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Abstract
This paper is a continuation of [TV], in which new bilinear estimates
for surfaces in R3 were proven. We give a concrete improvement to
the square function estimate of Mockenhaupt [M]. We apply these
estimates to give new progress on several open problems concerning
the wave and Schrödinger equation in R2+1, and convolution with
curves in R3.

1 Introduction

Let S1, S2 two smooth compact hypersurfaces with boundary in R3, with
Lebesgue measure dσ1 and dσ2 respectively. If 0 < q ≤ ∞, we say that the
bilinear adjoint restriction estimate R∗S1,S2

(2× 2→ q) holds if one has∥∥∥∥ 2∏
t=1

f̂tdσt

∥∥∥∥
Lq(R3

)
.

2∏
t=1

‖ft‖2 ,

for all test functions f1, f2 supported on S1, S2 respectively. (Following
standard practice, we will use A . B to denote the estimate |A| ≤ CB for
some absolute constant C > 0, which may vary from line to line.)

The question of finding, for specified S1, S2, the range of q for which
R∗S1,S2

(2× 2 → q) holds is open. The estimate is trivial for q = ∞, and if
S1 = S2 is a subset of a hyperplane then no estimate is possible for q <∞.
On the other hand, if S1 and S2 are transverse in the sense that the normals
to S1 lie in a set which is separated from the normals to S2, then we have
the estimate for q = 2 (and hence for q ≥ 2 by interpolation). Indeed, by
Plancherel’s theorem R∗S1,S2

(2× 2→ 2) is equivalent to
‖f1dσ1 ∗ f2dσ2‖2 . ‖f1‖2‖f2‖2 ,

and the result follows by interpolating between the trivial estimate
‖f1dσ1 ∗ f2dσ2‖1 . ‖f1‖1‖f2‖1 ,

and the estimate
‖f1dσ1 ∗ f2dσ2‖∞ . ‖f1‖∞‖f2‖∞
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which follows from transversality. If S1, S2 are not transverse but have
non-vanishing Gaussian curvature then one can also obtain the estimate
R∗S1,S2

(2× 2→ 2) from the Tomas-Stein theorem and Hölder’s inequality.
If one assumes only that S1 and S2 are transverse, then the above

argument is sharp, as can be seen by taking S1 and S2 to be subsets of
transverse hyperplanes. The argument is still sharp for certain curved sets
S1, S2; for instance if S1 and S2 are unit-separated subsets of the cylinder{

(ξ1, ξ2, ξ3) : |ξ1|2 + |ξ2|2 = 1
}
,

then by taking f1, f2 to be bump functions one can make f̂tdσt comparable
to R−1/2 on (disjoint) R × R × 1 slabs for some arbitrarily large R, as a
simple stationary phase computation shows. By multiplying f1 or f2 by a
suitable phase one can make the two slabs coincide, and so the estimate
R∗S1,S2

(2× 2→ q) is impossible for q < 2.
However, it was observed by Bourgain [Bo2] that the estimate

R∗S1,S2
(2 × 2 → q) can hold for some q < 2 if the surfaces S1 and S2

have slightly more curvature than the cylinder example; in particular, if
S1 and S2 are separated subsets of a small portion of the light cone then
R∗S1,S2

(2×2→ 2−τ) holds for some small τ > 0. Indeed, examples suggest
that one should have R∗S1,S2

(2 × 2 → q) for all q ≥ 5/3 in this case (see
[TVV], [TV]; this conjecture is due to Machedon and Klainerman).

Estimates of this form were studied in [TV], the prequel to this paper.
We state the two relevant results of that paper here; the proofs of these
results are contained in [TV] but are not needed for this paper.

The first result pertains to pairs of surfaces which resemble projectively
separated subsets of the light cone, or of transverse subsets of non-parallel
cylinders.
Definition 1.1. Suppose that S1 and S2 are compact surfaces with bound-
ary in R3. If ξ ∈ St, t = 1, 2, we use nt(ξ) ∈ S2/± to denote the unit normal
to St at ξ. We say that the pair S1 and S2 are of disjoint conic type if the
following statements hold:
• (Transversality) For all ξt ∈ St, t = 1, 2, we have nt(ξt) ∈ Nt, where
N1 and N2 are small disjoint caps in S2/± which are separated by a
distance comparable to 1.
• (Null direction) The map dnt : TξtSt → TξtSt has eigenvalue 0 with

multiplicity one in the direction wt(ξt) ∈ S2/±. We also assume that
the remaining eigenvalue has magnitude ∼ 1.
• (Transversality of null directions) For all ξt ∈ St, t = 1, 2, we have
wt(ξt) ∈Wt, where W1 and W2 are small disjoint caps in S2/± which
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are separated by a distance comparable to 1. Furthermore, the maxi-
mal angular seperation between W1 and N2, or W2 and N1, is strictly
less than π/2.

Theorem 1.2 [TV]. If S1 and S2 are of disjoint conic type, then
R∗S1,S2

(2× 2→ q) for all q > 2− 8
121 .

If one assumes more curvature on S1, S2 (for instance of S1, S2 are sep-
arated subsets of the sphere or paraboloid) then better results are known.
More precisely:

Theorem 1.3 [TV]. Let S be a graph of an elliptic phase function (in
the sense of [TVV] or [MoVV1,2], and let S1, S2 be unit-separated subsets
of S. Then

R∗S1,S2
(2× 2→ q) (1)

for all q > 2− 2
17 .

The purpose of this paper is to give applications of these results to
outstanding conjectures in harmonic analysis and wave equations. We will
use the philosophy of [TVV] to allow us to pass efficiently from the bilinear
estimates stated above to the linear estimates which appear in applications.

We have the following results. Firstly, in section 2 we show pointwise
convergence of solutions of the free Schrödinger equation to their initial
data for low regularities. More precisely, we have pointwise convergence
for all data in Hs, s > 15/32. This improves on previous work by [Bo1],
[MoVV1].

In section 3 we show that Theorem 1.2 implies some new null form es-
timates for the Lqx,t norms of products of solutions to the wave equation in
R2+1. This gives some progress on a recent conjecture of Foschi and Klain-
erman [FoK]. As an application of these null form estimates we improve
upon the local smoothing estimate proven by Schlag and Sogge [SS].

In [Bo2], the estimates of the type considered in Theorem 1.2 were used
to obtain an improvement to Mockenhaupt’s square function estimate [M].
By combining this argument with the bilinear philosophy in [TVV] we are
able to obtain a quantitative improvement, reducing the N1/4 factor in
Mockenhaupt’s estimate to 1/4− 1/238. We also prove the corresponding
amount of progress on the Bochner-Riesz multiplier problem, Sogge’s local
smoothing conjecture, and the Lp smoothing conjecture for the convolution
operator with the helix.

Although there are many common themes in these results, particularly
the bilinear philosophy and the use of the estimates R∗(2×2→ q), some of
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Figure 1: Logical layout of this paper.

the sections can be read independently. However, all sections utilize some
basic lemmas in harmonic analysis which we place in an Appendix. We
display the logical dependencies of the results of this paper in Figure 1.

Finally, we remark that a completely separate application of these types
of bilinear restriction estimate appears in [BoC] in connection with the
Zakharov system.

2 Application to the Schrodinger Maximal Function

Consider the solution eit∆f of the free Schrödinger equation with initial
datum f. We are interested in proving a.e. pointwise convergence eit∆f →
f(x) when t→ 0, under certain assumptions on the (weak) regularity of f .
We follow the line started by Carleson [C] who proved convergence for f in
the Sobolev space H1/4(R). This is a one dimensional result. For n ≥ 3,
the best result known was proven independently by Sjölin [Sj] and Vega [V],
who showed convergence for f ∈ Hs(Rn) whenever s > 1/2. For functions
f in R2, due to a better knowledge of the restriction properties of the
paraboloid in R3, convergence has been proven under weaker assumptions.
Bourgain [Bo1,3] proved that there is s < 1/2 for which the result holds.
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This theorem was refined by Moyua, Vargas and Vega [MoVV1], and the
argument there could be improved using the results of Tao, Vargas and
Vega in [TVV] and those in [TV]. However we provide a simpler argument
in this section based on the bilinear philosophy which gives slightly better
exponents.
Theorem 2.1. Suppose that q is such that R∗S1,S2

(2 × 2 → q) whenever
S1, S2 are unit-separated subsets of the standard paraboloid in R3. Then,
for all s > 1− 1/q and all f ∈ Hs(R2),

lim
t→0

eit∆f(x) = f(x) a.e. x ∈ R2 .

Combining this with (1), we thus obtain pointwise convergence of solu-
tions to the free Schrödinger equation to their initial data, if the data is in
Hs for s > 15/32 = .46875. This improves upon the results in [MoVV1],
which required

s >
164 +

√
2

339
= .4879475 . . .

As usual, the convergence will be a consequence of an estimate for a
maximal function.
Theorem 2.2. Under the same assumptions (all estimates in this paper
will be a priori),∥∥∥∥ sup

t

∣∣∣∣ ∫ f̂(ξ)e2πi(〈x,ξ〉+t|ξ|2)dξ

∣∣∣∣∥∥∥∥
L2q(R2

)
. ‖f‖

Hs(R2
)
.

Note that this estimate is somewhat stronger than what is needed for
pointwise convergence. By the usual arguments of Littlewood-Paley de-
composition and Plancherel’s theorem, it suffices to prove the following
proposition.
Proposition 2.3. Under the same assumptions,∥∥∥∥ sup

t

∣∣∣∣ ∫ f̂(ξ)e2πi(〈x,ξ〉+t|ξ|2)dξ

∣∣∣∣∥∥∥∥
2q
≤ N1−1/q‖f‖2 . (2)

for all N > 0 and all f with supp f̂ ⊂ B(0,N)\B(0,N/2).

Proof. We rescale to make the support of our function independent of N :∥∥∥∥ sup
t

∣∣∣∣ ∫ f̂(ξ)e2πi(〈x,ξ〉+t|ξ|2)dξ

∣∣∣∣∥∥∥∥
2q

= N2−1/q
∥∥∥∥ sup

t

∣∣∣∣ ∫
B(0,1)

f̂(Nξ)e2πi(〈x,ξ〉+t|ξ|2)dξ

∣∣∣∣∥∥∥∥
2q
.

By Plancherel’s theorem, it thus suffices to show that we have∥∥ sup
t
|ĝ dσ|

∥∥
2q ≤ C‖g‖2
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for all functions g supported in a compact subset S of the paraboloid. We
square this as ∥∥ sup

t
|ĝ dσĝ dσ|

∥∥
q
≤ C‖g‖2‖g‖2 . (3)

For each j ≥ 0 we break up S into about 22j dyadic “squares” τ jk of side-
length 2−j , and write τ jk ∼ τ jk′ if τ jk ,τ jk′ are not adjacent but have adjacent
parents. For each j ≥ 0 write g =

∑
gjk where gjk(ξ) = gχ

τjk
(ξ). Then,

ĝ dσĝ dσ =
∑
j

∑
k,k′:τjk∼τ

j

k′

ĝjk dσĝ
j
k′ dσ .

From the triangle inequality, the left hand side of (3) is thus majorized by∑
j

∑
k,k′:τjk∼τ

j

k′

∥∥ sup
t
|ĝjk dσ(·, t)ĝjk′dσ(·, t)|

∥∥
q
. (4)

We fix j. From the geometry of τ jk we see then that the temporal Fourier

transform of ĝjk dσ(x, ·) is supported in an interval of length 2−j . The same

statement holds for ĝjk dσ(x, ·)ĝjk′ dσ(x, ·). Hence, we can use Lemma 7.3 to
bound

sup
t

∣∣ĝjkdσ(x, t)ĝjk′dσ(x, t)
∣∣ . (2−j)1/q∥∥ĝjkdσ(x, ·)ĝjk′dσ(x, ·)

∥∥
Lq(dt) .

