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KAUFMAN AND FALCONER ESTIMATES FOR RADIAL
PROJECTIONS AND A CONTINUUM VERSION OF

BECK’S THEOREM

Tuomas Orponen, Pablo Shmerkin, and Hong Wang

Abstract. We provide several new answers on the question: how do radial projections
distort the dimension of planar sets? Let X,Y ⊂ R

2 be non-empty Borel sets. If X
is not contained in any line, we prove that

sup
x∈X

dimH πx(Y \ {x})≥ min{dimHX,dimH Y,1}.

If dimH Y > 1, we have the following improved lower bound:

sup
x∈X

dimH πx(Y \ {x}) ≥min{dimHX + dimH Y − 1,1}.

Our results solve conjectures of Lund-Thang-Huong, Liu, and the first author. An-
other corollary is the following continuum version of Beck’s theorem in combinatorial
geometry: if X ⊂ R

2 is a Borel set with the property that dimH(X \ �) = dimHX
for all lines �⊂R

2, then the line set spanned by X has Hausdorff dimension at least
min{2dimHX,2}.
While the results above concern R

2, we also derive some counterparts in R
d by means

of integralgeometric considerations. The proofs are based on an ε-improvement in
the Furstenberg set problem, due to the two first authors, a bootstrapping scheme
introduced by the second and third author, and a new planar incidence estimate due
to Fu and Ren.
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1 Introduction

1.1 Statement of main results in the plane. We study the distortion of Hausdorff
dimension under radial projections πx : Rd \ {x}→ Sd−1 defined by

πx(y) :=
y− x

|y− x| , y ∈R
d \ {x}.

This is our first main result:

Theorem 1.1. Let X ⊂R
2 be a (non-empty) Borel set which is not contained in any

line. Then, for every Borel set Y ⊂R
2,

sup
x∈X

dimH πx(Y \ {x})≥min{dimHX,dimH Y,1}.

Clearly, this statement fails if X and Y are contained in a common line. If Y is
contained in a line �, and X =X ′ ∪ {x0} where X ′ ⊂ � and x0 /∈ �, then πx(Y \ {x})
is a singleton for all x ∈X except x0. So, in general, it is not possible to hope that
the supremum is (nearly) attained for a large set of x. Nevertheless, if the hypotheses
of Theorem 1.1 are slightly strengthened, we have the following conclusion:

Corollary 1.2. Let X ⊂R
2 be a Borel set satisfying dimH(X \ �) = dimHX for all

lines �⊂ R
2. Then, for every ε > 0, the exceptional set Eε := {x ∈X : dimH πx(Y \

{x})≤min{dimHX,dimH Y,1} − ε} satisfies dimH(X \ Eε) = dimHX .

Proof. Assume to the contrary that dimH(X \ Eε) < dimHX . This implies two
things. First, Eε cannot be contained on any line �⊂R

2, since otherwise dimH(X \
�) < dimHX contrary to our hypothesis. Second, dimHEε = dimHX . The first fact
implies that Theorem 1.1 is applicable to the pair Eε, Y , and the second fact implies

sup
x∈Eε

dimH πx(Y \ {x})≥min{dimHEε,dimH Y,1}= min{dimHX,dimH Y,1}.

Since ε > 0, this contradicts the definition of Eε. �
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We mention a few further corollaries of Theorem 1.1. First, it can be applied to
the case Y =X , assuming that X is a Borel set which does not lie on a line. Then,

sup
x∈X

dimH πx(X \ {x}) = min{dimHX,1}. (1.3)

In particular, the direction set S(X) := {(x− y)/|x− y| : x, y ∈X, x �= y} has

dimHS(X)≥min{dimHX,1}.

This solves [Orp19, Conjecture 1.9]. These results were earlier proved under the
additional assumption that X has equal Hausdorff and packing dimension by the
second and third author in [SW21, Theorem 1.6]. Weaker bounds on the dimension
of πx(X \ {x}) for sets X not contained in a line were previously obtained in [Orp19,
Shm23, LS20].

As a second application of Theorem 1.1, we solve [Liu21, Conjecture 1.2] in R
2:

Corollary 1.4. Let Y ⊂R
2 be a Borel set with dimH Y ≤ 1. Then,

dimH{x ∈R
2 \ Y : dimH πx(Y )< dimH Y } ≤ 1.

Proof. Assume to the contrary that there exists ε > 0 such that

X = {x ∈R
2 : dimH πx(Y \ {x})≤ dimH Y − ε}

has dimHX > 1. Then X evidently does not lie on a line. Now, Theorem 1.1 tells
us that there exists a point x ∈ X such that dimH πx(Y \ {x}) > dimH Y − ε, a
contradiction. �

Finally, Theorem 1.1 yields continuum analogues of several results in geometric
combinatorics. Ungar [Ung82] proved that a finite set P of non-collinear points in the
plane determine at least |P | − 1 directions; shortly after, Beck [Bec83] improved this
(up to constants) by showing that there is a point x ∈ P such that |πx(P \ {x})|� |P |.
The bound (1.3) provides a natural Hausdorff dimension analogue of these results.
Another result from [Bec83], which is nowadays often called Beck’s theorem, states
that if P ⊂ R

2 is a finite set of points, then either � |P | points lie on a single line,
or else P spans � |P |2 distinct lines. This is a simple consequence of the Szemerédi-
Trotter incidence bound [ST83]. We have the following continuum version:

Corollary 1.5. Let X ⊂ R
2 be a Borel set such that dimH(X \ �) = dimHX for

all lines �⊂R
2. Then, the line set L(X) spanned by pairs of (distinct) points in X

satisfies

dimHL(X)≥min{2dimHX,2}.

Proof. Let 0 ≤ σ < min{dimHX,1} and B := {x ∈X : dimH πx(X \ {x}) ≤ σ}. We
claim that

dimH(X \ B) = dimHX. (1.6)



GAFA RADIAL PROJECTIONS 167

In fact, this will complete the proof: by definition, for each x ∈X \ B there exists a
line set Lx ⊂L(X) which contains x and has dimHLx ≥ σ. Therefore,

L(X)⊃
⋃

x∈X \B
Lx

contains a (dual) (σ,σ)-Furstenberg set, and thus dimHL(X) ≥ 2σ by [HSY22, The-
orem A.1]. The corollary follows by letting σ↗ min{dimHX,1}.

Let us prove (1.6). If (1.6) fails, then clearly dimHB = dimHX . Then B must
lie on a line, say B ⊂ �. Otherwise, Theorem 1.1 tells us that there exists a point
x ∈ B such that dimH πx(X \ {x}) > σ, contrary to the definition of B. But now
dimH(X \ B) ≥ dimH(X \ �) = dimHX by assumption, so actually (1.6) holds. �

In the case dimH Y > 1, we have the following lower bound which improves upon
Theorem 1.1:

Theorem 1.7. Let X,Y ⊂R
2 be Borel sets with X �= ∅ and dimH Y > 1. Then,

sup
x∈X

dimH πx(Y \ {x})≥min{dimHX + dimH Y − 1,1}.

This result solves the planar case of [LPT22, Conjecture 1.2]. In fact, the nu-
merology may be more recognisable if we restate Theorem 1.7 as follows:

Corollary 1.8. Let Y ⊂R
2 be a Borel set with dimH Y > 1. Then,

dimH{x ∈R
2 : dimH πx(Y \ {x})< σ} ≤max{1 + σ− dimH Y,0}, 0≤ σ ≤ 1.

Proof. Consider first the case σ ∈ [0,1). Assume to the contrary that the exceptional
set “X” on the left has dimension dimHX > max{1 + σ − dimH Y,0}. In particular
X �= ∅. Then, by Theorem 1.7,

sup
x∈X

dimH πx(Y \ {x})≥min{dimHX + dimH Y − 1,1}> σ,

which is a contradiction. The case σ = 1 can finally be deduced by noticing that
{x : dimH πx(Y \ {x})< 1} is a countable union of the sets {x : dimH πx(Y \ {x})<
1− 1/j}. �

As is often the case, we deduce our main results from corresponding quantitative,
discretised versions: they are Corollary 2.22 for Theorem 1.1 (see also Corollary 2.25),
and Theorem 3.17 for Theorem 1.7. These statements involve a constant “C” (arising
as the Frostman constant of various measures and, separately, the distance between
their supports). We emphasize that C is allowed to depend on the scale δ, and
Corollary 2.22 and Theorem 3.17 are meaningful even if C is as large as δ−ε for some
small but fixed ε > 0.



168 T. ORPONEN ET AL. GAFA

1.2 Connection with orthogonal projections. Theorems 1.1 and 1.7 can be
viewed as stronger versions of classical results in fractal geometry regarding orthog-
onal projections. For e ∈ S1, let Pe(x) := (x · e)e be the orthogonal projection to the
line spanned by e. If Y ⊂ R

2 is a Borel set, then Kaufman [Kau68] in 1968 proved
that

dimH{e ∈ S1 : dimHPe(Y )< σ} ≤ σ, 0≤ σ ≤min{dimH Y,1}. (1.9)

If dimH Y > 1, then the following improved estimate holds:

dimH{e ∈ S1 : dimHPe(Y )< σ} ≤max{1 + σ− dimH Y,0}, 0 ≤ σ ≤ 1. (1.10)

Estimate (1.10) is due to Peres and Schlag [PS00], but the special case σ = 1 was
proven already in 1982 by Falconer [Fal82]. The proof of (1.10) is based on Fourier
analysis. The proofs of (1.9)-(1.10) can be conveniently read from Mattila’s book
[Mat15, Chap. 5].

Let us then explain the relationship between Theorems 1.1-1.7 and the bounds
(1.9)-(1.10). If �⊂R

2 is a line, then there exists a projective transformation F� with
the property

dimH πx(Y ) = dimHPe(x)(F�(Y )), x ∈ �, Y ⊂R
2 \ �,

where the map x �→ e(x) ∈ S1 is locally bi-Lipschitz (and in particular preserves
Hausdorff dimension). For more details, see Remark 4.14. In particular, the estimates
(1.9)-(1.10) hold as stated for radial projections to points on “�”. For example, (1.10)
yields

dimH{x ∈ � : dimH πx(Y \ {x})< σ} ≤max{1 + σ− dimH Y,0}, 0≤ σ ≤ 1, (1.11)

assuming that dimH Y > 1. Since R
2 is foliated by parallel lines, one might guess by

a heuristic “Fubini argument” that

dimH{x ∈R
2 : dimH πx(Y \ {x})< σ} ≤max{2 + σ− dimH Y,0}, 0≤ σ ≤ 1.

This is not rigorous, but nevertheless the bound above follows from Peres and Schlag’s
general theory of transversal projections [PS00, Theorem 7.3] applied to radial projec-
tions. Now, compare these estimates with Corollary 1.8, which was a restatement of
Theorem 1.7. Corollary 1.8 allows one to replace “�” by “R2” in (1.11) while keeping
the right-hand side unchanged. So, the “Fubini argument” is extremely unsharp!

The Kaufman estimate (1.9) bears a similar relationship to Theorem 1.1. To
see this, let us begin by mentioning that (1.9) is formally equivalent to the fol-
lowing: if ∅ �= X ⊂ S1 and Y ⊂ R

2 are Borel sets, then supe∈X dimHPe(Y ) ≥
min{dimHX,dimH Y,1}. This version looks more like Theorem 1.1. Moreover, by
applying the projective transformation F� as above, one could deduce the following
corollary for every fixed line �⊂R

2: if ∅ �=X ⊂ � and Y ⊂R
2 \ � are Borel sets, then

sup
x∈X

dimH πx(Y ) ≥min{dimHX,dimH Y,1}. (1.12)
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Theorem 1.1 almost looks like (1.12) without the restrictions “X ⊂ �” and “Y ⊂
R

2 \ �”. The only problem is that such a statement is completely false: if X , Y happen
to lie on a common line, then dimH πx(Y \ {x}) = 0 for all x ∈X . Theorem 1.1 takes
this obstruction into account by assuming that X is not contained in any line.

1.3 Related work and higher dimensions. Proving Corollary 1.4 does not re-
quire the full strength of Theorem 1.1. In fact, it could also be deduced from (a
quantitative version of) Theorem 1.7, combined with a “swapping trick” introduced
by Liu in [Liu21]. The reason is partially visible from the proof of Corollary 1.4:
one is allowed to make the counter assumption that the “exceptional set” X has
dimHX > 1, and this simplifies matters (the hardest case of Theorem 1.1 occurs when
dimHX,dimH Y ≤ 1). This approach of deducing Corollary 1.4 from Theorem 1.7 is
carried out in the unpublished preprint [OS221], which this paper supesedes, and
where a proof of Theorem 1.7 first appeared. Thus, at the level of appropriate quan-
titative versions of the statements, both Theorems 1.7 and 1.1 imply Corollary 1.4,
but neither of these theorems imply each other (as far as we know).

