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CLASSICAL WAVE METHODS AND MODERN GAUGE
TRANSFORMS: SPECTRAL ASYMPTOTICS IN THE ONE

DIMENSIONAL CASE

Jeffrey Galkowski, Leonid Parnovski, and Roman Shterenberg

Abstract. In this article, we consider the asymptotic behaviour of the spectral func-
tion of Schrödinger operators on the real line. Let H : L2(R) → L2(R) have the form

H :=− d2

dx2 +Q,

where Q is a formally self-adjoint first order differential operator with smooth co-
efficients, bounded with all derivatives. We show that the kernel of the spectral
projector, 1(−∞,ρ2](H), has a complete asymptotic expansion in powers of ρ. This
settles the 1-dimensional case of a conjecture made by the last two authors.

1 Introduction

Consider a Schrödinger operator H acting on L2(R) and given by

H :=D2 + V, D :=−i∂x. (1.1)

We assume that the potential V = V (x) is real valued, infinitely smooth and satisfies

‖∂α
xV ‖L∞ <∞, α ∈N. (1.2)

We call any potential V satisfying condition (1.2) a uniformly smoothly bounded
(USB) potential and denote by C∞

b (R) the class of such potentials. Let E(H)(ρ) =
1(−∞,ρ2](H) be the spectral projector for H and E(H)(ρ;x, y) be its integral kernel
(also called the spectral function of H). In this article, we study the behaviour of
E(H)(ρ; ·, ·) when ρ is large. One of our results is:

Theorem 1.1. Under the above assumptions, there are fk ∈C∞
b (R), k = 0,1, . . . such

that for all N ∈N, there is CN > 0 such that for all x ∈R and ρ≥ 1 we have

∣
∣
∣E(H)(ρ;x,x)−

N−1∑

k=0
fk(x)ρ1−2k

∣
∣
∣≤CNρ

1−2N . (1.3)

Here, f0 ≡ 1
π , and fk(x), k ≥ 1 can be written explicitly in terms of the derivatives

of V at x.
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We will use the notation E(H)(ρ;x,x) ∼∑∞
k=0 fk(x)ρ1−2k to indicate that the

estimates (1.3) hold. To compute the explicit formulae for fk, k ≥ 1, one can take the
Laplace transform of (1.3) as in [KP03] and use the results of [Hit02, HP031, HP032]
(see also [DZ19, Lemma 3.63, Theorem 3.64]). We also obtain a complete asymptotic
expansion of E(H)(ρ; ·, ·) (and its derivatives) off the diagonal, see Sect. 1.3 for a
precise formulation of these results.

Note that the spectrum of operators of the form (1.1) can have any spectral type
for large energies: absolutely continuous, singular continuous (see e.g. [Sim95]), or
dense pure point (see e.g. [CL90]). Moreover, examples exist for which the spectrum
has Lebesgue measure zero and even arbitrarily small but positive Hausdorff dimen-
sion (see e.g. [DFG21]). Despite the potentially wild behavior of the spectrum, our
results show that, at high energy, the spectrum wants to be absolutely continuous;
see for example Corollaries 1.18. 1.19, 1.20, and 1.21.

Similarly to C∞
b (R), we define C∞

b (Rd) for any d ≥ 1 as the class of functions
V : Rd → R that are bounded together with all their partial derivatives (see also
Definition 1.11). We then consider a Schrödinger operator H acting on L2(Rd):

H :=−Δ + V, V ∈C∞
b (Rd). (1.4)

In [PS16] (two of) the authors of this article formulated the following conjecture.

Conjecture 1.2. The spectral function of any operator (1.4) admits a complete

asymptotic expansion in powers of ρ for large energy:

E(H)(ρ ; x,x)∼
∞∑

k=0
fk(x)ρd−2k, x ∈R

d. (1.5)

Remark 1.3. Notice that one consequence of (1.5) is super-polynomial decay of
spectral gaps. Therefore, no such asymptotic expansion can hold for potentials which
are bounded below but grow as a power of x towards infinity.

The intuition behind this conjecture is as follows: it is well known that geodesic
loops (geodesics for the metric defining the Laplacian that start and finish at x) are
usually responsible for preventing asymptotic expansions of this type, and the usual
‘rule of thumb’ is that the fewer periodic geodesics exist, the more asymptotic terms
in (1.5) (or its integrated versions) one can obtain. This leads to a natural guess that
if there are NO looping geodesics, a complete asymptotic expansion of the form (1.5)
should exist. One should, of course, be careful with this type of reasoning since in
general it is possible to have singularities in the spectral function that arise from
loops of infinite length; i.e. where singularities in the wave propagator return from
infinity. However, when the dynamics arise from R

d, or, more generally, from an
asymptotically flat metric, this type of return from infinity is not expected.

It is not difficult to see that this conjecture is equivalent to the following state-
ment: suppose, V1 and V2 are two C∞

b potentials that coincide in a neighbourhood of
x (or even simply have the same values of all the derivatives at x) and Hj =−Δ+Vj .
Then E(H1)(ρ;x,x)−E(H2)(ρ;x,x) =O(ρ−∞) as ρ→∞.
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Before [PS16], Conjecture 1.2 had been proved for smooth potentials with com-
pact support [PS83, Vai83, Vai84, Vai85] using the standard wave equation methods
(see also [Ivr191] for related problems in the semiclassical setting). In [PS16], Con-
jecture 1.2 was proved in the following three cases:

(a) V smooth periodic,
(b) V quasi-periodic (a finite linear combination of complex exponentials) with

one additional (generic) assumption,
(c) V smooth almost-periodic with several additional assumptions ensuring that

the Fourier coefficients of V decay fast enough.

See also [SS85, Sav88] for the 1-dimensional case and [Ivr192] for related problems
in the semiclassical setting.

The method used in [PS16] is often called the method of gauge transform. This
method has appeared in many contexts and is also known by a variety of names;
e.g. conjugation to quantum Birkhoff normal form or, in the theory of quasi-periodic
operators, KAM. This method was used in [Roz78] to study the discrete spectra of
one-dimensional pseudodifferential operators (see also [Agr84, HR82]). It was then
adapted to periodic operators in [Sob05, Sob06] and further developed in [PS10,
PS12]. Some examples of the use of this method occur in [CVuN08, Sjo00, Wei77],
but there are many others. Since our article also relies on a version of the gauge
transform method, we describe this method below in detail.

To the authors’ knowledge, the only other case in which (1.5) is known is in dimen-
sion one with a certain generalization of almost periodic potentials where complex
exponentials are multiplied by functions that are well behaved at infinity instead of
constants [Gal22]. In that case, the first author was able to apply the gauge transform
method together with wave methods and some modern microlocal tools to prove the
conjecture. It seems that new ideas would be required to extend these methods to
higher dimensions.

The wave method and gauge transform method are intrinsically quite different
from each other and it has proved difficult to combine them together. In fact, even
obtaining (1.5) for a sum of a periodic potential and a potential with compact support
is still an open question in dimensions larger than one.

This article is the first in a series of papers that aim to address this issue. Here,
we prove Conjecture 1.2 in its complete generality (i.e. making no assumptions other
than that V is a C∞

b potential) in the one-dimensional case. In (a) subsequent ar-
ticle(s) we plan to consider the case of several dimensions, where, unfortunately, it
seems that we will have to impose more restrictions on the potential.

1.1 New methods. First of all, we need some notation. Consider a pseudo-
differential operator V acting on L2(Rd) with symbol v = v(x,ξ) satisfying

|∂α
x∂

β
ξ v(x,ξ)| ≤Cαβ(1 + |ξ|2)−|β|/2, (x,ξ) ∈ T ∗

R
d;
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all our symbols will be considered in the Weyl quantisation, i.e.

[V u](x) :=
1

(2π)d
∫

ei〈x−y,ξ〉v
(x + y

2
,ξ
)

u(y)dydξ.

We denote by v̂ = v̂(θ,ξ) the Fourier transform of v in the x variable considered in
the sense of tempered distributions; in analoguey with the periodic case, the variable
θ will be called a frequency. If v is periodic in x with Γ being its lattice of periods,
then v̂ is a linear combination of delta-functions located at the points of the dual
lattice Γ′. We say that an operator A with symbol a is a Fourier multiplier if a does
not depend on x, i.e. â is a multiple of the delta-function at θ = 0 (with coefficient
depending on ξ). An equivalent description of a Fourier multiplier is this: if we put

eξ(x) := ei〈ξ,x〉, then Aeξ = a(ξ)eξ. (1.6)

For simplicity, in this discussion we assume that H = −Δ + V is a Schrödinger
operator. We take a large ρ and try to compute E(H)(ρ;x,x). We note that for
any Fourier multiplier, A, it is a relatively simple task to compute E(A)(ρ;x,x).
Indeed, since A becomes a multiplication operator after conjugation by the Fourier
transform, the spectral function can be computed using the formula for the spectral
projector of a multiplication operator and is given by

E(A)(ρ;x,y) =
1

(2π)d
∫

G(ρ)
ei〈x−y,ξ〉dξ, G(ρ) := {a(ξ)≤ ρ2}. (1.7)

Sometimes we will call Fourier multipliers operators with constant coefficients or
diagonal operators because they act diagonally in the Besicovitch space B2(Rd).

Now we will discuss the methods used to establish our results. In the beginning
of our paper, we will treat the case of arbitrary dimension and put d = 1 only when
it becomes necessary. Without loss of generality, we temporarily put x = 0 and call
E(H)(ρ; 0,0) the local density of states at 0. We usually denote by N the exponent
in the remainder in the asymptotic formula (1.5) (which means we can ignore terms
o(ρ−N )).

1.1.1 Mass transport. The first step of our approach consists of replacing the
operator H with a different operator, M

H = −Δ + M
V ; the superscript stands for

the mass transport – a terminology we explain in a moment. This operator is still a
differential Schrödinger operator with a C∞

b potential M
V that ‘almost agrees’ with

V on a large box, i.e. we have

|V (x)− M
V (x)|=O(ρ−N ′), for any x ∈B(0, ρN ′). (1.8)

Here, N ′ is a large number depending on N and B(0,R) is a ball in R
d with centre

at 0 and radius R.
The usefulness of this notion of mass transport follows from our next two claims.

We first claim that for any N > 0 there is N ′ > 0 such that whenever (1.8) is satisfied
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Figure 1: The figure shows the process of mass transport for a potential on the Fourier transform
side when V̂ is a measure. When we replace V with a periodic potential

M
V which agrees on

B(0, ρN
′
), we replace its Fourier transform by a sum of delta functions with a lattice at scale ρ−2N′

.
Roughly speaking, we transport the total mass of the potential near each lattice point to a delta
function at that lattice point.

we have

E(H)(ρ; 0,0)−E(MH)(ρ; 0,0) =O(ρ−N ). (1.9)

Second, we claim that for any V ∈ C∞
b (Rd), one can use the flexibility of choosing

M
V satisfying (1.8) to simplify the problem of computing the spectral function.

Remark 1.4. We expect that one could take N ′ = 2(N +d), but we do not attempt
to follow the dependence of N ′ on N carefully.

Our first claim, (1.9), may be surprising at first glance. We have made a poten-
tially large change to the operator that does not arise from a unitary transformation
and yet the density of states is affected only very mildly. To understand why this
large change does not have a large effect on the spectral function at 0, we use the
fact that solutions of the wave equation corresponding to H and M

H with the same
initial conditions having support in a fixed neighbourhood of the origin agree up to
O(ρ−N ′) for a very long time (t ≤ ρN

′). Using the wave method, we are then able
to convert this wave estimate into one on spectral functions. This is the only essen-
tial place in our approach where we use the wave equation method; we discuss this
method in more detail (and prove it) in Sect. 4.

Remark 1.5. The reason we refer to this process as mass transport is because,
when the Fourier transform of V is a measure, the estimate (1.8) holds whenever the
natural mass transport distance, the 1-Wasserstein distance, (see e.g [Vil09, Chap. 6])
between V̂ and M̂V is O(ρ−2N ′). See Fig. 1 for a schematic of this mass transport on
the Fourier transform side. If V is almost periodic, then working with 1-Wasserstein
distances of the Fourier transform of V is more convenient than working directly with
the values of V . Indeed, if V is almost periodic, then our result shows that under
certain mild extra assumptions a small change in its frequencies results in a small
change of the spectral function. In fact, we arrived at the statement of Theorem 1.29
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by guessing that a small mass transport of this type should lead to a small change
in the local density of states.

To explain the second claim, we ask the natural question: what is the best way
to modify our potential V outside of the box B(0, ρN ′) so that we can compute
the spectral function E(MH)(ρ; 0,0) of the resulting operator (up to a small er-
ror)? It may seem natural to choose M

V with compact support, but we do not
know of any ‘standard’ microlocal methods that can handle a potential which is
compactly supported, but with support depending badly on ρ. Instead, perhaps
slightly surprisingly, we choose M

V to be periodic (with period ρN
′) and try to

compute E(MH)(ρ; 0,0) using the periodic method of gauge transform (GT). The
advantage of a periodic potential is that the support of its Fourier transform is
discrete (at scale ρ−N ′). The significant new difficulty, as compared to the ‘stan-
dard’ setting of using the GT, is that now the frequencies (elements of the lattice
dual to the lattice of periods) can become very small (of size ρ−N ′). In order to
explain how we overcome this difficulty, we first describe the ‘standard’ GT, refer-
ring, in the first instance, to [L+23] where this method is described in an abstract
setting.

1.1.2 The standard method of gauge transform. Although the bulk of this article
is written in dimension one, it is important to understand the context into which
the methods fit. To this end, we review the method of gauge transform, as it applies
to spectral asymptotics, in all dimensions. In the next subsection, we then focus
specifically on dimension one and the new gauge transform methods developed in
this article.

In this subsection, we assume V ∈ C∞
b (Rd) or, more generally, V is a pseudod-

ifferential operator with symbol v(x,ξ) bounded with all derivatives. We denote by
v̂(θ,ξ) the Fourier transform of v(x,ξ) in the x variables considered as a tempered
distribution. Given an operator H(V ) := −Δ + V , our ultimate goal (Task A) is
to find a unitary operator U such that, after conjugating by U , H becomes sim-
pler:

U−1HU =−Δ + a(D) + V̌ , D :=−i∂x. (1.10)

Here, a(D) is a Fourier multiplier and ‖V̌ ‖∞ = O(ρ−N ) for any N so it does
not contribute to the asymptotic expansion of the spectral function. There-
fore, we may compute the spectral function of the conjugated operator us-
ing (1.7). At first, we notice that if we can construct U to achieve the sim-
pler task (Task A′) of V̌ being smaller than V (for example, of smaller or-
der), then we can iterate this process to make the non-diagonal part smaller
and smaller, eventually making V̌ small enough to be negligible and completing
Task A.
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We look for U of the form U = eiΨ with Ψ a self-adjoint pseudo-differential oper-
ator with symbol ψ. Then, at least formally, we have

U−1HU =H + i[H,Ψ]− 1
2
[[H,Ψ],Ψ] + · · ·=−Δ + V + i[−Δ,Ψ] + i[V,Ψ]

− 1
2
[[H,Ψ],Ψ] + · · · , (1.11)

where [·, ·] is a commutator and . . . denotes terms involving higher order commutators
with Ψ. Now we try to accomplish Task A′ by finding Ψ that solves the equation

V + i[−Δ,Ψ] = 0. (1.12)

If we can do this with Ψ from a reasonable class of pseudodifferential operators of
order less than zero, this would finish Task A′. Since the symbol, b, of the pseudod-
ifferential operator B = [−Δ,Ψ] satisfies

b̂(θ,ξ) = 2〈ξ,θ〉ψ̂(θ,ξ),

we see that a solution of this equation is given, ignoring possible small divisor prob-
lems, by the pseudodifferential operator with symbol ψ satisfying

ψ̂(θ,ξ) =
iv̂(θ,ξ)
2〈ξ,θ〉 . (1.13)

Remark 1.6. In this text we often use the convention that lower case letters denote
the symbol of the operator denoted by the corresponding upper case letter, e.g. v is
the symbol of V . However, when V is a function, we do not distinguish between the
function V and the operator of multiplication by V .

Remark 1.7. Although (1.13) is simple, it is not very convenient for obtaining L∞

type estimates. We will later replace it by (6.5) which is more suited to this purpose.

We emphasize once again that we work in the Weyl quantisation because in other
quantisations the form of the denominator is different (but may be more familiar
to some readers). Now it is clear what the main obstacle to solving (1.12) is: the
denominator of (1.13) may be very small (or indeed zero). A pair (ξ,θ) for which
the inner product 〈ξ,θ〉 is small will be called resonant and otherwise will be called
non-resonant. If (ξ,θ) is resonant, we will sometimes say that ξ is resonant with
respect to θ and vice versa.

Given this information, we can now modify our procedure. We split our pertur-
bation V into two parts:

V = V (r) + V (n) (1.14)

(superscript r stands for ‘resonant’ and n for ‘non-resonant’) so that the support of
v̂(n) consists only of non-resonant pairs (ξ,θ). Then, instead of (1.12), we solve the
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equation

V (n) + i[H,Ψ] = 0. (1.15)

Next, using (1.11), we express the operator U−1HU in the form −Δ + V (r) + V1,
where V1 is smaller than V . Finally, we repeat the procedure as many times as
necessary.

Remark 1.8. There are two slightly different ways to iterate this procedure. One
consists in writing our transform U in the form U = ei(Φ1+Φ2+··· ). This method is
called a parallel GT in [L+23]. The second method (called a serial GT) looks for
U in the form U = eiΨ1eiΨ2 . . . . These methods are often equivalent, but it may be
more convenient to use either one of them in specific situations. While in the papers
[PS10, PS12, PS16] a parallel GT was used, we will use a mixture of both serial and
parallel GTs in this paper.

After repeating the above procedure as many times as necessary, we will arrive
at the following form of the conjugated operator:

U−1HU =−Δ + a(D) + V (r)
n + V̌n, (1.16)

where V
(r)
n is resonant and V̌n is so small that we can ignore it when computing the

asymptotic expansion of the spectral function. This is usually where the GT method
stops. We are left with having to analyse the operator

G
H :=−Δ + a(D) + G

V,
G
V := V (r)

n .

In particular, we need to compute the spectral function for G
H . Note that if we had

started with a potential, V , which is periodic with (Γ,Γ′) its lattice of periods and
the corresponding dual lattice, then the end perturbation G

V would also be periodic
(with the same lattice of periods, but possibly with more non-zero Fourier coefficients
than V had). We now examine the structure of G

V in the periodic case more carefully.
Since we are trying to compute the spectral function for large ρ, we can concentrate
on points ξ with |ξ| ∼ ρ. Let us look at the following special cases:

I. d = 1. Then |〈ξ,θ〉| = |ξ||θ| and so for 〈ξ,θ〉 to be small, we must have
θ = 0 (recall that |ξ| ∼ ρ and θ ∈ Γ′), so the operator G

V is truly diagonal;
see [Sob06].

II. d= 2. Then G
V does not need to be diagonal. However, the following is true.

Suppose, (ξ1,θ1) and (ξ2,θ2) are two resonance pairs with |ξj | ∼ ρ and θ1
not parallel to θ2. Then ξ1 �= ξ2. This observation allows us to construct a
large family of invariant subspaces for G

H ; a careful analysis of the action of
G
H inside each of these subspaces then enables us to compute the spectral
function; see [PS12].

III. In the case d ≥ 3 we use similar considerations to the case d = 2, only the
decomposition into invariant subspaces is a bit more involved; see [PS12].
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There is one more technical detail related to the ‘classical’ GT that we need
to discuss. When the exponents Ψj are small (their L2 → L2 operator norms tend
to zero as ρ → ∞), the conjugation operator, U , is a small perturbation of the
identity and, in fact, the higher order terms in (1.11) become smaller even without
taking account of possible cancellations in the commutators. This is sometimes called
a weak gauge transform. There are, however, many situations where the Ψj are
not small as operators from L2 → L2. In this case, the only way we can think of
higher order terms in (1.11) as small errors, is by taking advantage of cancellations
in the algebraic structure of successive commutators. Indeed, individual remainder
terms like ΨjHΨj which occur in the higher order commutators [[H,Ψj ],Ψj ] can
be larger than corresponding terms at the previous step, e.g HΨj . When the gauge
transform involves Ψj ’s which are not small, it is sometimes referred to as a strong
gauge transform. (See [L+23] for further discussion of the difference between the two
procedures.)

The concepts of strong and weak gauge transforms can be applied in different
settings. For example, if −Δ is replaced by a non-principally scalar system then
there are typically no additional cancellations in the commutators and hence we can
only take advantage of smallness of Ψj and therefore use a weak gauge transform.
Similarly, if V is replaced by a pseudodifferential perturbation whose symbol has
derivatives in ξ which behave badly, this property will pass to the Ψj and destroy
many cancellations in commutators. On the other hand, if we replace V by a pseu-
dodifferential operator of order m ∈ [1,2), it will not be possible to solve (1.12) with
Ψj having small norm and hence we must take advantage of cancellations in succes-
sive commutators, using a strong gauge transform. In this article, it will be necessary
to use Ψj whose L2 → L2 norms are, in fact, growing quickly as a function of ρ and
hence we will need to take advantage of cancellations in commutators.

We now discuss the modifications needed in this process if d = 1. The crucial
feature which allows us to handle all C∞

b potentials in 1-dimension but does not
occur in higher dimensions is that the denominator in (1.13) can only be small for
|ξ| ∼ ρ when θ is close to 0. We try to apply the GT to M

V – a periodic potential
obtained from a C∞

b potential V by the process of mass transport discussed in the
previous subsection. In fact, we will replace V by M

V with M
V ≡ V on B(0, ρN ′)

and periodic at scale ρN
′ so that (1.8) is satisfied. We will denote this particular

approximation to V as PV . In this article, this is the only ‘mass transport’ of V that
is used. Recall, in particular, that the dual lattice, Γ′, now has elements of size ρ−N ′ .
Because of this, the usual GT method does not suffice and we must modify it in a
way described in the next subsection.

1.1.3 Onion peeling. We now assume that d = 1 and, for a while, that the initial
V is a sum of a smooth periodic function, Vp, and a smooth function with compact
support, Vc, (or, more generally, smooth rapidly decaying function). We periodise
V to PV , a periodic function with very large period of size ρN

′ and proportional
to the period of Vp so that PV = Vp + PVc. A simple calculation shows that if a
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denominator in (1.13), with V = PV , is non-zero, but small (recall that |ξ| ∼ ρ, so
this can happen only if |θ| is small), then the numerator of the same formula is also
small. Indeed, if 0< |θ| and θ is in the support of V̂p, then |θ|> c > 0. On the other
hand, since the Fourier transform of Vc is a smooth, rapidly decaying function, the
Fourier coefficients of PVc are of size ρ−N ′ . We then define the operator Ψ by (1.13)
with v̂ = ̂PV − 〈PV 〉 and

〈PV 〉= lim
R→∞

1
2R

∫ R

−R

PV (r)dr.

Then, 〈PV 〉 is the mean of PV and Ψ belongs to the standard class of pseudo-
differential operators of order 0 and the whole process described in the previous
sub-section can be carried out as a weak GT. We will comment on this case later
(see Remarks 6.8 and 7.7) just to illustrate the main ideas of our approach without
going into many technicalities necessary in the general setting.

Now we consider the general case of V being a pseudodifferential operator with
C∞

b symbol and no further assumptions. Then it can happen that θ is small, while
v̂(θ,ξ) is not, so ψ̂(θ,ξ) obtained using (1.13) is large. This means that we cannot
perform the weak GT, but we may ask whether there is a strong GT process that can
succeed. Perhaps it is the case that, despite Ψ being large, the commutator [V,Ψ] is
small nevertheless? The answer is yes and no. To illustrate this point, we consider
the example V = eiθ1x +eiθ2x. Notice that [V,Ψ] appears in (1.11) and hence we want
this term to be smaller than V itself. We compute

{V,ψ}(x, ξ) =−∂xV (x)∂ξψ(x, ξ) =
i

2ξ2

(

θ1e
iθ1x + θ2e

iθ2x
)(eiθ1x

θ1
+

eiθ2x

θ2

)

=
i

2ξ2

[

e2iθ1x + e2iθ2x +
(θ1

θ2
+

θ2

θ1

)

ei(θ1+θ2)x
]

.

This symbol is indeed smaller than that of V (for |ξ| ∼ ρ) if ρ−2+0 ≤ |θ1|
|θ2| ≤ ρ2−0 but

not if the ratio |θ1|/|θ2| is too small or too large.

Remark 1.9. We are aware that this example is not self-adjoint, but this is the
simplest example to illustrate our point.