Therefore, we estimate (4) by(∑
j

∑
k,k′:τjk∼τ

j

k′

2−j/q‖ĝjkdσĝ
j
k′dσ‖Lq(dtdx)

)1/2
.

By R∗S1,S2
(2×2→ q), an affine transformation, and parabolic rescaling (cf.

[TVV, Proposition 2.6]) the last expression is not bigger than

C
(∑

j

∑
k,k′:τjk∼τ

j

k′

2−j/q2−2j24j/q‖gjk‖2‖g
j
k′‖2

)1/2
.

Finally, we sum on k and j and take square root. Note that 5/3 < q implies
3/q − 2 < 0. �

The best estimate of the form R∗(2 × 2 → q) that one can hope for is
q = 5/3. Thus this argument can at best give convergence inHs for s > 2/5.
However, the strongest counterexample known to date (see [DK]) only gives
s ≥ 1/4 as a necessary condition, which suggests that the above argument
is not sharp. The use of Lemma 7.3 in the above seems particularly weak.

We remark that the above argument extends without difficulty to the
more general dispersive equations studied in [MoVV2].
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3 Null Form Estimates for Lp, p < 2

In this section we consider estimates on one-sided solutions φ± = e±i
√
−∆tf

to the free wave equation in R2+1, in terms of Sobolev norms of the initial
data f . (Estimates for general solutions to the free wave equation can be
obtained by the usual decomposition φ = φ++φ− into one-sided solutions).

Strichartz’ estimate [Str] in 2 + 1 dimensions states that

‖φ±‖L6
x,t
. ‖f‖Ḣ1/2 .

We may bilinearize this in the usual manner as

‖φ±ψ±‖L3
x,t
. ‖f‖Ḣ1/2‖g‖Ḣ1/2 ,

where φ± = e±i
√
−∆tf, ψ± = e±i

√
−∆tg, and the two signs ± need not agree.

Without any multiplier weights on the quantity φ±ψ±, this is the best
estimate available in pure Lebesgue norms Lqx,t. (If one allows mixed norms
such as LqtL

r
x then other estimates are possible; see e.g. [KT], [FoK] and

the references therein.)
However, if one allows weights on the right-hand side then there are

many further estimates available. More precisely, if we let D0, D+ and
D− be the Fourier multipliers corresponding to the functions |ξ|, |ξ| + |τ |,
||ξ| − |τ || respectively, then we may consider estimates of the form∥∥Dβ0

0 D
β+
+ D

β−
− (φ±ψ±)

∥∥
Lqx,t
. ‖f‖Ḣα1‖g‖Ḣα2 (5)

for various real numbers q, β0, β+, β−, α1, α2. (In this section and the next,
we use the variables (ξ, τ) = (ξ1, ξ2, τ) to parameterize frequency space
R2+1.) In the remainder of the section we will always assume that α1 ≥ α2,
and that the sign on φ is positive; the remaining cases will follow from
symmetry. We will distinguish two cases (++) and (+−) of (5), depending
on the sign on ψ±. Henceforth we fix the sign ± to be the same at every
occurrence.

When q = 2 such estimates are important in the study of semi-linear
wave equations with quadratic non-linearities, which arise naturally from
the study of wave maps. Estimates of this type with q 6= 2, β+ = β− = 0
and β negative have also been recently utilized for equations of Yang-Mills
type in [KlT]. However for q < 2 no estimates were known in R2+1.

The study of these estimates and generalizations was systematically
taken up in [FoK] (see also [KlM1,2,3], and earlier work by [B]), and the
following necessary conditions were found.

Proposition 3.1 [FoK]. With the above notation and assumptions, the
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inequalities
2− 3

q + β0 + β+ + β− = α1 + α2 (6)

q ≥ 5
3

β− ≥ 3
2q −

1
2 (7)

α1 ≤ β− + 2− 3
q (8)

α1 ≤ β− + 5
4 −

3
2q

α1 ≤ β− + 1
are necessary in order for (5) to hold. In the (++) case we have the
additional necessary conditions

β0 ≥ 3
q − 2

β0 ≥ 5
q − 3 (9)

and in the (+−) case we have the additional necessary condition
α1 + α2 ≥ 5

q − 2 . (10)
The condition (6) comes from scaling considerations, while the remain-

ing conditions come from considering examples of f1, f2 with various fre-
quency supports. Condition (7) is also related to Lorentz invariance consid-
erations (see [FoK]). It was conjectured in [FoK] that (5) is true whenever
all of the above necessary conditions hold, unless at least two of the in-
equalities hold with strict equality. This conjecture has been verified for
q = 2 but is largely open otherwise.

We will concern ourselves with the case 5/3 ≤ q < 2, for which no
estimates of the type (5) were previously known to exist in 2+1 dimensions.
In this case many of the above conditions are redundant, and one only
requires (6), (7), (8), (9) and (10).

Our results are as follows.
Theorem 3.2. Let 5/3 ≤ q ≤ 2 be such that R∗S1,S2

(2× 2→ q) holds for
all pairs S1, S2 of surfaces of disjoint conic type. Suppose that (6) holds,
(7) is satisfied with strict inequality, and

α1 < β− + 2− 3
q − 4

(1
q −

1
2

)
. (11)

If
α1 + α2 >

5
q − 2 + 4

(1
q −

1
2

)
(12)

then the (+−) form of (5) holds. If
β0 >

5
q − 3 + 2

(1
q −

1
2

)
(13)

then the (++) form of (5) holds.
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In particular, by Theorem 1.2 the above result holds for all 2 − 8
121 <

q ≤ 2. The factors of
(1
q−

1
2

)
represent some inefficiencies in our arguments;

however in the endpoint case q = 5/3 we have been able to replace (11),
(13) by their sharp counterparts (8), (9) (except for endpoints).

Analogues of the above theorem also hold for the null forms

Q0(φ+, ψ±) = ∂tφ
+∂tψ

± −∇xφ+ · ∇xψ±

Q0j(φ+, ψ±) = ∂tφ
+∂xjψ

± − ∂xjφ+∂tψ
±

Qij(φ+, ψ±) = ∂xiφ
+∂xjψ

± − ∂xjφ+∂xiψ
± .

From an analysis of the multiplier (see e.g. [FoK]), one expects these null-
forms to behave like

Q0(φ+, ψ−) ∼ D+D−(φ+ψ−)

Q0j(φ+, ψ−) ∼ D1/2
+ D

1/2
− (D1/2

0 φ+D
1/2
0 ψ−)

Qij(φ+, ψ−) ∼ D1/2
+ D

1/2
− (D1/2

0 φ+D
1/2
0 ψ−)

in the (+−) case and

Q0(φ+, ψ+) ∼ D+D−(φ+ψ+)

Q0j(φ+, ψ+) ∼ D1/2
+ D

1/2
− (D1/2

0 φ+D
1/2
0 ψ+)

Qij(φ+, ψ+) ∼ D0D
−1/2
+ D

1/2
− (D1/2

0 φ+D
1/2
0 ψ+)

in the (++) case. A modification of the arguments below show that our
results extend to these null forms as if the above heuristics were exact.

3.3 Preliminaries: Some Minkowski geometry. In this section we
briefly state some elementary facts of Minkowski geometry that we shall
need, together with some notation.

If Q is a subset of R2, we define the lifts S+(Q), S−(Q) of Q to the
upper and lower light-cones respectively by

S±(Q) =
{

(ξ,±|ξ|) : ξ ∈ Q
}
.

We give these light cones two measures: the induced measure dξ which is
the push-forward of Lebesgue measure on R2 under S±, and the invariant
measure dξ/|ξ|, which is left unchanged by the action of the unimodular
Lorentz group SO(2, 1). Note that dξ is also comparable to the measure
induced from the Euclidean metric on R2+1.

The group generated by the Lorentz group, the isotropic dilations, is the
group of orientation-preserving conformal linear transformations
Conf +(R2+1) of Minkowski space. This group has the following 2-transitiv-
ity property: if A,A′ ∈ S+(R2), B,B′ ∈ S±(R2) are such that A,B are
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linearly independent and A′, B′ are linearly independent, then there exists
a conformal linear transformation L such that L(A) = A′ and L(B) = B′.
To see this, it suffices to show that A and B can be mapped to (1, 0, 1) and
(−1, 0, 1) respectively. By a Lorentz boost in a direction between A and
B we may make A and B diametrically opposite, and then by a further
Lorentz boost in the direction of A or B one can make the two points at
an equal distance from the origin. The claim then follows by a dilation
and rotation. This 2-transitivity property will often allow us to place the
Fourier transforms of f and g in specified locations in frequency space,
which allows for some mild simplifications.

In order to handle the D− weight, we will need the identity

|ξ + η| − ||ξ| − |η|| = |ξ + η|2 − (|ξ| − |η|)2

|ξ + η|+ ||ξ| − |η|| ∼
|ξ||η|∠(ξ,−η)2

|ξ + η| (14)
for the (+−) case, and

|ξ|+ |η| − |ξ + η| = (|ξ|+ |η|)2 − |ξ + η|2
|ξ|+ |η|+ |ξ + η| ∼

|ξ||η|∠(ξ, η)2

|ξ|+ |η| (15)

for the (++) case; here ∠(ξ, η) denotes the angle subtended by ξ and η
with respect to the origin.

At certain stages in the argument it will be convenient to view the light
cone in null co-ordinates (a1, a2, a3) defined by

(a1, a2, a3) =
(
τ + ξ1

2
, ξ2,

τ − ξ1

2

)
.

The double light cone |τ | = |ξ| in these co-ordinates becomes
4a1a3 = a2

2 (16)
with the upper and lower light cone corresponding to a1, a3 ≥ 0 and a1, a3 ≤
0 respectively. Note that for any constants A,B,C > 0 such that AC = B2,
the map

(a1, a2, a3)→ (Aa1, Ba2, Ca3)
preserves the light cone and is hence a conformal linear transformation. If
two sets Q1, Q2 are very close in one of the co-ordinates (especially the a2
co-ordinate), we will frequently apply the above type of transformation to
make the sets Q1, Q2 unit-separated in this co-ordinate.

3.4 Preliminaries: The quantity C±. In this section we recast the
desired estimate (5) in terms of a quantity C±α1,α2

(Q1, Q2,D), which we
will shortly define. We then collect some basic properties of C± to use in
the proof of Theorem 3.2. Henceforth q < 2 will be fixed to be such that
R∗S1,S2

(2× 2→ q) for all surfaces S1, S2 of disjoint conic type.
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Definition 3.5. If α1, α2 ∈ R, Q1, Q2 are subsets of R2 and D is a
Fourier multiplier on R2+1 given by m(ξ, τ), we define C±α1,α2

(Q1, Q2,D)
to be the best constant C (possibly infinite) such that∥∥D(φ+ψ±)

∥∥
Lqx,t
≤ C‖f‖Ḣα1‖g‖Ḣα2

for all f, g whose Fourier transforms are supported in Q1, Q2 respectively.