After [OS221] appeared on the arXiv, Dote and Gan [DG22] proved a higher
dimensional version of Theorem 1.7, and then used the “swapping trick” to obtain a
higher dimensional counterpart of Corollary 1.4. Their results are the following:

Theorem 1.13 (Dote-Gan). Let Y ⊂ R
d be a Borel set with dimH Y ∈ (k, k + 1] for

some k ∈ {1, . . . , d− 1}. Then,

dimH{x ∈R
d : dimH πx(Y \ {x})< σ} ≤max{k + σ− dimH Y,0}, 0 ≤ σ ≤ k.

Theorem 1.14 (Dote-Gan). Let Y ⊂ R
d be a Borel set with dimH Y ∈ (k − 1, k] for

some k ∈ {1, . . . , d− 1}. Then,

dimH{x ∈R
d : dimH πx(Y \ {x})< dimH Y } ≤ k.

We give new proofs for Theorems 1.13-1.14 at the end of this paper, Sect. 4. In
fact, both statements can be deduced from (quantitative versions of) their planar
cases via an integralgeometric argument (due to the second and third author in
[SW21, Theorem 6.7]). Moreover, we are able to prove a partial higher-dimensional
analogue of Theorem 1.1 that implies Theorem 1.14 as a by-product:

Theorem 1.15. Let X,Y ⊂R
d, d≥ 2, be Borel sets with dimHX > k−1 and dimH Y ∈

(k− 1, k] for some k ∈ {1, . . . , d− 1}.

(i) If dimHX > k, then supx∈X dimH πx(Y \ {x}) = dimH Y .

(ii) If k − 1 < dimHX ≤ k, but X is not contained on any k-plane, the fol-

lowing holds. If dimH Y > k − 1/k − η for a sufficiently small constant

η = η(d, k,dimHX)> 0, then

sup
x∈X

dimH πx(Y \ {x})≥min{dimHX,dimH Y }.
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For k = 1, we require no lower bound from dimH Y in part (ii).

Part (i) is just a restatement of Theorem 1.14. The lower bound dimH Y > k −
1/k − η in part (ii) may appear odd, and is likely an artefact of the proof. We
conjecture that it can be replaced by dimH Y > k−1. Our argument would yield this
if the following was true:

Conjecture 1.16. Let t ∈ (d−2, d]. Let μ be a Borel probability measure on R
d that

satisfies μ(B(x, r)) ≤ C rt for all x ∈ R
d, r > 0, and some C > 0. Further, assume

that μ(W ) = 0 for every affine (d− 1)-plane W ⊂R
d. Then, for almost every affine

2-plane W ⊂R
d (with respect to the natural measure on the affine Grassmanian), if

the sliced measure μW on W is non-trivial, then it does not give full mass to any

line.

We refer to [Mat99, Chap. 10] or [Mat19, Chap. 6.1] for the definition of the mea-
sures μW . In [SW21, Proposition 6.8], the last two authors proved a weaker statement
under the assumption t > d− 1− 1/(d− 1)− η(d). This explains the numerology in
Theorem 1.15.

There are plenty of earlier relevant results on radial projections; sometimes this
topic is also studied under the name visibility. The finite field counterparts of The-
orems 1.13-1.14 were proven a little earlier by Lund, Thang, and Huong Thu in
[LPT22]. This is also where the continuum version of Theorem 1.13 was conjectured.
We are not aware of a finite field counterpart to Theorem 1.1. As we already men-
tioned, the continuum version of Theorem 1.14 was conjectured by Liu [Liu21], who
also proved partial results. The special case k = d− 1 = σ of Theorem 1.13 was con-
tained in [Orp18, Theorem 1.1]. Partial results also follow from Peres and Schlag’s
general framework of transversal projections [PS00].

In 2021, Raz and Zahl [RZ23, Theorem 1.13] proved a radial projection theorem
which gives non-trivial information if the set of “viewpoints” (the set “X” in the
results described above) only has 4 elements, all 3 of which span a non-degenerate
triangle. Earlier, in [BLZ16, Theorem 1.6], Bond, Łaba and Zahl and proved “single-
scale” estimates for radial projections of planar sets which are unconcentrated on
lines. This result is in the spirit of Theorem 1.1, and perhaps its earliest precedent
in the literature.

A little further away from the topic of this paper, radial projections and visibility
have also been investigated in the context of rectifiability. The heuristic is that purely
1-unrectifiable sets Y ⊂ R

2 with H1(Y ) <∞ should have radial projections of zero
length for “most” viewpoints x ∈R

2. Marstrand [Mar54, Theorem VI] already proved
that if Y is as above, then H1(πx(Y \ {x})) = 0 for all x ∈R

2 \X , where dimHX ≤ 1.
Whether the same is true for H1 almost all x ∈ Y is a well-known open problem.
For more information on this question, and related ones, see [Cso00, SS0607] and
[Mat04, Sect. 6].

1.4 Some words on the proofs. The starting point of this work was the ob-
servation that while Beck’s Theorem can be deduced from the Szemerédi-Trotter
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incidence bound, in fact it doesn’t require the full strength of Szemerédi-Trotter
– any “ε-improvement” over the elementary double-counting bound is enough. Re-
cently, the first two authors [OS222] obtained an ε-improvement in the Furstenberg
set problem, which can be seen as a continuous analogue of the point-line incidence
problem from discrete geometry. (The actual discretised result we use is stated below
as Theorem 2.8.) As it is often the case in this area, while the discrete result (in this
case, Beck’s Theorem and its proof) provided the inspiration for our work, the proof
is substantially more involved than in the discrete case (and the way in which the
incidence result is applied is qualitatively different).

Our general strategy is to embed the ε-improvement on the Furstenberg set prob-
lem into a “bootstrapping” argument where one gradually improves the lower bound
in Theorem 1.1, up to the threshold min{dimHX,dimH Y,1}. The main work is con-
tained in Lemma 2.9 and Corollary 2.22. A similar bootstrapping scheme had ap-
peared in previous work of the second and third author, see [SW21, Lemmas 5.11 and
5.17]. However, the proof of the bootstrapping step in [SW21] relied on a linearization
argument that only yields optimal results for sets with additional regularity, such as
equal Hausdorff and packing dimension. Hence, the main innovation of this article
lies in the proof of the bootstrapping step (Lemma 2.9). Arguing by contradiction
under the assumption that a lower bound σ < min{dimHX,dimH Y,1} cannot be
improved, we are able to pigeonhole a small scale 0 < r � 1 and a family of “well-
behaved” r-tubes T through X and Y with |T | ≥ r−2σ−η, where η > 0 ultimately
comes from the ε-improvement in [OS222]. This allows us to view Y as a sort of
discretised Furstenberg-type set at scale r. If the mass of Y ∩ T for a typical r-tube
in T is not too concentrated inside a ball of radius rκ (where κ is a carefully chosen
parameter, depending on η), then we can use a variant of the classical “two-ends”
argument for Furstenberg sets to derive a contradiction (arising from η > 0). On the
other hand, if Y ∩T is often concentrated on an rκ-ball, we can use a double-counting
argument to show that for many y ∈ Y there will be many tubes T through y with
this property, and this leads to the absurd conclusion that the ball B(y, rξ) has too
large mass to be compatible with σ < dimH(Y ).

The proof of Theorem 1.7 is based on a reduction to a recent incidence estimate
of Fu and Ren [FR22], combined with some elementary estimates on Furstenberg sets
(these will be discussed later). The proof of Fu and Ren, further, involves a Fourier-
analytic component, due to Guth, Solomon, and Wang [GSW19]. So, while this
paper contains no Fourier transforms, they play a role in the proof of Theorem 1.7.
As we already mentioned, the higher-dimensional counterpart, Theorem 1.13, can
be deduced from (a quantitative version) of the planar case via integralgeometric
considerations, see Sect. 4. This is not the approach of Dote and Gan: in [DG22],
Theorem 1.13 is proved more directly in general dimensions, although the proof still
involves Fourier analysis.

1.5 Connections and applications. Part of the impetus for the study of radial
projections in recent years came from the realization that they are closely connected
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to the Falconer distance set problem. In particular, a radial projection theorem of
the first author [Orp19, Theorem 1.11] plays a key rôle in the partial results on the
planar version of Falconer’s problem achieved in [KS19, G+20, Stu22]. However, the
radial projection result in question only applies to planar sets of dimension > 1.
Theorem 1.1 (or rather its quantitative version, Corollary 2.22) can be seen as a
substitute of [Orp19, Theorem 1.11] for sets of dimension ≤ 1, and thus opens the
door to improvements on the distance set problem in the critical case of dimension 1.
Similar considerations are valid in higher dimensions.

Restricting to cartesian products, Theorem 1.1 enables progress on another clas-
sical problem in geometric measure theory, the discretised sum-product problem. For
example, the following new estimate of sum-product type follows from Theorem 1.1:

Corollary 1.17. Let A,B ⊂R be Borel sets. Then

dimH

(
A−B

A−B

)
≥min{dimHA+ dimHB,1}.

Proof. We may assume that both A, B contain at least two points. We apply The-
orem 1.1 to the sets X = −A × B and Y = −B × A. Since X is a Borel set not
contained on a line, for every ε > 0 there exists a point x= (−a, b) ∈X such that

dimH πx(Y \ {x})≥min{dimHX,dimH Y,1}− ε≥min{dimHA+ dimHB,1} − ε.

Now, it remains to observe that dimH πx(Y \ {x}) agrees with the dimension of
“slopes” spanned between the point x= (−a, b) and the set Y \ {x}, namely

{
a′−b

−b′−(−a) : (−b′, a′) ∈ (−B ×A) \ {(−a, b)}
}

=
{

a′−b
a−b′ : (−b′, a′) ∈ (−B ×A) \ {(−a, b)}

}
.

Since the quotient set (A−B)/(A−B) contains all such slopes, the corollary follows.
�

We hope to explore these connections further in future work.

1.6 Paper outline. Theorem 1.1 and its more quantitative counterpart, Corol-
lary 2.22, is proved in Sect. 2. Theorem 1.7 is proved in Sect. 3. More precisely, we
start with Theorem 3.1: this is a δ-discretised statement vaguely reminiscent of The-
orem 1.7, which can be deduced from the incidence theorem of Fu and Ren [FR22]
with some effort. This version is still some distance away from proving Theorem 1.7.
To bridge the gap, we resort to another “bootstrapping” argument, see Theorem 3.17
and Lemma 3.18.

In Sect. 4, we apply the quantitative versions of Theorems 1.1 and 1.7 in R
2,

combined with an integralgeometric tool [SW21, Theorem 6.7], to give new proofs
of Dote and Gan’s results, Theorems 1.13-1.14, in general dimensions.
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1.7 Notation and some preliminaries. The notation B(x, r) stands for a closed
ball of radius r > 0 and centre x ∈X , in a metric space (X,d). In the case X = R

d,
we denote Bd = B(0,1). If A ⊂ X is a bounded set, and r > 0, we write |A|r for
the r-covering number of A, that is, the smallest number of closed balls of radius r

required to cover A. Cardinality is denoted |A|, and Lebesgue measure Leb(A). The
closed r-neighbourhood of A is denoted A(r).

If X , Y are positive numbers, then X � Y means that X ≤CY for some constant
C, while X � Y , X ∼ Y stand for Y � X , X � Y � X . If the implicit constant C

depends on a parameter this will be mentioned explicitly or denoted by a subscript.
If μ is a positive finite measure on R

d and t≥ 0, the t-energy is defined as

It(μ) =
∫∫

|x− y|−tdμ(x)dμ(y) ∈ (0,∞].

It is well known that if μ satisfies a Frostman condition μ(B(x, r))≤Crt for all balls
B(x, r) and some C, t > 0, then Is(μ) < ∞ for all s < t. Conversely, if It(μ) < ∞,
then for every ε > 0 there are a compact set K with μ(Rd \K) < ε and a constant
C such that μ|K(B(x, r))≤Crt for all balls B(x, r). Frostman’s Lemma asserts that
if X ⊂ R

d is a Borel set with dimH(X) > t ≥ 0, then there is a Borel probability
measure μ with spt(μ) ⊂X and It(μ) <∞. See e.g. [Mat99, Chap. 8]. In the sequel
we will use these facts without further reference.