This observation suggests the following modification of the basic GT. Given a C∞
b

potential V (or rather a periodic potential PV obtained from V after mass transport),
we first remove the part of P̂V (θ) corresponding to |θ| > 1. (See Lemma 6.7 for a
precise description of this process.) This can be done in one step since the potential
PV is smooth. The result of this, first, step of gauge transform is a pseudodifferential
operator which we refer to as PV0.

Next, we split PV0 according to the size of the frequencies: we let PV+,0 to be
the part of PV0 corresponding to frequencies θ satisfying |θ| ∈ [ρ−1/2,1]. We then
conjugate away PV+,0 using the strong GT. This peels off the ‘outer layer’ PV+,0
(corresponding to the largest frequencies). Since all the frequencies in PV0 are smaller



1464 J. GALKOWSKI ET AL. GAFA

than those of PV+,0, during this process we never encounter the bad case of having to
commute V and Ψ where Ψ has a frequency much smaller than some frequency of V .
Strictly speaking, this process produces new terms with frequency |θ| ≤ ρ−1/2, but
we ignore this for simplicity. We now repeat this argument with PV+,j corresponding
to frequencies θ satisfying |θ| ∈ [ρ−(j+1)/2, ρ−j/2], always peeling away the piece of PV

with largest frequency first. At the end of 4N ′ steps of this process, we are left with
the part of PV with frequencies |θ| ≤ ρ−(4N ′+1)/2. Since we started with potential
that was ρ2N ′ -periodic, in fact, this part of PV does not depend on x and hence is a
Fourier multiplier. (See Lemma 6.9 for a precise description of the iterative step.)

In fact, to peel each layer, we will need to perform a parallel GT with U = eiΨk .
Each step in the parallel transform will decrease the size of P̂V k by a factor ∼ ρ−1.
For instance, to peel the first layer, we find Ψ0 ∼

∑

j Φ(j)
0 , with Φ(j)

0 naturally living
in a certain class of pseudodifferential operators such that

e
−i
∑N

j=1 Φ(j)
0 PHe

i
∑N

j=1 Φ(j)
0 =−Δ + G

VN ,
ĜvN1|θ|≥1 =O(ρ−N−1);

that is, the Fourier transform of G
VN is very small for |θ| ≥ 1. We then iterate this

procedure for each layer, producing Ψk ∼
∑

j Φ(j)
k to remove the kth layer. The reason

for doing this mixed parallel-serial GT procedure is as follows: for each k, the x

derivatives of the symbol of Φ(j)
k , j = 1, . . . are comparable to one another, for k1 �= k2,

and any j1, j2, the x derivatives of the symbols of Φ(j1)
k1

and Φ(j2)
k2

are not comparable.
In particular, as k →∞, Φ(j)

k may become very large for any fixed j. However, the
derivatives of its symbols in x will become correspondingly small. See Fig. 3 for an
illustration of the parallel process of removing a single layer and Fig. 2 for the serial
process of removing successive layers.

We remark that, unfortunately, this process, at least as formulated, cannot be
used if d≥ 2. This is because, in order to start the GT process in the second layer,
we need to have removed all the frequencies in the first (outer) layer. In higher
dimensions the resonant terms have to remain in the outermost layer. Thus, say, the
commutators between Ψ used to remove frequencies inside the second layer and the
resonant part of V from the outermost layer would still be large.

Remark 1.10. Throughout the article, we attempt to present arguments in a way
that is accessible to several communities: microlocal/semiclassical analysts, spectral
geometers, and specialists in periodic and almost periodic operators. Often when
we introduce terminology, we will try to give alternative versions familiar to each
community. In addition, we try to include proofs of results that may be standard
for one community but not the others. One consequence of this is that we first state
our results on the spectral projector for a fixed operator H as the energy, ρ→∞
in Sect. 1.3. We then translate the results into their semiclassical formulation in
Sect. 1.4, where we study families of operators, H(�), depending on a small param-
eter, � ↓ 0. We write our proofs using the language of semiclassical analysis. There
are two reasons why we do this. The first (and main) reason is that in the course
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Figure 2: The effect of the serial gauge transform. Each successive conjugation removes a layer from
the Fourier transform of PV .

Figure 3: The effect of the parallel gauge transform. Each successive conjugation removes most of
the outermost layer from V̂ .
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of the proof, we will often need to quote results from microlocal analysis that exist
in the literature in the semiclassical, but not the high-energy language. The second
reason is that in the semiclassical setting we will be able to work with slightly more
general classes of operators.

1.2 Strategy of the proof. The proof of Theorem 1.1 will proceed in four steps.
Despite the fact that the proof is written in semiclassical language, we discuss it
here using the language and notation of the high energy regime. The first step of the
proof is to use mass transport to replace the potential V by a periodic potential PV

with period R(ρ) ∼ ρN
′ for some large N ′. This is done in Sect. 7.1, with the proof

that periodising (or indeed any small mass transport) makes a small change to the
spectral function done in Sect. 4. Note that it is essential to periodise the potential
before making any microlocal reductions because our theorem about the effect of
mass transport on the spectral function applies only when one of the operators is
differential.

The second step is to replace PV by a pseudodifferential operator P Ṽ whose full
symbol satisfies

P ṽ(x, ξ) = χ(ρ−1|ξ|)PV (x)

for some χ ∈ C∞
c (0,∞), with χ≡ 1 near 1. This is done in Sect. 7.2. Next, we use

the onion peeling gauge transform to replace P Ṽ by a Fourier multiplier, V1, i.e. we
find a unitary operator U so that

U∗(−Δ + P Ṽ )U =−Δ + V1.

The existence of such an onion peeling operator, U , is proved in Sect. 6, and this
gauge transform is applied in Sect. 7.2. It is then easy to compute spectral function
of −Δ+V1 in terms of V1 and it remains to understand what conjugation by U does
to this function; in a sense ‘unpeeling’ the onion. This final step is done in Sect. 7.3.

1.3 Formulation of results on the local density of states. Despite the fact that
most of our results will be proved in dimension 1, some will be proved in all di-
mensions. We therefore introduce notation in general dimension and then emphasize
which results hold for d= 1 and which for d≥ 1.

We now formulate our results on the local density of states precisely.

Definition 1.11. We say that a smooth function, V :Rd →C, is uniformly smoothly
bounded (USB), writing V ∈C∞

b (Rd), if for all k ∈N,

‖V ‖Ck :=
∑

|α|≤k

‖∂α
xV ‖L∞ <∞. (1.17)

We endow C∞
b (Rd) with the topology induced by the seminorms (1.17).
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Definition 1.12. We say that Q : C∞
c (Rd) → D′(Rd) is a differential operator of

order m with uniformly Ck bounded coefficients, and write Q ∈Diffm
k if

[Qu](x) =
∑

|α|≤m

aα(x)Dα
xu(x)

with

‖aα‖Ck <∞, |α| ≤m.

We endow the space Diffm
k (R) with the norm

‖Q‖Diffm
k

=
∑

|α|≤m

‖aα‖Ck . (1.18)

We also denote by Diffm(Rd) = Diffm
∞(Rd) = ∩k Diffm

k (Rd) the space of differential
operators of order m with uniformly smooth bounded coefficients. We endow Diffm

with the topology induced by the seminorms (1.18).

For a formally self-adjoint Q ∈Diff1
k(Rd), consider an operator

H(Q) :=−Δ +Q, (1.19)

acting in L2(Rd). Recall that H(Q) is self-adjoint with domain H2(Rd).

Definition 1.13. For a self-adjoint operator, H , we define

E(H)(ρ) := 1(−∞,ρ2](H)

to be the spectral projector onto the spectrum of H below ρ2. For a subset J ⊂ R,
we also write

E(H;J) = 1J(H)

for the spectral projector onto the spectrum of H(Q) in J . We define the spectral
function for H(Q) to be the integral kernel

E(H(Q))(ρ ; x, y) = 1(−∞,ρ2](H(Q))(x, y). (1.20)

Note that, since −Δ +Q is elliptic, E(H(Q))(ρ ; x, y) is, in fact, a smooth function
of (x, y). (For a proof of smoothness see e.g. [AK67], [Sim82, B.7.1] [Sim84]. In fact,
we also prove this below in (7.4).)

Now, to state most of our main results, we specialise to the case d = 1. Our first
main theorem is a full asymptotic expansion for E(H(Q))(ρ) and its derivatives on
the diagonal.

Theorem 1.14. Let N,M̃ > 0. Then there is K > 0 such that for any bounded subset

Q⊂Diff1
K(R), there is C > 0 such that for all formally self-adjoint Q ∈Q and α,β ∈
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N with α,β ≤ M̃ , there are fj,α,β ∈ L∞(R) such that

∣
∣
∣∂α

x ∂
β
yE(H(Q))(ρ ; x, y)|y=x −

N−1∑

j=0
fj,α,β(x)ρ1+|α|+|β|−j

∣
∣
∣≤Cρ1+|α|+|β|−N . (1.21)

Moreover, f0,0,0 ≡ 1
π , f2�+1,0,0 ≡ 0 for � ≥ 0, fj,0,0(x) can be computed explicitly in

terms of the coefficients of Q and their derivatives at x, f0,α,β ≡ 0 for α + β odd,

and f0,α,β ≡ (−1)β
π(α+β+1) for α+ β even.

Remark 1.15. In fact, we prove Theorem 1.14 (and all further theorems) for N =
K = +∞ in the sense that (1.21) holds for any N with constant CN depending on
N . However, the proofs for finite N,K follow in exactly the same way. To see this, it
is only necessary to recall that pseudodifferential calculi modulo an error of a certain
order, ρ−N , rely on only finitely many derivatives of the symbols involved (see also
Remark 5.13). The reason why finite regularity statements are important for us is
that we need, for each N and M , the map sending Q ∈ Diff1 to the constant, C,
on the right-hand side of (1.21) to be continuous. We use this to derive uniform
asymptotics for all x ∈R from the asymptotics at a fixed point x.

Remark 1.16. We emphasize here that Theorem 1.14, as well as the rest of the
theorems in this paper, is proved only for differential perturbations of the Laplacian.
The reason we are unable to treat pseudodifferential perturbations here is that our
proof uses crucially finite speed of propagation for the wave group corresponding to
H(Q) (see Lemma 4.12). We suspect that the results still hold for pseudodifferential
perturbations but do not pursue this.

Our next theorem is a full asymptotic expansion for E(H(Q))(ρ;x, y) and its
derivatives when x is not too close to y.

Theorem 1.17. Let N,M̃, δ,R > 0. Then there is K > 0 such that for any bounded

subset Q ⊂ Diff1
K(R), there is C > 0 such that for all formally self-adjoint Q ∈ Q

there are g+
j (x, y) and g−j (x, y), j = 0,1, . . . , such that for all α,β ∈N with α,β ≤ M̃

and all (x, y) ∈R, with ρ−1+δ ≤ |x− y| ≤R, we have

∣
∣
∣∂α

x ∂
β
y

(

E(H(Q))(ρ ; x, y)−
N−1∑

j=0
ρ−j
(

eiρ|x−y|g+
j (x, y) + e−iρ|x−y|g−j (x, y)

))∣
∣
∣

≤Cρ−N+|α|+|β||x− y|−N .

Moreover, g±0 (x, y) =± 1
2iπ|x−y| .

One slightly surprising aspect of these results is that they hold no matter what
type the high-energy spectrum H(Q) has: absolutely or singular continuous or even
pure point. An immediate (trivial) corollary of these results is this:

Corollary 1.18. For all N > 0 there is CN > 0 such that for all ρ > 1, if [ρ2, ρ2 +ε]
is a spectral gap of H , then ε < CNρ

−N .
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Another observation, also quite obvious, is that for any ρ we have

sup
x

(

lim
ρ′→ρ+

E(H(Q))(ρ′ ; x,x)− lim
ρ′→ρ−

E(H(Q))(ρ′ ; x,x)
)

<CNρ
−N

for any natural N , uniformly in x. This immediately implies:

Corollary 1.19. For all Q ∈Diff1(R) and any natural N there is a constant CN > 0
such that for all ρ > 1 and any non-trivial eigenfunction u ∈ L2(R) of H(Q) with

eigenvalue ρ2 we have

||u||L∞(R)

||u||L2(R)
≤CNρ

−N . (1.22)

Note that this result holds not just for one particular eigenfunction, but for any
linear combination of eigenfunctions from a thin energy window [ρ2, ρ2 +O(ρ−∞)].

Another (less obvious) corollary of Theorem 1.14 is related to the behaviour of
any solution of the equation

H(Q)u = ρ2u, (1.23)

not just solutions belonging to L2(R). We define, for any differentiable function u,
the (renormalised) energy density of u at x by

ED(u;x) =ED(u;x,ρ) := |u(x)|2 + ρ−2|u′(x)|2. (1.24)

Corollary 1.20. For all Q ∈ Diff1(R) and any natural N there is a constant CN

such that for any non-trivial solution u of (1.23) and any a, b ∈ R, |b− a| ≤ ρN we

have

ED(u; b)
ED(u;a)

< (1 +CNρ
−1). (1.25)

Estimate (1.25) shows that any solution to (1.23) is very close to a plane wave
on extremely large scales.

Corollary 1.20 immediately implies the following result that was already obtained
in [DF86]:

Corollary 1.21. For all Q ∈ Diff1(R) and any natural N there is a constant CN

such that any non-trivial solution u of (1.23) satisfies

lim sup
x→±∞

ln |ED(u;x)|
|x| ≤CNρ

−N . (1.26)

Indeed, it is easy to see from Corollary 1.20 that for any N and any large enough
ρ the energy density cannot grow or decay by more than a factor of 2 over distance
ρN .

As was noticed in [DF86], a trivial consequence of this is the following bound
on the Lyapunov exponents. Consider the situation when Q is a random potential
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sampled from a uniformly C∞
b (R) family of potentials. Then (under standard condi-

tions on the randomness) with probability one the spectrum of H is pure point and
the limit of the LHS of (1.26) exists for each eigenfunction; this limit is called the

Lyapunov exponent. In this case, Corollary 1.21 shows that the Lyapunov exponent
decays faster than any power of ρ as ρ→∞.

One interpretation of these corollaries is that, despite the possibility that the
high-energy spectrum of H may have point or singular continuous components, it
‘wants’ to be absolutely continuous.

We will reformulate Corollaries 1.18 to 1.21 in semiclassical language and prove
them in Sect. 8.

1.4 Formulation of results on the local density of states for semiclassical operators.
Throughout most of this paper, we prefer to work in the semiclassical setting,

studying a family of operators depending on a small parameter � > 0, where one
should think of � as ρ−1. When confusion may arise between a semiclassical object
and its non-semiclassical counterpart, we denote the semiclassical object with bold
letters.

Definition 1.22. We say that Q = Q(�) : C∞
c (Rd) → D′(Rd) is a semiclassical

differential operator of order m with uniformly Ck bounded coefficients and write
Q ∈Diffm

k (Rd) if

[Qu](x) =
∑

|β|≤m

qβ(x;�)(�Dx)βu(x)

and there are qβ,l ∈C∞
b (Rd), l = 0,1, . . . independent of � such that for all N

‖Q‖Diffm
k ,N := sup

0<�<1
�
−N

∑

|α|≤k

∥
∥
∥∂α

x

(

qβ( · ;�)−
N−1∑

l=0
qβ,l(·)�l

)∥
∥
∥
L∞

<∞. (1.27)

We endow Diffm
k with the seminorms (1.27). We also denote by Diffm(Rd) =

∩kDiffm
k (Rd) the space of semiclassical differential operators of order m with uni-

formly smooth bounded coefficients and endow it with the topology induced by the
seminorms (1.27).

Finally, for a self-adjoint Q ∈Diff1
k(Rd) we denote

H(Q) :=−�
2Δ + �Q. (1.28)

Definition 1.23. For ω ∈R, we define

E(H(Q))(ω) := 1(−∞,ω2](H(Q)).

to be the spectral projector onto the spectrum of H(Q) below ω2 and the spectral
function for H(Q) to be its integral kernel

E(H(Q))(ω ; x, y) := 1(−∞,ω2](H(Q))(x, y). (1.29)
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We note that if Q ∈Diff1
k(Rd), then

�
2H(Q) = H(Q) (1.30)

for some Q ∈Diff1
k(Rd) and, thus, E(H(Q))(�−1) = E(H(Q))(1). However, the op-

posite is not necessarily true: there are operators Q ∈Diff1
k that cannot be obtained

using (1.30) from any operator Q ∈ Diff1
k. For instance, H(Q) with Q = �V (x) for

some V ∈C∞
b cannot be written as �2H(Q) for some Q ∈Diff1

k since the zeroth order
term in �

2H(Q) is O(�2). As a result, we can recover our Theorems 1.14 and 1.17 by
putting � = ρ−1, ω = 1 in the following, more general, results about the asymptotic
behaviour of E(H(Q)). The next two theorems assume d= 1.

Theorem 1.24. Let N,M̃, a, b > 0 with a≤ b. Then there is K > 0 such that for any

bounded subsets Q⊂Diff1
K(R), there is C > 0 such that for all formally self-adjoint

Q ∈Q and α,β ∈N with α,β ≤ M̃ , there are fj,α,β ∈C∞
b ([a, b]×R) such that for all

x ∈R, ω ∈ [a, b], we have

∣
∣
∣∂α

x ∂
β
y E(H(Q))(ω ; x, y)|y=x−

N−1∑

j=0
fj,α,β(ω,x)�−1−|α|−|β|+j

∣
∣
∣≤C�

−1−|α|−|β|+N . (1.31)

Moreover, f0,0,0 = ω2

π , f2j+1,0,0 ≡ 0 for j ≥ 0, fj,0,0(x) can be computed explicitly in

terms of the coefficients of Q and its derivatives at x, f0,α,β ≡ 0 for α+ β odd, and

f0,α,β ≡ (−1)βω2

π(α+β+1) for α+ β even.

Theorem 1.25. Let N,M̃, δ,R,a, b > 0 with a ≤ b. Then there is K > 0 such that

for any bounded subsets Q ⊂ Diff1
K(R), there is C > 0 such that for all formally

self-adjoint Q ∈Q there are g+
j (ω,x, y) and g−j (ω,x, y), j = 0,1, . . . such that for all

α,β ∈N with α,β ≤ M̃ and all (x, y) ∈R, with �
1−δ ≤ |x− y| ≤R, ω ∈ [a, b], we have

∣
∣
∣∂α

x ∂
β
y

(

E(H(Q))(ω ; x, y)−
N−1∑

j=0
�
j
(

ei|x−y|ω/�g+
j (ω,x, y) + e−i|x−y|ω/�g−j (ω,x, y)

)∣
∣
∣

≤C�
N−|α|−|β||x− y|−N .

Moreover, g±0 ≡± 1
2iπ|x−y| .

Remark 1.26. In fact, the coefficients in Theorems 1.24 and 1.25 can be differen-
tiated in ω. Note, however, that the error is in general not differentiable in ω. (See
also Lemma 7.14.)

Remark 1.27. Given Theorems 1.24 and 1.25, one might wonder whether it is
possible to write a single oscillatory integral that is equal to E(H(Q))(ω,x, y) modulo
O(�∞) for all (x, y) in any compact set. Unfortunately, we do not see how this is
possible using our current methods. See Remark 7.13 for further explanation.
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1.5 Comparison of spectral functions with large perturbations at infinity. We
now discuss results that hold in any dimension d≥ 1. In Sect. 4, we show that, for
differential operators, Q, acting on C∞(Rd), one can make large perturbations of
H(Q) ‘at infinity’ without modifying the spectral function of H(Q) substantially.
Indeed, one can even make changes to H(Q) which completely change the nature
of the spectrum of H(Q) but, nevertheless, result in small changes to the spectral
function in compact sets. We postpone the statement of the precise results to Sect. 4
and instead give a simpler version of these results here.

Let Q ∈Diff0(Rd) be formally self-adjoint and put

H0 := H(Q) =−�
2Δ + �q(x;�).

Let also

H1 :=−�
2Δ + �q̃(x;�)). (1.32)

We assume that q̃ ≥−C for some C > 0, that q̃ ∈C∞(Rd), and that H1 is essentially
self-adjoint. Note that q̃ need not be bounded above and so is not necessarily C∞

b .
In our next theorem, we compare the spectral function of H0 with that of H1 under
certain closeness assumptions on q and q̃. (See Example 1.31.)

Let x ∈R
d, 0< a< b, Z > 0 and define

Tmax(�, x, a, b,Z)

:= sup
{

T > 0 : sup
ω∈[a,b]

|E(H1)(ω;x,x)−E(H1)(ω− �T−1;x,x)| ≤ Z

T
�

1−d
}

.

Remark 1.28. We use the notation Tmax because it determines the minimal scale
at which we can smooth the spectral projector while still maintaining control on
the error and, hence, will determine the maximal time for which we use the wave
propagator in the proof of Theorem 1.29 below.

Let B(0,R) denote the ball of radius R in R
d centered at 0 and let X ∈

C∞
c (B(0,2)) with X≡ 1 on B(0,1). Then put XR(x) :=X(R−1x). Define also

δk(R;�) := �
−1‖(H0 −H1)XR‖H−k

�
→H−k−1

�

+ �
−1‖(H0 −H1)XR‖Hk

�
→Hk−1

�

.

Then a simple consequence of Proposition 4.9 is the following theorem.

Theorem 1.29. Let d ≥ 1, Z > 0, 0 < a < b and suppose that H0 and H1 are as

above. There is k > 0 such that for any ε > 0, R0 > 0, there are C > 0 and �0 > 0
such that for 0 < � < �0, R(�) > R0 + 2, x ∈ B(0,R0), ω ∈ [a + ε, b − ε], T (�) <
min(Tmax(�, x, a, b,Z),�−1(R(�)−R0 − 2)/2), we have

∣
∣
∣E(H1)(ω;x,x)−E(H0)(ω;x,x)

∣
∣
∣≤C

(
�

1−d

T (�)
+ �

−dT (�)δk(R(�);�)
)

. (1.33)
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Remark 1.30. Below, to make Theorem 1.29 useful, we will find H1, T (�), and R(�)
so that T (�) ≥ �

−N but T (�)δk(R(�);�) ≤ �
N so that the right hand side of (1.33)

is very small.

In fact, an analogue of Theorem 1.29 holds much more generally and we can, for
example, make H1 a pseudodifferential operator or even replace the infinite end of
R

d by a boundary lying sufficiently far away without changing E(H0) substantially.
We now give a few examples where we can effectively apply Theorem 1.29.

Example 1.31. (1) H1 = H(Q+ δ(�)[R(�)]−2|x|2). Here, δk(R(�);�)≤Cδ(�). No-
tice that, despite the fact that H1 has discrete spectrum, the kernel of its spectral
projector is close to that of H0 in compact sets.

(2) Assume that Q = q(x), with. Let H1 = H(Mq), where
∣
∣
∣∂α

x (q−Mq)(x)
∣
∣
∣≤Cαδ(�) for |x| ≤R(�).

(3) Assume that Q = q(x). Our aim is to make Q periodic. To do this, we introduce
Pq ∈C∞

b (Rd), such that Pq is periodic and Pq(x) = q(x) for x ∈B(0,2R(�)). We
then define H1 = H(Pq). This is, in fact, the type of modification we make use of
to prove our main theorems. In this case, δk(R(�);�) = 0 and we will see below
that Tmax(�, x, a, b) ≥ cN�

−N for any N and hence, provided R(�) ≤ C�
−N , we

may take T (�)≥ c�−N so that the right-hand side of (1.33) is small.

Remark 1.32. If q̂ a measure, and the 1-Wasserstein distance (see e.g. [Vil09,
Chap. 6]) between ̂∂α

xq and ∂̂α
x
Mq is bounded by CαR(�)−1δ(�), then one can check

that the conditions in (2) are satisfied. This reformulation in terms of measures is
the reason why we (admittedly somewhat loosely) call MQ the mass transport of Q.

Remark 1.33. In fact, one can check a posteriori from Theorem 1.24 that for all of
the above cases in 1 dimension and x ∈ B(0,R0), we have, for any N > 0, there is
Z > 0 such that Tmax(�, x, a, b,Z) �N min(R(�),�−N ). Indeed Theorem 1.24 implies
that

E(H(Q))(ω;x,x)−E(H(Q))(ω− �T−1;x,x)

≤
N∑

j=0
(fj,0,0(ω,x)− fj,0,0(ω− �T−1, x))�j−1 +CN�

N

≤ CN

T
+CN�

N .