Thus (5) can be written as

C±α1,α2
(R2,R2,Dβ0

0 D
β+
+ D

β−
− ) . 1 . (17)

On the other hand, from Plancherel’s theorem we see that C±0,0(Q1, Q2, 1)
is essentially the best constant C that appears in the estimate

‖f̂dσ1ĝdσ2‖q ≤ C‖f‖2‖g‖2 (18)

for all f and g supported on the surfaces S+(Q1), S±(Q2) respectively,
where dσ1, dσ2 are induced measure dξ as defined in section 3.3. From the
hypothesis R∗(2× 2→ q) we thus have

Proposition 3.6. If Q1, Q2 are such that the surfaces S+(Q1), S±(Q2)
are of disjoint conic type, then

C±0,0(Q1, Q2, 1) . 1

where the constant depends only on the constants in the disjoint conic type
condition.

Our strategy shall be to use the familiar techniques of dyadic decompo-
sition and rescaling to reduce (5) to something treatable by Proposition 3.6.
Due to the geometry of the cone some of our decompositions and rescal-
ings will be non-isotropic, and some of our techniques will not be totally
efficient.

We now formalize abstractly the decomposition and rescaling properties
that we shall need. We first observe the trivial relationship

C±α1,α2
(Q1, Q2,D1+D2) ≤ C±α1,α2

(Q1, Q2,D1)+C±α1,α2
(Q1, Q2,D2) . (19)

Also, if P is a multiplier which is bounded on Lq (in particular, if P is in
one of the standard multiplier classes) then we have

C±α1,α2
(Q1, Q2, PD) ≤ C±α1,α2

(Q1, Q2,D) . (20)

We also observe a scaling property, which can be deduced from dimen-
sional analysis.

Lemma 3.7. If j is an integer, and the notation is as in Definition 3.5,
then

C±α1,α2
(Q1, Q2,D) = 2( 3

q
+α1+α2−2)jC±α1,α2

(2jQ1, 2jQ2,D2j ) ,
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where Dj is given by the multiplier
m2j (ξ, τ) = m(2−jξ, 2−jτ) .

In the case when α1 = α2 = 1/2 there is an additional scaling be-
cause the Ḣ1/2 norm is invariant under Lorentz transformations of φ+, ψ±.
Indeed, from the identity

φ̂+(ξ, τ) = Cf̂(ξ)δ
(
τ − |ξ|

)
dξ ,

where we view the spacetime Fourier transform of φ+ as a measure, we can
write the Ḣ1/2 norm of f in an invariant way as

‖f‖Ḣ1/2 = C
∥∥∥ φ̂+

dµ

∥∥∥
L2(dµ)

where dµ is the invariant measure dξ/|ξ| on the upper light cone and φ̂+/dµ
denotes the Radon-Nikodym derivative. A similar argument works for ψ±.

Since Lorentz transformations are unimodular, they preserve Lq and we
obtain the following convenient fact.
Lemma 3.8. If L ∈ SO(2, 1) is a Lorentz transformation, Q1, Q2 are
subsets of R2 and D is a Fourier multiplier given by m(ξ, τ), then

C±1/2,1/2(Q1, Q2,D) = C±1/2,1/2(Q1
L, Q

2
L,DL) ,

where Q1
L, Q2

L are given by
S+(Q1

L) = L(S+(Q1)) , S±(Q2
L) = L(S±(Q2)) ,

and DL is given by the multiplier m ◦ L−1.
Combining these two lemmas we have

Corollary 3.9. If L is an element of Conf +(R2+1), Q1, Q2 are subsets
of R2 and D is a Fourier multiplier given by m(ξ, τ), then

C±1/2,1/2(Q1, Q2,D) = |detL|
1
q
− 1

3C±1/2,1/2(Q1
L, Q

2
L,DL) ,

where Q1
L, Q2

L, DL are as in Lemma 3.8.
We now discuss the problem of controlling C±(Q1, Q2,D) by a suitable

partition of Q1, Q2. We begin with a variant of Schur’s test.
Lemma 3.10. Suppose the notation is as in Definition 3.5, and suppose
that we are given partitions Q1 =

⋃
kQ

1
k, Q

2 =
⋃
lQ

2
l into essentially

disjoint sets. Suppose that A > 0 is such that

sup
k

∑
l

C±α1,α2
(Q1

k, Q
2
l ,D) < A

and
sup
l

∑
k

C±α1,α2
(Q1

k, Q
2
l ,D) < A .
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Then
C±α1,α2

(Q1, Q2,D) . A .
Proof. Fix f, g with Fourier transforms supported on Q1, Q2 respectively,
and decompose f =

∑
k fk, g =

∑
l gl, φ

+ =
∑

k φ
+
k , ψ+ =

∑
l ψ

+
l accord-

ingly. We need to estimate∥∥∥∑
k

∑
l

D(φ+
k ψ

+
l )
∥∥∥
q
. (21)

By the triangle inequality and Definition 3.5, this is majorized by∑
k,l

C±α1,α2
(Q1

k, Q
2
l ,D)‖fk‖Ḣα1‖gl‖Ḣα2 .

But by the hypothesis on k, l, and Schur’s test, we may majorize this by

A
(∑

k

‖fk‖2Ḣα1

)1/2(∑
l

‖gl‖2Ḣα2

)1/2

and the claim follows from Definition 3.5 and Plancherel’s theorem. �

With the notation as above, we observe that the space-time Fourier
transform of D(φ+ψ±) is supported on the set

supp(m) ∩
(
S+(Q1) + S±(Q2)

)
= supp(m) ∩

{
(ξ + η, |ξ| ± |η|) : ξ ∈ Q1, η ∈ Q2} . (22)

Thus, if this set is empty, then C±α1,α2
(Q1, Q2,D) = 0. This gives an im-

mediate corollary of Lemma 3.10.
Corollary 3.11. Suppose the notation is as in Lemma 3.10. Write
Q1
k ∼ Q2

l if there exists ξ ∈ Q1
k, η ∈ Q2

l such that
m
(
ξ + η, |ξ| ± |η|

)
6= 0 .

Suppose further that for each k (resp. l) there are at most O(1) l (resp. k)
such that Q1

k ∼ Q2
l . Then

C±α1,α2
(Q1, Q2,D) . sup

k,l:Q1
k∼Q2

l

C±α1,α2
(Q1

k, Q
2
l ,D) .

Corollary 3.11 is quite efficient, but it only works when the relation
Q1
k ∼ Q2

l is only sparsely satisfied. In the general case we have Lemma 3.10,
but this gives poor estimates. We can improve on this lemma by exploiting
quasi-orthogonality, although we have not been able to obtain the optimal
exponents in this manner. More precisely, we have
Lemma 3.12. Suppose the notation is as in Lemma 3.10. Suppose also
that for distinct (k, l) the sets

S+(Q1
k) + S±(Q2

l )
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lie in essentially disjoint rectangles in R2+1. Then we have

C±α1,α2
(Q1, Q2,D) . (KL)

1
q
− 1

2 sup
k,l

C±α1,α2
(Q1

k, Q
2
l ,D)

where K,L are the cardinalities of the index sets of k, l respectively.

Proof. We repeat the proof of Lemma 3.10. This time, however, we exploit
the hypothesis, which implies by (22) that the functions D(φ+

k ψ
+
l ) have

Fourier transforms supported in essentially disjoint rectangles. Thus we
use Lemma 7.1 instead of the triangle inequality, to majorize (21) by(∑

k

∑
l

‖D(φ+
k ψ

+
l )‖qq

)1/q
.

By Hölder’s inequality this is majorized by

(KL)
1
q
− 1

2

(∑
k

∑
l

‖D(φ+
k ψ

+
l )‖2q

)1/2
.

By Definition 3.5 this is majorized by

(KL)
1
q
− 1

2 sup
k,l

C±α1,α2
(Q1

k, Q
2
l ,D)

(∑
k

∑
l

‖fk‖2Ḣα1
‖gl‖2Ḣα2

)1/2
.

The claim then follows from Definition 3.5 and Plancherel’s theorem. �
To close this section we give an easy consequence of Plancherel’s theo-

rem.
Lemma 3.13. Let the notation be as in Definition 3.5. If Q1, Q2 are
supported on the annuli {ξ : |ξ| ∼ 2j}, {η : |η| ∼ 2k}, then

C±α1,α2
(Q1, Q2,D) ∼ 2−α1j2−α2kC±0,0(Q1, Q2,D) .

3.14 Proof of Theorem 3.2. The first part of the proof consists of
repeated applications of the above decomposition and rescaling lemmas
until all the multipliers are essentially constant, and we are in the one of
three model cases for some j ≥ 0:

• Case Ij : We are in the (++) case, and f̂ , ĝ are supported on the sets
Q1
Ij =

{
ξ1 = 1 +O(2−j), ξ2 ∼ 2−j

}
,

Q2
Ij =

{
η1 = −1 +O(2−j), η2 ∼ 2−j

} (23)

respectively. In this case D0, D+, D− are comparable to 2−j , 1, and
1 respectively. This case is good when β0 is sufficiently large.
• Case IIj : We are in the (+−) case, and f̂ , ĝ are supported on the

sets
Q1
IIj =

{
ξ : ξ1 = 1 +O(2−j), ξ2 ∼ 2−j

}
,

Q2
IIj =

{
η : η1 = −1 +O(2−j), η2 ∼ 2−j}

(24)
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2
-j

2
-j

-

+

φψ

η

ξ
1

τ

ξ
1

ξ
2

-j

0

φψ

|   | ~ 1 D ~ 2

D ~ 1

D ~ 1

Figure 2: Case Ij , viewed from the ξ2 and τ axes. The supports of φ̂ and ψ̂ are
on almost diametrically opposite sides of the same light cone, so that φ̂ψ is close
to the τ axis.

respectively. In this case D0,D+,D− are comparable to 2−j , 2−j , and
2−2j respectively. This case is good when α1−β− is sufficiently small.
• Case IIIj: We are in either the (++) or (+−) case, and and f̂ , ĝ are

supported on the sets
Q1
IIIj =

{
ξ : ξ1∼1, |ξ2| � 1

}
,

Q2
IIIj =

{
η : η1∼∓ 2j , |η2| � 2j

} (25)

respectively. In this case D0,D+,D− are comparable to 2j , 2j , and 1
respectively. This case is good when α1 + α2 is sufficiently large.

The above estimates on D− may be verified by (14), (15). We illustrate
the frequency supports of φ, ψ, and φψ schematically in Figures 2, 3, 4.
Note that the perspectives are different in each case.

Our techniques require breaking the functions f1, f2 into many dyadic
pieces, and summing them in fairly crude ways; this causes a logarithmic
loss in many of our estimates. However, since we are assuming that the
inequalities (7), (11), (12), (13) are satisfied with strict inequality, this
loss is of no importance. It is quite likely that a more careful treatment
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-j

2
-j η

φψ

φ

ψ

-j
+

-j

-
-j

ξ
2

τ

ξ
2

ξ 1
0

φψ

D ~ 2

D ~ 2
D  ~ 2

|   | ~ 1

Figure 3: Case IIj , viewed from the ξ1 and τ axes. The supports of φ̂ and ψ̂ are
on almost diametrically opposite sides of opposing light cones, so that φ̂ψ is close
to the origin.

would allow one to recover many of the endpoints. We remark that these
reductions are valid for all q and all dimensions n (with (7) generalized to
β− ≥ n+1

2q −
n−1

2 ).
We then treat each of the model cases using further decompositions,

Lemma 3.12, rescaling, and the hypothesis R∗(2 × 2 → q). Our tech-
niques here are not optimal. One possibility for improvement would be
to use Littlewood-Paley theory for equally spaced projections in frequency
space (cf. Lemma 7.2) and develop vector-valued analogues of the estimate
R∗(2× 2→ q).