2 Proof of Theorem 1.1

2.1 Preliminaries. In order to prove Theorem 1.1, we need two black boxes.
The first one is a weaker (although more quantitative) version of the statement
itself, recorded in [Shm23, Theorem B.1]. The second one is a recent ε-improvement
[OS222] in the Furstenberg set problem.

We begin by recalling [Shm23, Theorem B.1]. We write P(B) for the family of
Borel probability measures on the metric space B (usually R

d or the unit ball Bd

of R
d). Throughout this section and the next, we use the following notation. If

X,Y ⊂R
d and G⊂X × Y , we write

G|x := {y ∈ Y : (x, y) ∈G} and G|y := {x ∈X : (x, y) ∈G}

for all x ∈X and y ∈ Y . We note that if G⊂R
d×R

d is a Borel set, then G|x and G|y
are also Borel for every x, y ∈R

d (this is because Bor(Rd×R
d) = Bor(Rd)×Bor(Rd)).

Definition 2.1 (Thin tubes). Let K, t ≥ 0 and c ∈ (0,1]. Let μ,ν ∈ P(Rd) with
spt(μ) =: X and spt(ν) =: Y . We say that (μ,ν) has (t,K, c)-thin tubes if there exists
a Borel set G ⊂X × Y with (μ× ν)(G) ≥ c with the following property. If x ∈X ,
then

ν(T ∩G|x)≤K · rt for all r > 0 and all r-tubes T containing x. (2.2)
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We also say that (μ,ν) has t-thin tubes if (μ,ν) has (t,K, c)-thin tubes for some
K,c > 0.

Here, and below, an r-tube is the r-neighbourhood of some line. The terminology
of thin tubes was introduced in [SW21], and there it was in fact called strong thin
tubes. We have no use for the notion of (weak) thin tubes, so we prefer the simpler
terminology. We note that the terminology “thin” refers to the mass of the tubes,
rather than their size.

Remark 2.3. Assume that μ,ν ∈ P(Rd) are such that the pair (μ,ν) has t-thin tubes
for some t > 0. Then there exists x ∈ spt(μ) such that Ht(πx(Y \ {x})) > 0. To see
this, pick x ∈X such that ν(G|x) > 0. Then also ν(G|x \ {x}) > 0, since otherwise
(2.2) is not possible with exponent t > 0. Therefore, we may pick a compact set
K ⊂G|x \ {x} ⊂ Y \ {x} with ν(K) > 0. Now (2.2) implies that the push-forward
πx(ν|K) satisfies a t-dimensional Frostman condition, and therefore Ht(πx(K))> 0.

We are now prepared to state [Shm23, Theorem B.1], although we do so directly
using the terminology of thin tubes (see [SW21, Proposition 5.10]).

Proposition 2.4. For every C,δ, ε, s > 0, there exist

β := β(s) ∈ (0, s), τ := τ(ε, s)> 0 and K :=K(C,δ, ε, s)> 0,

all depending continuously on the parameters, such that the following holds. Assume

that μ,ν ∈ P(B2) satisfy dist(spt(μ), spt(ν))≥C−1, and the s-dimensional Frostman

condition

μ(B(x, r)), ν(B(x, r))≤Crs for all x ∈R
2 and r > 0.

Assume further that ν(T ) ≤ τ for all δ-tubes T ⊂ R
2. Then (μ,ν) has (β,K,1− ε)-

thin tubes.

Remark 2.5. The hypothesis that the supports are separated is not stated explicitly
in [Shm23, Theorem B.1], but it used in the proof. It is likely it can be dropped with
some additional work, but we prefer to keep it for simplicity.

Next, we discuss the discretised Furstenberg set estimate from [OS222]. It is
essentially [OS222, Theorem 1.3], but again we already state it in a language suitable
for our later application. We need to introduce the notion of (δ, s)-sets:

Definition 2.6 ((δ, s,C)-sets). Let (X,d) be a metric space, let P ⊂X be a set,
and let δ,C > 0, and s≥ 0. We say that P is a (δ, s,C)-set if

|P ∩B(x, r)|δ ≤Crs · |P |δ, x ∈X, r ≥ δ.

The definition of a (δ, s,C)-set, above, is slightly different from a more commonly
used notion in the area, introduced by Katz and Tao [HT01]. However, Definition 2.6
is not new either: these variants of (δ, s,C)-sets were for example used in [OS222]. It
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is worth noting that a (δ, s,C)-set is not required to be δ-separated to begin with;
however, it is easy to check that every (δ, s,C)-set contains a δ-separated (δ, s,C ′)-set
with C ′ ∼ C. Another remark, to be employed without further mention, is that if
P ⊂R

d is a (δ, s,C)-set, and P ′ ⊂ P satisfies |P ′|δ ≥ c|P |δ, then P ′ is a (δ, s,C/c)-set.

Definition 2.7 ((δ, s,C)-sets of lines and tubes). Let A(2,1) be the metric space
of all (affine) lines in R

2 equipped with the metric

dA(2,1)(�1, �2) := ‖πL1 − πL2‖+ |a1 − a2|.

Here πLj : R2 → Lj is the orthogonal projection to the subspace Lj parallel to �j ,
and {aj} = L⊥

j ∩ �j . A set L⊂A(2,1) is called a (δ, s,C)-set if L is a (δ, s,C)-set in
the metric space (A(2,1), dA(2,1)), in the sense of Definition 2.6.

As before, a δ-tube stands for the δ-neighbourhood of some line � ∈ A(2,1). A
family of δ-tubes T = {�(δ) : � ∈ L} is called a (δ, s,C)-set if the line family L is a
(δ, s,C)-set. Similarly, we define the δ-covering number |T |δ to be |L|δ.

We can now state [OS222, Theorem 1.3] in our language:

Theorem 2.8. Given s ∈ (0,1) and t ∈ (s,2) there exists ε = ε(s, t) > 0 such that the

following holds for all 0 < δ ≤ δ0(s, t): if X ⊂ B2 is a (δ, t, δ−ε)-set, and for each

x ∈X there is a (δ, s, δ−ε)-set T ′
x ⊂ T δ of tubes passing through x, then

∣∣∣
⋃

x∈X
T ′
x

∣∣∣
δ
≥ δ−2s−ε.

Moreover, ε can be taken uniform in any compact subset of {(s, t) : s ∈ (0,1), t ∈
(s,2)}.

To be precise, [OS222, Theorem 1.3] is stated in terms of dyadic tubes and sets
of dyadic squares, but it is straightforward to deduce Theorem 2.8 from it (see also
[OS222, Theorem 3.1] for a similar deduction). The uniformity of ε over compact
sets is [OS222, Remark 1.4].

2.2 The key lemma. The next lemma contains the main work needed for The-
orem 1.1.

Lemma 2.9. Let 0< s≤ 1 and ε ∈ (0, 1
10). Let μ,ν ∈ P(B2) such that

μ(Br)≤C rs (r > 0),

ν(Br)≤C rs (r > 0),

dist(spt(μ), spt(ν))≥C−1

for some constant C > 0. Let β = β(s) > 0 be the parameter from Proposition 2.4.

If both (μ,ν) and (ν,μ) have (σ,K,1 − ε)-thin tubes for some β ≤ σ < s then there
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exist η = η(s,σ) > 0 and K ′ = K ′(s,σ, ε,K,C) such that (μ,ν) and (ν,μ) have (σ +
η,K ′,1− 3ε)-thin tubes. We can take

K ′ = max
{
K,C2,10(ηε)−1,Oη(1)

}σ
η +1

.

Moreover, the value of η(s,σ) is bounded away from zero on any compact subset of

{(σ, s) ∈ (0,1]2 : β(s)≤ σ < s}.

Proof. We argue by contradiction. Since the roles of μ, ν are symmetric, we can
assume that (μ,ν) do not have (σ + η,K ′,1− 3ε)–thin tubes for

K ′ = max{K,C2,10(ηε)−1,R}
σ
η

+1 > 0,

where R> 0 is a constant that may depend on η, to be determined in the course of
the proof. Let X = spt(μ) and Y = spt(ν).

Since both (μ,ν) and (ν,μ) have (σ,K,1 − ε)–thin tubes, there is a Borel set
G⊂X × Y with μ× ν(G) > 1− 2ε such that

ν(T ∩G|x)≤K · rσ for all r > 0 and all r-tubes T containing x ∈X, (2.10)

μ(T ∩G|y)≤K · rσ for all r > 0 and all r-tubes T containing y ∈ Y. (2.11)

For every x ∈X and r ∈ 2−N, let T ′′
x,r consist of those r-tubes T which contain x and

satisfy

ν(T ∩G|x) ≥K ′ · rσ+η. (2.12)

The collection T ′′
x,r may be infinite, and this will cause inconvenience later. We fix

this as follows. Let T r be a family of 2r-tubes such that

(i) |T r| ∼ r−2,
(ii) if T ⊂R

2 is an r-tube, then T ∩B2 is contained in at least one and at most
O(1) tubes from T r,

(iii) T r is cr-separated for some universal c > 0. This means that if �1, �2 are the
core lines of two distinct T1, T2 ∈ T r, then dA(2,1)(�1, �2) ≥ cr, as in Defini-
tion 2.7.

The family T r, is easy to find, picking ∼ r−1 tubes in each direction from an r-net
of directions. Note that a consequence of (iii) is that if x, y ∈B2, then

|{T ∈ T r : x, y ∈ T}|� |x− y|−1. (2.13)

Let T ′
x,r ⊂ T r be a minimal set with the property that each intersection T ∩B2

with T ∈ T ′′
x,r is contained in at least one element of T ′

x,r. Evidently (2.12) remains
valid for all T ∈ T ′

x,r, and moreover
(
∪T ′′

x,r

)
∩B2 ⊂∪T ′

x,r. (2.14)
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We also note that since all the tubes in T ′
x,r ⊂ T r contain x ∈ spt(μ), they have

overlap bounded by O(C) on spt(ν) (this follows from dist(spt(μ), spt(ν)) ≥ C−1

and property (2.13) of T r). Therefore, we get from (2.12) that

|T ′
x,r|� r−σ−η. (2.15)

We define

Hr := {(x, y) ∈G : y ∈ ∪T ′
x,r}, and H :=

⋃

r

Hr.

We claim that

(μ× ν)(H)≥ ε.

Indeed, assume to the contrary that (μ× ν)(H)< ε, thus

(μ× ν)(G \ H) > 1− 3ε.

Since (μ,ν) do not have (σ + η,K ′,1− 3ε)-thin tubes by assumption, we infer that
there exists a point x ∈X , and an r-tube T ⊂R

2 containing x which satisfies

ν(T ∩G|x) ≥ ν(T ∩ (G \H)|x)≥K ′ · rσ+η.

While a priori this holds for some r ∈ (0,1], we may take r to be dyadic by enlarging
T and replacing K ′ by 4K ′. However, this means by definition (and the inclusion
in (2.14)) that T ⊂H|x, so it is absurd that ν(T ∩ (Hc)|x) > 0. This contradiction
completes the proof of (μ× ν)(H)≥ ε.

Let

r0 = max{K,C2, 1
10ηε,R}−1/η, K ′ = 2r−(σ+η)

0 , (2.16)

where R is a large constant that may depend on η. Note that this matches the claimed
form for K ′. In the proof we will assume that rη0 is smaller than various universal
implicit constants without further mention; this can be achieved since rη0 ≤ 1/R. It
follows from (2.12) and the definition of K ′ in (2.16) that T ′

x,r = ∅ for all r > r0. This
in particular implies that Hr|x ⊂ ∪T ′

x,r is empty for all x ∈X and r > r0. In other
words Hr = ∅ for r > r0, which implies that H is contained in the union of the sets
Hr with r ≤ r0. Note that

∑
r0≥r∈2−N rη < ε/2 by the choice of r0 in (2.16). Since

(μ× ν)(H) ≥ ε,

(μ× ν)(Hr)≥ 2rη for some r ≤ r0.

We fix this value of “r” for the remainder of the proof. We define

Xheavy := {x ∈X : ν(Hr|x)≥ rη},
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and note that μ(Xheavy) ≥ rη. Recall from the definition of H̄r ⊃Hr that the fibres
Hr|x are covered by the tube families T ′

x,r, and by (2.15) that |T ′
x,r| � r−σ−η. For

x ∈Xheavy, define

Tx := {T ∈ T ′
x,r : ν(T ∩Hr|x) ≥ rσ+3η}, Yx =Hr|x ∩ (∪Tx) .