Outline of the paper. Section 2 introduces some notation and conventions used
throughout the paper. Sect. 3 then introduces some technical lemmata used in the
proof. Next, Sect. 4 proves that changing a differential operator outside a large ball
has a small effect on the spectral function at the origin, in particular proving Theo-
rem 1.29. In Sect. 5, we review the standard notions of semiclassical pseudodifferen-
tial operators and semiclassical Sobolev spaces. We also introduce and collect some
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facts about an anisotropic pseudodifferential calculus which will be used in the gauge
transform procedure. Section 6 implements the parallel-serial gauge transform via
a layer peeling argument, and Sect. 7 combines the results of the gauge transform
and modification of the potential outside a large ball to compute the asymptotic
formulae for the spectral function; proving Theorems 1.24 and 1.25. Section 8 then
extracts various consequences of our main theorem on generalized eigenfunctions of
Schrödinger operators, proving the semiclassical analogues of Corollaries 1.18 to 1.21.
Finally, Appendix A computes the first term of the asymptotic expansion for the
spectral function.

2 Basic notation

Before proceeding to the main body of the paper, we introduce some notation that
will be used throughout the text.

2.1 Spaces of smooth functions. For A⊂R
d, {0} ⊂B ⊂C, we use the notation

C∞(A;B) := {u :Rd →C |u is smooth, suppu⊂A, u(z) ∈B for all z ∈R
d},

C∞
c (A;B) := {u :Rd →C |u is smooth, suppu � A, u(z) ∈B for all z ∈R

d}.

When B =C, we sometimes write C∞(A;C) and C∞
c (A;C) as, respectively, C∞(A)

and C∞
c (A). Furthermore, if A=R

d, we write C∞(Rd) =C∞ and C∞
c (Rd) =C∞

c .
Finally, we write S (Rd) for the space of Schwartz functions and S ′(Rd) for its

dual space.
Below, we will allow functions in the spaces C∞

c and S to depend on the small
parameter �. In this case, we will assume that the seminorms of these functions are
uniformly bounded in � and, in the case of C∞

c , that the union of their supports is
bounded.

2.2 Fourier transforms. For f ∈S ′, we recall that

f̂(ξ) :=
∫

e−i〈x,ξ〉f(x)dx, and f̌(x) :=
1

(2π)d
∫

ei〈x,ξ〉f(ξ)dξ (2.1)

denote the Fourier transform of f and the inverse Fourier transform of f respectively.

2.3 Semiclassical Sobolev spaces. Next, we define the semiclassically weighted
Sobolev spaces, Hs

�
(Rd) as the closure of S (Rd) with respect to the norm

‖u‖2
Hs

�

:=
1

(2π�)d
∫

|û(ξ/�)|2〈ξ〉2sdξ, 〈ξ〉 := (1 + |ξ|2)1/2.
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2.4 Big O notation. For a function f = f(�) : (0,1]→R+, a family of topological
vector spaces X =X(�) with topology induced by the seminorms {‖ ·‖αX(�)}αX∈A(�),
and u = u(�) : (0,1]→X we write u =O(f(�))X when for every αX ∈A, there exists
C > 0 such that

‖u‖αX(�) ≤Cf(�), 0< �≤ 1.

In a similar way, for two families of Banach spaces X = X(�), Y = Y (�), and
A = A(�) : X(�) → Y (�), we write A = O(f(�))X→Y when A = O(f(�))B(X,Y ). Here
B(X,Y ) denotes the Banach space of bounded operators from X to Y . We write
u =O(�∞)X if u =O(�N )X for any N > 0.

2.5 Cutoffs. Throughout the text, we require a variety of smooth cutoff func-
tions. Although we do not wish to fix these cutoffs once and for all, we introduce
notation that indicates the role of each cutoff function.
X Cutoffs in the physical space (where x lives)
Ξ Cutoffs in the momentum space (where ξ lives)
P Cutoffs in the phase space (where (x, ξ) lives)
Φ Compactly supported cutoffs in energy
ν Small scale (� �) cutoffs in energy, usually with compact Fourier support
Θ Cutoffs in the dual to the physical space (usually with variable θ)
f Other types of auxilliary cutoffs

When using these cutoffs in our analysis, we will not distinguish between the
cutoff and the operator of multiplication by the cutoff. For example, we will write X

for both a function X ∈ C∞(Rd) and for the operator of multiplication by X given
by [X(u)](x) :=X(x)u(x).

2.6 Conventions on a discrete valued large parameter. Throughout the text,
we work with functions of a small parameter � ∈ (0,1]. We will also want a discrete
valued large parameter which plays the role of the scale of �−1. To this end, we let

μn := 2n (2.2)

and work with functions n = n(�) : (0,1]→N such that

1
1024

�
−1 ≤ μn(�) ≤ 1024�−1. (2.3)

In other words,

−10≤ n(�) + log2 �≤ 10.

The main ingredient in the proof of Theorem 1.24 (and similarlty for Theorem 1.25)
is to establish that there are f̃j,α,β : [a, b]×R×N→ R such that for any n(�) satis-
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fying (2.3), we have

∣
∣
∣∂α

x ∂
β
y E(H(Q))(ω ; x, y)|y=x −

N−1∑

j=0
f̃j,α,β(ω,x,n(�))�−1−|α|−|β|+j

∣
∣
∣≤C�

−1−|α|−|β|+N .

Since, for each � ∈ (0,1] small enough, we have several possible choices of n(�), we
will then be able to use gluing arguments from [PS16] to establish Theorem 1.24.

Our goal is to obtain a full, polyhomogenous expansion of the spectral function
in powers of �. The reason we do not directly work with μ = �

−1 instead of μn(�) is
that, with the former choice, many of the operations we perform would not preserve
polyhomogeneity in �; for example, the decomposition used in the onion peeling
argument does not preserve polyhomogeneity if μ= �

−1. We would like to emphasise
that choosing μ= �

−1 still results in a formula for the spectral projector, it is just not
clear that this formula has an expansion in powers of �. Our method for recovering
polyhomogeneity is inspired by that in [PS09] and is based on the idea that this
decomposition should not depend on � for � in some small interval and hence, since
we have several choices of the decomposition, we may glue the asymptotics in each
interval. The reader familiar with [PS09, PS12, PS16] should notice that μn here
plays the same role as ρn there.

3 Abstract technical estimates

In this section we present technical estimates inspired by [PS16] which will be used
below.

Before proceeding to these estimates, we discuss the natural requirements for
the spectral function of two operators to be close. First, notice that closeness of
two operators, H1 and H2 in any norm does not suffice for the spectral projectors,
E(Hj)(λ) to be close to each other. Indeed, an eigenvalue of H1 may be perturbed
out of (−∞, λ] and hence, a small perturbation may cause a large change in the
spectral projector. In addition to closeness of H1 and H2, we use the fact that

E(H1)(λ,x, y) = 〈E(H1)(λ)δx, δy〉.

In particular, an important ingredient in the proof is the smallness of

E(H2; (λ− ι, λ+ ι])δx =E(H2)(λ+ ι, x,x)−E(H2)(λ− ι, x,x) (3.1)

for small ι.
We first recall [PS16, Lemma 4.2] that states that if two operators are close,

then one can control the difference between their spectral projectors in the strong
topology.

Lemma 3.1. Let H be a Hilbert space, a ∈R, s≥ 0, and H1,H2 be self-adjoint oper-

ators on H with Hj ≥ a for j = 1,2. Define

ε := ‖(H1 −H2)(H2 + (1− a)I)s‖.
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Then, if ε < 1, for any f ∈H, λ≥ a+ 1, and ι > 0, we have

‖[E(H1)(
√
λ)−E(H2)(

√
λ)]f‖H ≤ 2‖E(H2; [λ− ι, λ+ ι])f‖H

+
2πε
ι

(

‖E(H2)(
√
λ)f‖H + ‖(H2 + (1− a)I)−sf‖H

)

.

We will actually need a slightly stronger version of Lemma 3.1 which, heuristically,
says that if two operators are close near a particular energy level, then their spectral
projectors are close in the strong topology near that energy level (see Lemma 3.3).
First, we prove the following lemma.

Lemma 3.2. Let H be a Hilbert space, a ∈R, s≥ 0, J ⊂R an interval and H1,H2 be

self-adjoint operators on H with Hj ≥ a for j = 1,2. Define J− := Jc ∩ (−∞, inf J ]
and J+ := Jc ∩ [supJ,∞), and

ε1 := ‖E(H1;J−)(H1 −H2)E(H2;J+)(H2 + (1− a)I)s‖,

ε2 := ‖(H1 −H2)E(H2;J)(H2 + (1− a)I)s‖,

ε3 := ‖E(H1;J)(H1 −H2)(H2 + (1− a)I)s‖.

(3.2)

Suppose that λ− a≥ 1 and [λ− ι, λ+ ι]⊂ J . Then,

‖E(H1; (−∞, λ− ι])E(H2; [λ+ ι;∞))(H2 − a+ 1)s‖ ≤ π(ε1 + ε2 + ε3)
ι

.

Proof. We follow the proof of [PS16, Lemma 4.1]. Assume that

φ=E(H1; (−∞, λ− ι])φ,

(H2 − a+ 1)sψ =E(H2; [λ+ ι,∞))(H2 − a+ 1)sψ,
(3.3)

with ‖φ‖ = ‖ψ‖ = 1. Then we need to establish |(φ, (H2 − a + 1)sψ)| ≤ π(ε1+ε2+ε3)
ι .

Following the algebra in [PS16, Lemma 4.1], we have

(φ, (Hs − a+ 1)sψ)

=
∫

γ
〈(H1 − z)−1φ, (H2 − a+ 1)sψ〉dz

=
∫

γ
〈φ, (H1 − z̄)−1(H2 − a+ 1)sψ〉dz

=
∫

γ
〈φ, (H2 − z̄)−1 + (H1 − z̄)−1(H1 −H2)(H2 − z̄)−1(H2 − a+ 1)sψ〉dz

=
∫

γ
〈φ, (H1 − z̄)−1(H1 −H2)(H2 − z̄)−1(H2 − a+ 1)sψ〉dz

=
∫

γ
((H1 − z)−1φ, (H1 −H2)(H2 − a+ 1)s(H2 − z̄)−1ψ〉dz
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where γ = γN is the closed rectangular contour in the complex plane symmetric
about R and intersecting R at λ and −N where N >−a is large. Note that in the
next to last line we have used that with γ̄ the contour conjugate to γ,

∫

γ̄
〈(H2 − z̄)−1E((λ+ ι,∞];H2)dz̄ = 0.

Now,

(H1 −H2)(H2 − a+ 1)s

=E(H1;J)(H1−H2)(H2 +(1−a)I)s+E(H1;Jc)(H1−H2)E(H2;Jc)(H2 +(1−a)I)s

+E(H1;Jc)(H1 −H2)E(H2;J)(H2 + (1− a)I)s.

Therefore, we need only to estimate the three terms

I :=
∣
∣
∣

∫

γ
((H1 − z)−1φ,E(H1;Jc)(H1 −H2)E(H2;Jc)(H2 − a+ 1)s(H2 − z̄)−1ψ)dz

∣
∣
∣,

II :=
∣
∣
∣

∫

γ
((H1 − z)−1φ,E(H1;J)(H1 −H2)(H2 − a+ 1)s(H2 − z̄)−1ψ)dz

∣
∣
∣,

III :=
∣
∣
∣

∫

γ
((H1 − z)−1φ,E(H1;Jc)(H1 −H2)E(H2;J)(H2 − a+ 1)s(H2 − z̄)−1ψ)dz

∣
∣
∣.

For I , we observe using (3.3) that

I =
∣
∣
∣

∫

γ
((H1 − z)−1φ,E(H1;J−)(H1 −H2)E(H2;J+)(H2 − a+ 1)s(H2 − z̄)−1ψ)dz

∣
∣
∣

≤ ε1

(∫

γ
‖(H1 − z)−1φ‖2|dz|

)1/2(∫

γ
‖(H2 − z)−1ψ‖2|dz|

)1/2
≤ πε1

ι
.

Similarly, we estimate

II + III ≤ π(ε2 + ε3)
ι

to finish the proof. �

The proof of the next lemma is identical to that of [PS16, Lemma 4.2] after
replacing references to [PS16, Lemma 4.1] with references to Lemma 3.2.

Lemma 3.3. Let H be a Hilbert space, a ∈ R, s ≥ 0, and H1,H2 be self-adjoint

operators on H with Hj ≥ a for j = 1,2. Define ε1, ε2, ε3 as in (3.2). Then, if

ε1 + ε2 + ε3 < 1, for any f ∈H, λ≥ a+ 1, and ι > 0,

‖[E(H1)(
√
λ)−E(H2)(

√
λ)]f‖H ≤ 2‖E(H2; [λ− ι, λ+ ι])f‖H

+
2π(ε1 + ε2 + ε3)

ι

(

‖E(H2)(
√
λ)f‖H + ‖(H2 + (1− a)I)−sf‖H

)

. (3.4)
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Remark 3.4. Given an operator H1 our strategy will be to find an operator H2 so
that:

– H1 is close to H2 in some sense
– (3.1) is small and hence the first term on the right-hand side of (3.4) is small.

In fact, the smallness of (3.1) will be guaranteed by the existence of a full asymptotic
expansion for the spectral function of H2.

We now state a small generalisation of [PS16, Lemma 3.6] which will be used
to glue asymptotic expansions that work in closed intervals of � into a uniform
asymptotic expansion for � ∈ (0,1]. While the proof is almost identical to [PS16,
Lemma 3.6], we present it here in Appendix B for completeness and to accommodate
the semi-classical notations from the present text.

Lemma 3.5 (The gluing lemma). Let p, ι > 0, ξ1, ξ2 ∈ R with ξ1 �= ξ2, and suppose

that for any M > 0, there is N > 0 such that

f(�) = e
i
�
ξ1

N∑

j=0
aj,n(�)�

jp + e
i
�
ξ2

N∑

j=0
bj,n(�)�

jp +O(μ−M
n(�)), (3.5)

for

−10≤ n(�) + log2 �≤ 10,

where aj,n, bj,n ∈C, j = 0,1, . . . , and

|aj,n|+ |bj,n| ≤Cjμ
jp(1−ι)
n . (3.6)

Then there are a′j , b
′
j ∈C, j = 0,1, . . . and for any M > 0 there is N ′ > 0 such that

f(�) = e
i
�
ξ1

N ′
∑

j=0
a′j�

jp + e
i
�
ξ2

N ′
∑

j=0
b′j�

jp +O(�M ). (3.7)

If (3.5) is uniform on a compact subset of 0 < |ξ1 − ξ2|<∞ then (3.7) is uniform

on the same set.

4 Comparison of spectral functions

In this section, we show that one can make large perturbations of the potential
outside a very large ball without modifying the local density of states for H(Q)
substantially.

In our applications, Q ∈Diff1(Rd) and the change we make to H(Q) replaces Q
by a differential operator with periodic coefficients, PQ, and hence does not change
the domain of H(Q). However, we will see below that the fact that waves for H(Q)
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travel at finite speed implies that any reasonable perturbation of H(Q) made outside
of a large ball affects the local density of states for H(Q) only mildly.

We now set up some abstract assumptions with which we work throughout this
section. Let M be a smooth (potentially non-compact) manifold without boundary
with a Riemannian metric g and

H0 :=−�
2Δg + �Q :D(H0)→ L2(M ), D(H0)⊂ L2(M ) (4.1)

with Q ∈Diff1(M ) formally self-adjoint.
We assume that for all s ∈R, there is Cs > 0 such that

‖Q‖Hs
�
→Hs−1

�

≤Cs, 0< �< 1. (4.2)

Definition 4.1. We say that a family of functions X = {X(�)}0<�<1 with X(�) ∈
C∞(M ) is semiclassical USB and write X ∈C∞

b (M ) if for all s

sup
0<�<1

‖X(�)‖Hs
�
(M )→Hs

�
(M ) <∞.

We now set up an abstract scheme which will allow us to compare the spectral
projector of an operator with that of H0.

Definition 4.2. Let x0 ∈M and a decreasing, positive function R =R(�) (usually,
lim�→0+ R(�) = ∞). Let BM (x0,R(�)) be the metric ball of radius R(�) around x0.
We say that a family of expanding box Hilbert spaces is

H =H(�) := L2(BM (x0,R(�)))⊕H∞

for some family of Hilbert spaces H∞ = H∞(�). We call H∞ the exterior Hilbert
space.

Remark 4.3. In all of the items from Example 1.31, H∞ = L2(Rd \B(0,R(�))).

Definition 4.4. We write 1BM (x0,R(�)) : H→ L2(BM (x0,R(h))) for the orthogonal
projection and, for X ∈ C∞

b (M ) with suppX ⊂ BM (x0,R(�)) and (u1, u2) ∈ H, we
write

Xu = (Xu1,0),

and identify Xu with an element of L2(BM (x0,R(�))).

Definition 4.5. Let H be an expanding box Hilbert space with exterior Hilbert
space H∞(�). Let H1(�) : H(�) →H(�) be a family of unbounded, self-adjoint op-
erators with dense domain D�. For s≥ 0, we let Ds

�
be the domain of Hs

1 with the
norm

‖u‖Ds
�

:= ‖u‖H + ‖Hs
1u‖H

and for s < 0, we let Ds
�

:= (D−s
�

)∗ with the implied norm. We say H1 is a family of
expanding box operators for H0 if:
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– H1 ≥−CH1�.
– 1BM (x0,R(h))D� ⊂H2

�
(BM (x0,R(�))).

– For any X,X+ ∈ C∞
b (M ), with suppX+ ⊂ BM (x0,R(�)) and supp(1 − X+) ∩

suppX = ∅ the following holds. For all s > 0 there is CX,s > 0 such that

‖XH1(1−X+)‖D−s
�

→Hs
�

+ ‖(1−X+)H1X‖H−s
�

→Ds
�

≤CX,s�
s,

0 < �< 1. (4.3)

– To guarantee that the spectral functions for H0 and H1 are close near x0, we
similarly assume that for all X,X+, and s as above there are CX,s > 0 and
δ̃ = δ̃(�) : (0,1]→ [0,1] such that

‖(H0 −H1)X‖Hs
�
→D(s−1)/2

�

≤CX,s�δ̃(�),

‖Xu‖Hs
�
≤CX,s‖u‖Ds/2

�

, u ∈Ds/2
�

,

‖Xu‖Ds/2
�

≤CX,s‖X+u‖Hs
�
, u ∈Hs

�
(M ),

for all 0< �< 1. (4.4)

Remark 4.6. Since our operators, H1, will be close to H0 on L2(BM (x0,R(�))),
we think of the subspace H∞ as the part of H ‘at infinity’.

Remark 4.7. The function δ̃(�) controls how closely H1 approximates H0 on the
ball of radius R(�) around x0. Similarly, we will later choose a function T = T (�) :
(0,1] → (0,∞) which controls the length of time we will propagate waves in our
arguments.

Remark 4.8. The language used in defining expanding box operators is inspired by
the black box formalism from [SZ91], but notice that in our setting the ‘black box’
is exterior rather than interior.

We now provide some examples of H1 when H0 = H(Q) for some Q ∈C∞
b (Rd).

Examples (1) H1 = H(Q1) for Q1 a 100R(h)Zd-periodic function with Q1(x) =
Q(x) for x ∈ B(0,R(h)). In this case, δ̃(�) = 0, H = L2(Rd). This is the trans-
formation we will use to prove Theorems 1.24 and 1.25.

(2) H1 is the Dirichlet realization of H0 on B(0,R(h) + 1) i.e. H1 = H(Q), H =
L2(B(0,R(h) + 1)), D� =H1

0 (B(0,R(h) + 1))∩H2(B(0,R(h) + 1)).
(3) H1 = H(Q+ δ̃(�)R(�)−2|x|2) with H = L2(Rd).

Notice that Examples 2 and 3 both have discrete spectrum, while H0 may have
pure a.c. spectrum. Nevertheless, our next proposition shows that one can approxi-
mate the spectral projector of H0 using that of H1 (or vice versa).

In this section we prove the following proposition which allows us to compare the
spectral functions for H0 and H1.

Proposition 4.9. Let x, y ∈ BM (x0,R0) ⊂ M , 0 < a < b, R(�) > 0, δ̃(�) ≥ 0, a
2 >

ε> 0, ε≤ T (�)≤ (R(�)−R0−2)/2, CH1 > 0, Cs > 0 and CX,s > 0. Then for all C1 >

0 there is C0 > 0 such that the following holds. Suppose H0 satisfies (4.1), (4.2), that
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H1 is a family of expanding box operators for H0 and for 0< �< 1, ω ∈ [a− ε, b+ ε],
and λ ∈ [−ε, ε],

∣
∣
∣E(H1)(ω + λ;x,x)−E(H1)(ω;x,x)

∣
∣
∣≤C1

�
1−d

T (�)
(1 + |�−1T (�)λ|). (4.5)

Then for ω ∈ [a, b] and 0< �< 1,

|E(H0)(ω;x,x)−E(H1)(ω;x,x)| ≤ C0�
1−d

T (�)

(

1 + �
−1δ̃(�)T 2(�)

)

. (4.6)

If, in addition, for all α,β ∈N
d with |α| ≤ k, |β| ≤ l,

∣
∣
∣(�∂x)α(�∂y)β

(

E(H1)(ω + λ;x, y)−E(H1)(ω;x, y)
)∣
∣
∣

≤C1
�

1−d

T (�)
(1 + |�−1T (�)λ|), (4.7)

then for all α,β ∈N
d with |α| ≤ k, |β| ≤ l,

∣
∣
∣(�∂x)α(�∂y)β

(

E(H0)(ω;x, y)−E(H1)(ω;x, y)
)

|

≤ C0�
1−d

T (�)

(

1 + �
−1δ̃(�)T 2(�)

)

. (4.8)

Remark 4.10. Observe that the assumption (4.5) is precisely the same as the as-
sumption that (3.1) is small and hence that the first term on the right-hand side
of (3.4) is small.

Proposition 4.9 immediately implies Theorem 1.29. Let Q ∈ Diff0, H0 = H(Q),
and H1 as in (1.32). Then (4.4) automatically holds and H1 ≥ −C� as required.
Next, observe that Theorem 1.29 is trivial when δ̃k(R(�);�)T (�)� 1 or |T (�)| � �.
Therefore, we will assume that δ̃k ≤ C�

−1 and T (�) ≥ c�. In particular, for k large
enough depending on s, this implies that the assumptions in Definition 4.5 hold with
R(�) replaced by 1

2R(�). It only remains to check that (4.5) holds for T ≤ Tmax(�),
ω ∈ [a+ 2ε

3 , b−
2ε
3 ] and λ ∈ [− ε

3 ,
ε
3 ].

To see this, observe that E(H1)(x,x,ω) is monotone increasing in ω. Therefore,
for λ≥ 0, T (�)< Tmax(�, x, a, b,Z), ω ∈ [a+ 2ε

3 , b−
2ε
3 ] and λ ∈ [− ε

3 ,
ε
3 ], we have

0≤E(H1)(x,x,ω + λ)−E(H1)(x,x,ω)

≤
�Tλ�−1�
∑

j=1
E(H1)(x,x,ω + j�/T (�))−E(H1)(x,x,ω + (j − 1)�/T (�))

≤
�Tλ�−1�
∑

j=1
C�

1−d/T (�)≤C�Tλ�−1��1−d/T (�)≤C(1 + λT�−1)�1−d/T (�),
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as claimed. A similar argument now applies for λ≤ 0 and this concludes the proof
of (4.5) and hence also of Theorem 1.29.

We now outline the strategy for proving Proposition 4.9. The proof will use the
‘wave’ approach to spectral asymptotics. That is, we will study certain smoothed
versions of the spectral projector. Using the Fourier transform, one can write these
smoothed spectral projectors in terms of the half-wave propagator for Hj . In order
to take advantage of the finite speed of propagation for cos(t

√
H0/�), we will, at

the cost of an acceptable error, rewrite these smoothed spectral projectors in terms
of the cosine propagator (§4.3) and use the finite speed of propagation property for
cos(t

√
H0/�) to show that cos(t

√
H0/�) and cos(t

√
H1/�) are close in an appropriate

sense (§4.1). This will show that the smoothed projectors for H0 and H1 are close.
Once this is done, we use standard Tauberian lemmas with minor modifications
(§4.2) to show that the unsmoothed spectral projectors are close to their smoothed
versions. The proof of Proposition 4.9 is implemented in §4.4.