We begin the reduction to these cases. By Definition 3.5 it suffices to
prove the estimate (17). We partition R2 into the dyadic annuli Ak = {ξ :
|ξ| ∼ 2k} for integer k. By Lemma 3.10, (17) will follow from the estimate

C±α1,α2
(Am, Ak,D

β0
0 D

β+
+ D

β−
− ) . 2−ε|m−k|

uniformly in m, k for some ε > 0. From the assumption α1 > α2, symmetry,
and Lemma 3.13 it suffices to verify the case when k ≥ m. Accordingly we
write k = m+j for some j ≥ 0. From Lemma 3.7 and the scaling condition
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ψ
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1

τ

ξ
1

ξ
2
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φψ
-

j

+

η
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ξ

D ~ 2

|   | ~ 2 |   | ~ 1

D ~ 1

D ~ 2

φψ

φ

ψ

Figure 4: Case IIIj in the (++) case, viewed in cross-section with the ξ1, τ plane
and from the τ axis. The supports of φ̂ and ψ̂ are at widely separated angles and
scales.

(6) we may take m to equal 0, so we need only prove

C±α1,α2
(A0, Aj ,D

β0
0 D

β+
+ D

β−
− ) . 2−εj .

We now split the multiplierDβ0
0 D

β+
+ D

β−
− into several pieces. In the (++)

case we decompose the identity as I = P+ + (I − P+), where P+, (I − P+)
are given by multipliers supported on |ξ| � |τ |, |ξ| & |τ | respectively. In
the (+−) case we decompose the identity as I = P−+ (I −P−), where P−,
(I −P−) are given by multipliers supported on |ξ|+ |τ | � 2j , |ξ|+ |τ | ∼ 2j

respectively.
By (19), we reduce to showing that

C+
α1,α2

(A0, Aj , P+D
β0
0 D

β+
+ D

β−
− ) . 2−εj , (26)

C−α1,α2
(A0, Aj , P−D

β0
0 D

β+
+ D

β−
− ) . 2−εj . (27)

C±α1,α2
(A0, Aj , (I − P±)Dβ0

0 D
β+
+ D

β−
− ) . 2−εj . (28)

These three estimates will reduce to the cases Ij , IIj , IIIj respectively
(possibly after redefining j).
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3.15 The contribution of P+. The argument for this section is closely
related to the one in [KlT].

Let f , g have Fourier transforms supported onA0, Aj respectively. From
(22) and the definition of P+, we see that P+D

β0
0 D

β+
+ D

β−
− (φ+ψ+) vanishes

unless j ≤ C. By enlarging the annuli Ak if necessary we may assume that
j = 0. The indices α1, α2 are now irrelevant by Lemma 3.13, and will be
discarded.

The region given by (22) is essentially a ball of unit radius, on which
D
β−
− and Dβ+

+ are standard multipliers which can then be discarded by (20).
Thus (26) reduces to

C+(A0, A0, P+D
β0
0 ) . 1 .

We now perform another decomposition. For all j ≥ C, let ∆0
j be given by

a multiplier adapted to the cylindrical region {(ξ, τ) : |ξ| ∼ 2−j}. Then on
the region given by (22) we essentially have

P+D
β0
0 =

∑
j≥C

2−β0j∆0
j ,

so by (19) it suffices to show that
C+(A0, A0,∆0

j ) . 2(β0−ε)j .

Fix j, and divide A0 into essentially disjoint squares Q of width 2−j .
With the notation of Corollary 3.11 with D = ∆0

j , we observe that Q1 ∼ Q2

only holds when Q1 +Q2 ⊂ B(0, C2−j). Thus the criteria of Corollary 3.11
are satisfied, and we reduce to showing that

C+(Q1, Q2,∆0
j ) . 2(β0−ε)j

uniformly for all Q1, Q2 such that Q1 +Q2 ⊂ B(0, C2−j).
Fix Q1, Q2. By a rotation we may place these cubes on the ξ1 axis, and

by Lemma 3.7 we may make them a distance 1 from the origin, so that we
are now in the case Ij mentioned at the start of this section. Discarding
now the ∆0

j projection using (20), we will be done if we can show that

C+(Q1
Ij , Q

2
Ij , 1) . 2(β0−ε)j . (29)

Note that this is (except for the epsilon) the same estimate one would be
faced with when specializing (5) to the case Ij . When j is small then this
follows from Proposition 3.6 so we may assume that j � 1.

We would like to apply Proposition 3.6 for all j, but unfortunately the
surfaces S+(Q1

Ij
), S+(Q2

Ij
) are too flat to be of disjoint conic type uniformly

in j (after rescaling), and we must decompose and rescale further. Partition
Q1
Ij

(resp. Q2
Ij

) into about 2j rectangles Q1 (resp. Q2) each of length 2−2j
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in the e1 direction and 2−j in the e2 direction. From a Taylor expansion of
|ξ| we see that the conditions of Lemma 3.12 are satisfied, so we have

C+(Q1
Ij , Q

2
Ij , 1) . 22j( 1

q
− 1

2 ) sup
Q1,Q2

C+(Q1, Q2, 1) . (30)

By Corollary 3.9 we may assume that

Q1 =
{
ξ1 = 1+O(2−2j), ξ2 ∼ 2−j

}
, Q2 =

{
η1 = −1+O(2−2j), η2 ∼ 2−j

}
.

By (18) we thus need to estimate the quantity

‖f̂dσ1ĝdσ2‖q
for all f and g supported on S+(Q1), S+(Q2) respectively. In null co-
ordinates these two surfaces can be written as

S+(Q1) =
{

(a1, a2, a3) : a1 = 1 +O(2−2j) , a2 ∼ 2−j , a3 = a2
2

4a1

}
S+(Q2) =

{
(a1, a2, a3) : a3 = 1 +O(2−2j) , a2 ∼ 2−j , a1 = a2

2
4a3

}
.

We now rescale these surfaces to be of unit size, applying the (non-conformal)
scaling

L(a1, a2, a3) = (22ja1, 2ja2, 22ja3) .
The surfaces transform to

L(S+(Q1)) =
{

(a1, a2, a3) : a1 = 22j +O(1) , a2 ∼ 1 , a3 = a2
2

2−2j+2a1

}
L(S+(Q2)) =

{
(a1, a2, a3) : a3 = 22j +O(1) , a2 ∼ 1 , a1 = a2

2
2−2j+2a3

}
.

Since 2−2j+2a1, 2−2j+2a3 are almost constant, these surfaces are essen-
tially unit parabolic cylinders oriented in the (1, 0, 0) and (0, 0, 1) direc-
tions. These two surfaces are of disjoint conic type, and so the hypothesis
R∗(2× 2→ q) applies. Undoing the scaling, we obtain

2−5j/q‖f̂dσ1ĝdσ2‖q . 2−3j/2‖f‖22−3j/2‖g‖2 .
Thus

C+(Q1, Q2, 1) . 2−3j25j/q.

Combining this with (30) we obtain

C+(Q1
Ij , Q

2
Ij , 1) . 22j( 1

q
− 1

2 )2−3j25j/q (31)

and (29) follows from (13).
For q < 7/4 there is a better way to prove (29), simply by replacing

Q1
Ij
, Q2

Ij
by the larger sets Q1

I0
, Q2

I0
and using Proposition 3.6. This proves

(29) for β0 > 0 (and can also capture the endpoint β0 = 0, simply by
refusing to decompose using ∆j). If we could prove the optimal estimate
R∗(2×2→ 5/3) then one would obtain the optimal value of β0 given by (9).
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3.16 The contribution of P−. By arguing similarly to the previous
section, we may assume that j = 0 and discard the α1, α2 subscripts.

On the region given by (22), |ξ| + |τ | ∼ |ξ| and so Dβ0
0 is equal to Dβ0

+
times a harmless multiplier. Thus by (20) it suffices to show that

C−(A0, A0, P−D
β0+β+
+ D

β−
− ) . 1 .

On the region given by (22), we essentially have the decomposition

P−D
β0+β+
+ D

β−
− =

∑
j≥C

∑
m≥0

2−(β0+β+)j2−β−(j+m)∆+
j ∆−j+m ,

where ∆+
j ,∆

−
j are given by multipliers which are bump functions adapted

to |ξ|+ |τ | ∼ 2−j , | |ξ| − |τ | | ∼ 2−j respectively.
By (19) it thus suffices to show that

C−(A0, A0,∆+
j ∆−j+m) . 2(β0+β−+β+−ε)j2(β−−ε)m

uniformly in j,m.
Fix j,m. Partition A0 into disjoint sectors Γ with radial width 1 and

angular width C−12−j−
m
2 . We use the notation of Corollary 3.11 with

D = ∆+
j ∆−j+m. From (14) we see that Γ1 ∼ Γ2 only occurs when the two

sectors Γ1,−Γ2 subtend an angle of ∼ 2−j−
m
2 . By Corollary 3.11 it thus

suffices to show that

C−(Γ1,Γ2,∆+
j ∆−j+m) . 2(β0+β−+β+−ε)j2(β−−ε)m

uniformly for Γ1 ∼ Γ2. By a rotation we may assume that

Γ1 = {ξ : ξ1 ∼ 1, ξ2 ∼ 2−j−
m
2 } , Γ2 = {η : η1 ∼ −1, η2 ∼ 2−j−

m
2 } .

We now partition Γ1 and Γ2 further into disjoint rectangles Q1, Q2 which
have dimensions 2−j×2−j−

m
2 . We observe thatQ1 ∼ Q2 only whenQ1 +Q2

⊂ B(0, C2−j). Thus by Corollary 3.11 again, we reduce to showing that

C−(Q1, Q2,∆+
j ∆−j+m) . 2(β0+β−+β+−ε)j2(β−−ε)m .

for Q1 ∼ Q2; by Lemma 3.7 we may assume

Q1 =
{
ξ : ξ1 = 1 +O(2−j), ξ2 ∼ 2−j−

m
2
}
,

Q2 =
{
η : η1 = −1 +O(2−j), η2 ∼ 2−j−

m
2
}
.

The projection ∆−j+m is given by a standard multiplier on the region given
by (22), so we may discard this projection together with the ∆+

j multiplier
by (20). Since the α1, α2 indices can be set arbitrarily by Lemma 3.13, we
write our estimate as

C−1/2,1/2(Q1, Q2, 1) . 2(β0+β−+β+−ε)j2(β−−ε)m .
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We now eliminate the m parameter by applying the conformal linear trans-
formation

L(ξ1, ξ2, τ) =
(
τ + ξ1

2
− 2m

τ − ξ1

2
, 2

m
2 ξ2,

τ + ξ1

2
+ 2m

τ − ξ1

2

)
.

By Corollary 3.9 and a computation involving a Taylor expansion of |ξ|, |η|,
we have

C−1/2,1/2(Q1, Q2, 1) = |detL|
1
q
− 1

3C−1/2,1/2(Q1
IIj , Q

2
IIj , 1)

where Q1
IIj
, Q2

IIj
were defined in the model case IIj. We simplify this using

|detL| = C23m/2 and (6) as

C−1/2,1/2(Q1
IIj , Q

2
IIj , 1) . 2(α1+α2+ 3

q
−2−ε)j2(β−− 3

2q+ 1
2−ε)m .

By (7) it suffices to verify this for m = 0:

C−1/2,1/2(Q1
IIj , Q

2
IIj , 1) . 2(α1+α2+ 3

q
−2−ε)j .

This is essentially what one would get by specializing (5) to the case IIj .
As in the previous section we may assume that j � 1.