Since ν(Hr|x) ≥ rη for x ∈Xheavy and to form Yx we are removing � r−σ−η tubes of
mass < rσ+3η, we have ν(Yx) ≥ r2η for all x ∈Xheavy. For every x ∈Xheavy, the set
Tx of r-tubes covers Yx and satisfies

rσ+3η ≤ ν(T ∩ Yx)≤ rσ−η, T ∈ Tx, (2.17)

where the upper bound follows from Yx ⊂H|x ⊂G|x, the choice of r0, and (2.10). In
fact, more generally

ν(T (ρ) ∩ Yx)≤ r−η(ρ+ r)σ � r−ηρσ, ρ ∈ [r,1], T ∈ Tx.

Putting these facts together, we see that

r−σ+3η ≤ r−σ+η · ν(Yx) � |Tx| ≤ |T ′
x,r| � r−σ−η, x ∈Xheavy, (2.18)

and

|{T ′ ∈ Tx : T ′ ∩B2 ⊂ T (ρ)}|� r−4η(ρ/r)σ

for all T ∈ Tx. Since for the axial line � of T we have

B(�, ρ)⊂ {�′ ∈A(2,1) : �′ ∩B2 ⊂ �(O(ρ))},

we deduce that Tx is an (r,σ, r−8η)–set for each x ∈Xheavy.
Let

κ=
16η
s− σ

.

(This choice will become clear at the end of the proof.) Call a tube T ∈ Tx concen-
trated if there is a ball BT of radius rκ with

ν(T ∩BT ∩ Yx)≥ 1
3 · ν(T ∩ Yx).

Suppose first that there is X ′
heavy ⊂Xheavy with μ(X ′

heavy) ≥ μ(Xheavy)/2 such that at
least half of the tubes Tx are not concentrated for x ∈X ′

heavy. Since μ(X ′
heavy)≥ rη/2,

we get from the mass distribution principle and the Frostman assumption on μ

that Hs
∞(X ′

heavy) �C−1rη. By the choice (2.16) and the discrete form of Frostman’s
Lemma [FO14, Proposition A.1], there exists an (r, s, r−2η)-set P ⊂X ′

heavy. Let T ′
x

be the subset of non-concentrated tubes for each x ∈ P ; it is a (r,σ,2r−8η)–set of
tubes. Let T ′ =

⋃
x∈P T ′

x .
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Take η ≤ ε(s,σ)2 for the function ε(s,σ) in Theorem 2.8; we may assume ε(s,σ)<
1/9. Note that the uniformity of ε(s,σ) over compact subsets yields the corresponding
uniformity of η claimed in the statement. Then

|T ′|� r−2σ−√
η. (2.19)

Counting cardinality makes sense, because each T ′
x ⊂ T ′

x,r ⊂ T r was defined as subset
of the common finite family T r, recall below (2.12). Moreover, by the separation
property (iii) of T r, cardinality is comparable to r-covering number in this case.

It follows from (2.17) and the non-concentrated property that for each T ∈ T ′

there are two rκ-separated sets YT,1, YT,2 ⊂ T with ν(YT,j) ≥ rσ+4η. Thus, recalling
from property (2.13) of the family T r that |{T ∈ T r : (y1, y2) ∈ T}|� |y1 − y2|−1, we
may infer that

r2σ+8η|T ′| ≤
∑

T∈T ′

(ν × ν)(YT,1 × YT,2)

=
∫∫ ∑

T∈T ′

1YT,1×YT,2(y1, y2)d(ν × ν)(y1, y2)

�
∫∫

r−κ d(ν × ν)(y1, y2) = r−κ.

Thus, |T ′| � r−2σ−8η−κ, which contradicts (2.19) if first η is taken small enough in
terms of s− σ and then R is taken large enough in terms of η.

Assume next that there is a subset X ′
heavy ⊂Xheavy with μ(X ′

heavy) ≥ μ(Xheavy)/2
such that at least half of the tubes in Tx are concentrated for all x ∈X ′

heavy. Let T ′
x

denote the concentrated tubes, and let {BT : T ∈ T ′
x} be the corresponding “heavy”

rκ-balls, as in the definition. Since the family Tx has overlap bounded by O(C) on
spt(ν), the set

H ′ = {(x, y) : x ∈X ′
heavy, y ∈ T ∩BT ∩ Yx for some T ∈ T ′

x} ⊂H ⊂G

satisfies

(μ× ν)(H ′) � C−1 · μ(X ′
heavy) · inf

x∈X′
heavy

|Tx| · inf
x∈X′

heavy,T∈T ′
x

ν(T ∩BT ∩ Yx)

(2.16)-(2.18)
� rη · rη · r−σ+3η · rσ+3η = r8η.

Note that if (x, y) ∈H ′, then there is a tube T (x, y) ∈ T r containing x, y such that

ν
(
B(y,2rκ)∩ T (x, y)

)
� rσ+3η.

Further, this ν measure cannot be too concentrated near y, because

ν(B(y, r))≤C · rs ≤ 1
2 · ν(B(y,2rκ ∩ T (x, y)),
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assuming that 4η < s− σ and using (2.16). Therefore, for each (x, y) ∈H ′ we can
pigeonhole a dyadic number r ≤ ξ(x, y)≤ rκ such that

ν
(
A(y, ξ(x, y),2ξ(x, y))∩ T (x, y)

)
≥ rσ+4η,

where A(y, ξ,2ξ) = {x ∈R
2 : ξ ≤ |x−y|< 2ξ}. Then, recalling that (μ×ν)(H ′) � r8η,

we can further pigeonhole a value r ≤ ξ ≤ rκ such that

(μ× ν)(H ′′) ≥ r9η, where H ′′ = {(x, y) ∈H ′ : ξ(x, y) = ξ} ⊂G.

Fix y ∈ Y such that μ(H ′′|y) ≥ r9η for the rest of the proof. Observe that H ′′|y can
be covered by a collection of tubes Ty ⊂ T r which contain y, and satisfy

ν(A(y, ξ,2ξ)∩ T )≥ rσ+4η, T ∈ Ty. (2.20)

We claim that Ty contains � r10η · (ξ/r)σ elements whose directions are separated by
≥ (r/ξ). Indeed, if T is any (r/ξ)-tube containing y, then

μ(T∩H ′′|y)≤ μ(T∩G|y)
(2.11)
≤ K · (r/ξ)σ ≤ r−η · (r/ξ)σ.

Thus, it takes � μ(H ′′|y) · rη · (ξ/r)σ � r10η · (ξ/r)σ tubes of width (r/ξ) to cover
H ′′|y, and perhaps even more (r/ξ)-tubes to cover the union ∪Ty. Let T ′

y ⊂ Ty be a
maximal subset with (r/ξ)-separated directions. Thus |T ′

y |� r10η ·(ξ/r)σ. This proves
the claim.

The usefulness of the previous claim stems from the simple geometric fact that
the family T ′

y has bounded overlap in R
2 \ B(y, ξ), due to the (r/ξ)-separation

between the directions. Therefore, we may infer from a combination of (2.20) and
the Frostman condition on ν that

r14η · ξσ � rσ+4η · |T ′
y |� ν(B(y,2ξ))≤C · (2ξ)s,

or in other words r15η �s ξ
s−σ ≤ rκ(s−σ). This is a contradiction to the choice κ =

16η/(s− σ). �

Remark 2.21. The proof shows that the set G′ witnessing the (σ + η,K ′,1 − 3ε)-
thinness of tubes in the conclusion of Lemma 2.9 can be taken to be contained in the
set G witnessing the (σ,K,1− ε)-thinness of tubes in the assumption of Lemma 2.9.
Also, the ‘3ε’ in the statement arises as 1 − (μ × ν)(G) + ε; this explains why K ′

increases as ε decreases, even though the thin tubes assumption becomes stronger.

2.3 Conclusion of the proof. Lemma 2.9 will be used (multiple times) to infer
the following corollary:

Corollary 2.22. For all 0 < σ < s≤ 1 and C, ε, δ > 0, there exist τ = τ(ε, σ, s) > 0
and K = K(C,δ, ε, s, σ)> 0 such that the following holds. Assume that μ,ν ∈ P(B2)
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satisfy μ(B(x, r))≤Crs, ν(B(x, r))≤Crs, dist(spt(μ), spt(ν))≥C−1, and

max{μ(T ), ν(T )} ≤ τ (2.23)

for all δ-tubes T ⊂R
2.

Then, both (μ,ν) and (ν,μ) have (σ,K,1− ε)-thin tubes.

Proof. It is immediate from Proposition 2.4 that both (μ,ν) and (ν,μ) have (β,K,1−
ε)-thin tubes for some β = β(s) ∈ (0, s) and K =K(C,δ, ε, s)> 0. If β ≥ σ, the proof
ends here. Otherwise 0 < β < σ, and our task is to upgrade β to σ. This will be done
by iterating Lemma 2.9.

We turn to the details. The first point is to be careful with “ε”. Indeed, let us
fix ε̄ = ε̄(ε, s, σ) > 0 to be determined later, see (2.24). Then, instead of applying
Proposition 2.4 directly with the parameter “ε” given in Corollary 2.22, we apply
Proposition 2.4 with the parameter “ε̄”. The conclusion is the same as before: (μ,ν)
and (ν,μ) have (β,K1,1− ε̄)-thin tubes for some K1 = K1(C,δ, ε̄, σ, s)> 0, provided
that

max{μ(T ), ν(T )} ≤ τ(ε̄, s) = τ(ε, σ, s)

for all δ-tubes T ⊂R
2.

Now, if ε̄ > 0 is sufficiently small, Lemma 2.9 shows that both (μ,ν) and (ν,μ)
have (β + η,K2,1− 3ε̄)-thin tubes for some

η = η(β, s,σ) = η(s,σ)> 0.

If β+η ≥ σ, we are done. Otherwise, if 3ε̄ remains sufficiently small, Lemma 2.9 says
that (μ,ν) and (ν,μ) have (β + 2η,K3,1− 32ε̄)-thin tubes.

Continuing in this manner for N ∼ η−1 ∼s,σ 1 steps, Lemma 2.9 will bring us to
a point where (μ,ν) and (ν,μ) have (σ,KN ,1 − 3N ε̄)-thin tubes. Now, we choose
ε̄ = ε̄(s,σ, ε)> 0 to be initially so small that

3N ε̄≤ ε. (2.24)

With this choice, we have shown that (μ,ν) and (ν,μ) have (σ,K,1− ε)-thin tubes
with constant K =KN > 0. This completes the proof. �

As a corollary of the corollary, we record the following statement which is less
quantitative, but more pleasant to use:

Corollary 2.25. Let s ∈ (0,1], and let μ,ν ∈ P(R2) be measures which satisfy the

s-dimensional Frostman condition μ(B(x, r)) � rs and ν(B(x, r)) � rs for all x ∈R
2

and r > 0. Assume that μ(�)ν(�) < 1 for every line � ⊂ R
2. Then (μ,ν) has σ-thin

tubes for all 0≤ σ < s.

Proof. Assume first that ν(�) > 0 for some line � ⊂ R
2. Then either μ(�) = 1 or

μ(�) < 1. The second case is easy: then μ(R2 \ �) > 0, so there exists a compact set
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K ⊂R
2 \ � with μ(K)> 0. Now (μ|K , ν|�) has s-thin tubes. This implies that (μ,ν)

has s-thin tubes. Assume then that μ(�) = 1. Then ν(�)< 1 by assumption, so there
exists a compact set K ⊂R

2 \ � such that ν(K) > 0. Now it follows from Lemma 2.26
below that (μ|�, ν|K) (and hence (μ,ν)) has σ-thin tubes for all 0≤ σ < s.

We may assume in the sequel that ν(�) = 0 for all lines �⊂R
2. Assume next that

μ(�) > 0 for some line �⊂R
2. Since ν(�) = 0, there exists a compact set K ⊂R

2 \ �

such that ν(K) > 0. Then (μ|�, ν|K) has σ-thin tubes for all 0≤ σ < s by Lemma 2.26
below, which formally implies that (μ,ν) has σ-thin tubes for all 0≤ σ < s.