Before proceeding with the proof, we show that we can reduce the problem to the
case Hj ≥ c > 0. First, observe that, for ι small enough,

E
(

Hj + ι
)

(ω) = E(Hj)
(√

ω2 − ι
)

. (4.9)

Therefore, taking 0 < ι� ε, (4.5) and (4.7) imply the corresponding estimates for
H1 + ι when λ ∈ [−ε, ε] and

√
ω2 − ι ∈ [a − ε, b + ε]. Fix such an ι. Then, since

Hj ≥−C�, we see that �< �0(ι) implies Hj ≥ ι
2 . Using (4.9) again, we see that (4.6)

and (4.8) with Hj replaced by Hj + ι and
√
ω2 − ι ∈ [a, b] imply the estimates (4.6)

and (4.8). We thus are allowed to assume from now on that Hj ≥ c > 0.

4.1 Basic properties of the wave group. To begin with, we need a lemma com-
paring the solution of two wave problems: one with a local potential Q, and the other
with an, in principle pseudodifferential, potential that agrees with Q on a large ball.
For this, we recall the standard finite speed of propagation lemma and prove it for
the sake of completeness.

Lemma 4.11. Let H0 satisfy (4.1), let R0 > 0, and suppose u0 ∈H1(M ), u1 ∈ L2(M )
with suppui ∩BM (x0,R0) = ∅. Let u(t, x) be the unique solution of

(�2∂2
t + H0)u = 0, u|t=0 = u0, ut|t=0 = u1.

Then, u(t, x)≡ 0 on BM (x0,R0 − |t|). In particular,

cos(t
√

H0)u0 =
sin(t

√
H0)√

H0
u1 = 0, on BM (x0,R0 − |t|).

Proof. Let Kt :=BM (x0,R0 − |t|) and define

E(t) :=
1
2

(∫

Kt

|�∂tu(t, x)|2 + |�du(t, x)|2g + |u(t, x)|2dvolg(x)
)

≥ 0,
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where the 1-form du is the exterior derivative of u. Then, for |t|<R0,

�∂tE(t)

=�
(∫

Kt

(

�
2∂2

t u�∂tu+ u�∂tu+ 〈�du,�2d∂tu〉g
)

dvolg(x)
)

− �

2

∫

∂Kt

(

|�∂tu|2 + |�du|2g + |u|2
)

dS(x)

=�
(

−
∫

Kt

(

(Q0 − 1)u�∂tu
)

dvolg(x)
)

− �

2

∫

∂Kt

(

|�∂tu|2 + |�du|2g − 2�(�∂νu�∂tu) + |u|2
)

dS(x)

≤�
(

−
∫

Kt

(

(Q0 − 1)u�∂tu
)

dvolg(x)
)

≤CE(t).

Here, we have used Green’s formula on the third term in the first line to obtain the
second equality. Therefore, since E(0) = 0, Grönwall’s inequality implies E(t)≡ 0 for
|t|<R0 and, in particular, u≡ 0 on Kt. �

With Lemma 4.11 in place, we can now compare the wave problem for H0 with
that for H1.

Lemma 4.12. Suppose that H0 satisfies (4.1) and (4.2) and that H1 is a family of

expanding box operators for H0. Then for u ∈H1
�
(BM (x0,R0)) and |t| ≤R(�)−R0−

1 we have
∥
∥
∥

[

cos
(

t
√

H0/�
)

− cos
(

t
√

H1/�
)]

u
∥
∥
∥
D1/2

�

≤Cδ̃|t|‖u‖H1
�

.

Remark 4.13. Our proof of Lemma 4.12 uses crucially finite speed of propagation
for H0. Since finite speed of propagation only holds for differential operators H0,
we are unable to prove Lemma 4.12 for e.g. pseudodifferential perturbations of the
Laplacian.

Proof. Let wj = cos
(

t
√

Hj/�
)

u, j = 0,1. Then, since there is C > 0, depending only
on C1,CX,1, (where CX,1 and C1 are defined in (4.4) and (4.2)) such that

1
C ‖v‖H1

�

≤ (‖
√

H0v‖L2 + ‖v‖L2) ≤C‖v‖H1
�

,

we have

‖w0(t)‖H1
�

≤C‖u‖H1
�

, ‖w1(t)‖D1/2
�

≤C‖u‖D1/2
�

.

In order to compare wj , j = 0,1, we claim w0 ∈ H. Indeed, by Lemma 4.11
cos
(

t
√

H0/�
)

has unit speed of propagation and, in particular, for f ∈C∞(R; [0,1]),
with f ≡ 1 on (−∞,R0), suppf ⊂ (−∞,R0 + 1

2), we have

f(dist(x0, x)− |t|)w0 =w0.
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Thus, w0 ∈ H, since |t| ≤ R−R0 − 1 implies suppf(dist(x0, ·) − |t|) ⊂ BM (x0,R−
1
2).

We may then observe that

(�2∂2
t + H1)(w1 −w0) = (H0 −H1)f(dist(x0, x)− |t|)w0,

(w1 −w0)|t=0 = ∂t(w1 −w0)|t=0 = 0.

Using again that |t| ≤ R − R0 − 1 implies suppf(dist(x0, ·) − |t|) ⊂ BM (x0,R − 1
2)

and letting X ∈C∞
b (M ) with X≡ 1 on BM (x0,R− 1

2) and suppX⊂BM (x0,R), we
have, by (4.4),

‖(H0 −H1)f(dist(x0, x)− |t|)w0‖H = ‖(H0 −H1)Xf(dist(x0, x)− |t|)w0‖H
≤CX,1�δ̃‖w0‖H1

�

≤CX,1�δ̃‖u‖H1
�

.

We then have Duhamel’s formula
(

w1 −w0
�∂t(w1 −w0)

)

(t) = �
−1
∫ t

0
U(t− s)

(

0
(H0 −H1)f(dist(x0, x)− |s|)w0(s)

)

ds,

U(t) :=

⎛

⎜
⎝

cos
(

t
√

H1/�
) sin

(

t
√

H1/�

)

√
H1

−
√

H1 sin
(

t
√

H1/�
)

cos
(

t
√

H1/�
)

⎞

⎟
⎠ .

Using that H1 ≥ c > 0, we have

‖(w1 −w0)(t)‖D1/2
�

≤ �
−1
∫ t

0

∥
∥
∥
sin((t− s)

√
H1/�)√

H1
(H0 −H1)f(dist(x0, x)− |s|)w0(s)

∥
∥
∥
D

1
2
h

ds

≤C�
−1
∫ t

0

∥
∥
∥(H0 −H1)f(dist(x0, x)− |s|)w0(s)

∥
∥
∥
H
ds

≤CX,1δ̃|t|‖u‖H1
�

.

�

4.2 Tauberian lemmas. Before proceeding to our analysis of the local density of
states, we recall two Tauberian lemmas which will allows us to compare smoothed
local densities of states to their unsmoothed counterparts.

The first Lemma shows that if the local density of states E(Hj)(x, y,ω) is Lips-
chitz at sufficiently small scales, then it is close to its smoothed version.

Lemma 4.14 (Lemma 5.3 [CG23]). Let {Kj}∞j=0 ⊂R+. Then there exists C > 0 and

for all N ∈ R, N > 0, there is CN > 0 such that the following holds. Let {ν�}�>0 ⊂
S (R) be a family of functions and σ� = σ(�) : (0,1] → R+ such that for all j ≥ 1,
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�> 0, and s ∈R we have

|ν�(s)| ≤ σ�Kj〈σ�s〉−j .

Let L� = L(�) : (0,1] → R+, B� = B(�) : (0,1] → R+, {w̃� : R → C}�>0, I� ⊂
[−K0,K0], �0 > 0 and ε0 > 0 be such that

|w̃�(t− s)− w̃�(t)| ≤ L�〈σ�s〉, t ∈ I�, |s| ≤ ε0, |w̃�(s)| ≤B�〈s〉N0 for all s ∈R.

Then for all 0< �< �0 and t ∈ I� we have

∣
∣
∣(ν� ∗ w̃�)(t)− w̃�(t)

∫

ν�(s)ds
∣
∣
∣≤CL� +CNB�σ

−N
�

ε−N
0 .

Proof. For all 0 < �< �0 and t ∈ I� we have
∣
∣
∣(ν� ∗w�)(t)−w�(t)

∫

R

ν�(s)ds
∣
∣
∣

=
∣
∣
∣

∫

R

ν�(s)
(

w�(t− s)−w�(t)
)

ds
∣
∣
∣

≤ Lh

∫

|s|≤ε0

|ν�(s)|〈σ�s〉ds+B�

∫

|s|≥ε0

|ν�(s)|
(

〈t− s〉N0 + 〈t〉N0
)

ds

≤ L�

∫

|s|≤ε0

σhK3〈σ�s〉−2ds

+B�

∫

|s|≥ε0

KN0+2+Nσ�〈σ�s〉−(N0+2+N)
(

〈t− s〉N0 +〈t〉N0
)

ds.

The existence of C and CN follows from the integrability of each term and the
boundedness of I�. �

The next lemma is similar to [Hor07, Lemma 17.5.6] and will be used to show
that E(H0)(x,x,ω) inherits the Lipschitz nature of E(H1)(x,x,ω).

Lemma 4.15. Let φ ∈ S (R; [0,∞)) with φ > 0 on [−1,1] and for γ > 0 put φγ(t) :=
γ−1φ(γ−1t). Then there is C > 0 and for all N > 0 there is CN > 0 such that the

following holds. Suppose that {μ�}�>0 is a family of monotone increasing functions,

{α�}�>0 is a family of functions of locally bounded variation and that there are ε > 0,
ι > 0, γ� = γ(�) : (0,1] →R+, M� = M(�) : (0,1] →R+, N0 > 0, B� = B(�) : (0,1] →
R+, C > 0, and �0 > 0 such that for 0 < �< �0, γ� < �

ι, and we have

∫ ω+γ�

ω−γ�

|dα�| ≤ γ�M�, |(dμ� − dα�) ∗ φγ�
(ω)| ≤B�, ω ∈ [a− ε, b+ ε],

|μ�(ω)|+ |α�(ω)| ≤ �
−N0〈ω〉N0 , ω ∈R.

(For a function f of bounded variation, we denote by df the derivative of f considered

as a measure and |df | its total variation.) Then for |s| ≤ ε/2 and ω ∈ [a, b] we have

|μ�(ω)− μ�(ω− s)| ≤Cγ�(M� +B� +CN�
N )〈γ−1

�
s〉.
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Proof. Let ω0 ∈ [a, b]. Since dμ� ≥ 0, for ω ∈ [a− ε, b+ ε],

|μ�(ω)− μ�(ω− γ�)|=
∫ ω

ω−a�

dμh(s)≤Cφγ�
(∫

φγ�
(ω− s)d

(

μ�(s)− μ�(ω0)
))

=Cγ�(φγ�
∗ d(μ� − μ�(ω0)))(ω).

First, we estimate

|(φγ�
∗ dμ�)(ω)|

≤ |φγ�
∗ d(α� − α�(ω0))(t)|+ |(φγ�

∗ d(μ� − μ�(ω0)− α� + α�(ω0)))(ω)|

=: I + II.

Now,

I ≤ γ−1
�

∫

φ(γ−1
�

(ω− s))|d(α�(s)− α�(ω0))|

≤ γ−1
�

∫

|ω−s|≤γ��
−ι/2

〈γ−1
�

(ω− s)〉−N |dα�(s)|+O(�∞)

≤
∑

|k|≤�−ι/2

〈k〉−NM� +O(�∞)≤CM� +O(�∞).

Next,

II =
∫ ω

ω0

|(dμ� − dα�) ∗ φγ�
(s)|ds≤B�|ω− ω0| ≤ (b− a+ ε)B�.

Therefore,

|μ�(ω)− μ�(ω− γ�)| ≤Cγ�(M� +B� +O(�∞)). (4.10)

The claim now follows from adding terms like (4.10). �

4.3 Local densities of states and the cosine propagator. We need two more pre-
liminary lemmas before analyzing the local density of states. These lemmas, modulo
controllable errors, rewrite the spectral projection operator and its derivatives in
terms of the cosine propagator. This crucial step allows us to use Lemma 4.12 to
show that the smoothed densities of states for H0 and H1 are close. For ν ∈ S (R)
and T > 0, we recall that

νT/�(s) = �
−1Tν(�−1Ts).

Lemma 4.16. Let ν ∈ S (R) with supp ν̂ ⊂ (−2,2), ε > 0, and T = T (�) ≥ ε. Then

for ω ∈ [a− 2ε, b− 2ε], j = 0,1, and all N ≥ 0 we have

∂ω
(

νT/� ∗E(Hj)
)

(ω)

=
1
π�

∫

ν̂(T−1τ)eitτω/� cos
(

τ
√

Hj/�
)

dτ +O(�N )D−N→DN , (4.11)
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where DN denotes the domain of the corresponding operator HN
j and D−N that of

H−N
j .

Proof. First, recall that

∂ω
(

νT/� ∗E(Hj)
)

(ω) = νT/�(ω−
√

Hj) =
1

2π�

∫

ν̂(T−1τ)ei
τ
�

(ω−
√

Hj)dτ (4.12)

=
1

2π�

∫

ν̂(T−1τ)ei
τ
�
ω
(

2cos
(

τ
√

Hj/�
)

− eiτ
√

Hj/�
)

dτ

=
1
π�

∫

ν̂(T−1τ)ei
τ
�
ω cos

(

τ
√

Hj/�
)

dτ − νT/�(ω +
√

Hj).

Next, since Hj ≥ 0, we have

‖νT/�(ω +
√

Hj)(1 + Hj)N‖L2→L2

≤ sup
s≥0

νT/�(ω + s)(1 + s2)N

≤ sup
s≥0

CN�
−1T 〈�−1T (ω + s)〉−2N−1(1 + s2)N ≤CN�

NT−N .

Therefore, since

‖u‖DN ≤CN‖(1 + Hj)Nu‖L2 ,

the estimate (4.11) follows. �

Lemma 4.17. Let ν ∈ S (R) with ν̂ even, ε > 0, and T (�) ≥ ε. Then for ω ∈ [a −
2ε, b+ 2ε], j = 0,1, we have

νT/� ∗E(Hj)(ω) =
1
π

∫ 1
τ
ν̂(T−1τ) sin(h−1τω) cos

(

τ
√

Hj/�
)

dτ

+ (νT/� ∗E(Hj))(−ω). (4.13)

Proof. Using formula (4.12) in the second line, we have

(

νT/� ∗E(Hj)
)

(ω) =
∫ ω

−ω
(∂ωνT/� ∗E(Hj))(s)ds+ (νT/� ∗E(Hj))(−ω)

=
1

2π�

∫ ω

−ω

∫

ν̂(T−1τ)ei
τ
�

(s−
√

Hj)dτds+ (νT/� ∗E(Hj))(−ω)

=
1
π

∫ 1
τ
ν̂(T−1τ) sin(h−1τω)e−i τ

�

√
Hjdτ + (νT/� ∗E(Hj))(−ω).

Note that after changing variables, τ →−τ , we have

1
2π

∫ 1
τ
ν̂(T−1τ) sin(h−1τω)e−i τ

�

√
Hjdτ =

1
2π

∫ 1
τ
ν̂(T−1τ) sin(h−1τω)ei

τ
�

√
Hjdτ.
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Therefore,

νT/� ∗E(Hj)(ω) =
1
π

∫ 1
τ
ν̂(T−1τ) sin(h−1τω) cos

(

τ
√

Hj/�
)

dτ +(νT/� ∗E(Hj))(−ω).
�

We estimate the last term in (4.13) in the next lemma.

Lemma 4.18. Let ν ∈ S (R) with ν̂ even, ε > 0, and T (�) ≥ ε. Then for ω ∈ [a −
2ε, b+ 2ε], j = 0,1, and all N ≥ 0,

νT/� ∗E(Hj)(ω) =
1
π

∫ 1
τ
ν̂(T−1τ) sin(h−1τω) cos

(

τ
√

Hj/�
)

dτ

+O(�∞)D−N→DN . (4.14)

Proof. Using (4.13), it remains to check that

(νT/� ∗E(Hj))(−ω) =O(�∞)D−N→DN .

Since Hj ≥ 0, E(Hj)(s) = 1(−∞,s](
√

Hj)≡ 0 for s < 0. Thus, for all N,L≥ 0 there
is CL,N > 0 such that

‖νT/� ∗E(Hj)(−ω)‖D−N→DN ≤
∫

R

T
�
ν
(
T
�
s
)

‖E(Hj)(−ω− s)‖D−N→DNds

≤CL,N

∫

s≤−ω
2

T
h

〈
T
h s
〉−L

〈s〉N .

The claim follows after choosing L large enough. �

4.4 Comparison of the local densities of states. This section contains the proof
of Proposition 4.9. We start by showing that, when smoothed at scale ∼1, spectral
projectors for H0 and H1 are close. In other words, when Φ ∈S , Φ(H0) and Φ(H1)
are close when acting on subsets of B(0,R(�)).

Lemma 4.19. Let R0 > 0, R(�)>R0+1, δ̃(�)> 0, and suppose that H0 satisfies (4.1)
and (4.2) and that H1 is a family of expanding box operators for H0. Let Φ ∈S (R),
X, X̃ ∈C∞

c (B(0,R0)). Then, for all N ≥ 0,

X̃[Φ(H0)−Φ(H1)]X=O(�δ̃(�))Ψ−∞ +O(�∞)Ψ−∞ . (4.15)

Moreover, if X̃≡ 1 in a neighbourhood of suppX, then

(1− X̃)Φ(H0)X=O(�∞)Ψ−∞ , XΦ(H0)(1− X̃) =O(�∞)Ψ−∞ , (4.16)

(1− X̃)Φ(H1)X=O(�δ̃(�) + �
∞)H−N

�
→DN

�

,

XΦ(H1)(1− X̃) =O(�δ̃(�) + �
∞)D−N

�
→HN

�

.
(4.17)
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Proof. Put Φ1(t) := Φ(t2). Then Φ1 ∈ S and, since Hi ≥ 0, we have Φ1(
√

Hi) =
Φ(Hi). Next, observe that Φ1 is even and hence so is Φ̂1. Therefore,

Φ(Hi) = Φ1(
√

Hi) =
1
2π

∫

Φ̂1(t)eit
√

H0dt=
1

2π�

∫

Φ̂1(s/�) cos(s
√

Hi/�)ds.

We first prove (4.16) and (4.17). Thus, we assume that X̃≡ 1 in a neighbourhood
of suppX. Let r > 0 be chosen so that dist

(

suppX, supp(1 − X̃)
)

> r and let f ∈
C∞

c ((−r, r)) with f ≡ 1 near 0. Then, using Lemma 4.11 to pass from the second to
the third line, we have

(1− X̃)Φ(H0)X

=
1

2π�

∫

Φ̂1(s/�)(1− X̃) cos(s
√

H0/�)Xds

=
1

2π�

∫

Φ̂1(s/�)(1− X̃)(1− f(s)) cos(s
√

H0/�)Xds=O(�∞)L2→L2 .

Since

(·+ i)kΦ(·) ∈S for any k, (4.18)

this implies

(1− X̃)Φ(H0)X=O(�∞)Ψ−∞ ,

which, taking adjoints, implies (4.16).
To prove (4.17), we again write

(1− X̃)Φ(H1)X=
1

2π�

∫

Φ̂1(s/�)(1− X̃) cos(s
√

H1/�)Xds

=
1

2π�

∫

Φ̂1(s/�)(1− X̃)f(s) cos(s
√

H1/�)Xds

+
1

2π�

∫

Φ̂1(s/�)(1− X̃)(1− f(s)) cos(s
√

H1/�)Xds

=
1

2π�

∫

Φ̂1(s/�)(1− X̃)(1− f(s)) cos(s
√

H1/�)Xds+O(�δ̃)
H1

�
→D1/2

1

= (�δ̃(�) + �
∞)H1

�
→H,

where in the fourth line we use Lemma 4.11 and Lemma 4.12. Using (4.18) again,
this implies (4.17).
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Finally, we prove (4.15), no longer assuming that X̃ ≡ 1 in a neighbourhood of
suppX. Write

X̃(Φ(H0)−Φ(H1))X

=
1

2π�

(∫

|s|≤R−R0−1
Φ̂1(s/�)X̃(cos(s

√

H0/�)− cos(s
√

H1/�))Xds

+
∫

|s|>R−R0−1
Φ̂1(s/�)X̃(cos(s

√

H0/�)− cos(s
√

H1/�))Xds
)

=
1

2π�

(∫

|s|≤R−R0−1
CN 〈s/�〉−NO(δ̃s)H1

�
→H1

�

ds

+
∫

|s|>R−R0−1
CN 〈s/�〉−NO(1)L2→L2ds

)

=O(�δ̃(�))H1
�
→H1

�

+O(�∞)L2→L2 .

Next, using (4.18), we have

X̃[(H0 + i)kΦ(H0)− (H1 + i)kΦ(H1)]X=O(�δ̃(�) + �
∞)H1

�
→H1

�

. (4.19)

Let X1,X2 ∈ C∞
c (BM (x0,R0)) with X1 ≡ 1 on supp X̃ ∪ suppX and X2 ≡ 1 on

suppX1. Next, observe that

X1(H0 + i)kX2[Φ(H0)−Φ(H1)]X

=X1(H0 + i)kX2Φ(H0)X−X1(H1 + i)kX2Φ(H1)X+O(�δ̃(�) + �
∞)Ψ−∞

by (4.4) together with Φ(H0) =O(1)Ψ−∞ , Φ(H1) =O(1)D−∞
�

→D∞
�

. Next, using again
Φ(H0) =O(1)Ψ−∞ , Φ(H1) =O(1)D−∞

�
→D∞

�

, together with (4.16), (4.17), we have

X1(H0 + i)kX2Φ(H0)X−X1(H1 + i)kX2Φ(H1)X+O(�δ̃(�) + �
∞)Ψ−∞

=X1[(H0 + i)kΦ(H0)− (H1 + i)kΦ(H1)]X+O(�δ̃(�) + �
∞)Ψ−∞ .

Finally, using (4.19), we obtain

X1[(H0 + i)kΦ(H0)− (H1 + i)kΦ(H1)]X+O(�δ̃(�) + �
∞)Ψ−∞

=O(�δ̃(�) + �
∞)H1

�
→H1

�

.

In particular,

X1(H0 + i)kX2[Φ(H0)−Φ(H1)]X=O(�δ̃(�) + �
∞)H1

�
→H1

�

.

Therefore, by local elliptic regularity,

X̃(Φ(H0)−Φ(H1))X=O(�δ̃(�) + �
∞)H1

�
→H∞

�

.

Making a similar argument for X[Φ(H0)−Φ(H1)]X1(H0 + i)kX2 then completes the
proof of the lemma. �
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The next lemma shows that the spectral projectors for H1 and H0 smoothed at
scale �/T are close when acting on compact sets.

Lemma 4.20. Let X ∈ C∞
c (B(0,R0)), ε > 0, R(�) > 0, δ̃(�) > 0, ε < T (�) ≤ (R(h)−

R0 − 2)/2, and suppose H0 satisfies (4.1) and (4.2) and that H1 is a family of

expanding box operators for H0. Let ν ∈ S (R) with supp ν̂ ⊂ (−2,2). Then, for all

N ≥ 0 and ω ∈ [a− 2ε, b+ 2ε] we have

X∂ω
(

νT/� ∗E(H0)
)

(ω)X

=X∂ω
(

νT/� ∗E(H1)
)

(ω)X+O(�−1δ̃(�)T (�)2 + �
∞)H−N

�
→HN

�

. (4.20)

If, in addition, ν̂ is even, then

X

(

νT/� ∗EH0

)

(ω)X

=X

(

νT/� ∗E(H1)
)

(ω)X+O(δ̃(�)T (�) + �
∞)H−N

�
→HN

�

. (4.21)

Proof. By Lemma 4.16,

νT/�(ω−
√

H0)

=
1
π�

∫

ν̂(T−1τ)eitτω/� cos
(

τ
√

H0/�
)

dτ +O(�∞)H−N
�

→HN
�

.
(4.22)

Next, let Φ ∈C∞
c (R) with Φ≡ 1 on [a2 − ε,2(b+ 2ε)]. Then

νT/�(ω−
√

H0) = Φ(H0)νT/�(ω−
√

H0)Φ(H0) +O(�∞)Ψ−∞

and, by (4.16), for X̃ ∈C∞
c (B(0,R0)) with X̃≡ 1 on suppX, we have

(1− X̃)Φ(H0)X=O(�∞)H−N
�

→HN
�

, XΦ(H0)(1− X̃) =O(�∞)H−N
�

→HN
�

.

