W i

pq| ≤ m/N for every regular vector W i
pq.

Proof. Consider a regular vector W i
pq = (X,Y ). Since W i

pq is regular,

X ≥ (1−l)A
N . On the other hand, X2 + Y 2 ≤ (1+k)2A2

N2 and X ≤ (1+k)A
N .

Thus the difference of the x-coordinates of W i
pq and W is bounded by

(l+k)A
N < 2lA

N . Substituting the smallest possible value (1−l)A
N for X into

X2 + Y 2 ≤ (1+k)2A2

N2 , we get Y 2 ≤ 2(l+k)A2

N2 ≤ 4lA2

N2 . This implies that

N |W −W i
pq| ≤ 2A

√
l2 + l ≤ 2L

√
l2 + l . (3.4)

The right-hand side of (3.4) tends to zero with l, so Claim 2 follows. �

Claim 3. There are m0 > 0, M0 such that if m < m0 and M > M0,
then the following holds: if for some 1 ≤ i ≤ N and every p, q we have
|W −W i

pq| ≤ m/N , then∣∣Area(f(Si+1))−Area(f(Si))
∣∣ < c

2N2 . (3.5)

Proof. We assume that i is even and therefore ρ takes the value 1 on Si
and 1 + c on Si+1; the other case is analogous. We let Q := f(Si) and
R = f(Si+1).

Q is bounded by a curve (which is the image of the boundary of Si).
Consider the result R̃ := Q + W of translating Q by the vector W =
(A/N, 0). The area of R̃ is equal to the area of Q.

The images of the marked points on the boundary of Si form an L/NM -
net on the boundary of Q, and the images of marked points on the boundary
of Si+1 form an L/NM -net on R. By assumption the difference between W
and each vector W i

pq joining the image of a marked point on the boundary
of Si and the image of the corresponding point on the boundary of Si+1
is less than m/N . We conclude that the boundary of R̃ lies within the
m
N + 2L

MN -neighborhood of the boundary of R. Since f is L-Lipschitz, the
length of the boundary of R is ≤ 4L/N . Using a standard estimate for the
area of a neighborhood of a curve, we obtain:∣∣Area(R)−Area(Q)

∣∣ =
∣∣Area(R)−Area(R̃)

∣∣
≤ 2L
N

(
m

N
+

2L
MN

)
+ π

(
m

N
+

2L
MN

)2

.

Therefore (3.5) holds if m is sufficiently small and M is sufficiently large. �
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Proof of Lemma 3.2 concluded. Now assume m < m0, M >M0, l ≤ l0(m),
k ≤ min(l, k1(l)), N ≥ N1(l), and ε ≤ c/8N2L2. Combining Claims 1,2,
and 3, we find a square Si so that (3.5) holds. On the other hand, since
Jac(f) coincides with ρ off a set of measure ε, Area(f(Si)) ≤ 1/N2 + εL2

and Area(f(Si+1) ≥ (1 + c)(1/N2 − ε). Using the assumption that ε ≤
c/8N2L2 we get

Area(R)−Area(Q) ≥ c

2N2 ,

contradicting (3.5). This contradiction proves Lemma 3.2. �

Proof of Lemma 3.1 continued. We will use an inductive construction
based on Lemma 3.2. Rather than dealing with an explicit construction
of pairs of points as in Lemma 3.2, it is more convenient for us to use the
following lemma, which is an obvious corollary of Lemma 3.2. (To deduce
this lemma from Lemma 3.2, just note that all properties of interest persist
if we scale our coordinate system.)
Lemma 3.6. There exists a constant k > 0 such that, given any segment
xy ⊂ I2 and any neighborhood xy ⊂ U ⊂ I2, there is a measurable function
ρ : U → [1, 1 + c], ε > 0 and a finite collection of non-intersecting segments
lkrk ⊂ U with the following property: if the pair x, y is A-stretched by an
L-biLipschitz map f : U → E2 whose Jacobian differs from ρ on a set of
area < ε , then for some k the pair lk, rk is (1 + k)A-stretched by f . The
function ρ may be chosen to have finite image.

We will prove Lemma 3.1 by induction, using the following statement.
(It is actually even slightly stronger than Lemma 3.1 since it not only
guarantees non-existence of L-biLipschitz maps with a certain Jacobian,
but also gives a finite collection of points, such that at least one distance
between them is distorted more than by factor L.)
Lemma 3.7. For each integer i there is a measurable function ρi : I2 →
[1, 1 + c] , a finite collection Si of non-intersecting segments lkrk ⊂ I2, and
εi > 0 with the following property: For every L-biLipschitz map f : I2 → E2

whose Jacobian differs from ρi on a set of area < εi , at least one segment
from Si will have its endpoints (1+k)i

L -stretched by f .

Proof. The case i = 0 is obvious. Assume inductively that there are
ρi−1, εi−1, and a disjoint collection of segments Si−1 = {lkrk} which satisfy
the conditions of the lemma. Let {Uk} be a disjoint collection of open sets
with Uk ⊃ lkrk and with total area < εi−1

2 . For each k apply Lemma 3.6 to
Uk to get a function ρ̂k : Uk → [1, 1 + c], ε̂k > 0, and a disjoint collection
Ŝk of segments. Now let ρi : I2 → [1, 1 + c] be the function which equals ρ̂k
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on each Uk and equals ρi−1 on the complement of ∪Uk; let Si = ∪Ŝk, and
εi = min ε̂k. The required properties follow immediately. �

Lemma 3.1 and (Theorem 1.2) follows from Lemma 3.7.
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H. Poincaré Anal. Non Linéaire 11:3 1994), 275–296.

Dmitri Burago Bruce Kleiner
Dept. of Mathematics Dept. of Mathematics
Pennsylvania State Univ. Univ. of Pennsylvania
University Park, PA 16802-6401 Philadelphia, PA 19104
USA USA

Current Address:
Dept. of Mathematics
Univ. of Utah
Salt Lake City, UT 84322-3900
USA

Submitted: April 1997