Assume finally that μ(�) = 0 = ν(�) for all lines �⊂ R
2. Pick two disjoint closed

balls Bμ, Bν such that μ(Bμ) > 0 and ν(Bν) > 0. Restrict and renormalise μ and ν

to Bμ and Bν , respectively, and denote these measures by μ̄, ν̄ ∈ P(B2). Then, there
exists a constant C > 0 such that

dist(spt μ̄, spt ν̄)≥C−1 and max{μ̄(B(x, r)), ν̄(B(x, r))} ≤Crs

for all x ∈ R
2, r > 0. Next, fix σ < s, and let τ = τ(1

2 , σ, s) > 0 be the parame-
ter given by Corollary 2.22. By [Orp19, Lemma 2.1], there exists δ > 0 such that
max{μ̄(T ), ν̄(T )} ≤ τ for all δ-tubes T ⊂ R

2. Now, Corollary 2.22 says that (μ̄, ν̄)
has (σ,K, 1

2)-thin tubes for the constant K =K(C,δ, 1
2 , s, σ)> 0. In particular, (μ̄, ν̄)

has σ-thin tubes, and as a formal consequence also (μ,ν) has σ-thin tubes. This
concludes the proof. �

In the proof above, we needed the following lemma:

Lemma 2.26. Let s ∈ (0,1], and let μ,ν ∈ P(R2) be measures with separated supports

satisfying the s-dimensional Frostman condition μ(B(x, r)) � rs and ν(B(x, r)) � rs

for all x ∈R
2 and r > 0. Assume, moreover, that there exists a line �⊂R

2 such that

spt(μ)⊂ � and spt(ν) ⊂R
2 \ �. Then (μ,ν) have σ-thin tubes for all 0≤ σ < s.

Proof. Fix 0≤ σ < s. Then Iσ(ν)<∞, and the standard proof of Kaufman’s projec-
tion theorem, see [Mat15, p. 56], shows that

∫

�
Iσ(πxν)dμ(x) � Iσ(ν)<∞. (2.27)

Indeed, the only estimate needed to prove this inequality is

μ({x ∈ � : |πx(y1)− πx(y2)| ≤ δ}) �
(

δ

|y1 − y2|

)s

, y1, y2 ∈ spt(ν), y1 �= y2,

for all δ > 0 small enough, and this is easy to verify by hand under the assumptions of
the lemma. Alternatively, (2.27) follows by applying a projective transformation that
sends � to the line at infinity, under which the radial projections πx, x ∈ � become
orthogonal projections, and then one can literally apply the calculation in [Mat15,
p. 56] before undoing the projective transformation.

From (2.27) it follows that for μ almost every x ∈ �, the measure πxν restricted
to a subset of positive measure satisfies a σ-dimensional Frostman condition. This
implies that (μ,ν) has σ-thin tubes, as claimed. �
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We are then prepared to prove Theorem 1.1, whose statement we repeat here:

Theorem 2.28. Let X,Y ⊂R
2 be non-empty Borel sets, where X is not contained on

any line. Then, supx∈X dimH πx(Y \ {x})≥min{dimHX,dimH Y,1}.

Proof. Abbreviate t := min{dimHX,dimH Y,1}. We may assume that t > 0, since
otherwise there is nothing to prove. We start by disposing of a special case where

sup
�∈A(2,1)

dimH(Y ∩ �) ≥ t. (2.29)

If the above holds, then for every ε > 0, there exists a line �ε ⊂R
2 such that dimH(Y ∩

�ε) ≥ t− ε. Since we assumed that X does not lie on a line, we may choose points
xε ∈X \ �ε, and then

sup
x∈X

dimH πx(Y \ {x})≥ sup
ε>0

dimH πxε(Y ∩ �ε) = sup
ε>0

dimH(Y ∩ �ε)≥ t.

Next, we assume the opposite of (2.29): there exists ε0 > 0 such that

dimH(Y ∩ �) ≤ t− ε0, � ∈A(2,1). (2.30)

Fix t− ε0 < s< t≤min{dimHX,dimH Y }, and let μ,ν ∈ P(R2) with spt(μ)⊂X and
spt(ν)⊂ Y such that μ(B(x, r))≤Crs and ν(B(x, r))≤Crs for all x ∈R

2 and r > 0.
Assume, first, that μ(�) = 1 for some line �⊂ R

2. In this case, we infer from (2.30)
that ν(�) = 0 for this particular line �, and therefore ν(K) > 0 for some compact set
K ⊂R

2 \ �. Now it follows from Lemma 2.26 that (μ|�, ν|K) has σ-thin tubes for all
σ < s, and in particular supx∈X dimH πx(Y \ {x})≥ s.

Finally, assume that μ(�) < 1 for all lines �⊂ R
2. In this case it follows directly

from Corollary 2.25 that (μ,ν) has σ-thin tubes for all σ < s, so supx∈X dimH πx(Y \
{x})≥ s. Since s < t was arbitrary, this completes the proof. �

3 Proof of Theorem 1.7

3.1 A discretised version of Theorem 1.7. The purpose of this section is to prove
Theorem 1.7. The main work consists of establishing a δ-discretised version, stated
in Theorem 3.1. This theorem will discuss (δ, s,C)-sets of δ-tubes Tx, x ∈B2, with
the special property that x ∈ T for all T ∈ Tx. In this case, it is easy to check that
the (δ, s,C)-set property of Tx is equivalent to the statement that the directions of
the tubes (as a subset of S1) form a (δ, s,C ′)-set for some C ′ ∼C.

Theorem 3.1. For every t ∈ (1,2], σ ∈ [0,1), and ζ > 0, there exist ε = ε(σ, t, ζ) > 0
and δ0 = δ0(σ, t, ζ)> 0 such that the following holds for all δ ∈ (0, δ0].

Let s ∈ [0,2]. Let PK ⊂ B2 be a δ-separated (δ, t, δ−ε)-set, and let PE ⊂ B2 be a

δ-separated (δ, s, δ−ε)-set. Assume that for every x ∈ PE , there exists a (δ, σ, δ−ε)-set



184 T. ORPONEN ET AL. GAFA

of tubes Tx with the properties x ∈ T for all T ∈ Tx, and

|T ∩ PK | ≥ δσ+ε|PK |, T ∈ Tx.

Then σ ≥ s+ t− 1− ζ.

Remark 3.2. It is easy to decipher from the proof the value of ε(σ, t, ζ) > 0 is
bounded away from zero on compact subsets of [0,1)× (1,2]× (0,1].

Remark 3.3. The lower bound σ ≥ s+ t− 1− ζ may appear odd if s+ t > 2. In this
case the lemma simply says that the hypotheses cannot hold for any σ ∈ [0,1) (and for
δ, ε > 0 sufficiently small). This is consistent with the fact that if μ, ν are disjointly
supported Frostman probability measures with exponents s ∈ [0,2] and t ∈ (1,2],
respectively, and s + t > 2, then πx(ν) � H1|Sd−1 for μ almost every x ∈ R

2, see
[Orp19, Theorem 1.11].

Theorem 3.1 will be derived from a recent incidence theorem of Fu and Ren
[FR22, Theorem 1.5] concerning (δ, s)-sets of points and (δ, t)-sets of tubes. Given a
set of points P and a set of tubes T , we let I(P,T ) := {(p,T ) : p ∈ T} be the set of
incidences between P and T .

Theorem 3.4 (Fu and Ren). Let 0≤ s, t≤ 2 such that s+ t > 1. Then, for every ε > 0,
there exist δ0 = δ0(ε)> 0 such that the following holds for all δ ∈ (0, δ0]. If P ⊂B2 is

a δ-separated (δ, s, δ−ε)-set, and T is a δ-separated (δ, t, δ−ε)-set, then

|I(P,T )| ≤ |P ||T | · δκ(s+t−1)−5ε,

where κ= κ(s, t) = min{1/2,1/(s+ t− 1)}.

In [FR22], Theorem 3.4 is formulated in terms of a slightly different (and more
classical) notion of (δ, s,C)-sets. The above statement follows, after some algebra,
by noticing that if P is a δ-separated (δ, s,C)-set (in the sense of this article) then
the union of δ balls with centres in P is a (δ, s, |P |δsC)-set (in the sense of [FR22]),
and likewise for sets of tubes. We also note that the theorem is also true if s+ t≤ 1,
but it is trivial in that case.

The next lemma allows us to find (δ, s)-sets inside δ-discretised Furstenberg sets.

Lemma 3.5. For every ξ > 0, there exists δ0 = δ0(ξ) > 0 and ε = ε(ξ) > 0 such that

the following holds for all δ ∈ (0, δ0]. Let s ∈ [0,1] and t ∈ [0,2]. Assume that T is a

non-empty (δ, t, δ−ε)-set of δ-tubes in R
2. Assume that for every T ∈ T there exists

a non-empty (δ, s, δ−ε)-set PT ⊂ T ∩B2. Then, the union

P :=
⋃

T∈T
PT (3.6)

contains a non-empty (δ, γ(s, t), δ−ξ)-set, where

γ(s, t) = s+ min{s, t}. (3.7)
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Remark 3.8. The constants δ0, ε > 0 can indeed be taken independent of s, t, the
chief reason being that the lemma also holds with s ∈ {0,1} and t ∈ {0,2}.

Proof of Lemma 3.5. We only sketch the argument, since it nearly follows from ex-
isting statements, and the full details are very standard (if somewhat lengthy). The
main point is the following: it is known that the Hausdorff dimension of every (s, t)-
Furstenberg set F ⊂R

2 satisfies dimHF ≥ γ(s, t), where γ(s, t) is the function defined
in (3.7). The case t≤ s is due to Lutz and Stull [LS20]; they used information the-
oretic methods, but a more classical proof is also available, see [HSY22, Theorem
A.1]. The case t≥ s essentially goes back to Wolff in [Wol99], but also literally follows
from [HSY22, Theorem A.1].

While the statement in [HSY22, Theorem A.1] only concerns Hausdorff dimension,
the proof goes via Hausdorff content, and the following statement can be extracted
from the argument. Let P be the set defined in (3.6). Then, the γ(s, t)-dimensional
Hausdorff content of the δ-neighbourhood P (δ) satisfies

Hγ(s,t)
∞ (P (δ))≥ δξ, (3.9)

assuming that ε = ε(ξ) > 0 and the upper bound δ0 = δ(ξ) > 0 for the scale δ were
chosen small enough. The claim in the lemma immediately follows from (3.9), and
[FO14, Proposition A.1]. This proposition, in general, states that if B ⊂R

d is a set
with Hs

∞(B) = κ > 0, then B contains a non-empty (δ, s,Cκ−1)-set for some absolute
constant C > 0. In particular, from (3.9) we see that P (δ) contains a (δ, γ(s, t),Cδ−ξ)-
set. This easily implies a similar conclusion about P itself. �

By standard point-line duality considerations (see a few details below the state-
ment), Lemma 3.5 is equivalent to the following statement concerning tubes:

Lemma 3.10. For every ξ > 0, there exists δ0 = δ0(ξ) > 0 and ε = ε(ξ) > 0 such that

the following holds for all δ ∈ (0, δ0]. Let s ∈ [0,1] and t ∈ [0,2]. Assume that P ⊂B2

is a non-empty (δ, t, δ−ε)-set. Assume that for every x ∈ P there exists a non-empty

(δ, s, δ−ε)-set of tubes Tx with the property that x ∈ T for all T ∈ Tx. Then, the union

T :=
⋃

x∈P
Tx (3.11)

contains a non-empty (δ, γ(s, t), δ−ξ)-set, where γ(s, t) = s+ min{s, t}.

If the reader is not familiar with point-line duality, then the full details in a very
similar context are recorded in [DOV22, Sects. 6.1-6.2]. Here we just describe the
key ideas. To every point (a, b) ∈ R

2, we associate the line D(a, b) := {y = ax + b :
x ∈ R} ∈ A(2,1). Conversely, to every line � = {y = cx + d : x ∈ R} we associate the
point D∗(�) = (−c, d). Then, it is easy to check that

p ∈ � ⇐⇒ D∗(�) ∈D(p). (3.12)
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For (a, b), (c, d) ∈ [0,1]2, say, the maps D and D∗ are bilipschitz between the Eu-
clidean metric, and the metric on A(2,1). Therefore the property of “being a (δ, s)-
set” is preserved (up to inflating the constants). Now, roughly speaking, Lemma 3.10
follows from Lemma 3.5 by first applying the transformations D, D∗ to the points
P and the tubes Tx, x ∈ P , respectively. The main technicalities arise from the fact
that Tx is a set of δ-tubes, and not a set of lines. Let us ignore this issue for now,
and assume that Tx = Lx is actually a (δ, s)-set of lines such that x ∈ � for all � ∈ Lx.
In this case Lemma 3.10 is simple to infer from Lemma 3.5.