We will treat this using a further conformal transformation

L̃(ξ1, ξ2, τ) =
(
τ + ξ1

2
− 22j τ − ξ1

2
, 2jξ2,

τ + ξ1

2
+ 22j τ − ξ1

2

)
.

By Corollary 3.9 we then have

C−1/2,1/2(Q1
IIj , Q

2
IIj , 1) . |det L̃|

1
q
− 1

3C−1/2,1/2(Q̃1, Q̃2, 1)

where Q̃1, Q̃2 are the regions
Q̃1 =

{
ξ : ξ2 ∼ 1, |ξ|+ ξ1 = 2 +O(2−j)

}
Q̃2 =

{
η : η2 ∼ 1, |η| − η1 = 2 +O(2−j)

}
.

Since |det L̃| = C23j , we thus reduce to
C−1/2,1/2(Q̃1, Q̃2, 1) . 2(α1+α2−1−ε)j . (32)

These two sets can be each broken up into about 2j squares R1, R2 of
sidelength 2−j . Because these sets lie on angle-separated subsets of the
cone, the hypotheses of Lemma 3.12 apply, and we have

C−1/2,1/2(Q̃1, Q̃2, 1) . (22j)
1
q
− 1

2 sup
R1,R2

C−1/2,1/2(R1, R2, 1) . (33)

By Corollary 3.9 we may choose
R1 = R2 =

{
ξ : ξ1 = 1 +O(2−j), ξ2 ∼ 2−j

}
.

By repeating the proof of (31) (with the (+−) sign instead of (++)) we
have

C−1/2,1/2(R1, R2, 1) . 22j( 1
q
− 1

2 )2−3j25j/q .
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Combining this with (33) and simplifying, we have

C−1/2,1/2(Q̃1, Q̃2, 1) . 2( 9
q
−5)j ,

and (32) follows from (12).
As in the previous section, there is an alternate argument which is

superior for small q. By replacing Q̃1, Q̃2 by their O(1)-neighbourhoods
and using Proposition 3.6, we obtain

C−1/2,1/2(Q̃1, Q̃2, 1) . 1 ,

which gives (32) if α1 + α2 > 1. This is superior to the previous argument
when q < 9/5, and for q = 5/3 it gives an almost sharp result.

3.17 The contribution of I − P±. Let f , g have Fourier transforms
supported on A0, Aj respectively. By considering the (++), (+−) cases
separately, we see that one has

|ξ| ∼ |ξ|+ |τ | ∼ 2j

on the region given by (22). Thus by (20) and standard multiplier calculus,
the multipliers D+,D0 may be replaced by the constant 2j . By Lemma 3.13
we thus reduce to

C±1/2,1/2
(
A0, Aj , (I − P±)Dβ−

−
)
. 2−(β0+β++ 1

2−α2+ε)j ,

which we write using (6) as

C±1/2,1/2
(
A0, Aj , (I − P±)Dβ−

−
)
. 2(β−+ 3

2−
3
q
−α1−ε)j .

From (14), (15) we see that the value of the multiplier for D− cannot
exceed 1. Thus we may write

D
β−
− =

∑
m≥0

2−mβ−∆−m

on the region given by (22), where ∆−m was defined in the previous section.
Discarding the harmless I − P± multiplier by (20) and using (19), it thus
suffices to show that

C±1/2,1/2(A0, Aj ,∆−m) . 2(β−−ε)m2(β−+ 3
2−

3
q
−α1−ε)j

uniformly in m ≥ 0.
Fix j,m. Partition A0 (resp. Aj) into disjoint sectors Γ1 (resp. Γ2) with

radial width 1 (resp. 2j) and angular width C−12−m/2. We use the notation
of Corollary 3.11 with D = ∆−m−j . From (14),(15) we see that Γ1 ∼ Γ2 only
occurs when Γ1, ±Γ2 differ in the angular variable by ∼ 2−m/2. Thus by
Corollary 3.11 it suffices to show that

C±1/2,1/2(Γ1,Γ2,∆−m) . 2(β−−ε)m2(β−+ 3
2−

3
q
−α1−ε)j
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uniformly for Γ1 ∼ Γ2. The operator ∆−m is given by a standard multiplier
when restricted to the region given by (22), so we may discard it by (20).
By a rotation we may assume that

Γ1 =
{
ξ : ξ1 ∼ 1, |ξ2| � 2−

m
2
}
, Γ2 =

{
η : η1 ∼ 2j , η2 ∼ 2j−

m
2
}
.

We now apply Corollary 3.9 with the conformal linear transformation

L(ξ1, ξ2, τ) =
(
τ + ξ1

2
− 2m

τ − ξ1

2
, 2

m
2 ξ2,

τ + ξ1

2
+ 2m

τ − ξ1

2

)
to obtain (after applying another mild conformal transformation)

C±1/2,1/2(Γ1,Γ2, 1) ∼ |detL|
1
q
− 1

3C±1/2,1/2(Q1
IIIj , Q

2
IIIj , 1)

where Q1
IIIj

, Q2
IIIj

were defined in the model case IIIj. Since |detL| =
C23m/2, we thus reduce to showing that

C±1/2,1/2(Q1
IIIj , Q

2
IIIj , 1) . 2(β−− 3

2q+ 1
2−ε)m2(β−+ 3

2−
3
q
−α1−ε)j .

By (7) it suffices to consider the case m = 0. By Lemma 3.13 this becomes

C±0,0(Q1
IIIj , Q

2
IIIj , 1) . 2(β−+2− 3

q
−α1−ε)j . (34)

This should be compared with condition (8). This estimate is essentially
what one would get by specializing (5) to the case IIIj. As in the previous
sections we may assume j � 1.

It would be convenient if the two sets Q1
IIIj

, Q2
IIIj

were of the same size.
Accordingly, we partition Q2

IIIj
into about 22j squares Q2 of sidelength 1,

and partition Q1
IIIj

into the singleton partition {Q1
IIIj
}. Because of the

angular separation between Q1
IIIj

and Q2
IIIj

, we see that the conditions of
Lemma 3.12 are satisfied, and so we have

C±0,0(Q1
IIIj , Q

2
IIIj , 1) . 22j( 1

q
− 1

2 ) sup
Q2

C±0,0(Q1
IIIj , Q

2, 1) . (35)

By Corollary 3.9 and Lemma 3.13 we may move Q2 to
Q2 =

{
η : η1 = ∓2j +O(1), η2 = O(1)

}
without seriously affecting the position of Q1

IIIj
.

We would like to now apply Proposition 3.6. Unfortunately, the surface
S±(Q2) is too flat to be of disjoint conic type uniformly in j, and we must
make another decomposition. Partition Q1

IIIj
into about 2j sets of the form

Q1 =
{
ξ ∈ Q1

IIIj : ξ1 + |ξ| = a+O(2−j)
}

where a ∼ 1, and partition Q2 trivially as {Q2}. From a Taylor expansion
of |ξ| we see that the condition of Lemma 3.12 is satisfied, so we have

C±0,0(Q1
IIIj , Q

2, 1) . 2j(
1
q
− 1

2 ) sup
Q1

C±0,0(Q1, Q2, 1) . (36)
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By Lemma 3.7 we may set a = 2 without seriously affecting the position
of Q2.

From (34), (35), (36), we thus reduce to

C±0,0(Q1, Q2, 1) . 2−3j( 1
q
− 1

2 )2(β−+2− 3
q
−α1−ε)j .

By (18) it therefore suffices to show

‖f̂dσ1ĝdσ2‖q . 2−3j( 1
q
− 1

2 )2(β−+2− 3
q
−α1−ε)j‖f‖2‖g‖2 (37)

for f, g supported on S+(Q1), S±(Q2) respectively. In null co-ordinates the
surfaces become

S+(Q1) =
{

(a1, a2, a3) : a1 = 1 +O(2−j) , a2 = O(1) , a3 = a2
2

4a1

}
S±(Q2) =

{
(a1, a2, a3) : a3 ∼ ±2j +O(1) , a2 = O(1) , a1 = a2

2
4a3

}
.

We now apply the non-conformal scaling

L(a1, a2, a3) = (2ja1, a2, a3) .

The surfaces

L(S+(Q1)) =
{

(a1, a2, a3) : a1 = 2j +O(1) , a2 = O(1) , a3 = a2
2

2−j+2a1

}
L(S±(Q2)) =

{
(a1, a2, a3) : a3 ∼ ±2j +O(1) , a2 = O(1) , a1 = a2

2
2−j+2a3

}
are essentially non-parallel parabolic cylinders and are of disjoint conic type
uniformly in j.

Translating the estimate R∗(2×2→ q) for these surfaces back to S+(Q1)
and S±(Q2), we obtain

2−j/q‖f̂dσ1ĝdσ2‖q ≤ 2−j/2‖f‖2‖g‖2 .
Combining this with (11) we obtain (37) as desired.

4 Application to Sogge’s Local Smoothing Conjecture

We continue the study of one-sided solutions φ± = e±i
√
−∆tf to the free

wave equation in R2+1, which we initiated in section 3.
We consider local smoothing estimates of the form

‖φ±‖
Lq([1,2]×R2

)
. ‖f‖Lpα ,

where 1 ≤ p, q ≤ ∞ and α ∈ R. We call such an estimate LS(p → q, α).
By time reversal symmetry it suffices to consider the solution φ+.

There are several known necessary conditions for LS(p → q, α) to
hold. From translation invariance considerations we have q ≥ p. From
the focusing example in which f is a function of height 1 adapted to a
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Focus: 3/q - 1/2 >= 1/p -

Knapp: 3/2q >= 3/2p - α
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1/2q
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Delta: 1/q + 1/2 >= 2/p - α
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1/(q+3)
1/5 G

H I
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Figure 5: Local smoothing estimates LS(p→ q, α).

δ-neighbourhood of the circle of radius r for some r ∈ [1, 2], and φ± has
size δ−1/2 on the δ-ball centered at (r, 0), we obtain the condition

3
q −

1
2 ≥

1
p − α . (38)

From the Knapp example, in which φ±(x, t) for |t| . 1 is essentially a bump
of magnitude 1 supported on a δ × δ1/2 rectangle, we obtain the condition

3
2q ≥

3
2p − α . (39)

Finally there is the condition
1
q + 1

2 ≥
2
p − α

which comes from considering the case when f is a delta function.
We display these conditions, and the ranges for which they are dom-

inant, in Figure 5. The endpoints A,H, I correspond to the estimates
LS(1 → 1, 1/2 + ε), LS(∞ → ∞, 1/2 + ε), LS(1 → ∞, 3/2 + ε), with
the epsilon loss being necessary. The endpoint B is the energy estimate
LS(2 → 2, 0). These four estimates, and the ones obtained by interpola-
tion between them, are the best that one can do from fixed-time estimates
alone; any further estimate represents some gain in smoothness by aver-
aging over time, hence the term “local smoothing”. These results are also
related to circular maximal theorems; see the discussion in [SS].
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The optimal local smoothing estimate would be LS(4→ 4, ε), which is
point D in Figure 5. This is the local smoothing conjecture of Sogge, which
is still open, although Mockenhaupt, Seeger, and Sogge [MSS1] have the
partial result LS(4→ 4, 1/8+ε). We improve upon this result in section 6.

By interpolating the conjecture D with the known estimate I, we obtain

Conjecture 4.1 [SS]. We have LS((q/3)′ → q, 3/2 − 6/q + ε) for all
q ≥ 4 and ε > 0.