Therefore, by Lemma 4.12,

XΦ(H0) cos
(

τ
√

H0/�
)

Φ(H0)X=

XΦ(H0)X̃ cos
(

τ
√

H1/�
)

X̃Φ(H0)X+O(|τ |δ̃(�))H−N
�

→HN
�

+O(�∞)Ψ−∞ (4.23)

for τ ≤R(h) −R0 − 1. In particular, since T (�) ≤ (R(h) −R0 − 2)/2, and supp ν̂ ⊂
(−2,2), Lemma 4.16 implies that

X∂ω
(

νT/� ∗E(H0)
)

(ω)X

=
1

2π�

∫

ν̂(T−1τ)eitτω/�XΦ(H0)X̃ cos
(

τ
√

H1/�
)

X̃Φ(H0)Xdτ

+O(�−1δ̃(�)T 2 + �
∞)Ψ−∞ .
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Finally, using Lemma 4.19 to replace Φ(H0) by Φ(H1), XΦ(H1)X̃ by XΦ(H1), and
X̃Φ(H1)X by Φ(H1)X, we obtain

X∂ω
(

νT/� ∗E(H0)
)

(ω)X=X∂ω
(

νT/� ∗E(H1)
)

(ω)X+O(�−1δ̃(�)T 2 + �
∞)Ψ−∞ ,

which is (4.20).
To prove (4.21), we use Lemma 4.18. Indeed,

X

(

νT/� ∗E(H0)
)

(ω)X

=XΦ(H0)
(

νT/� ∗E(H0)
)

(ω)Φ(H0)X+O(�∞)Ψ−∞

=−i

∫ 1
τ
ν̂
( τ

T

)

sin(�−1τω)XΦ(H0) cos
(

τ
√

H0/�
)

Φ(H0)Xdτ +O(�∞)Ψ−∞ .

Then, using (4.23), Lemma 4.19 and Lemma 4.18 once again, (4.21) follows. �

We now prove Proposition 4.9

Proof of Proposition 4.9. Let ν ∈ S with ν ≥ 0, ν̂ ≡ 1 on [−1,1], supp ν̂ ⊂ (−2,2),
and ν̂ even. Observe that

(∂ωE(Hi)− ∂ωνT/� ∗E(Hi)) ∗ νT/3�(ω)

=
1

2π�

∫

(1− ν̂(T−1τ))ν̂(3T−1τ)eiτ/�(ω−
√

Hi)dτ = 0.

Observe that for X̃≡ 1 on suppX and any s ∈R,

(1− X̃)(H0 + 1)sX=O(�∞)H−N
�

→HN
�

, X(H0 + 1)s(1− X̃) =O(�∞)H−N
�

→HN
�

.

Therefore, using (4.20), for any s1, s2 ∈R we have

X(H0 + 1)s1
(

∂ωE(H0)− ∂ω(νT/� ∗E(H1))
)

(H0 + 1)s2X ∗ ν�,T/3(ω)

=O(�−1δ̃(�)T 2 + �
∞)H−N

�
→HN

�

. (4.24)

Next, using (4.5) and Lemma 4.14 with ν� = νT/�, we have

|νT/� ∗E(H1)(x,x, s)−E(H1)(x,x, s)| ≤C
�

1−d

T (�)
+CN�

N .

Then, using that ν ≥ 0, and hence that νT/� ∗ E(H1)(x,x, s) is monotone in s,
and (4.5) again we have

∫ ω+2�T−1

ω−2�T−1

∣
∣
∣∂s
(

νT/� ∗E(H1)
)

(x,x, s)
∣
∣
∣ds

= νT/� ∗E(H1)(x,x,ω + 2�T−1)− νT/� ∗E(H1)(x,x,ω− 2�T−1)
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= E(H1)(x,x,ω + 2�T−1)−E(H1)(x,x,ω− 2�T−1) +O
(
�

1−d

T (�)
+ �

N
)

≤C
�

1−d

T (�)
.

Therefore, using

‖(H0 + 1)kδx‖H−s−2k
h

≤Ch−d
2 for s >

d

2
(4.25)

together with Lemma 4.15 with μ� = E(H0)(x,x, ·), α� = νT/� ∗ E(H1)(x,x, ·),
a� = c�T−1, M� = C�

−d B� = C�
−1−dδ̃(�)T 2 + O(�∞), we have that the hypothe-

ses of Lemma 4.14 hold with w̃� = E(H0)(x,x, ·) σ� = c�−1T , L� = c�T−1(C�
−d +

C�
−1−dδ̃(�)T 2 +O(�∞)), B� = �

−d, and hence

|E(H0)(x,x,ω)− νT/� ∗E(H0)(x,x,ω)| ≤C
�

1−d

T (�)
+C�

−dδ̃(�)T (�). (4.26)

Again using (4.5) and Lemma 4.14 with ν� = νT/�, we obtain

∣
∣
∣(E(H1)(x,x,ω)− νT/� ∗E(H1)(x,x,ω)

∣
∣
∣≤C

�
1−d

T (�)
+O(�∞). (4.27)

Thus, (4.21) and (4.25) imply

νT/� ∗E(H0)(x,x,ω) = νT/� ∗E(H1)(x,x,ω) +O(�−dT (�)δ̃(�) + �
∞). (4.28)

Combining this with (4.26) and (4.27), we have (4.6).
Now, appealing to (4.7) rather than (4.5) and using that

(H0 + 1)kE(H0)(H0 + 1)l(x,x,ω)

is monotone increasing in ω we may make the same argument to obtain

(H0 + 1)kE(H0)(H0 + 1)l(x,x,ω)

= (H0 + 1)kE(H1)(H0 + 1)l(x,x,ω) +O(�−dT (�)δ̃(�) + �
∞).

With this in hand, we can complete the proof. Indeed, notice that since for s≥ 0,
the operator (H0 + 1)k[E(H0)(ω + s)−E(H0)(ω)](H0 + 1)l is positive, we have

0≤ 〈(H0 + 1)k(E(H0)(ω + s)−E(H0)(ω))(H0 + 1)l(δx + δy), δx + δy〉

= 2((H0 + 1)kE(H0)(H0 + 1)l)(x, y,ω + s)

+ ((H0 + 1)kE(H0)(H0 + 1)l)(x,x,ω + s)

+ ((H0 + 1)kE(H0)(H0 + 1)l)(y, y,ω + s)

− 2((H0 + 1)kE(H0)(H0 + 1)l)(x, y,ω)
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+ ((H0 + 1)kE(H0)(H0 + 1)l)(x,x,ω)

+ ((H0 + 1)kE(H0)(H0 + 1)l)(y, y,ω).

In particular, the function

α0(ω) := ((H0 + 1)kE(H0)(H0 + 1)l)(x, y,ω)

+
1
2
(((H0 + 1)kE(H0)(H0 + 1)l)(x,x,ω) + ((H0 + 1)kE(H0)(H0 + 1)l)(y, y,ω))

is monotone increasing in ω and, using (4.24) and (4.25), we have

X∂ωνT/� ∗ α0(ω)X=X∂ωνT/� ∗ α1(ω)X+O(�−1−dδ̃(�)T 2),

where

α1(ω) := ((H0 + 1)kE(H1)(H0 + 1)l)(x, y,ω)

+ 1
2(((H0 + 1)kE(H1)(H0 + 1)l)(x,x,ω) + ((H0 + 1)kE(H1)(H0 + 1)l)(y, y,ω)).

Therefore, by exactly the same argument we used to obtain (4.28), but using (4.7)
instead of (4.5), we have

(H0 + 1)kE(H0)(H0 + 1)l(x, y,ω)

= (H0 + 1)kE(H1)(H0 + 1)l(x, y,ω) +O(�−dT (�)δ̃(�) + �
∞).

Finally, the fact that for U � V and s ∈R we have

‖v‖H2s
�

(U) ≤Cs‖(H0 + 1)sv‖L2(V ) +ON,s(�N )‖v‖H−N
�

,

completes the proof. �

5 Pseudodifferential calculus in anisotropic symbol classes

We first recall the standard notation for semiclassical pseudodifferential operators
on R

d in the Weyl calculus. Throughout this article, we will work with the calculus
of polyhomogeneous symbols, although we will need a slight modification.

Definition 5.1. We say that a ∈ C∞(R2d) is a symbol of order m and write a ∈
Sm(R2d) if a = a(x, ξ;�) = a(x, ξ) ∈ C∞(R2d) for all α,β ∈ N

d (where we write N =
{0,1, . . .}) there is Cαβ > 0 such that

sup
0<�<1

|∂α
x ∂

β
ξ a(x, ξ;�)| ≤Cαβ〈ξ〉m−|β|. (5.1)

Below, we often implicitly allow symbols to depend on �, suppressing � in the nota-
tion. We write S−∞ =

⋂

m Sm and S∞ =
⋃

m Sm.
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We will need a small variation on the set of polyhomogeneous symbols. To this
end, we let

μn ≡ μn(�) = μn(�)

as in Sect. 2.6 with n(�) satisfying (2.3).

Definition 5.2. For 0 ≤ δ < 1, we define the (semiclassically) polyhomogeneous
symbols, Sm

phg,δ as follows. We say a ∈ Sm
phg,δ if there are {aj}∞j=0, aj ∈ μjδ

n Sm, inde-
pendent of �, but depending on μn such that

a−
N−1∑

j=0
�
jaj ∈ �

NμNδ
n Sm. (5.2)

Here, we write a ∈ f(�, μn)Sm if (5.1) holds with Cαβ replaced by f(�, μn)Cαβ .

Remark 5.3. We recall that, as discussed in Sect. 2.6, it is crucial that μn is locally
constant as a function � so that we may glue asymptotics together across intervals.
Choosing μn = �

−1 would not suffice and, although many statements below hold for
μn replaced by any μ≤C�

−1, we choose to keep the n in the notation to emphasize
the importance of this local constancy.

Remark 5.4. One can, of course, replace �
NμNδ

n by μ
N(δ−1)
n on the right-hand side

of (5.2), but, since these estimates usually occur when the remainder consists of a
function whose failure to have one-step polyhomogeneity comes only from the large
parameter, μn, we choose to keep the notation as is to help the reader.

Remark 5.5. The reason that we cannot simply take δ = 0 is that, in the onion
peeling procedure, we are only able to take finitely many (i.e. a number independent
of �) steps. On the other hand, if we took δ = 0, then to gauge transform away a
potential periodic at some scale ∼ �

−N for some N , we would need | log�| steps.
Therefore, we take δ > 0 and, for most purposes, the reader may think of δ = 1

4 . For
instance, if the reader is only interested in on-diagonal asymptotics of the spectral
function, it suffices to take δ = 1

4 . It is only at the very end of the proof, when
0< |x− y|= o(1), where we will take δ arbitrarily small, see Remark 7.1.

Definition 5.6. We define the set of pseudodifferential operators of order m, Ψm
δ ,

by saying that A ∈Ψm
δ if there is a ∈ Sm

phg,δ such that for all N ∈R

A = OpW
�

(a) +O(�∞)H−N
�

→HN
�

,

[

OpW
�

(a)u
]

(x;�) :=
1

(2π�)d
∫

ei〈x−y,ξ〉/�a
(x+ y

2
, ξ;�

)

u(y)dydξ.

Here the superscript W stands for Weyl.

Remark 5.7. Since we use the Weyl quantisation, OpW
�

(a) with a ∈ S0
phg,δ is self-

adjoint on L2(Rd) if a is real valued.
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Definition 5.8. We write a ∈ Smcomp
δ and say a is momentum compactly supported

if a ∈ S0
phg,δ and there is an �-independent, compact set K ⊂ R

d such that for all
� ∈ (0,1]

suppa⊂R
d ×K.

We write Ψmcomp
δ for the corresponding class of operators; here, mcomp stands for

momentum compact.

Definition 5.9. We say that a distribution, u, is �-tempered if there is N > 0 and
C > 0 such that for all � ∈ (0,1], we have

‖u‖H−N
�

≤C�
−N .

Definition 5.10. For an �-tempered distribution, u, we define the wavefront set of
u, WF�(u), as follows. For (x0, ξ0) ∈ R

2d, we say that (x0, ξ0) /∈ WF�(u) if there is
a ∈C∞

c (R2d) independent of � such that a(x0, ξ0) = 1 and for all N and � ∈ (0,1]

‖OpW
�

(a)u‖HN
�

≤CN�
N .

Definition 5.11. We say that u is �-compactly microlocalized if there is P ∈
C∞

c (R2d) independent of � and for all N there is CN > 0 such that

‖OpW
�

(1− P)u‖HN
�

≤CN�
N .

5.1 Anisotropic pseudodifferential operators. In this subsection, we study a
class of pseudodifferential operators which improve after differentiation in x. These
classes will be required in the onion peeling process (see Sect. 6).

Definition 5.12. Let r : [1,∞) → (0,1] be non-increasing. We write a ∈ Sm
r,δ if a ∈

Sm
phg,δ with a∼∑j �

jaj , and for all α,β ∈N
d, there is Cαβj > 0 such that

|∂α
x ∂

β
ξ aj(x, ξ;μn)| ≤Cαβjμ

jδ
n r(μn)|α|〈ξ〉m−j−|β|.

We write Ψm
r,δ for the corresponding class of operators, with S−∞

r,δ , S∞
r,δ, S

mcomp
r,δ , and

Ψ−∞
r,δ ,Ψ∞

r,δ,Ψ
mcomp
r,δ as above. Note that Sm

phg,δ = Sm
1,δ.

Remark 5.13. Although we make the assumption that aj j = 0,1, . . . are infinitely
smooth, it is clear from standard results in the pseudodifferential calculus (see
e.g. [Zwo12, Theorem 4.23]) that, if one is only interested in the pseudodifferen-
tial calculus modulo remainders of size hN for some N , then there is a K > 0 such
that bounds on the CK norm of the aj ’s are enough for proving the results of this
paper.

Remark 5.14. In reality, we will need only the values of r at the discrete points μn

and we will be interested only in r(μ) = μ−γ for some γ > 0. However, for notational
convenience we use a function r. Below, when we write the letter r, we will mean
the function r(μn(�)).
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We will often use the following analogue of Borel summation for our symbols, the
proof of which follows the standard one (see e.g. [Zwo12, Theorem 4.5]).

Lemma 5.15. Let 0 ≤ δ < 1, K ⊂ R
n compact and {gj}∞j=0 ∈ Smcomp

r,δ such that

suppgj ⊂R
n ×K. Then there is g ∈ Smcomp

r,δ such that

g ∼
∑

j

hjμjδ
n gj

in the sense that

g−
N−1∑

j=0
hjμjδ

n gj ∈ hNμNδ
n Smcomp

r,δ,

and, moreover, suppg ⊂R
n ×K.

Definition 5.16. For r > 0, we define unitary operators Ur : L2 → L2 by

Uru(x) := r
d
2u(rx).

Their adjoints are given by U∗
r : L2 → L2 with

U∗
r u(x) := r−

d
2u(r−1x).

Note also that UrUs = Urs.

Lemma 5.17. Let 0≤ δ < 1, and a ∈ Sm
r,δ. Then

U∗
r OpW

�
(a)Ur = OpWr�(ãr),

where ãr ∈ Sm
phg,δ is defined by

ãr(x, ξ;�) := a(r−1x, ξ;�). (5.3)

Proof.

(U∗
r OpW

�
(a)Uru)(x) = r−

d
2

1
(2π�)d

∫

ei〈r
−1x−y,ξ〉/�a( r

−1x+y
2 , ξ)[Uru](y)dydξ

=
1

(2π�)d
∫

ei〈r
−1(x−ry),ξ〉/�a( r

−1x+y
2 , ξ)u(ry)dydξ

=
1

(2πr�)d
∫

ei〈x−w,ξ〉/(r�)a( r
−1(x+w)

2 , ξ)u(w)dwdξ

= [OpWr�(ãr)u](x).

The fact that ãr ∈ Sm
phg,δ follows easily from the definition of Sm

r,δ. �

Remark 5.18. Notice that the proof of Lemma 5.17 shows that the pseudodiffer-
ential calculus can be used in the classes Sm

r,δ. In particular, if a ∈ Sm1
r,δ and b ∈ Sm2

r,δ ,
then OpW

�
(a)OpW

�
(b) = OpW

�
(e) for some e ∈ Sm1+m2

r,δ .
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Our next lemma will allow us to understand conjugation of pseuodifferential op-
erators by eiG for G = OpW

�
(g) and g ∈ Sr,δ. Denote

adAB := [A,B].

Lemma 5.19. Let 0 ≤ δ < 1, N0 > 0, m ∈R, and suppose that �N0 ≤ r(μn)≤ 1. Sup-
pose that a ∈ Sm

phg,δ, g ∈ r−1μδ
nS

mcomp
r,δ is real valued, and b ∈ Smcomp

r,δ are such that for

all N

[OpW
�

(g),OpW
�

(a)] = μδ
n�OpW

�
(b) +O(�∞)H−N

�
→HN

�

. (5.4)

Then, with G := OpW
�

(g),

e−iG OpW
�

(a)eiG ∼
∞∑

j=0

adj
G OpW

�
(a)

ijj!
.

This asymptotic formula holds in the sense that for all N > 0 and � ∈ R, there is

L0 ∈R such that for L≥ L0 we have

∥
∥
∥e−iG OpW

�
(a)eiG −

L∑

j=0

adj
G OpW

�
(a)

ijj!

∥
∥
∥
H−�

�
→H�

�

≤CN,��
N .

In addition, for all �, eiG :H�
�
→H�

�
is bounded.

Remark 5.20. Although in this paper we only use Lemma 5.19 when a ∈ Sm
r,δ, in

which case the proof can be reduced to the standard one by conjugating with Ur,
we expect the statement above to be useful in other contexts and therefore choose
to make a more general formulation.

Remark 5.21. Notice that since g is momentum compact, the left hand side of (5.4)
maps H−N

�
to HN

�
for any N and hence it is natural to assume that b can be taken

independent of N .

Proof. We first show that for any � ∈R and t ∈ [−1,1], there is C� > 0 such that

‖eitG‖H�
�
→H�

�

≤C�. (5.5)

To see this, observe that using Lemma 5.17, we have

U∗
r e

itGUr = eitU
∗
r GUr = eitOpW

�r(g̃)

for some g̃ ∈ Smcomp
phg,δ . In particular, this implies U∗

r e
itGUr = OpWr�(b) for some b ∈ S0

phg,δ
and hence that

‖U∗
r e

itGUr‖H�
r�

→H�
r�

≤C�. (5.6)

Now, since

‖(�r∂x)αU∗
r u‖L2 = ‖Ur(�r∂x)αU∗

r u‖L2 = ‖(�∂x)αu‖L2 ,
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we have

‖U∗
r u‖H�

r�

= ‖u‖H�
�

,

and hence (5.5) follows from (5.6).
By Taylor’s formula, for N ≥ 1

e−iG OpW
�

(a)eiG

=
N−1∑

k=0

adk
G OpW

�
(a)

ikk!
−
∫ 1

0

(1− s)N−1

iN (N − 1)!
e−isG adN

G OpW
�

(a)eisGds

=
N−1∑

k=0

adk
G OpW

�
(a)

ikk!
−
∫ 1

0

�μδ
n(1− s)N−1

iN (N − 1)!
e−isGUr adN−1

OpW
�r

(g̃) OpW
�r(b̃)U∗

r e
isGds

+O(�∞)H−N
�

→HN
�

,

where the last equality follows from Lemma 5.17 with g̃ and b̃ given by (5.3).
Now, since g̃ ∈ r−1μδ

nS
mcomp
phg,δ and b̃ ∈ Smcomp

phg,δ ,

adN−1
OpW

�r
(g̃) OpW

�r(b̃) ∈ �
(N−1)μδ(N−1)

n Ψmcomp
r .

Using Lemma 5.17 again,

EN := Ur adN−1
OpW

�r
(g̃) OpW

�r(b̃)U∗
r ∈ �

N−1μδ(N−1)
n Ψmcomp,

and hence

e−iG OpW
�

(a)eiG

=
N−1∑

k=0

adk
G OpW

�
(a)

ikk!
−
∫ 1

0

�μδ
n(1− s)N−1

iN (N − 1)!
e−isGENe

isGds+O(�∞)H−N
�

→HN
�

.
(5.7)

Now, using (5.5)we obtain that for N ≥ 1 and any � ∈R we have

e−iG OpW
�

(a)eiG =
N−1∑

k=0

adk
G OpW

�
(a)

ikk!
+O(�NμNδ

n )H−�
�

→H�
�

. (5.8)
�

Remark 5.22. In principle, one could work directly on the conjugated side, writing
asymptotic formulae for U∗

r e
−iG OpW

�
(a)eiGUr instead of those in Lemma 5.19 by

using Lemma 5.17, but we have chosen not to do this.

We will also need the next lemma which controls how the operator eiOpW
�

(g) moves
singularities.

Lemma 5.23. Let 0 ≤ δ < 1, and N0 > 0, c > 0. Suppose that �
N0 < r = r(μn) ≤ 1

and g ∈ r−1μδ
nS

mcomp
r,δ is real valued. Then for all a, b ∈ S0 with dist(suppa, supp b)>

c > 0, we have

OpW
�r(b)U∗

r e
iOpW

�
(g)Ur OpW

�r(a) =O(�∞)H−�
�r

→H�
�r
.
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Proof. Observe that

OpW
�r(b)U∗

r e
iOpW

�
(g)Ur OpW

�r(a)

= U∗
rUr OpW

�r(b)U∗
r e

iOpW
�

(g)Ur OpW
�r(a)U∗

rUr

= U∗
r OpW

�
(b̃)eiOpW

�
(g) OpW

�
(ã)Ur

= U∗
r e

iOpW
�

(g)e−iOpW
�

(g) OpW
�

(b̃)eiOpW
�

(g) OpW
�

(ã)Ur,

where ã and b̃ are as in (5.3). The lemma now follows from Lemma 5.19. �

Later, we will need an oscillatory integral formula for e i
r�

tOpW
�

(g). This is given in
our next lemma.

Lemma 5.24. Suppose that N0 > 0, �
N0 ≤ r ≤ 1, S > 0 g ∈ Smcomp

r,δ . Then for

(x0, ξ0) ∈ R
2d, there is a neighbourhood U of (x0, ξ0) and ϕ ∈ C∞([−S,S] × U) and

b ∈C∞([−S,S];Smcomp
phg,δ ) such that for any u with WF�r(u) ⊂ U , we have

U∗
r e

i
r�

tOpW
�

(g)Uru(x)

=
1

(2πr�)d
∫

e
i

�r
(ϕ(t,x,η)−〈y,η〉)b(t, x, η)u(y)dydη +O(�∞)H−N

�
→HN

�

. (5.9)

Moreover,

∂tϕ(x, η) = g(r−1x,∂xϕ(x, η)), ϕ(0, x, η) = 〈x, η〉,

and

b(t, x, η) = (det∂xηϕ)1/2 +O(�r)C∞
c
.

Proof. The lemma is a direct consequence of Lemma 5.17 and [Zwo12, Theorem 10.4].
�

Finally, we record the following lemma on changing scales.

Lemma 5.25. Let N0 > 0 and r1, r2 : [1,∞)→ (0,1] be non-increasing functions with

�
N0 ≤ r1(μn(�))≤ r2(μn(�))≤ 1. Suppose that u is �r2-compactly microlocalized. Then

WF�r1(U∗
r1Ur2u) ⊂

⋂

0<�0<1

⋃

0<�<�0

{(r1r
−1
2 x, ξ) | (x, ξ) ∈WF�r2(u)}

and U∗
r1Ur2u is �r1-compactly microlocalized.

Proof. First, observe that

K :=
⋂

0<�0<1

⋃

0<�<�0

{(r1r
−1
2 x, ξ) | (x, ξ) ∈WF�r2(u)}
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is closed. Therefore, if (x0, ξ0) /∈K, there is a neighbourhood, U , of (x0, ξ0) such that
U ∩K = ∅. Suppose that a ∈C∞

c (U), a(x0, ξ0) = 1. Then

[OpW
�r1(a)]U

∗
r1Ur2u =

1
(2π�r1)d

r
d
2
2 r

−d
2

1

∫

e
i

�r1
〈x−y,ξ〉

a(x+y
2 , ξ)u(r2r

−1
1 y)dydξ

=
1

(2π�r2)d
r

d
2
2 r

−d
2

1

∫

e
i

�r2
〈r2r−1

1 x−w,ξ〉
a( r1r

−1
2 (r2r−1

1 x+w)
2 , ξ)u(w)dwdξ

= U∗
r1r

−1
2

[OpW
�r2(ã)u],

where ã = ãr1r−1
2

∈ S0 is defined as in (5.3). Moreover, by construction, supp ã ∩
WF�r2(u) = ∅, and, since u is �r2-compactly microlocalized,

[OpW
�r2(ã)u] =O(�∞)H�

�

.