Write P = D∗(L) for some (δ, t)-set of lines L ⊂ A(2,1), and write also Lx =
D(Px) for some (δ, s)-set of points Px ⊂ R

2. Now, if � ∈ L, then D∗(�) = x ∈ D(y)
for all y ∈ Px by assumption. By (3.12), this is equivalent to Px ⊂ �. Thus, every line
� = (D∗)−1(x) ∈ L, x ∈ P , contains a (δ, s)-set Px =: P�. This places us in a position
to apply Lemma 3.5.

A similar argument still works if Lx is replaced by the (δ, s)-set of tubes Tx. One
only needs to make sure that if x ∈ T ∈ Tx, then the line �= (D∗)−1(x) is O(δ)-close
to a certain (δ, s)-set P�; this set can be derived from Tx by using the idea above.
For the technical details, we refer to [DOV22, Sects. 6.1-6.2], in particular [DOV22,
Lemma 6.7].

We are finally equipped to prove Theorem 3.1:

Proof of Theorem 3.1. Fix s ∈ [0,2], t ∈ (1,2], σ ∈ [0,1), and ζ > 0. Let PK , PE ⊂B2

be as in the statement of the theorem: thus PK is a (δ, t, δ−ε)-set, and PE is a
(δ, s, δ−ε)-set. Recall also the (δ, σ, δ−ε)-sets of tubes Tx passing through x, for every
x ∈ PE , with the property

|T ∩ PK | ≥ δσ+ε|PK |, T ∈ Tx. (3.13)

The claim is that

σ ≥ s+ t− 1− ζ (3.14)

if δ, ε > 0 are chosen small enough, depending only on ζ, σ, t.
By Lemma 3.10, the union

⋃
x∈PE

Tx contains a non-empty (δ, γ(σ, s), δ−ξ)-set T ,
where

γ(σ, s) = σ + min{s,σ},

and ξ > 0 can be made as small as we like by choosing ε, δ > 0 sufficiently small
(independently of s, σ). We may assume that ξ ≥ ε (otherwise T is a (δ, γ(σ, s), δ−ε)-
set, which would work even better in the sequel). Now we are prepared to spell out
all the requirements on ε:

10ξ + 2ε≤ ζ and σ < 1− 5ξ − ε and (t− 1)/2− 5ξ − ε > 0. (3.15)

By (3.13), we have

|PK ||T | · δσ+ε ≤
∑

T∈T
|T ∩ PK |= |I(PK ,T )|. (3.16)
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We next compare this lower bound for |I(PK ,T )| against the upper bounds from
Theorem 3.4. Recall the exponent “κ” from the statement of Theorem 3.4. Since PK

is a (δ, t)-set and T is a (δ, γ(σ, s))-set, the useful quantity for us is

κ̄(s,σ, t) := κ(t, γ(σ, s)) = min{1/2,1/(t+ γ(σ, s)− 1)}.

The remainder of the proof splits into four cases:

(i) Assume first that s≤ σ. Thus γ(σ, s) = s+ σ, so T is a (δ, s+ σ, δ−ξ)-set.
(a) Assume that κ̄(s,σ, t) = 1/2. Then, by Theorem 3.4,

|I(PK ,T )| ≤ |PK ||T | · δ(t+(s+σ)−1)/2−5ξ.

Comparing this against (3.16) yields δ2σ+2ε ≤ δt+s+σ−1−10ξ , and there-
fore σ ≥ s+ t− 1− 10ξ− 2ε. This yields (3.14), since we assumed that
10ξ + 2ε≤ ζ.

(b) Assume that κ̄(s,σ, t) = 1/(t+ s+ σ− 1). Then,

|I(PK ,T )| ≤ |PK ||T | · δ1−5ξ.

Comparing against (3.16) yields δσ ≤ δ1−5ξ−ε, contradicting (3.15).
(ii) Assume second that s > σ. Thus γ(σ, s) = 2σ, so T is a (δ,2σ, δ−ξ)-set.

(a) Assume that κ̄(s,σ, t) = 1
2 . Then,

|I(PK ,T )| ≤ |PK ||T | · δ(t+2σ−1)/2−5ξ.

Comparing this against (3.16) yields 1 ≤ δ(t−1)/2−5ξ−ε, contradicting
(3.15).

(b) Assume finally that κ̄(s,σ, t) = 1/(t+ 2σ− 1). Then,

|I(PK ,T )| ≤ |PK ||T | · δ1−5ξ.

As in case (i)(b) above, this leads to the impossible situation δσ ≤
δ1−5ξ−ε.

We have now seen that the cases (i)(b) and (ii)(a)-(b) are not possible for δ, ε small
enough, depending only on ζ > 0, σ < 1 and t > 1. Case (i)(a), on the other hand,
yields the desired inequality (3.14) for 10ξ + 2ε ≤ ζ. This completes the proof of
Theorem 3.1. �

3.2 Proof of Theorem 1.7. Theorem 1.7 follows immediately from the following
“thin tubes version”, whose proof is further based on Theorem 3.1 from the previous
section.

Theorem 3.17. Let s ∈ [0,2], t ∈ (1,2], 0≤ σ < min{s+ t−1,1}, C > 0 and ε ∈ (0,1].
Then, there exists K =K(C, ε, s, σ, t)> 0 such that the following holds. Assume that

μ,ν ∈ P(B2) satisfy μ(B(x, r))≤Crs and ν(B(x, r))≤Crt, or alternatively Is(μ)≤
C and It(ν) ≤C. Then (μ,ν) has (σ,K,1− ε)-thin tubes.
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In particular, whenever s ∈ [0,2], t ∈ (1,2], Is(μ)<∞ and It(ν) <∞, then (μ,ν)
has σ-thin tubes for every 0 ≤ σ < min{s+ t− 1,1}.

The proof of Theorem 3.17 is similar to the proof of Corollary 2.22. We establish
an “ε-improvement” version of the result, Lemma 3.18 below, which can then be
iterated multiple times to derive Theorem 3.17.

Lemma 3.18. Let s ∈ [0,2], t ∈ (1,2], and 0 ≤ σ < min{s + t− 1,1}. Let ε ∈ (0, 1
10)

and C,K > 0. Let μ,ν ∈ P(B2) such that μ(B(x, r))≤Crs and ν(B(y, r))≤Crt for

all x, y ∈ R
2 and r > 0. If (μ,ν) has (σ,K,1 − ε)-thin tubes, then there exist η =

η(s,σ, t) > 0 and K ′ = K ′(C,K, ε, σ, s, t) > 0 such that (μ,ν) has (σ + η,K ′,1− 4ε)-
thin tubes. Moreover, η(s,σ, t) is bounded away from zero on any compact subset

of

Ω := {(s,σ, t) ∈ [0,2]× [0,1)× (1,2] : σ < min{s+ t− 1,1}}. (3.19)

Before proving Lemma 3.18, we complete the proof of Theorem 3.17:

Proof of Theorem 3.17 assuming Lemma 3.18. The starting point is that (μ,ν) has
(t − 1,K0,1)-thin tubes for some K0 ∼ C by the Frostman condition on ν alone:
ν(T ) � C · rt−1 for all r-tubes T ⊂R

2. In particular, (μ,ν) has (t− 1,K0,1− ε̄)-thin
tubes for every ε̄ ∈ (0, 1

10). If s = 0 or t = 2, we are done. Otherwise, min{s+t−1,1}>
t− 1, and we need to apply Lemma 3.18 a few times. Fix 0 ≤ σ < min{s+ t− 1,1},
and let

η := η(s,σ, t) := inf{η(s,σ′, t) : t− 1≤ σ′ ≤ σ},

where η(s,σ′, t) is the function in Lemma 3.18. We have η > 0, since η(s,σ′, t) is
bounded away from zero on compact subsets of Ω, as in (3.19). We also choose

ε̄ := ε · 4−1/η/100,

where ε > 0 is the constant given in the statement.
The first application of Lemma 3.18 implies that (μ,ν) has (t− 1+ η,K1,1− 4ε̄)-

thin tubes for some K1 =K1(C, ε, s, σ, t)> 0.1 If t−1+η > σ, we are done. Otherwise,
a second application of Lemma 3.18 shows that (μ,ν) has (t−1+2η,K2,1−42ε̄)-thin
tubes for some K2 > 0. We proceed in the same manner. After N ≤ 1/η steps, we
find that (μ,ν) has (σ,KN ,1− 4N ε̄)-thin tubes for some KN > 0, and the iteration
terminates. At this point, notice that 4N ε̄≤ 41/η ε̄≤ ε. Also, KN only depends on C,
ε, s, σ, t and N =N(η) =N(s,σ, t), as desired. This completes the proof. �

Finally, we prove Lemma 3.18:

1 The upper bound for “K1” in Lemma 3.18 also depends on the lower bound for ε > 0, so the
argument here does not show that (μ,ν) has (t−1+η,K1,1)-thin tubes. This would indeed be false
in general.
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Proof of Lemma 3.18. The scheme of the proof is very similar to that of Lemma 2.9.
The main difference lies in the geometric input, which is provided by Theorem 3.1.

We argue by contradiction. Assume that (μ,ν) does not have (σ + η,K ′,1− 4ε)-
thin tubes for K ′ = K ′(C,K, ε, σ, s, t) ≥ 1 and η = η(s,σ, t) > 0 to be determined in
the course of the proof. In fact, we explain immediately the dependence of η on s, t,
σ. Since σ < s+ t− 1, we may choose ζ = ζ(s,σ, t)> 0 such that

σ < s+ t− 1− ζ. (3.20)

The proof will be concluded by applying Theorem 3.1 with the parameters s, t, and
this ζ(s,σ, t) > 0. Theorem 3.1 gives us a parameter η′ = η′(σ, t, ζ) = η′(s,σ, t) > 0
associated with these constants. Our choice of η = η(s, t, σ) needs to be so small that
Cη < η′ for a certain absolute constant C > 0. Since the value of η′(σ, t, ζ) is bounded
away from zero on compact subsets of [0,1) × (1,2] × [0,1), the value of η will be
(or can be taken to be) bounded away from zero on compact subsets of the set Ω in
(3.19).

We then begin the proof in earnest. Write X = spt(μ), Y = spt(ν). Since (μ,ν)
has (σ,K,1− ε)–thin tubes, there is a Borel set G⊂X × Y with (μ× ν)(G) > 1− ε

such that

ν(T ∩G|x) ≤K · rσ for all r > 0 and all r-tubes T containing x ∈X. (3.21)

For every x ∈X and r ∈ 2−N, let T ′′
x,r consist of those r-tubes which contain x and

satisfy

ν(T ∩G|x)≥ K′

2 · rσ+η. (3.22)

We pick a maximal subset of T ′′
x,r with r-separated angles, and inflate each element

of this subset by a factor of 10. Let T ′
x,r be the family of 10r-tubes so obtained.

Evidently,

(∪T ′′
x,r)∩B2 ⊂∪T ′

x,r and |T ′
x,r|� r−σ−η. (3.23)

We define H̄r := {(x, y) ∈X × Y : y ∈ ∪T ′
x,r} and H̄ :=

⋃
r H̄r. We claim that

(μ× ν)(H̄)≥ 2ε.

Indeed, assume to the contrary that (μ× ν)(H̄)< 2ε, thus (μ× ν)(H̄c) > 1− 2ε, and

(μ× ν)(H̄c ∩G)≥ 1− 3ε.

Since (μ,ν) does not have (σ + η,K ′,1 − 4ε)-thin tubes by assumption, we infer
that there exists a point x ∈X , and an r-tube T ⊂R

2, r ∈ 2−N, containing x which
satisfies

ν(T ∩G|x)≥ ν(T ∩ (H̄c ∩G)|x)≥ K′

2 · rσ+η.
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However, this means by the definition of T ′′
x,r, and the inclusion in (3.23), that T ∩

B2 ⊂ H̄|x, so it is absurd that ν(T ∩ (H̄c)|x) > 0. This contradiction completes the
proof of (μ× ν)(H̄)≥ 2ε.

We now set

H :=G∩ H̄ and Hr :=G∩ H̄r,

and we infer from a combination of (μ× ν)(G)≥ 1− ε and (μ× ν)(H̄)≥ 2ε that

(μ× ν)(H)≥ ε.