This conjecture is true for q ≥ 6 thanks to Strichartz’ estimate LS(2→
6, 1/2), which is the point G. In [SS] Schlag and Sogge improved this to
q ≥ 5, which is the point F . We do not know if the ε is necessary for
q > 4, although the Besicovitch-Rado-Kinney construction and an example
in Wolff [W] both show that it is necessary when q = 4.

The purpose of this section is to improve this result to

Theorem 4.2. Suppose that q0 < 2 is such that (5) is true in the (++)
case for q = q0, β0 = β+ = 0, β− = 3

2q0
− 1

2 + 2ε, and α1 = α2 = 3
4q′0

+ ε for
arbitrarily small ε > 0. Then Conjecture 4.1 is true for all q ≥ q0 + 3.

From Theorem 1.2 and Theorem 3.2 we see that the hypotheses of this
theorem hold for q0 = 2 − 8

121 + ε. Thus Conjecture 4.1 is true for q >
5− 8

121 . Unfortunately, since (5) can only hold when q0 ≥ 5/3 we see that
this theorem cannot prove the full conjecture. We discuss an alternative
approach in section 6.

Proof. Fix q0; without loss of generality we may assume that q = 3 + q0.
Write p = (q/3)′ and α = 3/2− 6/q + ε.

Roughly speaking, the idea is as follows. The hypothesis is a bilinear
variant of the (false) estimate LS(2 → 2q, α̃), where α̃ is given by (38).
Strictly speaking this estimate is false because of the Knapp condition (39),
however the bilinear version (5) can still hold, and this turns out to be good
enough for interpolation purposes (as long as the final estimate is on the
critical line p = (q/3)′). Interpolating this estimate, which corresponds to
C on Figure 5, with the point H, we obtain the desired result E. This is
a variant of the argument in [SS], which used the q = 2 estimate, although
the version of H used in [SS] is slightly different. The approach should also
be compared with the sharp restriction theorems proven in [TVV], [TV].

By Littlewood-Paley decomposition and giving an epsilon up in the α
index, we may assume that f has frequency support on the annulus |ξ| ∼ N
for some N ; we may assume that N � 1 since in the low frequency case
φ± is given by a smoothing operator applied to f .
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We have to prove
‖φ+‖

Lq([1,2]×R2
)
. Nα‖f‖Lp .

Since q > p we can use translation invariance and finite speed of propaga-
tion to replace [1, 2]×R2 by [1, 2]×B(0, 1). We square this as

‖φ+φ+‖Lq/2([1,2]×B(0,1)) . N2α‖f‖Lp‖f‖Lp .
For each j > 0, we divide up the circle into 2j arcs τ jk of length 2−j , and
partition f =

∑
k fj,k, φ

+ =
∑

k φ
+
j,k, where f̂j,k is supported in the sector

{ξ : |ξ| ∼ N, ξ/|ξ| ∈ τ j,k}. By the Whitney decomposition (cf. the proof of
Proposition 2.3 or [TVV]) we have

φ+φ+ =
∑
j

∑
k∼k′

φ+
j,kφ

+
j,k′

so it suffices to show that∥∥∥∑
k∼k′

φ+
j,kφ

+
j,k′

∥∥∥
Lq/2([1,2]×B(0,1))

. N2α2−εj‖f‖Lp‖f‖Lp (40)

uniformly in j for some ε > 0.
Fix j. We see that φ+

j,kφ
+
j,k′ are supported in essentially disjoint boxes

as k ∼ k′ both vary. Since q/2 > 2, we may apply Lemma 7.1 and estimate
the left-hand side of (40) by(∑

k∼k′
‖φ+

j,kφ
+
j,k′‖

r
Lq/2([1,2]×B(0,1))

)1/r

where r = (q/2)′.
Suppose for the moment that we could prove the estimate

‖φ+
j,kφ

+
j,k′‖Lq/2([1,2]×B(0,1)) . N2α2−εj‖fj,k‖Lp‖fj,k′‖Lp (41)

for all k ∼ k′. Then the left-hand side of (40) would be bounded by

N2α2−εj
(∑
k∼k′

(‖fj,k‖Lp‖fj,k′‖Lp)r
)1/r

.

Since q > 4 and p = (q/3)′, we have r ≥ p/2, so the above expression is
majorized by

N2α2−εj
(∑
k∼k′

(
‖fj,k‖Lp‖fj,k′‖Lp

)p/2)2/p
.

By Cauchy-Schwarz and the fact that there are only finitely many k′

associated to each k, we may bound this by

N2α2−εj
(∑

k

‖fj,k‖pLp
)1/p(∑

k′

‖fj,k′‖pLp
)1/p

,

which is (40).
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Thus it suffices to prove (41). By a rotation it suffices to show that

‖φ+ψ+‖Lq/2([1,2]×B(0,1)) . N2α2−εj‖f‖p‖g‖p (42)

whenever f, g have frequency support on the sectors{
ξ : ξ1 ∼ N , |ξ2| � 2−jN

}
,{

η : η1 ∼ N , η2 ∼ 2−jN
}
,

respectively; here the notation is as in section 3.
We first show this in the easy case when 2j >

√
N . By Hölder’s in-

equality it suffices to show that

‖φ+‖Lq([1,2]×B(0,1)) . Nα2−εj‖f‖p .
We use the integral representation

φ+(t, x) =
∫
e2πix·ξe2πit|ξ|f̂(ξ)dξ .

From the support of f and the restrictions t ∼ 1, 2j >
√
N we have the

Taylor approximation
t|ξ| = tξ1 +O(1) ,

where the O(1) error is smooth. Discarding this error1 it thus suffices to
show that∥∥∥∥∫ e2πix·ξe2πitξ1 f̂(ξ)dξ

∥∥∥∥
Lq([1,2]×B(0,1))

. Nα2−εj‖f‖p .

But by a change of variables and the Fourier inversion formula this becomes

‖f‖Lq(B(0,C)) . Nα2−εj‖f‖p .
But this follows (with ε = α/2) from Lemma 7.3, the frequency support
of f , and the definitions of α, p, q.

We now turn to the case when 2j .
√
N . It suffices to show

‖φ+ψ+‖Lq/2([1,2]×B(0,1)) . (2−2jN)1− 1
p
− 3
q

+ε
N

2
p
− 3
q

+ε‖f‖p‖g‖p , (43)

for arbitrarily small ε, since (42) follows from the definitions of p, α, q, the
hypothesis 2j .

√
N , and some algebra. Since (1/p, 1/q) is on the line

segment between (1/2, 1/2q0) and (1/∞, 1/∞), it suffices to prove (43)
with (p, q) replaced by (2, 2q0) and (∞,∞) respectively. Substituting these
pairs of exponents into (43) and discarding some epsilons we obtain (after
some algebra)

‖φ+ψ+‖Lq0([1,2]×B(0,1)) . Nα1Nα2(2−2jN)−β−‖f‖2‖g‖2
1See [T1], Lemma 2.1, [Ch], Lemma 2.10, or the references therein. A similar argument

also appears in the proof of Proposition 5.2 in this paper.
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and
‖φ+ψ+‖L∞([1,2]×B(0,1)) . 2−2jN‖f‖∞‖g‖∞

with the same restrictions on f, g as before, where α1,α2, β− were defined
in the statement of the theorem.

The former estimate is a direct consequence of the hypothesis (5) with
the specified values of q, β0, β+, β−, α1, α2, since D− is equal to a standard
multiplier with height 2−2jN on the frequency support of φ+ψ+. Thus it
suffices to prove the latter estimate. By Hölder’s inequality, symmetry it
suffices to show that

‖φ+‖L∞([1,2]×B(0,1)) . N1/22−j‖f‖∞ .
It suffices to show this for 2j =

√
N , since in the case 2j <

√
N can

be recovered by decomposing f and using the triangle inequality. But by
repeating the Taylor approximation argument used earlier this inequality
reduces to ‖f‖L∞(B(0,C)) . ‖f‖∞, which is of course trivial. �

5 An Improvement to Mockenhaupt’s Square Function
Estimate

Let N be a large dyadic number, and consider the neighbourhood SN2 of
the upper unit light cone

SN2 =
{

(ξ, τ) : |ξ| ∼ 1 , τ = |ξ|+O(1/N2)
}
.

Following [M], we divide this region into N regions

Em =
{

(re2πiθ, τ) : r ∼ 1 , θ = m
N +O

( 1
N

)
, τ = r +O

( 1
N2

)}
for m = 0, . . . ,N − 1; note that each Em is essentially a 1 × 1

N ×
1
N2

rectangle. Let ψm be a bump function essentially adapted to Em. We will
think of the index set 0, . . . ,N − 1 as being arranged in a circle, so N − 1
is adjacent to 0.

In [M], the following square-function estimate was proven for arbitrary
test functions f :∥∥∥∑

m

ψ̂m ∗ f
∥∥∥

4
. N1/4

∥∥∥(∑
m

|ψ̂m ∗ f |2
)1/2∥∥∥

4
. (44)

This estimate has many applications; we will discuss some of these in
section 6.

In [Bo2], it was observed that the 1/4 exponent in (44) could be im-
proved to 1/4 − τ for some τ > 0. The purpose of this section is to refine
the argument in [Bo2] and give an explicit value for τ . More precisely, we
have
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Theorem 5.1. If κ > 0 is such that R∗(2 × 2 → 2 − κ) holds for
unit-separated subsets of the upper unit light cone and τ < κ/(16 − 4κ),
then ∥∥∥∑

m

ψ̂m ∗ f
∥∥∥

4
. N1/4−τ

∥∥∥(∑
m

|ψ̂m ∗ f |2
)1/2∥∥∥

4
. (45)

In particular, we have (45) for all τ < 1/238. The best possible value
of τ is of course τ = 1/4, but this estimate is well beyond the techniques
of this paper. We remark that the best possible value of κ is 1/3.

Our approach combines the arguments in [Bo2] with the bilinear phi-
losophy of [TVV], [TV] and this paper. As in [TVV], we begin by reducing
the above linear estimate to a bilinear estimate.

Lemma 5.2. Let 0 < τ < 1/4 be fixed. If (45) holds, then one has∥∥∥(∑
m

ψ̂m ∗ f
)(∑

m′

ψ̂m′ ∗ g
)∥∥∥

2

. N1/2−2τ
∥∥∥(∑

m

|ψ̂m ∗ f |2
)1/2∥∥∥

4

∥∥∥(∑
m′

|ψ̂m′ ∗ g|2
)1/2∥∥∥

4
(46)

for all f, g where the ranges of m and m′ are separated in the sense that
dist(Em, Em′) ∼ 1 for all m,m′. Conversely, if (46) holds under this sepa-
ration condition, then (45) holds.

Proof. The former implication is an immediate consequence of Hölder’s
inequality, so we consider the latter. Assume that (46) holds. To prove
(45) it suffices by squaring to estimate the quantity∥∥∥(∑

m

ψ̂m ∗ f
)(∑

m

ψ̂m ∗ f
)∥∥∥

2
;

it will be important that we do not conjugate the second factor. For each
1 ≤ 2j ≤ N we break the interval [0,N) into 2j dyadic subintervals τj,k,
and write τj,k ∼ τj,k′ if τj,k, τj,k′ are not adjacent, but have adjacent par-
ents, where we identify 0 with N for the purposes of determining adja-
cency. When 2j = N we also write τj,k ∼ τj,k′ if τj,k, τj,k′ are adjacent or
equal. We then have the identity (cf. the arguments in Proposition 2.3 and
Theorem 4.2)∑
m

ψ̂m ∗ f
∑
m

ψ̂m ∗ f =
∑

1≤2j≤N

∑
τj,k∼τj,k′

( ∑
m∈τj,k

ψ̂m ∗ f
)( ∑

m′∈τj,k′
ψ̂m′ ∗ f

)
.