The compact microlocalization of U∗
r1Ur2u follows from the fact that πxK is

compact, there is P ∈ C∞
c (R2d) such that u = OpW

�r2(P)u + O(�∞)H�
�

, and that if
d(supp ã, suppP)> 0, then

[OpW
�r1(a)]U

∗
r1Ur2 OpW

�r2(P) = U∗
r1r

−1
2

OpW
�r2(ã)OpW

�r2(P) =O(�∞)H−�
�

→H�
�

. �

6 The gauge transform for USB potentials

Let q0 ∈ S1(R2) be real valued and satisfy

suppq0 ⊂ {a < |ξ|< b}, (6.1)

for some 0 < a < b. In Sect. 7.2, we will show that, for the purposes of computing
the spectral function at some energy ω ∈ (a, b), we may assume that (6.1) holds. We
consider the operator

H(Q0) :=−�
2Δ + �OpW

�
(q0). (6.2)

The goal for this section is, given N > 0, to perform a Gauge transform with a
unitary operator U such that U∗H(Q0)U = H(Q1) +O(�∞)Ψ−∞ with

H(Q1) =−�
2Δ + �OpW

�
(q1),

where q1 ∈ S1 is real valued and

supp q̂1(θ, ξ)∩ {|θ| ≥ μ−N
n }= ∅.

(Recall the definition of μn from (2.2) and (2.3).)

Remark 6.1. For the gauge transform we do not need to assume that q0 is periodic.
What is important is that if q0 is periodic, then so is q1 and q1 has the same period
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as q0. Thus, when we apply this gauge transform to a q0 with period � μN
n we will

have that

supp q̂1(θ, ξ)⊂ {θ = 0},

so Q1 is a Fourier. We will use this fact to obtain a formula for the spectral function
of H(Q1).

We will use an ‘onion peeling’ strategy to perform the Gauge transform. In par-
ticular, we will remove the frequencies of q0 in layers starting from those with fre-
quency larger than 1 and then removing successive layers. These layers will be evenly
spaced in a logarithmic with the factor μ−δ

n , i.e. of the form μ
−(k+1)δ
n ≤ |θ| ≤ μ−kδ

n ,
k = 0,1, . . . , �Nδ−1�.

6.1 Two useful lemmas. We will need the following two lemmas to perform the
gauge transform. These lemmas allow us to find a symbol g that solves the equation
[−�

2Δ,OpW
�

(g)] = OpW
�

(q) under certain assumptions on the support of the Fourier
transform of q.

The next lemma is, in fact, about functions of the single variable with ξ playing
the role of a parameter.

Lemma 6.2. There is C > 0 such that for all ι > 0 and q ∈ S0 with supp q̂ ⊂ {|θ| ≥ ι},
setting

g(x, ξ) :=
∫ x

0
q(s, ξ)ds,

we have

‖∂α
x ∂

β
ξ g(·, ξ)‖L∞ ≤Cι−1‖∂α

x ∂
β
ξ q(·, ξ)‖L∞ α,β ∈N, supp ĝ ⊂ supp q̂ ∪ {θ = 0}.

Moreover, if q is L-periodic in x, then so is g.

Remark 6.3. To see that g is periodic when q is, we use crucially that {θ = 0} /∈
supp q̂.

Proof. Let q(x, ξ) ∈ S1 with supp q̂ ⊂ {|θ| ≥ ι}. Let f ∈ C∞
c (−1,1) with f ≡ 1 on

[−1
2 ,

1
2 ], f̌ real valued, and define

I(x) := 1[0,∞)(x)−
∫ x

−∞
f̌(s)ds.

Observe that for x≥ 0,

|I(x)|=
∣
∣
∣1[0,∞)(x)−

∫ x

−∞
f̌(s)ds

∣
∣
∣

=
∣
∣
∣1−

∫ x

−∞
f̌(s)ds

∣
∣
∣=
∣
∣
∣

∫ ∞

x
f̌(s)ds

∣
∣
∣≤CN

∫ ∞

x
〈s〉−Nds≤CN 〈x〉−N+1.
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Next, for x < 0,

|I(x)|=
∣
∣
∣1[0,∞)(x)−

∫ x

−∞
f̌(s)ds

∣
∣
∣

=
∣
∣
∣−
∫ x

−∞
f̌(s)ds

∣
∣
∣≤CN

∫ x

−∞
〈s〉−Nds≤CN 〈x〉−N+1.

Combining these two estimates, we obtain I ∈ L1.
Let Iι(x) := I(ιx) and

g̃(x, ξ) := [Iι(·) ∗ q(·, ξ)](x).

We compute

∂xg̃(x, ξ) = [(δ0(·)− ιf̌(ι·)) ∗ q(·, ξ)](x) = q(x, ξ),

since supp q̂ ∩ {|θ|< ι}= ∅ (here δ0 is the Dirac delta function).
Since I ∈ L1, we have

‖Iι ∗ ∂α
x ∂

β
ξ q‖L∞ ≤Cι−1‖∂α

x ∂
β
ξ q‖L∞ . (6.3)

Now observe that g(x, ξ) = g̃(x, ξ) − g̃(0, ξ). Then (6.3) implies the derivative
estimates on g. In addition, since g̃(0, ξ) does not depend on x, we have supp ̂̃g(0, ξ)⊂
{θ = 0} and hence supp ĝ(·, ξ)⊂ supp̂̃g(·, ξ)∪{θ = 0}, which completes the proof. �

The statement about periodicity of g is obvious.

Remark 6.4. The reader may wonder why we choose to prove the lemma via g̃ as
opposed to simply putting ĝ(θ, ξ) = 1

iθ q̂(θ, ξ). To us it seems simpler to check L∞

bounds on the physical than on the Fourier side.

Lemma 6.2 has the following immediate consequence.

Lemma 6.5. Let 0 ≤ δ < 1, 0< a< b. There is C > 0 such that for r > 0 and q(x, ξ) ∈
Smcomp

phg,δ real valued with

supp q̂(θ, ξ)⊂ {a≤ |ξ| ≤ b, |θ|> r},

there is g ∈ Smcomp
phg,δ real valued with

supp ĝ ∩ {0< |θ| ≤ r}= ∅,

‖∂β
ξ ∂

α
x g(·, ξ)‖L∞ ≤Cr−1‖∂α

x ∂
β
ξ q(·, ξ)‖L∞ , α,β ∈N, (6.4)

and

i[OpW
�

(g),−�
2Δ] = �OpW

�
(q).

In particular, (6.4) implies that for any r1 = r1(μn) > 0, if q ∈ Smcomp
r1,δ

, then g ∈
r−1Smcomp

r1,δ
. Moreover, if q is L-periodic in x, then so is g.
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Proof. By Lemma 6.2, there is a real valued g ∈ Smcomp
phg,δ such that supp ĝ ⊂ supp q̂

and

−2ξ∂xg(x, ξ) = q(x, ξ), ‖∂α
x ∂

β
ξ g(·, ξ)‖L∞ ≤Cr−1‖∂α

x ∂
β
ξ q(·, ξ)‖L∞ .

In particular,

g =− 1
2ξ

∫ x

0
q(s, ξ)ds. (6.5)

Direct computations show that

i[OpW
�

(g),−�
2Δ] = −2�OpW

�
(ξ∂xg) = �OpW

�
(q),

that if q ∈ S0
r1,δ

, then g ∈ r−1Smcomp
r1,δ

, and that if q is L-periodic in x, then so is
g. �

Remark 6.6. Observe that (6.5) is essentially the same as (1.13), but (1.13) is not
very convenient for obtaining L∞ type estimates.

6.2 The onion peeling argument. The gauge transform will proceed by a layer
peeling type argument. That is, we remove successive layers of the Fourier trans-
form of the perturbation. Each layer will be removed by a parallel gauge trans-
form. We start, in Lemma 6.7, by removing frequencies larger than 1. Then, in
Lemma 6.9, we show that it is possible to remove lower frequencies in layers of
the form μ−δ

n r(μn) < |θ| < r(μn) for any N > 0 and r(μn) > �
N . These lemmas are

combined in Proposition 6.11 to complete our onion peeling argument. For a more
detailed heuristic description of this procedure, we refer the reader to Sect. 1.1.3. We
start by using a parallel gauge transform to remove frequencies larger than 1.

Lemma 6.7. Let 0 < a < b and suppose that H(Q0) satisfies (6.2). Then there is

G = OpW
�

(g) ∈Ψmcomp
0 such that

e−iGH(Q0)eiG =−�
2Δ + �OpW

�
(q1) +O(�∞)H−N

�
→HN

�

,

with real-valued q1 ∈ S1
phg,0 satisfying

supp q̂1(θ, ξ)∩ {|θ| ≥ 1}= ∅, suppq1 ⊂ {a≤ |ξ| ≤ b}. (6.6)

In addition, q1 ∈ S1
phg,0 and g ∈ Smcomp

0 depend continuously on q ∈ S1 in the cor-

responding topologies and if q is L-periodic in x, then so are q1 and g.

Remark 6.8. As it was discussed at the beginning of Sect. 1.1.3, if we impose
stricter conditions on the potential, for example, Q being the sum of a smooth
periodic potential and a potential from the Schwartz class, technicalities simplify. In
particular, following the proof of the lemma above or the construction from [PS16,
Sect. 6], one can show that the statement of Lemma 6.7 holds for |θ|> 0, and thus,
further onion peeling (see Lemma 6.9) is not needed. This also leads to the significant
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simplification of the concluding arguments about actual asymptotics from Sect. 6 (see
Remark 7.7).

Proof. Let Θ ∈C∞
c ((−1,1); [0,1]) with Θ≡ 1 in a neighbourhood of [−1/2,1/2], with

Θ̌ real valued and let

qH(x, ξ) := q0,H(x, ξ), q0,H := (1−Θ(Dx))q0(·, ξ).

Observe that, since

‖∂α
xΘ(Dx)q0(·, ξ)‖L∞ ≤Cα‖q0(·, ξ)‖L∞ ,

we have qH ∈ Smcomp
phg,0 .

By Lemma 6.5, there is g0 ∈ Smcomp
phg,0 real valued with supp ĝ0 ⊂ supp q̂H,

‖∂α
x ∂

β
ξ g0‖L∞ ≤C‖∂α

x ∂
β
ξ qH‖L∞ ,

and such that

i[OpW
�

(g0),−�
2Δ] = �OpW

�
(qH).

Now, by Lemma 5.19,

e−iOpW
�

(g0)H(Q0)eiOpW
�

(g0)

=−�
2Δ + �(OpW

�
(q0 −OpW

�
(qH)) + �

2 OpW
�

(e0) +O(�∞)H−N
�

→HN
�

with e0 ∈ Smcomp
phg,0 real valued. Now we proceed by induction. Suppose we have found

g0, g1, . . . gN ∈ Smcomp
phg,0 such that, for GN :=

∑N
j=0 �

jgj , we have

e−iOpW
�

(GN )H(Q0)eiOpW
�

(GN )

=−�
2Δ + �OpW

�
(q1,N ) + �

N+2 OpW
�

(eN ) +O(�∞)H−N
�

→HN
�

where q1,N ∈ S1
phg,0, eN ∈ Smcomp

phg,0 are real valued with supp q̂1,N ∩ {|θ| ≥ 1} = ∅,
suppq1,N ⊂ {a≤ |ξ| ≤ b}.

Then, put eN,H = (1−Θ(Dx))eN so that

‖∂β
ξ ∂

α
x eN,H‖ ≤Cβ

|β|
∑

j=0
‖∂j

ξ∂
α
x eN‖L∞

and let gN+1 ∈ Smcomp
phg,0 be real valued with supp ĝN+1 ⊂ supp êN,H such that

‖∂α
x ∂

β
ξ gN+1‖L∞ ≤C‖∂α

x ∂
β
ξ eN,H‖L∞

and

i[OpW
�

(gN+1),−�
2Δ] = �OpW

�
(eN,H).
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Then, putting GN+1 :=GN + �
N+1gN , we have by Lemma 5.19

e−iOpW
�

(GN+1)H(Q0)eiOpW
�

(GN+1)

=−�
2Δ + �OpW

�
(q1,N+1) + �

N+3 OpW
�

(eN+1) +O(�∞)H−N
�

→HN
�

with eN+1 ∈ Scomp
phg,0, q1,N+1 ∈ S1

phg,0 real valued, supp q̂1,N+1 ∩ {|θ| ≥ 1} = ∅, and
suppq1,N+1 ⊂ {a≤ |ξ| ≤ b}.

In particular, putting g ∼∑∞
j=0 �

jgj (see Lemma 5.15) completes the proof of the
lemma. �

Next, we show how to peel off layers of the form μ−kδ
n ≤ |θ| ≤ μ

−(k−1)δ
n from the

Fourier transform of the pseudodifferential potential.

Lemma 6.9 (layer peeling lemma). Let 0 < a < b, N0 > 0, 0 < δ < 1, and �
N0 ≤ r =

r(μn)≤ 1. Suppose that for any N > 0,

H :=−�
2Δ + �OpW

�
(q) +O(�∞)H−N

�
→HN

�

for some real valued q ∈ S1
phg,δ satisfying

supp q̂ ∩ {|θ| ≥ r}= ∅, supp q̂ ⊂ {a≤ |ξ| ≤ b}. (6.7)

Then there is a real valued g ∈ r−1μδ
nS

mcomp
r,δ supported in {a≤ |ξ| ≤ b} such that for

any N

e−iGHeiG =−�
2Δ + �OpW

�
(q1) +O(�∞)H−N

�
→HN

�

, G := OpW
�

(g)

for some q1 ∈ S1
phg,δ satisfying

supp q̂1 ∩ {|θ| ≥ rμ−δ
n }= ∅, suppq1 ⊂ {a≤ |ξ| ≤ b}. (6.8)

In addition, q1, g depend continuously on q and, if q is L-periodic, then so are q1
and g.

Proof. The proof is similar to that of Lemma 6.7 except that we must keep more
careful track of derivatives of the various g’s.

We first let Θ ∈ C∞
c ((−1,1); [0,1]) with Θ ≡ 1 in a neighbourhood of [−1/2,1/2]

and Θ̌ real valued.
Now we find g0 ∈ r−1μδ

nS
mcomp
r.δ , q1,0 ∈ S1

phg,δ, and e0 ∈ Smcomp
r,δ real valued such

that, suppg0 ⊂ {a ≤ |ξ| ≤ b}, supp q̂1,0 ∩ {|θ| ≥ rμ−δ
n } = ∅, suppq1,0 ⊂ {a ≤ |ξ| ≤ b},

and

e−iOpW
�

(g0)HeiOpW
�

(G0)

=−�
2Δ + �OpW

�
(q1,0) + �

2μδ
n OpW

�
(e0) +O(�∞)H−N

�
→HN

�

. (6.9)
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Put qH := [(1−Θ(r−1μδ
nDx))q](x, ξ) so that qH is real valued and

‖∂β
ξ ∂

α
xqH(·, ξ)‖L∞ ≤Cαβ

|β|
∑

j=0
sup

|ξ|∈suppΞ−1

‖∂α
x ∂

j
ξq(·, ξ)‖L∞ ≤Cαβr

|α|.

In particular, qH ∈ Smcomp
r,δ . We then use Lemma 6.5 to find g0 ∈ r−1μδ

nS
mcomp
r,δ sup-

ported in {a≤ |ξ| ≤ b}, real valued, satisfying

‖∂β
ξ ∂

α
x g0‖L∞ ≤Cr−1μδ

n‖∂
β
ξ ∂

α
xqH‖L∞ ≤Cαβr

−1+|α|μδ
n

and

i[OpW
�

(g0),−�
2Δ] = �OpW

�
(qH).

Thus, by Lemma 5.19,

e−iOpW
�

(g0)HeiOpW
�

(G0)

=−�
2Δ + �OpW

�
(q− qH) + �

2μδ
n OpW

�
(e0) +O(�∞)H−N

�
→HN

�

,

with e0 ∈ Smcomp
r,δ . Since supp(q̂ − q̂H) ∩ {(θ, ξ) : |θ| ≥ rμ−δ

n } = ∅, we may put q1,0 =
q− qH to obtain (6.9).

We again proceed by induction. Let N ≥ 0 and suppose we have found g0, . . . , gN ∈
r−1μδ

nS
mcomp
r,δ real valued, supported in {a≤ |ξ| ≤ b} such that with GN =

∑N
j=0 �

jgj ,
we have

e−iOpW
�

(GN )HeiOpW
�

(GN )

=−�
2Δ + �OpW

�
(q1,N ) + �

1+(N+1)μδ(N+1)
n OpW

�
(eN ) +O(�∞)H−N

�
→HN

�

,

where q1,N ∈ S1
phg,δ, eN ∈ Smcomp

r,δ are real valued, supp q̂1,N ∩{(θ, ξ) : |θ| ≥ rμ−δ
n } = ∅,

and suppq1,N ⊂ {a≤ |ξ| ≤ b}.
Then, put eN,H = [(1−Θ(r−1μδ

nDx))eN (·, ξ)](x) so that bN,H is real valued and

‖∂β
ξ ∂

α
x eN,H‖ ≤Cαβ

|β|
∑

j=0
‖∂α

x ∂
j
ξeN‖L∞ ≤Cαβr

|α|.

In particular, eN,H ∈ Smcomp
r,δ .

Now, by Lemma 6.2, there is gN+1 ∈ r−1μδ
nS

mcomp
r,δ real valued with supp ĝN+1 ⊂

supp b̂N,H ∪ {θ = 0} such that

‖∂α
x ∂

β
ξ gN+1‖L∞ ≤Cαr

−1μδ
n‖∂α

x ∂
β
ξ eN,H‖L∞ ≤Cαβr

−1+|α|μδ
n

and such that

i[OpW
�

(gN+1),−�
2Δ] = �OpW

�
(eN,H).
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Then, by Lemma 5.19, with GN+1 =GN + �
N+1μ

δ(N+1)
n gN+1, we have

e−iOpW
�

(GN+1)HeiOpW
�

(GN+1)

=−�
2Δ + �OpW

�
(q1,N ) + �

1+(N+1)μδ(N+1)
n OpW

�
(eN − eN,H)

+ �
1+(N+2)μδ(N+2)

n OpW
�

(ẽN+1) +O(�∞)H−N
�

→HN
�

,

where ẽN ∈ Smcomp
r,δ . Since supp(êN − êN,H)∩ {(θ, ξ) : |θ| ≥ rμ−δ

n } = ∅, we may define

q1,N+1 = q1,N + �
N+1μδ(N+1)

n (eN − eN,H)

in order to have the required properties for q1,N+1.
We can now put g ∼∑j �

jμjδ
n gj (see Lemma 5.15) to finish the proof of the

lemma. �

Remark 6.10. The proofs of Lemmas 6.7 and 6.9 may look as though they require
performing infinitely many parallel gauge transform steps; something that experts
in the gauge transform could be concerned about. However, the proofs actually rely
on being able to make a finite but arbitrarily large number of such steps. Morally,
we do not make the sets on left hand sides of (6.6), (6.7), and (6.8) empty, instead
making the corresponding part of q smaller than �

N for some arbitrarily large N . We
then apply the Borel summation lemma (Lemma 5.15). Recall also that n= n(�) and
satisfies (2.3) and hence, since the remainders are controlled in �, they are controlled
in n.

The final proposition of this section shows that, using a serial gauge transform,
one can remove frequencies which are larger than any fixed power of � from the
potential.

Proposition 6.11. Suppose that

H(Q0) =−�
2Δ + �OpW

�
(q0)

for some q0 ∈ S1
phg,0 real valued. Let 0 < a < b such that suppq0 ⊂ {a ≤ |ξ| ≤ b}.

0< δ < 1, M > 0 . Put r−1 = 1, rj = μ−δj
n , j = 0,1, . . . . Then there are g−1 ∈ Smcomp

phg,0 ,

and gj ∈ r−1
j μδ

nS
mcomp
rj ,δ

, j = 0,1, . . . ,M real valued such that such that for all N ,

U∗
M . . .U∗

0U
∗
−1H(Q0)U−1U0 . . .UM =−�

2Δ + �OpW
�

(q1) +O(�∞)H−N
�

→HN
�

,

Uj := eiOpW
�

(gj),

and

supp q̂1 ∩ {|θ| ≥ μ−Mδ
n } = ∅, suppq1 ⊂ {a≤ |ξ| ≤ b}.

Moreover, gj and q1 depend continuously on q0 and, if q0 is LZ-periodic, then so

are q1 and gj .
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Remark 6.12. In order to remove all of the frequencies of q0 larger than μ−N
n , we

take M = �Nδ−1�.

Remark 6.13. We prove Proposition 6.11 using a serial sequence of parallel gauge
transforms (see Remark 1.8). Indeed, notice that the proof of Lemma 6.9 involves a
parallel gauge transform which we apply a large, independent of � number of times.

Proof. By Lemma 6.7, there is g−1 ∈ Smcomp
phg,0 such that

H(Q[1]) := U∗
−1H(Q0)U−1 =−�

2Δ + �OpW
�

(q[1]) +O(�∞)H−N
�

→HN
�

with q[1] ∈ S1
phg,0 real valued and satisfying

supp q̂[1](θ, ξ)∩ {|θ| ≥ 1}= ∅, suppq[1] ⊂ {a≤ |ξ| ≤ b}.

Setting q to q[1] in Lemma 6.9, we find g0 ∈ μδ
nS

mcomp
phg,δ such that

H[2] := U∗
1H(Q[1])U1 =−�

2Δ + �OpW
�

(q[2]) +O(�∞)H−N
�

→HN
�

,

with q[2] ∈ S1
phg,δ real valued and satisfying

supp q̂[2](θ, ξ)∩ {|θ| ≥ r1 = μ−δ
n }= ∅, suppq[2] ⊂ {a≤ |ξ| ≤ b}.

Iterating this process M times completes the proof of the proposition. �

7 Computing the local density of states

Before we apply the gauge transform procedure from the previous section, it will be
crucial to replace H(Q0) by a periodic operator. Let N ∈R. We aim to compute the
local density of states modulo errors of size O(�N ) (or, equivalently, O(μ−N

n )).
As stated in Sect. 2.6, we fix a discrete sequence {μn = 2n}∞n=1 and work with

� ∈ [2−10μ−1
n ,210μ−1

n ].

In order to compute the local density of states, we start by replacing H(Q0) by a
periodic operator, H(PQ0) with period at scale μN

n . The local densities of states for
the two operators are close by Proposition 4.9. We then study the local density of
states for H(PQ0) by applying the gauge transform from Proposition 6.11. This will
result in an operator which acts as a Fourier multiplier for semiclassical energies
ω ∈ [a, b]. As we will see in Corollary 7.4, computing the local density of states
for such operators is relatively straightforward. Finally, in order to complete the
proof of the main theorem, we will need to understand how the unitary operator
found in Proposition 6.11 acts on delta functions. In some sense, this corresponds to
‘unpeeling’ (or rebuilding) the onion peeled by the gauge transform.
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7.1 Periodising the perturbation. We now periodise the perturbation in a
way that will have a negligible effect on the local density of states. Let X ∈
C∞

c ((−1
2 ,

1
2); [0,1]) with X≡ 1 on [−1

4 ,
1
4 ], and put Xn(x) :=X(μ−N

n x). Suppose that

Q0 := V1(x)�Dx + �DxV1(x) + V0(x) ∈Diff1.

Then, put

Vj
n(x) :=

∑

k∈Z
Xn(x− kμN

n )Vj(x− kμN
n ), j = 0,1

so that Vj
n(x) = Vj on |x| ≤ 1

4μ
N
n , and

|∂α
xVj

n(x)| ≤Cα, x ∈R.

Define

PQ0 := V1
n(x)�Dx + �DxV1

n(x) + V0
n.

Here, we use the notation P to remind the reader that PQ0 is the periodised version
of Q0 (see also Example 1.31 part (3)).

We claim that for ω ∈ [a− ε, b+ ε] and λ ∈ [−ε, ε], H(PQ0) satisfies

|E(H(PQ0))(x, y,ω)−E(H(PQ0))(x, y,ω + λ)| ≤Cμ−N
n 〈μN+1

n λ〉. (7.1)

Once we prove (7.1), Proposition 4.9 applied with T = 1
8μ

N
n will show that

|E(H(Q0))(x, y,ω)−E(H(PQ0))(x, y,ω)| ≤Cμ−N
n , ω ∈ [a, b]. (7.2)

It therefore remains only to compute E(H(PQ0))(x, y,ω) and prove (7.1).