Fix r0 = r0(C,K, ε, s, σ) ∈ 2−N such that
∑

r≤r0 r
η < ε/2 (recall that η was determined

by s, σ, t). Later we will impose further upper bounds on r0, always depending on
C, K, ε, s, σ, t only. If K ′ is taken so large that (K ′/2) · rσ+η

0 > 1 (hence in terms
of C, K, ε, s, σ, t only), then we see from (3.22) that T ′

x,r = ∅ for all r > r0. This
in particular implies that Hr|x ⊂ ∪T ′

x,r is empty for all x ∈X and r > r0. In other
words Hr = ∅ for r > r0, which implies that H is contained in the union of the sets
Hr with r ≤ r0. Since (μ× ν)(H) ≥ ε, it now follows from the choice of r0 that

(μ× ν)(Hr)≥ 2rη for some r ≤ r0.

We will fix this value of “r” for the remainder of the proof. We define

Xheavy := {x ∈X : ν(Hr|x)≥ rη},

and note that μ(Xheavy) ≥ rη. Recall from the definition of H̄r ⊃Hr that the fibres
Hr|x are covered by the tube families T ′

x,r, and by (3.23) that |T ′
x,r| � r−σ−η. For

x ∈Xheavy, define

Tx := {T ∈ T ′
x,r : ν(T ∩Hr|x)≥ rσ+3η}, Yx = (Hr|x)∩ (∪Tx) .

Since ν(Hr|x) ≥ rη for x ∈Xheavy, we have ν(Yx) ≥ r2η for all x ∈Xheavy. For every
x ∈Xheavy, the set Tx of r-tubes covers Yx and satisfies

rσ+3η ≤ ν(T ∩ Yx)≤ rσ−η, T ∈ Tx, (3.24)

where the upper bound follows from Yx ⊂H|x ⊂G|x and (3.21). In fact, more gen-
erally

ν(T (ρ) ∩ Yx) ≤ r−ηρσ, ρ ∈ [r,1], T ∈ Tx.

Putting these facts together, we see that

r−σ+3η ≤ r−σ+η · ν(Yx) � |Tx| ≤ |T ′
x,r| � r−σ−η, x ∈Xheavy, (3.25)

and Tx is an (r,σ, r−8η)–set for x ∈Xheavy (see below (2.18) for full details).
We now discretise everything at scale r. First, apply the discrete Frostman’s

Lemma [FO14, Proposition A.1] to obtain an (r, s, r−O(η))-set PX ⊂Xheavy. We would
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also like to select an (r, t, r−O(η))-set PY ⊂ Y , but we need to do this a little more
carefully. For each index j ≥ 0, let

Yj := {y ∈ Y : 2−j−1 ·Crt < ν(B(y, r))≤ 2−j ·Crt}.

Then Y is contained in the union of the sets Yj . In particular, each of the sets
Yx, x ∈ PX , is contained in this union. Therefore, for each x ∈ PX , there exists
j = j(x) ≥ 0 such that ν(Yx ∩ Yj) ≥ r3η (since there are only ≤ C log(1/r) ≤ r−η

choices of “j” which need to be considered here). By the pigeonhole principle, we
may then find a subset P ′

X ⊂ PX such that |P ′
X | ≥ rη|PX |, and j(x) = j is constant

for x ∈ P ′
X . Since P ′

X remains an (r, s, r−O(η))-set, we keep denoting P ′
X by PX in the

sequel.
For the index “j” found above, let PY ⊂ Yj be a maximal r-separated set. Obvi-

ously |PY |� 2j ·Cr−t, but since, for any x ∈ PX ,

r3η ≤ ν(Yx ∩ Yj) � (2−j ·Crt) · |PY |,

we also have the nearly matching lower bound |PY | � C−1 · 2jr−t+3η. After this
observation, it follows from the calculation

|PY ∩B(y, ρ)| · (2−j ·Crt) � ν(B(y,2ρ))≤C · (2ρ)t, y ∈R
2, ρ≥ r,

that PY is an (r, t, r−O(η))-set (we suppress the dependence on “C” by choosing r

smaller in a manner depending on C).
We next study the cardinality of PY inside the tubes 2T for T ∈ Tx, x ∈ PX . Fix

x ∈ PX . Recall that

Yx ∩ Yj ⊂ Yx ⊂∪Tx,

and |Tx| � r−σ−η. Since ν(Yx ∩ Yj) ≥ r3η, there is a subset T ′
x ⊂ Tx of cardinality

|T ′
x| ≥ rO(η) · |Tx| such that ν(Yx ∩ Yj ∩ T ) ≥ rσ+O(η) for all T ∈ T ′

x . Evidently T ′
x

remains a (r,σ, r−O(η))-set. Now, if T ∈ T ′
x , we have

rσ+O(η) ≤ ν(Yx ∩ Yj ∩ T ) � (2−j ·Crt) · |PY ∩ 2T |,

and therefore |PY ∩ 2T |� rσ+O(η) · (2jr−t) � rσ+O(η)|PY |. Finally, define

T ′′
x := {2T : T ∈ T ′

x}.

Then T ′′
x is an (r,σ, r−O(η))-set of 2r-tubes for all x ∈ PX , where PX is an (r, s, r−O(η))-

set. Moreover, |T ∩ PY | ≥ rσ+O(η)|PY | for all T ∈ T ′′
x , where PY is an (r, t, r−O(η))-

set. These are precisely the hypotheses of Theorem 3.1. Thus, if η, r > 0 are small
enough, depending on σ, t, ζ (therefore s, σ, t), it follows that σ ≥ s+ t−1− ζ. This
contradicts our choice of “ζ” at (3.20), and completes the proof. �
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4 Higher dimensions

In this section, we give new proofs of Theorems 1.13-1.14, due to Dote and Gan, by
reducing them to planar statements, more precisely Corollary 2.25 and Theorem 3.17.
In fact, as discussed in the introduction, we prove a sharper version of Theorem 1.14
that can be seen as a partial extension of Theorem 1.1 to higher dimensions. We first
recall the statements:

Theorem 4.1. Let Y ⊂ R
d be a Borel set with dimH Y ∈ (k, k + 1] for some k ∈

{1, . . . , d− 1}. Then,

dimH{x ∈R
d : dimH πx(Y \ {x})< σ} ≤max{k + σ− dimH Y,0}, 0 ≤ σ < k.

Theorem 4.2. Let X,Y ⊂ R
d be Borel sets with dimHX > k − 1 and dimH Y ∈ (k −

1, k] for some k ∈ {1, . . . , d− 1}.

(i) If dimHX > k, then supx∈X dimH πx(Y \ {x}) = dimH Y .

(ii) If k − 1 < dimHX ≤ k, but X is not contained in any k-plane, the follow-

ing holds. If dimH Y > k − 1/k − η for a sufficiently small constant η =
η(d, k,dimHX)> 0, then

sup
x∈X

dimH πx(Y \ {x})≥min{dimHX,dimH Y }.

For k = 1, we require no lower bound from dimH Y in part (ii).

We introduce some additional notation. The Grassmanian of linear m-planes in
R

d will be denoted by G(d,m). We endow G(d,m) with the natural Borel probabil-
ity measure γd,m invariant under the action of the orthogonal group – see [Mat99,
Chap. 3]. The orthogonal projection onto V ∈ G(d,m) is denoted by PV . Similarly,
the Grassmanian of affine m-planes in R

d is denoted by A(d,m) and the natu-
ral isometry-invariant measure on it by λd,m – see [Mat99, §3.16] for its definition.
Given a finite Borel measure μ on R

d, the sliced measures of μ on the affine planes
V + x (where V ∈ G(d,m) and x ∈ V ⊥) are denoted by μV,x. We extend the defini-
tion to x ∈ R

d by setting μV,x := μV,P
V ⊥x. See [Mat99, Chap. 10] for the definition

and key properties of sliced measures. Finally, to lighten up notation we denote
πy(X) = πy(X \ {y}).

We start by reducing Theorems 4.1–4.2 to the special case k = d − 1. Similar
arguments, involving lifting radial projection estimates from a random projection to
a suitable lower dimensional subspace, appeared earlier in [D+21, SW21].

Proposition 4.3. Theorems 4.1-4.2 follow from their special case k = d− 1.

Proof. Let Σ(x) := x/|x| for x ∈R
d \ {0}. We start by proving the following inclusion,

valid for every m-plane V ∈ G(d,m), and for every 0<m< d− 1:

πPV (x)(PV (Y ))⊂Σ(PV (πx(Y ))), x ∈R
d. (4.4)
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To see this, fix x ∈ R
d and e ∈ πPV (x)(PV (Y )) ∈ Sd−1. Thus, there exists PV (y) ∈

PV (Y ), with y ∈ Y , such that PV (y) �= PV (x) (in particular y �= x), and

e =
PV (y)− PV (x)
|PV (y)− PV (x)| = PV

(
y− x

|PV (y− x)|

)
=

1
|PV ((y− x)/|y− x|)| · PV

(
y− x

|y− x|

)
.

The right hand side is an element of Σ(PV (πx(Y ))), as claimed.
We then prove the proposition. More precisely, we will establish the following: let

0< k < d, and assume that Theorems 4.1-4.2 hold in R
d for this “k”. Then they also

hold in R
d+1 with the same value of “k”. In particular, if the theorems hold for the

value k = d− 1 in some R
d, then they also hold for k = d− 1 in every R

D for D ≥ d.
We start by establishing the statement above for Theorem 4.2. Parts (i) and (ii)

are very similar, but (ii) is slightly harder, so we spell out the details for (ii). Assume
to the contrary that there exist Borel sets X,Y ⊂R

d+1 with

dimHX ∈ (k− 1, k] and dimH Y ∈ (k− 1/k− η, k]

such that X is not contained in any k-plane, and

sup
x∈X

dimH πx(Y )<min{dimHX,dimH Y }.

In order to apply the “known” R
d-version of Theorem 4.2 (and then reach a contra-

diction), we plan to find a suitable orthogonal projection to a d-plane V ∈ G(d+1, d).
The Marstrand-Mattila projection theorem, [Mat99, Corollary 9.4], shows that for
γd+1,d-almost every V ∈ G(d+ 1, d) we have

dimHPV (X) = dimHX and dimHPV (Y ) = dimH Y. (4.5)

On the other hand, (4.4) shows that, for γd+1,d-almost all V ,

sup
x∈X

dimH πPV (x)(PV (Y ))≤ sup
x∈X

dimH πx(Y )

<min{dimHX,dimH Y }
(4.5)= min{dimHPV (X),dimHPV (Y )}.

This violates the R
d-version of Theorem 4.2 in V ∼= R

d, applied with PV (X) and
PV (Y ), except for one problem: PV (X) may be contained in a k-plane, even if X is
not. However, we claim that the set of V ∈ G(d+1, d) such that this happens has zero
γd+1,d measure. Indeed, pick x0, x1, . . . , xk+1 ∈X such that the subspace W spanned
by {xj − x0}k+1

j=1 is (k + 1)-dimensional. Since dimW ≤ d < d + 1, we have θ /∈ W

for σd-almost all θ ∈ Sd ⊂ R
d+1 (here σd is the normalized spherical measure). But

γd+1,d is the push-forward of σd under θ→ θ⊥, so PV |W is invertible for γd+1,d-almost
all V , and in particular the span of PV (X − x0) contains PV (W ) ∈ G(d + 1, k + 1),
giving the claim. The proof can now be concluded by choosing V ∈ G(d+1, d) which
satisfies (4.5), and such that PV (X) is not contained in a k-plane.
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We turn to the proof of Theorem 4.1. Assume to the contrary that there exist
k ∈ {1, . . . , d− 1}, 0≤ σ < k, and Borel sets X,Y ⊂R

d+1 with dimH Y ∈ (k, k + 1],

dimHX > max{k + σ− dimH Y,0}

such that dimH πx(Y )< σ for all x ∈X . Note that

max{k + σ− dimH Y,0}< k < d,

since k ≥ 1 and σ < k < dimH Y . In particular, by the Marstrand-Mattila projection
theorem, there exists a plane V ∈ G(d+ 1, d) such that dimHPV (Y ) = dimH Y , and

dimHPV (X)>max{k + σ− dimHPV (Y ),0}. (4.6)

On the other hand, (4.4) shows that

dimH πPV (x)(PV (Y ))≤ dimH πx(Y )< σ, x ∈X.

In other words PV (X)⊂ {z ∈ V : dimH πz(PV (Y ))< σ}, and therefore

dimH{z ∈ V : dimH πz(PV (Y ))< σ}
(4.6)
> max{k + σ− dimHPV (Y ),0}.