By the triangle inequality it suffices to consider the contribution of a
single j, providing we obtain an exponential gain in j. More precisely,
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we will show∥∥∥ ∑
τj,k∼τj,k′

( ∑
m∈τj,k

ψ̂m ∗ f
)( ∑

m′∈τj,k′
ψ̂m′ ∗ f

)∥∥∥
2

. (2−jN)1/2−2τ
(∥∥∥(∑

m

|ψ̂m ∗ f |2
)1/2∥∥∥

4

)2
. (47)

We first consider the easy case when 2j = N . In this case the only pairs m,
m′ which appear are those such that |m−m′| . 1, where the norm |m−m′|
is taken in the obvious circular sense. By polarization the left-hand side of
(47) is therefore majorized by∥∥∥∑

m

|ψ̂m ∗ f |2
∥∥∥

2
=
(∥∥∥(∑

m

|ψ̂m ∗ f |2
)1/2∥∥∥

4

)2

as desired.
It remains to consider the case when 2j < N . Again, we observe from

elementary geometry that the frequency supports of( ∑
m∈τj,k

ψ̂m ∗ f
)( ∑

m′∈τj,k′
ψ̂m′ ∗ f

)
are essentially disjoint as τj,k, τj,k′ vary. Thus we may estimate (47) by( ∑

τj,k∼τj,k′

∥∥∥( ∑
m∈τj,k

ψ̂m ∗ f
)( ∑

m′∈τj,k′
ψ̂m′ ∗ f

)∥∥∥2

2

)1/2
. (48)

We now claim that (46) implies that∥∥∥( ∑
m∈τj,k

ψ̂m ∗ f
)( ∑

m′∈τj,k′
ψ̂m′ ∗ g

)∥∥∥
2

. (2−jN)1/2−2τ
∥∥∥( ∑

m∈τj,k
|ψ̂m ∗ f |2

)1/2∥∥∥
4

∥∥∥( ∑
m′∈τj,k′

|ψ̂m′ ∗ g|2
)1/2∥∥∥

4
(49)

for all f ,g. When j = 0 this is just (46). Now consider the case j > 0. By
a rotation we may assume that the index sets τj,k, τj,k′ are within C2−jN
of the origin, so that the sets Em, Em′ are within C2−j of the e1, e3 plane.
We now apply the conformal linear transformation

(ξ1, ξ2, τ) 7→
(
τ + ξ1

2
− 22j τ − ξ1

2
, 2jξ2,

τ + ξ1

2
+ 22j τ − ξ1

2

)
.

One may verify that the norms on both sides of (49) scale the same way
under this transformation. Furthermore, the sets Em, Em′ map to very
similar sets but with the role of N replaced by 2−jN . The claim then
follows from (46).
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Applying (49) to (48) and comparing this with (47), we see that we only
need to verify that( ∑

τj,k∼τj,k′

(
‖Fj,k‖4‖Fj,k′‖4

)2)1/2
.
(∥∥∥(∑

k

|Fj,k|2
)1/2∥∥∥

4

)2
(50)

where
Fj,k =

( ∑
m∈τj,k

|ψ̂m ∗ f |2
)1/2

.

By polarizing we may majorize the left-hand side of (50) by(∑
k

‖Fj,k‖44
)1/2

.

The claim (50) then follows from interchanging the l4 and L4 norms and
using the inclusion l4 ⊂ l2. �

Thus it suffices to consider the bilinear estimate. (For an earlier partial
equivalence between the two estimates, see [Bo2]).

The next step is to use the restriction hypothesis R∗(2 × 2 → q) to
obtain something very close to (46). More precisely, we have

Proposition 5.3. If q < 2 is such that R∗(2× 2→ q) holds, then(∑
Q

∥∥∥(∑
m

ψ̂m ∗ f
)(∑

m′

ψ̂m′ ∗ g
)∥∥∥2

Lq(Q)

)1/2

. N1/2
∥∥∥(∑

m

|ψ̂m ∗ f |2
)1/2∥∥∥

4

∥∥∥(∑
m′

|ψ̂m′ ∗ g|2
)1/2∥∥∥

4
(51)

where the notation is as in Lemma 5.2, and Q ranges over a partition of
R2 into N -cubes.

Proof. We need to control the left-hand side of (51) by a square-function
whose summands have frequency support on eccentric rectangles. To do
this, we will first control the left-hand side of (51) by a different square-
function whose summands have frequency support on disks. To finish up
we will use the pointwise estimate in Lemma 7.2.

For this argument it will be notationally convenient to parameterize fre-
quency space by spatial variables (ξ1, ξ2, ξ3) rather than spacetime variables
(ξ1, ξ2, τ), and similarly for physical space.

We subdivide frequency space R3 into a equally spaced collection of
1/N cubes I. Each set Em is covered by about N of these cubes I, with
different Em being covered by essentially disjoint collections of cubes I. We
abuse notation and write I ⊂ Em if I forms part of the cover of Em.
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We may therefore write for each m
ψ̂m ∗ f(x) =

∑
I⊂Em

φ̂I ∗ fm(x)

where φI is a bump function adapted to I and fm = ψ̂m∗f . We can arrange
matters so that φI(ξ) = φ(ξ − ξI), where ξI is the center of I.

We consider the contribution of a single cube Q in (51). To begin with,
let us assume that Q contains the origin.

We have∑
I⊂Em

φ̂I ∗ fm(x) =
∑
I⊂Em

∫
e−2πix·ξφI(ξ)f̌m(ξ)dξ

= e−2πix·ξI
∫
e−2πix·(ξ−ξI)φ(ξ − ξI)f̌m(ξ) dξ .

As in [TV], we perform a Taylor expansion of the phase
e−2πix·(ξ−ξI) =

∑
γ

1
γ!

(−2πix
N

)γ (
N(ξ − ξI)

)γ
where γ is a multi-index. The term γ = 0 should be viewed as the main
term. We thus have∑

m

∑
I⊂Em

φ̂I ∗ fm(x)

=
∑
γ

1
γ!

(
−2πix
N

)γ∑
m

∑
I⊂Em

e−2πix·ξI
∫
φγ(ξ − ξI)f̌m(ξ)dξ

where
φγ(ξ) = (Nξ)γφ(ξ) .

A similar expansion holds for g. We can therefore write the contribution∥∥∥(∑
m

ψ̂m ∗ f
)(∑

m′

ψ̂m′ ∗ g
)∥∥∥

Lq(Q)

of Q to (51) as∥∥∥∥ ∑
γ1,γ2

1
γ1!γ2!

(
−2πix
N

)γ1+γ2 2∏
t=1

∑
m

∑
I⊂Em

am,I,t,γte
−2πix·ξI

∥∥∥∥
Lq(Q)

,

where
am,I,t,γt =

∫
φγt(ξ − ξI)f̌ tm(ξ) dξ = φ̂γtI ∗ f

t
m(0) ,

where we make the convention f1 = f , f2 = g to simplify the notation.
By the triangle inequality and crudely estimating |−2πix

N |by some con-
stant C, we can majorize the above by∑

γ1,γ2

C |γ1|+|γ2|

γ1!γ2!

∥∥∥∥ 2∏
t=1

∑
m

∑
I⊂Em

am,I,t,γte
−2πix·ξI

∥∥∥∥
Lq(Q)

.
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We now invoke the hypothesis R∗(2× 2→ q), as discretized in Lemma 5.1
of [TV] (with α = 0, n = 3, R = N , andr = 1), to estimate this by

N2
∑
γ1,γ2

C |γ1|+|γ2|

γ1!γ2!

2∏
t=1

(∑
m

∑
I⊂Em

|am,I,t,γt |2
)1/2

.

Strictly speaking one has to generalize Lemma 5.1 of [TV] since the points
ξI are only within 1/N of the cone rather than being on the cone itself, but
the argument extends trivially.

Expanding the definition of am,I,t,γt we thus have∥∥∥(∑
m

ψ̂m ∗ f
)(∑

m′

ψ̂m′ ∗ g
)∥∥∥

Lq(Q)

. N2
∑
γ1,γ2

C |γ1|+|γ2|

γ1!γ2!

2∏
t=1

(∑
m

∑
I⊂Em

|φ̂γtI ∗ f
t
m(0)|2

)1/2

This formula applies when Q contains the origin. By translation invariance
we may generalize it to∥∥∥(∑

m

ψ̂m ∗ f
)(∑

m′

ψ̂m′ ∗ g
)∥∥∥

Lq(Q)

. N2
∑
γ1,γ2

C |γ1|+|γ2|

γ1!γ2!

2∏
t=1

(∑
m

∑
I⊂Em

|φ̂γtI ∗ f
t
m(y)|2

)1/2

where Q is now arbitrary and y ∈ Q. If we average this in L2 over all y in
Q we obtain∥∥∥(∑

m

ψ̂m ∗ f
)(∑

m′

ψ̂m′ ∗ g
)∥∥∥

Lq(Q)

. N2N−3/2
∑
γ1,γ2

C |γ1|+|γ2|

γ1!γ2!

∥∥∥∥ 2∏
t=1

(∑
m

∑
I⊂Em

|φ̂γtI ∗ f
t
m|2
)1/2

∥∥∥∥
L2(Q)

. (52)

Summing this in l2 over all cubes Q and using the triangle inequality, we
thus obtain

lhs of (51) . N2N−3/2
∑
γ1,γ2

C |γ1|+|γ2|

γ1!γ2!

∥∥∥∥ 2∏
t=1

(∑
m

∑
I⊂Em

|φ̂γtI ∗f
t
m|2
)1/2

∥∥∥∥
L2(Rn

)
.

By Hölder’s inequality, we may dominate this by

N2N−3/2
∑
γ1,γ2

C |γ1|+|γ2|

γ1!γ2!

2∏
t=1

∥∥∥(∑
m

∑
I⊂Em

|φ̂γtI ∗ f
t
m|2
)1/2∥∥∥

4
.
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By Lemma 7.2 and the fact that φγt is a bump function with a norm growing
at most exponentially in γt, we have the pointwise bound∑

I⊂Em
|φ̂γtI ∗ f

t
m|2 . CγtM |f tm|2 .

Inserting this bound into the above, and observing that the γ1, γ2 summa-
tions are just a convergent series of constants, we see that

lhs of (51) . N1/2
2∏
t=1

∥∥∥(∑
m

M |f tm|2
)1/2∥∥∥

4
.

The claim then follows from the vector-valued maximal function inequality
of Fefferman and Stein [FS]. �

This estimate does not have the desired gain of N−τ , but it does improve
the L2 control to Lq control, at least on N -cubes. (For previous usage of
these types of norms in the study of the wave equation, see [T2].) To finish
the proof we will need use Hölder’s inequality to combine estimate with
another estimate which has the desired gain, but only has L∞ control on
N -cubes. We will use a variant of the estimate in [Bo2], namely
Proposition 5.4. If (45) held for some τ ≥ 0, then one has(∑

Q

∥∥∥(∑
m

ψ̂m ∗ f
)(∑

m′

ψ̂m′ ∗ g
)∥∥∥2

L∞(Q)
)1/2

. N 1
4−τ+ε

∥∥∥(∑
m

|ψ̂m ∗ f |2
)1/2∥∥∥

4

∥∥∥(∑
m′

|ψ̂m′ ∗ g|2
)1/2∥∥∥

4
(53)

for all test functions f, g, where Q is as in the previous proposition.