7.2 Analysis of E(H(PQ0)): reduction to a Fourier multiplier. We first fix
δ′ ∈ (0,1] and work either on diagonal or assume |x−y| ≥ ch1−δ′ . Then, let a, b, δ ∈R

such that 0< a< b, 0< δ < min(1
2 ,

δ′

2 ). The goal of this section is to show that (7.1)
holds with constants depending on all the parameters introduced above but uniformly
over � ∈ (0,1] and to compute an asymptotic formula for E(H(PQ0)).

Remark 7.1. Observe that it is only necessary to work with δ� 1 in order to obtain
asymptotics very close to, but not on, the diagonal. Indeed, the requirement δ < δ′

2
is the only reason we cannot simply fix δ from the outset. Consequently, the reader
only interested in on-diagonal asymptotics may work with δ = 1

4 for example. (See
also Remark 7.11.)

We now reduce to the case where PQ0 is supported in a < |ξ| < b. We use
Lemma 3.3 to prove the following lemma. Since we expect this lemma to be use-
ful in future work, we prove it in arbitrary dimension.
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Lemma 7.2. Let 0 < a < b. Suppose that q1,q2 ∈ S1(T ∗
R

d) are real valued and for

all a < |ξ|< b, x ∈R
d we have

q1(x, ξ) = q2(x, ξ).

Put Qj := OpW
�

(qj) : H1
h(Rd) → L2(Rd). For all N > 0 and ε > 0 there are C > 0,

L> 0 such that if for all x ∈K and all ω ∈ [a, b] we have

∑

|α|≤N

‖E(H(Q2); [ω2 − �
L, ω2 + �

L])∂αδx‖L2 ≤C−1
�
N ,

then for all ω ∈ (a+ ε, b− ε) we have

∥
∥
∥E(H(Q1))(·, ·, ω)−E(H(Q2))(·, ·, ω)

∥
∥
∥
CN (K ×K )

≤C�
N . (7.3)

Proof. We will apply Lemma 3.3 with J = ((a+ ε)2, (b− ε)2) and

H1 := H(Q1), H2 := H(Q2).

Then, let χ ∈C∞
c (a2, b2) with χ≡ 1 on ((a+ ε)2, (b− ε)2) so that

(H1 −H2)E(H2;J) = (H1 −H2)χ(H2)E(H2;J) =O(�∞)Ψ−∞ .

Similarly,

E(H1;J)(H1 −H2) =E(H1;J)χ(H1)(H1 −H2) =O(�∞)Ψ−∞ .

In particular, the hypotheses of Lemma 3.3 hold with ε1 = ε2 = ε3 = O(�∞) for any
s ∈R.

In order to apply Lemma 3.3, we estimate

‖E(H(Q2))(ω)∂α
x δx‖L2 .

To do this, observe that for any s ∈R

‖E(H(Q2))(ω)(H(Q2) + 1)s‖L2→L2 ≤C(ω2 + 1)s

and the principal symbol σ(H(Q2) + 1) = |ξ|2 + 1 is non-vanishing. In particular,
(H(Q2) + 1)−s ∈Ψ−2s exists. Therefore,

‖E(H(Q2))(ω)∂α
x δx‖L2

≤ ‖E(H(Q2))(ω)(H(Q2) + 1)s‖L2→L2‖(H(Q2) + 1)−s∂α
x δx‖L2 (7.4)

≤C(ω + 1)s‖∂α
x δx‖H−2s

�

≤C(ω + 1)s�−|α|−d
2

for any s > d
4 + |α|. Thus, by Lemma 3.3

E(H(Q1))(ω;x, y) = E(H(Q2))(ω;x, y) +O(�∞)C∞ . (7.5)
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Remark 7.3. Above, we apply the statement in Lemma 3.3 for each � to ob-
tain (7.5).

Lemma 7.2 has the following useful corollary.

Corollary 7.4. Suppose that q ∈ S1(T ∗
R

d) is real valued and for all a < |ξ| < b,

x ∈R
d we have

q(x, ξ) = q̃(ξ).

Put Q := OpW
�

(q) : H1
h(Rd) → L2(Rd). Then, for all K ⊂ R

d × R
d compact, N > 0

and ε > 0 there is CN > 0 such that for all ω ∈ (a+ ε, b− ε) we have

∥
∥
∥E(H(Q))(x, y,ω)− 1

(2π�)d
∫

G�(ω)
ei〈x−y,ξ〉/�dξ

∥
∥
∥
CN (K)

≤CN�
N , (7.6)

where

G�(ω) := {ξ | |ξ|2 + �q̃(ξ)≤ ω2}.

By Lemma 7.2, for a < ω < b, we have

E(H(PQ0))(ω;x, y) = E(H(PQ̃0))(ω;x, y) +O(h∞)C∞ ,

where

Pq̃0(x, ξ) = χ(|ξ|)Pq0(x, ξ),

with χ ∈C∞
c (R+) and χ≡ 1 on [a, b].

By Proposition 6.11, with M = �Nδ−1�, there is a unitary operator, U = Un, and
q1 ∈ S1 real valued such that

H1 := U∗H(PQ̃0)U =−�
2Δ + �OpW

�
(q1) +O(�∞)Ψ−∞ ,

where q1 ∈ S1 is μN
n -periodic and

supp q̂1 ∩ {|θ| ≥ μ−N
n } = ∅. (7.7)

Now, since q1 is μN
n -periodic,

supp q̂1 ∩ {|θ| ≤ μ−N
n } ⊂ {θ = 0}.

In particular,

q2(ξ) := q1(x, ξ) ∈ Smcomp
phg,δ (7.8)

is independent of x.
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Put

H(Q1) :=−�
2Δ + �OpW

�
(q1), H̃1 := UH(Q1)U∗.

Then, Lemma 3.1 implies

∂β
x∂

α
y (E(H̃1)(x, y,ω)−E(H(PQ0))(x, y,ω)) =O(�∞). (7.9)

Remark 7.5. Note that we apply Lemma 3.1 to the derivatives of the delta function
and use the fact that for Φ ∈C∞

c ,

‖Φ(H(Q))∂α
x δ‖L2 ≤Cα�

−|α|− 1
2 .

We now focus on computing

(∂β
x∂

α
y )E(H̃1)(x0, y0, ω) = (∂β

x∂
α
y )E(UH(Q1)U∗)(x0, y0, ω)

= 〈UE(H(Q1))(ω)U∗(−∂y)αδy0 , (−∂x)βδx0〉.

This will be a priori simpler than computing E(H(PQ0)) since Q1 is a Fourier mul-
tiplier and hence we have an exact formular for E(H(Q1)).

Remark 7.6. We have replaced (x, y) in the statement of our theorems by (x0, y0)
to avoid notational clashes in the next section.

7.3 Asymptotics of the spectral function: ‘unpeeling’ the onion. Before we can
understand the asymptotics of the spectral function, we need a lemma which gives
the kernel of the spectral projector for H(Q2).

Remark 7.7. In the case when the potential is the sum of a smooth periodic
function and a function from the Schwartz class, the onion peeling is not needed
(see Remark 6.8). In particular, the gauge transform is made by a single operator
U = eiOpW

�
(g−1) with g−1 ∈ Smcomp

phg,0 which allows us to proceed immediately to the
conclusion of Lemma 7.10 below, and thus to complete the proof of the main result.
In the general setting though, one has to deal with U described by (7.11) and ad-
ditional technical arguments due to onion peeling and specifics of the corresponding
classes μδ

nr
−1
j Smcomp

rj ,δ
, rj = μ−jδ

n .

Now that we have computed the kernel of E(H(Q1)), we need to handle the
action of U and U∗ on E(H(Q1)). To do this, we first describe how E(H(Q1)) moves
wavefront sets.

Lemma 7.8. Let b > 0 C > 0 and �
C ≤ r ≤ 1. Then for all χ ∈ C∞

c (R), and all �-

tempered u we have

WF�r(UrE(H(Q1))(ω)U∗
rχu) ⊂ {(x, ξ) | ξ ∈ πξ(WF�r(u)), |ξ| ≤ ω}, (7.10)
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where πξ(x, ξ) = ξ is the natural projection. Moreover, for Ξ ∈C∞
c (R) with Ξ≡ 1 on

[−b, b], and all ω ∈ (−b, b) we have

UrE(H(Q1))(ω)U∗
r OpW

�r(1−Ξ(ξ)) = 0.

Proof. First, recall that UrE(H(Q1))(ω)U∗
r is given by

UrE(H(Q1))(ω)U∗
r (x, y) =

1
2π�r

∫

G�(ω)
e

i
�r

(x−y)ξdξ.

Let Ξ ∈C∞
c with Ξ≡ 1 on [−b, b], then

UrE(H(Q1))(ω)U∗
r OpW

�r(1−Ξ(ξ))

=
1

2π�r

∫ ∫

G�(ω)
e

i
�r

[(x−z)ξ+(z−y)η](1−Ξ(|η|))dξdzdη = 0.

Therefore, we may replace χu by OpW
�r(Ξ(ξ))χu in (7.10) and hence assume u is

compactly microlocalized.
Suppose that ξ0 /∈ πξ(WF�r(u)). Then, since u is compactly microlocalized, there

is P̃ ∈C∞
c (R2) such that

(1− P̃)u =O(�∞)H�
�

.

In particular, WF�r(u) = WF�r(P̃u) is compact and there is U , a neighbourhood of
ξ0, such that U ∩ πξ(WF�r(u)) = ∅. Thus, there is b ∈C∞

c (R2) such that

OpW
�r(1− b)u=O(�∞)H�

�

and πξ(supp b)∩U = ∅.
Let x0 ∈R and suppose a ∈C∞

c (R2) with a(x0, ξ0) = 1 and πξ suppa⊂ U . Then

OpW
�r(a)UrE(H(Q1))(ω)U∗

r u

= OpW
�r(a)UrEH2(ω)U∗

r OpW
�r(b)u+O(�∞)H�

�

=
1

(2π�r)3
∫ ∫

G�(ω)
e

i
�r

[(w−z)ξ+(x−w)η+(z−y)ζ]

× a(x+w
2 , η)b( z+y

2 , ζ)u(y)dξdydζdzdwdη +O(�∞)H�
�

.

Since |ζ − η|> c > 0 on the support of the integrand, integration by parts in (z,w)
shows that (x0, ξ0) /∈WFr�(UrE(H(Q1))(ω)U∗

r u).
Next, let (x0, ξ0) ∈ R

2 such that |ξ0| > ω. Then there is a neighbourhood U of
(x0, ξ0) such that U ∩ {|ξ| ≤ ω} = ∅. As above, let a ∈ C∞

c (R2) with πξ suppa ⊂ U

and a(x0, ξ0) = 1. Then

OpW
�r(a)UrE(H(Q1))(ω)U∗

r u

= OpW
�r(a)UrEH2(ω)U∗

r OpW
�r(P̃)u+O(�∞)H�

�
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=
1

(2π�r)3
∫ ∫

G�(ω)
e

i
�r

[(w−z)ξ+(x−w)η+(z−y)ζ]a(x+w
2 , η)

× P̃( z+y
2 , ζ)u(y)dξdydζdzdwdη +O(�∞)H�

�

.

Now, since πξ(suppa) ⊂ U and |ξ| ≤ ω + C� in G�(ω), we have |ξ − η| > c >

0 on the integrand, and integration by parts in w then shows that (x0, ξ0) /∈
WFr�(UrE(H(Q1))(ω)U∗

r u) as claimed. �

The final piece of the proof involves rebuilding the layers of our potential. That
is, we compute asymptotics for a series of oscillatory integrals, coming from U and
U∗, which oscillate at different scales. In particular, the unitary operator, U , used
to gauge transform from H(PQ0) to H(Q1) is of the form

U = eiOpW
�

(g−1) . . . eiOpW
�

(gNδ−1)eiOpW
�

(gNδ
) (7.11)

with g−1 ∈ Smcomp
phg,0 , gj ∈ μδ

nr
−1
j Smcomp

rj ,δ
, and rj = μ−jδ

n .
We start by showing that U and U∗ do not appreciably move the momentum

variables (ξ’s).

Lemma 7.9. Let γ ∈ S0 be compactly supported in x such that (suppγ) ∩ {ξ ∈
[−b, b]}= ∅. Then there is ε > 0 such that for all ω ∈ [−b− ε, b+ ε] we have

E(H(Q1))(ω)U∗ OpW
�

(γ) =O(�∞)H−�
�

→H�
�

,

OpW
�

(γ)UE(H(Q1))(ω) =O(�∞)H−�
�

→H�
�

.

Proof. First, observe that

U∗ = UrNδ
U∗
rNδ

e−iOpW
�

(gNδ
)UrNδ

U∗
rNδ

UrNδ−1◦

U∗
rNδ−1

e−iOpW
�

(gNδ−1)UrNδ−1 . . .U
∗
r1e

−iOpW
�

(g0)e−iOpW
�

(g−1)

and hence, by Lemmas 5.23 and 5.25, for any P̃ ∈ S0 with P̃≡ 1 on suppe we have

U∗ OpW
�

(γ) = UrNδ
OpW

�rNδ
(P̃)U∗

rNδ
U∗ OpW

�
(γ) +O(�∞)H−�

�
→H�

�

.

In particular, letting P̃ ∈ S0 with supp P̃ ∩ {ξ ∈ [−b, b]} = ∅, P̃ ≡ 1 on suppγ, and
Ξ ∈ C∞

c such that Ξ ≡ 1 in a neighbourhood of [−b, b], and suppΞ(ξ) ∩ supp P̃ = ∅,
we have by Lemma 7.8

E(H(Q1))(ω)U∗ OpW
�

(γ)

= UrNδ
U∗
rNδ

EH2(ω)UrNδ
OpW

�rNδ
(P̃)U∗

rNδ
U∗ OpW

�
(γ) +O(�∞)H−�

�
→H�

�

= UrNδ
U∗
rNδ

E(H(Q1))(ω)UrNδ
OpW

�rNδ
(1−Ξ(|ξ|))OpW

�rNδ
(P̃)U∗

rNδ
U∗ OpW

�
(γ)

+O(�∞)H−�
�

→H�
�

=O(�∞)H−�
�

→H�
�

. �



GAFA SPECTRAL ASYMPTOTICS IN ONE DIMENSION 1517

The final preparatory lemma before we proceed to the proof of our main theorem
gives asymptotics for the spectral function EH(PQ0) in terms of the discrete parameter
μn. Since the number of unitary operators from which U is built depends on the value
of N in the error from (7.2), the number of oscillatory integrals needed to describe
EH(PQ0) (N0 in the lemma below) will also depend on N . In the proof of the next
lemma, we will need Lemma 5.24 which gives an oscillatory integral approximation
to e−iOpW

�
(g) when g ∈ r−1Smcomp

r,δ .

Lemma 7.10. There is Υ > 0 and {Ψj}Υ
j=1 ∈ S1

phg,δ such that for all α,β ∈ N, there

are ejαβ ∈ Sphg,δ, j = 1, . . . ,Υ, such that for ω ∈ [a, b]

〈E(H(Q1))(ω)U∗(−∂y)αδy0 ,U∗(−∂x)βδx0〉

=
Υ∑

j=1
�
−1−α−β

∫

G�(ω)
e

i
�

(x0−y0)Ψj(x0,y0,η)ejαβ(x0, y0, η)dη,

and

Ψj ∼ η +
∑

l≥1
�
lμlδ

n Ψj,l, Ψj,l ∈ S1. (7.12)

Here, U is the unitary operator in (7.11).

Proof. By Lemma 7.9, we need only to compute

〈E(H(Q1))(ω)U∗ OpW
�

(Ξ(|ξ|))(−∂y)αδy0 ,U∗ OpW
�

(Ξ(|ξ|))(−∂x)βδx0〉

for a given Ξ ∈C∞
c (R). We use again that

U∗ = UrNδ
U∗
rNδ

e−iOpW
�

(gNδ
)UrNδ

U∗
rNδ−1

UrNδ−1◦

U∗
rNδ−1

e−iOpW
�

(gNδ−1)UrNδ−1 . . .U
∗
r1e

−iOpW
�

(g0)e−iOpW
�

(g−1).

Remark 7.11. Recall that the number of products here is large, but independent of
�. If, in our onion peeling argument, we peeled away layers of the form 2−j−1 ≤ |θ| ≤
2−j rather than μ

−(j+1)δ
n ≤ |θ| ≤ μ−jδ

n , then we would require ∼ | log�| steps to obtain
a constant coefficient operator. Not only would this require much finer control in each
step of the gauge transform, but also unpeeling the onion would become substantially
more complicated. In particular, this is why we cannot take δ = 0.

By Lemma 5.24, for all k = 1, . . . ,Nδ, there are {Wj,k}Υk
j=1 ⊂R

2
(x,ξ) open such that

{(x0, ξ) ∈ T ∗
R | |ξ| ≤ b} ⊂

Υk⋃

j=1
Wj,k
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and for all u with WFrj�(u) ⊂ Wj,k, U∗
rje

−iOpW
�

(gj)Urju takes the form (5.9) with
t = �μδ

n and g = rjμ
−δ
n gj . Furthermore, there are {Wj,0}Υ

j=1 such that

{(x0, ξ) | |ξ| ≤ b} ⊂
Υ⋃

j=1
Wj,0

and for all k = 1, . . . ,Nδ and j = 1, . . . ,Υ there is ik,j such that

{(x0, ξ) | ξ ∈Wj,0} ⊂Wik,j ,k. (7.13)

In addition, for all j = 1, . . . ,Υ, and u with WF�(u) ⊂Wj,0, e−iOpW
�

(g0)u takes the
form (5.9) with t= �μδ

n and g = μ−δ
n g0.

Let {Pj}Nj=1 be a partition of unity near {(x0, ξ) | |ξ| ≤ b} subordinate to
{Wj,0}Υ0

j=1. Then,

OpW
�

(Ξ(|ξ|))(−∂x)βδx0 =
N∑

j=1
OpW

�
(Ξ(|ξ|)Pj)(−∂x)βδx0 .

Let P̃j ∈C∞
c (Uj,0) with P̃j ≡ 1 on suppPj . Then, Lemmas 5.23 and 5.25 imply

WF�rNδ
(U∗

rNδ
U∗ OpW

�
(Ξ(|ξ|)Pj)(−∂x)βδx0)

⊂ {(x, ξ) |x= 0, ξ ∈ πξ(suppΞ(|ξ|)Pj)}

and

WF�rNδ
(U∗

rNδ
U∗ OpW

�
(Ξ(|ξ|)(1− P̃j)(−∂x)βδx0)

⊂ {(x, ξ) |x= 0, ξ ∈ πξ(suppΞ(|ξ|)(1− P̃j))}.

In particular, Lemma 7.9 implies

〈E(H(Q1))(ω)U∗ OpW
�

(Ξ(|ξ|)Pj)δx0 ,U
∗ OpW

�
(Ξ(|ξ|)(1− P̃j)(−∂x)βδx0〉=O(�∞).

We now analyze

U∗ OpW
�

(Ξ(|ξ|)Pj)(−∂x)βδx0 .

To ease notation, we put

vk,j := U∗
rk
e−iOpW

�
(gk)Urk . . .U

∗
r1e

−iOpW
�

(g0)e−iOpW
�

(g−1) OpW
�

(Ξ(|ξ|)Pj)(−∂x)βδx0 ,

ṽk,j := U∗
rk
e−iOpW

�
(gk)Urk . . .U

∗
r1e

−iOpW
�

(g0)e−iOpW
�

(g−1) OpW
�

(Ξ(|ξ|)P̃j)(−∂x)βδx0 .

Since g−1 ∈ Smcomp, we have e−iOpW
�

(g−1) ∈Ψ0 and

WF�(e−iOpW
�

(g−1) OpW
�

(Ξ(|ξ|)Pj)(−∂x)βδx0) ⊂ Uj,0.
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Moreover, by Lemmas 5.23 and 5.25 together with (7.13), we may assume that
U∗
rje

−iOpW
�

(gj)Urj takes the form (5.9) as described above.
By Lemma 5.24, since g−1 ∈ Smcomp

phg,0 and g0 ∈ μδ
nS

mcomp
phg,0 , we have

v0,j(x) =
�
−β

(2π�)2
∫

e
i
�

(ϕ0,j(�μδ
n,x,η)−yη+(y−x0)ξ)aj(x, y,x0, η, ξ)dydξdη

with aj ∈ Smcomp
phg,δ . Now, observe that

ϕ0,j(�μδ
n, x, η)∼ 〈x, η〉+

∞∑

l=1

�
lμlδ

n

l!
∂l
tϕ0(0, x, η),

∂tϕ0 = g0(x,∂xϕ0).

In particular, ϕ0,j ∈ S1
phg,δ.

Applying stationary phase in (y, η), we obtain

v0,j(x) =
�
−β

2π�

∫

e
i
�

(ϕ0,j(�μδ
n,x,η)−x0η)ã0,j(x, η,x0)dη

for some ã0,j ∈ Smcomp
phg,δ . We claim that

vk,j(x) =
�
−β

(2π�)r1/2
k

∫

e
i

�rk
(ϕ̃k,j(x,η,x0)−rkx0η)

ãk,j(x, η,x0)dη (7.14)

with ϕ̃k,j ∈ S1
phg,δ, ãk,j ∈ Smcomp

phg,δ ,

ϕ̃k,j(x, η,x0)∼ xη +
∞∑

l=1
�
lμlδ

n ϕ̃k,j,l(x, η,x0), |∂α
x0
∂β1
x ∂β2

η ϕ̃k,j,l| ≤Ckαβ1β2rk, α≥ 1

(7.15)
and ϕ̃k,j,l ∈C∞ having bounded derivatives. Indeed, we have checked this for k = 0.

Remark 7.12. Observe that we claim in (7.14) that the integral kernel of U∗
rNδ

U

takes the form given by (7.14) with k =Nδ. Indeed, U∗
rNδ

U is ‘nearly’ a semiclassical
Fourier integral operator with small parameter �rNδ

. The formal issue with this
statement is that the phase function is not independent of �.

Suppose (7.14) holds for some k = 1, . . . ,N − 1. Then we compute

vN,j = U∗
rN e

−iOpW
�

(gN )UrNU
∗
rNUrN−1vN−1,j .

Observe that there is ϕN,j ∈ S1
phg,δ with ϕN,j(�s−1, x, η) = 〈x, η〉+O(�s−1)C∞ and

vN,j(x) =
�
−β

(2π�)2rN−1
r
− 1

2
N

∫

e
i

�rN
(ϕN,j(�μδ

n,x,η)+ rN
rN−1

(−yη+ϕ̃N−1,j(y,ξ,rN−1x0)−rN−1x0ξ))

× aN,j(x, η)ãN−1,j(y,x0, ξ)dydηdξ
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=
�
−β

(2π�)r1/2
N

∫

e
i

�rN
(ϕN,j(�μδ

n,x,η)+ rN
rN−1

(−ycη+ϕ̃N−1,j(yc,ξc,rN−1x0)−rN−1x0ξc))

× ãN,j(η,x0)dη.

In the last line we apply stationary phase in the (y, ξ) variables to obtain ãN,j . We
then find, using the asymptotics (7.15), that the critical point (yc, ξc) solving

∂ξ(−yη + ϕ̃N−1,j(y, ξ, rN−1x0)− rN−1x0ξ)|y=yc
ξ=ξc

= ∂y(−yη + ϕ̃N−1,j(y, ξ, rN−1x0)− rN−1x0ξ)|y=yc
ξ=ξc

= 0

satisfies

yc(x0, η)∼ rN−1x0 +
∞∑

l=1
�
lμlδ

n yc,l(x0, η),

ξc(x0, η) = η +
∞∑

l=1
�
lμlδ

n ηc,l(x0, η)

with yc,l, ηc,l ∈C∞ and

|∂α
x0
∂β
η yc,l|+ |∂α

x0
∂β
η ξc,l| ≤CαβlrN−1, α≥ 1. (7.16)

To see (7.16), observe that
(

∂x0yc
∂x0ηc

)

=
(

∂2
y ϕ̃N−1,j(yc, ξc, x0) ∂2

yξϕ̃N−1,j(yc, ξc, x0)
∂2
ξyϕ̃N−1,j(yc, ξc, x0) ∂2

ξξϕ̃N−1,j(yc, ξc, x0)

)−1

×
(

−∂2
x0yϕ̃N−1,j(yc, ξc, x0)

rN−1 − ∂2
x0ξ

ϕ̃N−1,j(yc, ξc, x0)

)

,

and hence (7.15) implies (7.16). Plugging the expression into the formula for vN,j

then completes the proof of the inductive step.
An identical analysis shows that

ṽk,j(x) =
�
−β

(2π�)r1/2
k

∫

e
i

�rk
(ϕ̃k,j(x,η,x0)−rkx0η)

b̃k,j(x, η,x0)dη,

for some b̃k,j ∈ Smcomp
phg,δ . Here, crucially, the same phase function ϕ̃k,j appears as in

vk,j .
Now, putting kN =Nδ, we obtain

〈E(H(Q1))(ω)U∗(−∂y)αδy0 ,U∗(−∂x)βδx0〉

=
Υ∑

j=1
〈UrkN

E(H(Q1))(ω)U∗
rkN

vkN ,j , ṽkN ,j〉+O(�∞)
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=
Υ∑

j=1

�
−α−β

(2π�)3r2
kN

∫

G�(ω)

∫

e
i

�rkN
((x−y)η+ϕ̃kN,j(y,ξ,y0)−rkN

y0ξ−ϕ̃kN,j(x,ζ,x0)+rkN
x0ζ)

ãkN ,j b̃kN ,jdydξdxdζdη +O(�∞).