This contradicts Theorem 4.1 in V ∼= R
d, and the proof of the proposition is complete.

�

It remains to prove the 1-codimensional cases. The constant “η > 0” in Theo-
rem 4.2(ii) will arise from an application of [SW21, Proposition 6.8], which we recall
here:

Proposition 4.7. Let t ∈ (d− 2, d− 1] and s ∈ ((d− 1)− 1/(d− 1)− η, d− 1], where
η = η(d, t) > 0 is a sufficiently small constant. Let μ,ν ∈ P(Rd) be measures with

disjoint supports such that It(μ)<∞ and Is(ν) <∞. Assume moreover that μ(W ) =
0 = ν(W ) for all (d−1)-planes W ⊂R

d. Assume also that dimH spt(ν) < s+η. Then,

possibly after restricting μ and ν to subsets of positive measure, we have

(μ×γd,2){(x,V ) : μV,x(�)νV,x(�) = μV,x(Rd)νV,x(Rd)> 0 for some line �⊂ V +x}= 0.

We also recall [SW21, Theorem 6.7], which provides the mechanism to upgrade
“thin tubes” information from lower to higher dimensions:

Theorem 4.8. Let μ,ν ∈ P(Rd) be measures with Is(μ) < ∞, Is(ν) < ∞ with s ∈
(k, k + 1] for some k ∈ {1, . . . , d− 2}. Suppose that there is t > 0 such that the sliced

measures (μW,z, νW,z) have t-thin tubes for (γd,d−k × μ)-almost all (W,z).
Then (μ,ν) have (k + t)-thin tubes.

We begin with Theorem 4.2, since the numerology is slightly simpler.

Proof of Theorem 4.2 for k = d− 1. We start by proving the following claim about
thin tubes.
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Claim 4.9. Let μ, ν be measures on R
d with It(μ)<∞ and Is(ν) <∞, where either

t ∈ (d− 2, d− 1] and s ∈
(
(d− 1)− 1

d−1 − η, d− 1
]

(4.10)

with the constant η = η(d, t)> 0 from Proposition 4.7, or

t > d− 1 and d− 2< s≤ d− 1. (4.11)

In the case (4.10), assume moreover that μ(W ) = 0 = ν(W ) for all (d− 1)-planes
W ⊂ R

d, and dimH spt(ν) < s + η. Then (μ,ν) has σ-thin tubes for all 0 ≤ σ <

min{s, t}.

The case d = 2 follows immediately from Corollary 2.25. Consider now the case
d ≥ 3. Since t > d − 2, by the Marstrand-Mattila projection theorem (in this ap-
plication the absolutely continuous case, [Mat15, Theorem 9.7]), the push-forward
of μ× γd,2 under (x,V ) → V + x is absolutely continuous with respect to λd,2 (for
details, see [SW21, Lemma 6.3]). Since also s > d − 2, we then deduce from the
Marstrand-Mattila slicing theorem, [Mat99, Theorem 10.7], that

Is−(d−2)(νV,x)<∞ and It−(d−2)(μV,x)<∞ for (μ× γd,2)-almost all (x,V ).

In the case (4.10), and under the assumptions μ(W ) = 0 = ν(W ) and dimH spt(ν)<
s + η, we may infer the following from Proposition 4.7: for (μ× γd,2) almost every
pair (x,V ) such that μV,x �= 0 �= νV,x, we have

μV,x(�)νV,x(�)< μV,x(Rd)νV,x(Rd)

for every line �⊂ V +x. The same is also true in the case (4.11), for the simpler reason
that t − (d − 2) > 1: this implies that μV,x(�) = 0 for all lines � ⊂ V + x whenever
It−(d−2)(μV,x) <∞, and thus for (μ× γd,2) almost every (x,V ).

In both cases (4.10)-(4.11), we have now checked that μV,x and νV,x satisfy
the hypotheses of Corollary 2.25 for (μ × γd,2) almost every (x,V ). Consequently,
(μV,x, νV,x) has σ-thin tubes for all 0 ≤ σ < min{s− (d− 2), t− (d− 2)}. Finally, it
follows from Theorem 4.8, applied with k = d− 2, that (μ,ν) has σ-thin tubes for all
0≤ σ < min{s, t}, as claimed.

We are then equipped to prove the case k = d− 1 of Theorem 4.2. We only spell
out the details for Theorem 4.2(ii), which uses the case (4.10) of the thin tubes
statement above. Theorem 4.2(i) uses the case (4.11) and is substantially simpler.

Let X,Y ⊂R
d be Borel sets with

dimHX ∈ (d− 2, d− 1] and dimH Y ∈
(
(d− 1)− 1

d−1 − η, d− 1
]
.

Assume that X is not contained in any (d− 1)-plane, and write u := min{dimHX,

dimH Y }. We claim that supx∈X dimH πx(Y ) ≥ u. We first dispose of a special case
where

sup
W∈A(d,d−1)

dimH(Y ∩W )≥ u.
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Since πx|W is locally bi-Lipschitz for any (d − 1)-plane W and x ∈ R
d \ W , and

since for any such plane W we may by assumption find x ∈ X \ W , we see that
supx∈X dimH πx(Y )≥ u in this case.

Assume next that there exists ε0 > 0 such that dimH(Y ∩ W ) ≤ u − ε0 for all
(d − 1)-planes W ⊂ R

d. Then, pick d − 2 < t < dimHX and u − ε0 < s < dimH Y

satisfying

s > (d− 1)− 1
d−1 − η and dimH Y < s+ η. (4.12)

Let μ,ν ∈ P(Rd) with It(μ) <∞, Is(ν) <∞ and spt(μ) ⊂X and spt(ν) ⊂ Y . Note
that ν(W ) = 0 for all (d− 1)-planes W ⊂R

d, because otherwise

dimH(Y ∩W )≥ dimH(spt(ν)∩W )≥ s > u− ε0,

contrary to our assumption. Also, dimH spt(ν)≤ dimH Y < s+ η.
These observations nearly place us in a position where we can apply the case (4.10)

of the first part of the proof. We are only missing the information that μ(W ) = 0 for
all (d− 1)-planes W ⊂R

d. So, let us now treat the special case where μ(W ) > 0 for
some (d− 1)-plane W ⊂R

d.
Since ν(W ) = 0, there exists a compact set K ⊂ Y \ W such that ν(K) > 0. Now,

since W is a (d− 1)-plane, the family of radial projections {πx}x∈W is “morally the
same” as the family of orthogonal projections {PV }V ∈G(d,d−1). More precisely, there
exist (dimension preserving) projective maps F : Rd →R

d and x �→ V (x) from W to
G(d, d− 1) such that

dimH πx(K) = dimHPV (x)(F (K)), x ∈W. (4.13)

We outsource the justification to Remark 4.14. By the Kaufman-Mattila exceptional
set estimate for orthogonal projections [Mat15, Theorem 5.10], combined with (4.13),
we have

dimH{x ∈W : dimH πx(K)< σ}= dimH{V ∈ G(d, d− 1) : dimHPV (F (K))< σ} ≤ σ

for all 0 ≤ σ < dimHK. Since dimH(X ∩W ) ≥ dimH(spt(μ) ∩W ) ≥ s, we therefore
get

sup
x∈X

dimH πx(Y ) ≥ sup
x∈X∩W

dimH πx(K)≥ dimHK ≥ s.

This proves our claim by letting s↗ dimH Y .
We have now reduced the proof to the case where μ(W ) = 0 = ν(W ) for all (d−1)-

planes W ⊂R
d. Since also It(μ)<∞ and Is(ν) <∞, where s satisfies (4.12), we may

apply Claim 4.9 in the case (4.10). The conclusion is that (μ,ν) has σ-thin tubes
for all 0 ≤ σ < min{s, t}. Therefore supx∈X dimH πx(Y ) ≥ min{s, t}, and the proof is
completed by letting s↗ dimH Y and t↗ dimHX . �
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Remark 4.14. Let W := R
d−1 × {0} ⊂ R

d. The purpose of this remark is to jus-
tify the (well-known) fact that the family of radial projections {πx}x∈W is “morally
the same” as the family of orthogonal projections {PV }V ∈G(d,d−1), and in particular
(4.13). To see this, let F : Rd \ W →R

d be the projective transformation

F (x̄, xd) :=
(x̄,1)
xd

, x̄ ∈R
d−1, xd �= 0.

For w ∈R
d−1 and e ∈ Sd−1 \ W , let �w(e) := (w,0) + span(e). The family

L(w) := {�w(e) : e ∈ Sd−1 \ W}, w ∈R
d−1,

then contains all the lines passing through (w,0) ∈W which are not contained in W .
These lines are the fibres of the radial projections π(w,0), restricted to R

d \ W . Now,
a straightforward calculation shows that

F (�w(e)) = Le(w), w ∈R
d−1, e ∈ Sd−1 \ W,

where Le(w) = span(w,1)+(ē/ed,0). Therefore, F transforms the lines in L(w) pass-
ing through (w,0) ∈W into lines parallel to the vector (w,1). Since (ē/ed,0) can take
any value in W , in fact {F (�) : � ∈ L(w)} consists of all lines parallel to (w,1). These
lines are the fibres of the orthogonal projection πV (w) to V (w) := (w,1)⊥ ∈ G(d, d−1).
It follows from these observations (with a little more effort) that

dimH π(w,0)(K) = dimH πV (w)(F (K)), w ∈R
d−1, K ⊂R

d \ W,

as we claimed in (4.13).

Finally, we prove the case k = d− 1 of Theorem 4.1.

Proof of Theorem 4.1 for k = d− 1. We first claim the following. Let d− 1 < t ≤ d

and d − 2 < s ≤ d. Let μ, ν be finite Borel measures on R
d with Is(μ) < ∞ and

It(ν)<∞. Then (μ,ν) has σ-thin tubes for

0≤ σ < min{s+ t− (d− 1), d− 1}.

Since s, t > d − 2, the same argument as in the previous proof (applying the
Marstrand-Mattila projection and slicing theorems) yields that

Is−(d−2)(νV,x)<∞, It−(d−2)(μV,x) <∞ for (μ× γd,2)-almost all (x,V ).

We then apply the planar case, Theorem 3.17 to the measures μV,x and νV,x (the
hypotheses are evidently valid). The conclusion is that (μV,x, νV,x) has σ-thin tubes
for all

0≤ σ < min{[s− (d− 2)] + [t− (d− 2)]− 1,1}.

Now, observe that

[s− (d− 2)] + [t− (d− 2)]− 1 = (s+ t− (d− 1))− (d− 2).
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Consequently, it follows from Theorem 4.8 that (μ,ν) has σ-thin tubes for all 0 ≤
σ ≤min{s+ t− (d− 1), d− 1}, as we claimed.

The rest is standard, but let us spell out the details anyway. Assume, to reach
a contradiction, that there exists a Borel set Y ⊂ R

d with d− 1 < dimH Y ≤ d such
that

dimH{x ∈R
d : dimH πx(Y )< σ− ε0}>max{(d− 1) + σ− dimH Y,0}

for some σ ∈ [0, d− 1) and ε0 > 0. We may infer from this counter assumption that
σ > dimH Y − 1 because {x ∈R

d : dimH πx(Y \ {x})< dimH Y − 1}= ∅. Indeed, Y \
{x} ⊂ πx(Y \ {x}) × (0,∞) when viewed in polar coordinates centred at x, and so
dimH Y ≤ 1 + dimH πx(Y \ {x}). Therefore,

s := (d− 1) + σ− dimH Y > d− 2. (4.15)

Let μ ∈ P(Rd) with spt(μ)⊂ {x : dimH πx(Y )< σ− ε0} with Is(μ)<∞. Let

max{d− 1,dimH Y − ε0/2}< t < dimH Y, (4.16)

and let ν ∈ P(Rd) with spt(ν) ⊂ Y with It(ν) < ∞. By the claim established in
the first part of the proof, it follows that (μ,ν) has ξ-thin tubes for all 0 ≤ ξ <

min{s+ t− (d− 1), d− 1}. We pick

ξ >min{s+ t− (d− 1)− ε0/2, d− 1− ε0}
(4.15)-(4.16)

> σ− ε0,

so that (μ,ν) in particular has (σ − ε0)-thin tubes. This implies that there ex-
ists a point x ∈ spt(μ) with dimH πx(Y ) ≥ σ − ε0. This contradicts spt(μ) ⊂ {x :
dimH πx(Y )< σ− ε0}, and completes the proof. �
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