Proof. By Hölder’s inequality and symmetry it suffices to prove the linear
estimate(∑

Q

∥∥∥∑
m

ψ̂m ∗ f
∥∥∥4

L∞(Q)

)1/4
.
√
N

1
4−τ
∥∥∥(∑

m

|ψ̂m ∗ f |2
)1/2∥∥∥

4
. (54)

The m represent a partition of the set SN2 into N sectors of angular
width 1/N . We introduce a coarser partition, dividing the 1/N neighbour-
hood SN of the cone into N1/2 sectors Ẽl, of angular width N−1/2; to each
m we may associate a parent l such that Em is essentially contained in Ẽl.
We abuse notation and write Em ⊂ Ẽl as shorthand for saying that Ẽl is
the parent of Em.

The left-hand side of (54) then becomes(∑
Q

‖
∑
l

fl‖4L∞(Q)

)1/4
(55)



Vol. 10, 2000 BILINEAR CONE MULTIPLIERS II. APPLICATIONS 251

where
fl =

∑
m:Em⊂Ẽl

ψ̂m ∗ f .

From the triangle inequality, Hölder’s inequality, and the fact that l ranges
over a set with cardinality N1/2, we have∥∥∥∑

l

fl

∥∥∥
L∞(Q)

.
∑
l

‖fl‖L∞(Q) . N3/8
(∑

l

‖fl‖4L∞(Q)

)1/4
.

On the other hand, fl has frequency support in Ẽl, which is a 1×N−1/2×
N−1 rectangle. Thus by the localized form of Lemma 7.3 in the Appendix,
we essentially have

‖fl‖L∞(Q) . N−3/8‖fl‖L4(Q) .

Strictly speaking we also have to have a rapidly decreasing contribution
from cubes other than Q on the right-hand side, but we will ignore this
irrelevant complication. Combining these estimates we see that we may
majorize (55) by(∑

Q

∥∥∥∑
l

fl

∥∥∥4

L∞(Q)

)1/4
.
(∑

l

‖fl‖44
)1/4

.

Thus to conclude the proof, we need to show that(∑
l

‖fl‖44
)1/4

.
√
N

1
4−τ
∥∥∥(∑

m

|ψ̂m ∗ f |2
)1/2∥∥∥

4
.

By raising both sides to the fourth power and expanding, this is∑
l

‖fl‖44 .
√
N

1−4τ∑
m

∑
m′

∥∥(ψ̂m ∗ f)(ψ̂m′ ∗ f)
∥∥2

2 .

The right-hand side is clearly larger than∑
l

√
N

1−4τ ∑
m:Em⊂Ẽl

∑
m′:Em′⊂Ẽl

∥∥(ψ̂m ∗ f)(ψ̂m′ ∗ f)
∥∥2

2 .

Thus we need only show that

‖fl‖44 .
√
N

1−4τ ∑
m:Em⊂Ẽl

∑
m′:Em′⊂Ẽl

∥∥(ψ̂m ∗ f)(ψ̂m′ ∗ f)
∥∥2

2

uniformly in l. Factorizing the right-hand side and taking fourth roots, this
is

‖fl‖4 .
√
N

1
4−τ
∥∥∥( ∑

m:Em⊂Ẽl

|ψ̂m ∗ f |2
)1/2∥∥∥

4
. (56)

By changing the definition of ψ̂m slightly, we may replace ψ̂m ∗f in (56)
with ψ̂m ∗ fl. By a rotation we may assume that Ẽl is within O(1/

√
N) of
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the e1, e3 plane. We now repeat the argument in Lemma 5.2, applying the
conformal linear transformation

(ξ1, ξ2, τ) 7→
(
τ + ξ1

2
−N τ − ξ1

2
,
√
Nξ2,

τ + ξ1

2
+N

τ − ξ1

2

)
.

This transformation sends the Em to 1×1/
√
N×1/N rectangles distributed

in an essentially regular fashion along a large portion of the C/N neighbour-
hood of the upper unit light cone. Also the norms on the left and right-hand
side of (56) scale in the same way. Thus (56) is just a consequence of the
hypothesis (45), with N replaced by

√
N . �

Proposition 5.4 represents a gain of 1
4 +τ over the N1/2 estimate (which

would follow from the results of [M]). Despite the quite crude estimates
used in the above argument, the sharp hypothesis of τ = 1/4 would give a
sharp inequality, as can be seen (for instance) by taking f to be a bump
function in R2+1.

Combining these two Propositions using Hölder’s inequality and the
identity

1
2 =

(
1− κ

2

) 1
q + κ

2
1
∞

we thus obtain
Corollary 5.5. If (45) held for some τ ≥ 0, then (46) (and hence (45),
by Lemma 5.2) holds with τ replaced by κ

16 + κτ
4 + ε.

The map
τ 7→ κ

16 + κτ
4

is a contraction with fixed point τ = κ/(16 − 4κ). Thus by applying the
above corollary a sufficiently large (but finite) number of times, starting
with for instance Mockenhaupt’s estimate [M] which gives τ = 0, we obtain
the result.

6 Applications of the Square Function Estimate

In this section we apply the square function estimate (45) just proven to
various problems in harmonic analysis. The implications of this estimate
are fairly well known, so this section will mainly consist of citing references
and stating the exponents.

As observed in [Bo2], the estimate (45) can be inserted directly as a
replacement for estimate (1.1) in [M] to obtain an improved estimate on
the Bochner-Riesz multiplier for the cone, defined by the multiplier

mα(ξ, τ) = φ(τ)
(
1− |ξ|τ

)α
+ ,

where φ is a bump function on [1, 2] and α > 0. Indeed, we have
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Proposition 6.1 [M], [Bo2]. If (45) holds for some τ , then the Bochner-
Riesz operator of order α is bounded on L4 when α > 1/8− τ/2.

Thus we have boundedness on L4 when α > 1/8−1/476. Note that the
optimal exponent τ = 1/4 in (45) implies the optimal L4 (and Lp) result
for the Bochner-Riesz operator.

Similarly, this estimate can be used to improve on the local smoothing
estimate LS(4→ 4, 1/8 + ε) proven in [MSS1]. Indeed, we have
Proposition 6.2. If (45) holds for some τ , then we have LS(4→ 4, 1/8−
τ/2 + ε).

We sketch the argument very briefly as follows. In the notation of
[MSS1], (45) becomes (ignoring negligible errors)

‖Ff‖4 . 2j(
1
8−

τ
2 )
∥∥∥(∑

ν

|Fνfν |2
)1/2∥∥∥

4
.

From the Kakeya estimate in [MSS1] and duality we have∥∥∥(∑
ν

|Fνfν |2
)1/2∥∥∥

4
. 2εj

∥∥∥(∑
ν

|fν |2
)1/2∥∥∥

4
.

Finally, from the square function estimates in [Co3] we have∥∥∥(∑
ν

|fν |2
)1/2∥∥∥

4
. ‖f‖4 .

Combining all the estimates gives the result.
In particular, we have smoothing for α > 1/8 − 1/476. As before, the

optimal exponent τ = 1/4 in (45) would imply the optimal local smoothing
conjecture.

Finally, we mention an observation of Oberlin, Smith, and Sogge [OS],
[OSS] regarding convolution with the helix in R3:

Tf(x) =
∫
f(x1 − cos t, x2 − sin t, x3 − t)φ(t) dt

where φ is a bump function. It is easy to see that T maps L4 to the Sobolev
space L4

1/6, and in [OS] it was conjectured that this could be improved to
L4

1/4.

Proposition 6.3 [OSS]. If (45) holds for some τ , then T maps L4 to L4
α

for all α < 1/6 + τ/3.
Note that the Fourier transform of the helix is concentrated near the

light cone, so T is really a cone multiplier in disguise.
We thus have smoothing for the helix for α < 1/6 + 1/714. A sharp

exponent for (45) would imply an essentially sharp result for the helix.
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It is extremely likely that all these results extend to multipliers which
are singular on surfaces similar to the cone. Based on the arguments of
this paper, one sufficient condition seems to be that portions of the surface
whose normals differ by 2−j can be parabolically rescaled by an amount
1× 2j × 22j to be of disjoint conic type. This may not be the most general
condition.

7 Appendix: Some Elementary Harmonic Analysis

In this section we state some elementary results which were used repeatedly
in the paper.

We begin with a well-known quasi-orthogonality property of functions
with disjoint frequency support. Define a rectangle to be the product of n
(possibly half-infinite or infinite) intervals in Rn, with arbitrary orientation.
Lemma 7.1. Let Rk be a collection of rectangles in frequency space such
that the dilates 2Rk are almost disjoint, and suppose that fk are a collection
of functions whose Fourier transforms are supported on Rk. Then for all
1 ≤ p ≤ ∞ we have(∑

k

‖fk‖p
∗
p

)1/p∗

.
∥∥∥∑

k

fk

∥∥∥
p
.
(∑

k

‖fk‖p∗p
)1/p∗

,

where p∗ = min(p, p′), p∗ = max(p, p′).

Proof. Let Pk be a smooth Fourier multiplier adapted to 2Rk which equals
1 on Rk. We claim that∥∥∥∑

k

PkFk

∥∥∥
p
.
(∑

k

‖Fk‖p∗p
)1/p∗

(∑
k

‖PkF‖p
∗
p

)1/p∗

. ‖F‖p

for arbitrary functions Fk, F ; the lemma then follows by setting Fk =
PkFk = fk, F =

∑
k Fk.

The latter estimate is dual to the former (with p replaced by p′), so it
suffices to prove the former estimate. By interpolation it suffices to prove
this estimate for p = 1, p = 2, and p = ∞. When p = 2 the estimate is
immediate from Plancherel’s theorem. When p = 1 or p = ∞ the lemma
follows from the triangle inequality and the estimates

‖PkFk‖1 . ‖Fk‖1 , ‖PkFk‖∞ . ‖Fk‖∞ ,
which follow from Young’s inequality and standard estimates on the kernel
of Pk. �
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We also recall a pointwise estimate of Rubio de Francia, which is closely
related to the standard square function estimate for equally-spaced cubes
in frequency space [Co3,1].

Lemma 7.2 [R]. Let {I} be a collection of equally spaced cubes I, and let
φI(ξ) = φ(ξ − ξI) be bump functions adapted to I, where ξI denotes the
center of I. Then for any function f we have the pointwise estimate(∑

I

|φ̂I ∗ f |2
)1/2

≤ C(φ)(M |f |2)1/2

where M is the Hardy-Littlewood maximal function, and C(φ) depends
only on the dimension n and finitely many of the derivatives of φ (after
rescaling I to be of unit length).

We also give a standard variant of Sobolev’s inequality.

Lemma 7.3. Let p < q. If f is a function whose Fourier transform is
supported on a rectangle Q, then ‖f‖q . |Q|1/p−1/q‖f‖p.

Proof. We observe that the claim is invariant under affine transformations,
so we may take Q to be the unit cube. In this case we may write f = f ∗ψ
where ψ is a Schwarz function whose Fourier transform equals one on the
unit cube. The claim then follows from Young’s inequality. �

By using the rapid decay of ψ in the above proof, we see that we may
essentially localize this estimate to rectangles q dual to Q. More precisely,
we have

‖f‖Lq(q) .
∑
q′

cq,q′ |Q|1/p−1/q‖f‖Lp(q′)

where q′ ranges over a disjoint set of rectangles dual to Q, and cq,q′ is
rapidly decreasing for q′ away from q.

Note that Hölder’s inequality provides a “dual” to the above lemma: If
f is a function supported in a set E, then ‖f‖p . |E|1/p−1/q‖f‖q.
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