Finally, performing stationary phase in (y, ξ), (x, ζ), the critical points are given
by y = yc(η, y0), ξ = ξc(η, y0), x = yc(η,x0), and ζ = ξc(η,x0). In particular, when
x0 = y0, the phase vanishes. Moreover, we have yc ∈ S0

phg,δ, ξc ∈ S1
phg,δ and

yc ∼ rkNx0 +
∑

l≥1
�
lμlδ

n yc,l, ξc = η +
∑

l≥1
�
lμlδ

n ξc,l,

|∂α
x0
∂β
η yc,l|+ |∂α

x0
∂β
η ξc,l| ≤ClαβrkN , α≥ 1.

Therefore, writing Φj(x0, y0, η) for the phase at the critical point, we have

Φj(x0, y0, η) = rkN (x0 − y0)Ψj(x0, y0, η)

for some Ψj ∈ S1
phg,δ with Ψj = η +O(�μδ

n).
In particular, this implies

〈E(H(Q1))(ω)U∗(−∂y)αδy0 ,U∗(−∂x)βδx0〉

=
Υ∑

j=1
�
−1−α−β

∫

G�(ω)
e

i
�

(x0−y0)Ψj(x0,y0,η)ej(x0, y0, η)dη,

with Ψj and ej as claimed.
Now that we have obtained an asymptotic expansion for the spectral projector of

H(Q1), we pass to H(Q). First, observe that Lemma 7.10 implies that the assump-
tions (4.7) hold for all α,β,N and ω ∈ [a+ ε, b− ε], with T (�) =O(�−N ). Therefore,
by Proposition 4.9,

∂α
x ∂

β
y E(H(Q0))(x, y,ω)− ∂α

x ∂
β
y E(H(Q1))(x, y,ω) =O(μ−N+|α|+|β|

n ).

Here, the implicit constant depends on α,β,N,a, and b but not on �, n, x, y, and ω.
Now, using Lemma 7.10, we have for � ∈ [μ−1

n+1, μ
−1
n−1],

∂α
x ∂

β
y E(H(Q0))(x0, x0,1) =C0,α,β,n(x0)�−1−α−β

K∑

k=1
ck,n,α,β(x0)�k +O(μ−N

n ),

|ck,n,α,β| ≤Ckαβμ
kδ
n .

(7.17)

By [PS16, Lemma 3.6] Theorem 1.24 holds for x in any bounded set.
Next, we prove Theorem 1.25. When |x0−y0|> 0, using (7.12), we have |∂ηΨ(x0−

y0)|> c|x0 − y0|> 0. Therefore, we can integrate by parts using L= �
Dη

(x0−y0)∂ηΨ and
setting

G�,±(ω) :=± sup{η ∈R : ±η ∈G�(ω)} ∼±ω +
∑

j≥1
g±,j(ω)�jμjδ

n ,
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to obtain

�
−1
∫

G�(ω)
e

i
�

(x0−y0)Ψ(x0,y0,η0)ej(x0, y0, η)

=
1

x0 − y0

([

e
i
�

(x0−y0)Ψ(x0,y0,η) ej(x0, y0, η)
∂ηΨ

]η=G�,+(ω)

η=G�,−(ω)

−
∫

G�(ω)
e

i
�

(x0−y0)Ψ(x0,y0,η)Dη
ej(x0, y0, η)
∂ηΨ(x0, y0, η)

dη
)

.

Repeating this process and using that |∂ηΨ|> c > 0, we obtain for |x0−y0| � �, that
there are ck,n,α,β±(x0, y0) satisfying

|ck,n,α,β,±| ≤Ckαβ|x0 − y0|−α−βμkδ
n

such that

∂α
x ∂

β
y E(H(Q0))(x0, y0, ω) = e

i
�

Ψ̃+,n(x0,y0)
�
−α−β(

K∑

k=0
ck,α,β,n,+(x0, y0)(x0 − y0)−k−1

�
k)

+ e
i
�

Ψ̃−,n(x0,y0)
�
−α−β(

K∑

k=0
ck,α,β,n,−(x0, y0)(x0 − y0)−k−1

�
k)

+O(μ−N+α+β
n ), (7.18)

where Ψ̃± = (x0 − y0)Ψ(x0, y0,G±,�(ω)) ∈ S0
phg,δ satisfies

Ψ̃±,n ∼±(x0 − y0)ω + (x0 − y0)�μδ
nΨ̃1,±,n + (x0 − y0)�2μ2δ

n

∞∑

j=0
�
jμjδ

n Ψ̃j+2,±,n.

Now,

e
i
�

Ψ̃±,n = e±
i
�

(x0−y0)ωei(x0−y0)μδ
nΨ̃1,±,n

J−1∑

j=0
(�(x0−y0)μ2δ

n )jΨ̃′
j,±,n+O((x0−y0)J�Jμ2Jδ

n ),

where Ψ′
j,±,n can be calculated from Ψj,±,n.

Therefore, since δ < 1
2 , we may take J large enough so that �

Jμ2Jδ
n = O(μ−N

n ),
and hence we have

∂α
x ∂

β
y E(H(Q0))(x0, y0, ω) = e

i
�

(x0−y0)ω
�
−α−β

K∑

k=0
c̃k,α,β,n,+(x0, y0)(x0 − y0)−k−1

�
k

+ e−
i
�

(x0−y0)ω
�
−α−β

K∑

�=0
c̃�,α,β,n,−(x0, y0)(x0 − y0)−�−1

�
�

+O(μ−N+α+β
n ) (7.19)
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with

|c̃k,n,α,β,±| ≤Ckαβ|x0 − y0|−|α|−|β|μ2kδ
n .

Now, since 2δ < δ′ and |x0 − y0| ≥ �
1−δ′ , we may apply Lemma 3.5 together with

Lemma A.1 to complete the proof of Theorem 1.25 for x and y in a bounded set
with |x− y| ≥ �

1−δ′ .

Remark 7.13. Although we have Lemma 7.10 uniformly for (x, y) in any compact
subset of R2, since we do not know that the integrand there is close for n and n+ 1,
we are not able to glue our asymptotics using an analogue of Lemma 3.5 to obtain
a single integral formula for all (x, y,�).

7.4 Uniformity in x. It is easy to check that for any N > 0 there is K > 0 such
that all the constants in the O(�N ) remainders above depend only on ‖Q0‖Diff1

K
.

Now, let Tsu(x) = u(x + s) so that T ∗
s u(x) = u(x− s). Then, Ts is unitary and,

with Qs := TsQ0T
∗
s ,

‖Qs‖Diff1
K

= ‖Q0‖Diff1
K
.

Note that

E(H(Q0))(s, y + s,ω) = 〈1(−∞,ω2](H(Q0))δs, δy+s〉

= 〈1(−∞,ω2](H(Qs))δ0, δy〉.

Thus, since Qs is bounded in Diff1
K , Theorems 1.24 and 1.25 hold uniformly for all

x ∈R and y ∈B(x,R).

7.5 Derivatives in ω.

Lemma 7.14. For all α,β ∈N, there is fα,β such that

∂α
x ∂

β
y E(H(Q0))(x, y,ω) = fα,β(x, y,ω) +O(�∞)

and

|∂�
ωfα,β(x, y,ω)| ≤Cαβ��

−α−β−�|x− y|�, �≥ 1.

Remark 7.15. A more careful analysis of the gluing argument used to obtain our
main theorems [PS16, Lemma 3.6] shows that in fact fαβ has a full asymptotic
expansion in powers of � and this expansion can be differentiated in ω.

Proof. It is easy to see from Lemma 7.10 that

∂α
x ∂

β
y ∂

�
ωE(H(Q̃2))(x, y,ω)

=
∑

±

Υ∑

j=1
�
−1−α−β∂�

ω

(

e
i
h

(x0−y0)Ψj(x0,y0,η±(ω))ejαβ(x0, y0, η±(ω))
)

,
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where η±(ω) are the two smooth solutions of |η±(ω)|2 +�q̃2(η±(ω)) = ω2, with q̃2 as
in (7.8). In particular,

η± ∼±ω +
∑

j

�
jμ−jδ

n η±,j(ω).

Since

∂α
x ∂

β
y E(H(Q̃2))(x, y,ω) = ∂α

x ∂
β
y E(H(Q0))(x, y,ω) +O(�∞),

this implies that

∂α
x ∂

β
y E(H(Q0))(x, y,ω) = fα,β(x, y,ω) +O(�∞),

where

|∂�
ωfα,β(x, y,ω)| ≤Cαβ��

−α−β−�|x− y|�, �≥ 1. �

8 Consequences of the main theorem

In this section, we discuss a few consequences of our main theorem. Our first corollary
is a direct consequence of Theorem 1.24.

Corollary 8.1. Let Q0 ∈Diff1 and let {uλα,�}α∈A(�) be an orthonormal system of

L2(R)-normalized eigenfunctions of H(Q0) with eigenvalues λ2
α = λ2

α(�); i.e.

(H(Q0)− λ2
α)uλα,� = 0, 〈uλα,�

, uλβ,�
〉= δα,β.

Then, for any a ∈ (0,∞) and N > 0, there is CN such that

sup
x∈R

∑

λα∈[a,a+ζ]
|uλα,�(x)|2 ≤CN�

−1+N 〈ζ�−N 〉.

Proof. Let

Λ([a, a+ ζ]) := Span{uλα,�
: λα,� ∈ [a, a+ ζ]},

and ΠΛ : L2(R) → Λ([a, a + ζ]) denote the orthogonal projector onto Λ([a, a + ζ]).
Then

ΠΛ =
(

E(H(Q0))(a+ ζ)−E(H(Q0))(a− ζ)
)

ΠΛ

= ΠΛ

(

E(H(Q0))(a+ ζ)−E(H(Q0))(a− ζ)
)

.

In particular,

E(H(Q0))(a+ ζ)−E(H(Q0))(a− ζ)−ΠΛ
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is an orthogonal projector and thus a positive operator. Letting ΠΛ(x, y) denote the
integral kernel of ΠΛ, we then have

∑

λα∈[a,a+ζ]
|uλα(x)|2 = ΠΛ(x,x)≤E(H(Q0))(x,x, a+ ζ)−E(H(Q0))(x,x, a− ζ).

Next, by Lemma 7.14 with α = β = 0,

E(H(Q0))(x, y,ω) = f(x, y,ω) +O(�∞)

with

|∂�
ωf(x, y,ω)| ≤C��

−�, �≥ 1.

In particular, by the mean value theorem, for all N > 0, there is CN > 0 such that

|E(H(Q0))(x,x, a+ ζ)−E(H(Q0))(x,x, a− ζ)|

≤ 2 sup
ω∈[a−ζ,a+ζ]

|∂ωf0,0(x,x,ω)||ζ|+CN�
N−1

≤C�
−1(|ζ|+CN�

N )≤CN�
−1+N 〈ζ�−N 〉. �

Our next corollary concerns the growth of solutions to

(H(Q0)− ω2)uω,� = 0, Q0 = V1
�Dx + �DxV1 + V0 (8.1)

that may or may not lie in L2. We first define the energy density at x of u� by

ED(uω,�)(x) := |uω,�(x)|2 + �
2ω−2|∂xuω,�(x)|2.

From now on, we write uω,� = uω, leaving the dependence on � implicit.
We start by considering the case where Q ∈Diff0, studying solutions to

(�2D2 + �V0 − ω2)uω = 0. (8.2)

Our first estimate gives a basic understanding of how fast the energy of a solution
may change from one point to another

Lemma 8.2. Suppose that V0 ∈ L∞(R;R). Then for any uω solving (8.2) and a, b ∈
R, we have

ED(uω)(b)≤ e‖V
0‖L∞ |a−b|/ωED(uω)(a).

Proof. Observe that

ω−1
�Dx

(

uω

ω−1
�Dxuω

)

=
(

0 1
1− ω−2

�V0(x) 0

)(

uω

ω−1
�Dxuω

)

=:A(x)
(

uω

ω−1
�Dxuω

)

.
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Therefore,

�∂xED(uω)(x) = �∂x
〈
(

uω

ω−1
�Dxuω

)

,

(

uω

ω−1
�Dxuω

)
〉

= 2ω
〈

�A(x)
(

uω

ω−1
�Dxuω

)

,

(

uω

ω−1
�Dxuω

)
〉

.

Now,

‖�A(x)‖=
∥
∥
∥
�ω−2

2i

(

0 V0(x)
−V0(x) 0

)
∥
∥
∥≤ �

2ω2 ‖V
0‖L∞ .

In particular,

∂xED(uω)(x)≤ ω−1‖V0‖L∞ED(uω)(x),

and hence, by Grönwall’s inequality,

ED(uω)(b)≤ e‖V
0‖L∞ |a−b|/ωED(uω)(a). �

Our next lemma allows us to glue solutions of (8.2) together.

Lemma 8.3. Suppose that V0
L,V0

R ∈ L∞, suppV0
L ⊂ (−∞,0), and suppV0

R ⊂ (0,∞),
and that uL

ω , u
R
ω are real valued and solve (8.2) with V0 = V0

L or V0 = V0
R respec-

tively. Then there is 0≤ s < 2π�/ω such that, putting

V0(x) =

⎧

⎪⎪⎨

⎪⎪⎩

V0
L(x) x≤ 0,

0 0< x< s,

V0
R(x− s) s≤ x,

there is a solution, vω : R→R, to

(�2D2 + �
2V0 − ω2)vω = 0

with

vω(x) =

⎧

⎨

⎩

√

ED(uR
ω )(0)uL

ω(x) x≤ 0
√

ED(uL
ω)(0)uR

ω (x− s) s < x.

Proof. Since V0
L ≡ 0 on [0,∞), we have that

uL
ω(x) = ((AL + iBL)eixω/� + (AL − iBL)e−ixω/�), x≥ 0,

with AL,BL ∈R, |AL|2 + |BL|2 =ED(uL
ω)(0). Similarly,

uR
ω (x) = ((AR + iBR)eixω/� + (AR − iBR)e−ixω/�), x≤ 0

with |AR|2 + |BR|2 =ED(uR
ω )(0).
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To complete the proof, we need only find 0≤ s < 2π�/ω such that
√

(|AL|2 + |BL|2)(AR + iBR)e−isω/� =
√

(|AR|2 + |BR|2)(AL + iBL), (8.3)
√

(|AL|2 + |BL|2)(AR − iBR)eisω/� =
√

(|AR|2 + |BR|2)(AL − iBL). (8.4)

Since the absolute values of the left and right hand sides above agree, it is easy to
see that there is s ∈ [0,2π�/ω) such that (8.3) holds. But then (8.4) also holds by
taking the conjugate of both sides. �

Lemma 8.4. For all N there is cN > 0 and �0 > 0 such that for all 0 < � < �0, all

0< |a− b|< cN�
−N , and all solutions, uω, to (8.2) we have

e−ω−1‖V0‖L∞−�
N

ED(uω)(b)≤ED(uω)(a)≤ eω
−1‖V0‖L∞+�

N

ED(uω)(b).

Proof. The proof is trivial if ED(uω)(b) = 0 since then uω ≡ 0. Therefore, we may
assume ED(uω)(b) �= 0.

Suppose that

ED(uω)(a)
ED(uω)(b)

> (1 +
1
β

)e2‖V0‖L∞/ω, β :=
1

eω−1‖V0‖L∞+�N − 1
. (8.5)

Let X ∈ C∞
c (R) with X ≡ 1 on [a, b], suppX ⊂ (a − 1, b + 1), and put Ṽ0(x) :=

X(x)V0(x). Let fω be real valued and solve

(−�
2D2 + �Ṽ0 − ω2)fω = 0, fω(a) = uω(a), ∂xfω(a) = ∂xuω(a).

Then, by Lemma 8.2 together with (8.5),

ED(fω)(a− 1)
ED(fω)(b+ 1)

≥ 1 +
1
β

= eω
−1‖V0‖L∞+�

N

.

Next, by Lemma 8.3, there is s ∈ [0,2π�/ω) such that

√

ED(fω)(a− 1)
(

fω(b+ 1 + s)
∂xfω(b+ 1 + s)

)

=
√

ED(fω)(b+ 1)
(

fω(a− 1)
∂xfω(a− 1)

)

.

Therefore, putting

F+(x) = fω(x)1(−∞,b+1+s)(x)

+
∑

k≥1

[ED(fω)(b+ 1)
ED(fω)(a− 1)

]k
2 (fω1[a−1,b+1+s))(x− k(b− a+ 2 + s)),

we have

(�2D2 + �
2V+ − ω2)F+(x) = 0, V+(x) =

∑

k≥0
V0(x− k(b− a+ 2 + s)).

Notice that F+ is a linear combination of shifted pieces of fω.
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Similarly, letting F−(x) = F+(−x), F− solves

(�2D2 + �
2V+(−x)− ω2)F− = 0,

and hence, we may find s− ∈ [0,2π�/ω) such that

√

ED(F+)(a− 1)
(

F−(−a+ 1 + s−)
∂xF−(−a+ 1 + s−)

)

=
√

ED(F−)(−a+ 1 + s−)
(

F+(a− 1)
∂xF+(a− 1)

)

.

In particular, letting

V = V+(x)1[(a−1,∞) + V+(−x+ s−)1(−∞,a−1](x),

F = F+1[a−1,∞) + F−(−x+ s−)1(−∞,a−1](x),

we have that

(�2D2 + �
2V − ω2)F = 0

and

‖F‖2
L2 = ‖F+‖2

L2(a−1,∞) + ‖F−‖2
L2(−∞,−a+1+s−).

Now,

‖F+‖2
L2(a−1,∞) =

∞∑

k=0
‖fω‖2

L2(a−1,b+1+s)

[ED(fω)(b+ 1)
ED(fω)(a− 1)

]k
≤ β‖fω‖2

L2(a−1,b+1+s)

and

‖F−‖2
L2(−∞,−a+1+s−) = ‖F−‖2

L2(−∞,−a+1) + ‖F−‖2
L2(−a+1,−a+1+s−)

= ‖F+‖2
L2(a−1,∞) + ‖F−‖2

L2(−a+1,−a+1+s−)

≤ β‖fω‖2
L2(a−1,b+1+s) + 2π�

ω ED(fω)(a− 1)

≤ β‖fω‖2
L2(a−1,b+1+s) + 2π�

ω

∫ a+1

a
ED(fω)(s)eω−1‖V0‖L∞ |s−a+1|ds

≤ β‖fω‖2
L2(a−1,b+1+s) + �Cωe

ω−1‖V0‖L∞‖fω‖2
L2(a−1,b+1+s).

Therefore,

(b+ 2π�/ω + 2− a)−1‖fω‖2
L2(a−1,b+1+s)

≤ ‖F‖2
L∞

≤CN�
3N (2β +Cωhe

ω−1‖V0‖L∞ )‖fω‖2
L2(a−1,b+1+s).
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This is a contradiction unless |b− a + 3| ≥ cN�
−2N . The argument for ED(uω)(a)

ED(uω)(b) <

(1− 1
1+β )e−2ω−1‖V ‖L∞ is identical. �

We now extend the results of Lemma 8.4 to the case of non-zero V1 i.e. pertur-
bations which have a first order term.

Theorem 8.5. For all N > 0, there are cN > 0, such that for 0 < � < 1, ‖V1‖L∞ ≤
1
4ω�

−1, uω any solution to (8.2), and |a− b|< cN�
−N , we have

ED(uω)(b)e−ω−1(‖V0‖L∞+4�‖V1‖L∞+�‖V1‖2
L∞ )−�

N ≤ED(uω)(a)

≤ eω
−1(‖V0‖L∞+4�‖V1‖L∞+�‖V1‖2

L∞ )+�
N

ED(uω)(b).

Proof. Suppose that uω solves (8.1). Then v = e−i
∫ x

0
V1(s)dsuω solves (8.2) with V0

replaced by V0 − �(V1)2. Since V0 and V1 are real valued, �v and �v solve the
same equation as v. In particular, by Lemma 8.4,

e−ω−1(‖V0‖L∞+�‖V1‖2
L∞ )−�

N

ED(�v)(b)

≤ED(�v)(a)≤ eω
−1(‖V0‖L∞+�‖V1‖2

L∞ )+�
N

ED(�v)(b),

e−ω−1(‖V0‖L∞+�‖V1‖2
L∞ )−�

N

ED(�v)(b)

≤ED(�v)(a)≤ eω
−1(‖V0‖L∞+�‖V1‖2

L∞ )+�
N

ED(�v)(b).

From this, it easily follows that

e−ω−1(‖V0‖L∞+�‖V1‖2
L∞ )−�

N

ED(v)(b)

≤ED(v)(a)

≤ eω
−1(‖V0‖L∞+�‖V1‖2

L∞ )+�
N

ED(v)(b).

Next, observe that since �ω−1‖V1‖L∞ ≤ ε≤ 1
4 , we have

(1− 5
4�ω

−1‖V1‖L∞)ED(v)(x)≤ (1− �
2ω−2‖V1‖2

L∞ − �ω−1‖V1‖L∞)ED(v)(x)

≤ED(u)(x)

≤ (1 + �
2ω−2‖V1‖2

L∞ + �ω−1‖V1‖L∞)ED(v)(x)

≤ (1 + 5
4�ω

−1‖V1‖L∞)ED(v)(x).

Finally, the fact that

1 + s

1− s
≤ e2s, 0< s< 1/2,

(

s :=
5
4
hω−1‖V 1‖∞

)

complete the proof. �
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Appendix A: Apriori computation of the first asymptotic terms

Lemma A.1. For j = 0,1 let Vj ∈ Diff0 and define Q := V1
�Dx + �DxV1 + V0 ∈

Diff1. Let 0 < a < b. Then, for all K � R, ε > 0, there is �ε > 0 such that for all

x, y ∈K with |x− y| ≥ �
1−ε, 0 < �< �ε and ω ∈ [a, b],

∣
∣
∣E(H(Q))(ω ; x,x)− ω

π�

∣
∣
∣≤C�

−3/4,
∣
∣
∣E(H(Q))(ω;x, y)− sin(ω|x− y|/�)

π|x− y|
∣
∣
∣≤ ε.

Remark A.2. When V0 = �Ṽ0 with Ṽ0 ∈ C∞
c and V1 ∈ C∞

c , Lemma A.1 is well
known and can be recovered e.g. from [PS83, Vai83, Vai84, Vai85]. The semiclassical
version, when Vj have compact support, can be obtained from well known formulae
in scattering theory (see e.g. [DZ19, Lemma 3.6]). However, when Vj are only C∞

b , we
are not aware of an appropriate reference for these formulae. Here, we use Proposi-
tion 4.9 to obtain these formulae from those for compactly supported perturbations.

Proof. Let ε > 0, and X ∈ C∞
c ((−2,2)) with X≡ 1 on [−1,1]. Then, define Xε(x) =

X(εx) and

Hε := H(Qε), Qε :=XεV1
�Dx + �Dx(XεV1) +XεV0.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Then, by e.g. [Gal22, Vai84, PS83], (see [Gal22, (6.5)], and note that the gauge
transform procedure in that paper is unnecessary, since the perturbation is compactly
supported)

E(Hε)(x, y,ω) =
〈 1

2π�

∫ ω2

−∞

∫

ν̂(t)X1e
i
�
t(μ−Hε)Ξ(�D)X1dtdμδy, δx

〉

,

where X1 ∈ C∞
c (R) with X1 ≡ 1 on πL(K) ∪ πR(K), with πL/R : R2 → R the natural

projections and Ξ ∈ C∞
c (R) with Ξ ≡ 1 on [−3b,3b], and ν̂ ∈ C∞

c with ν̂ ≡ 1 on
|t| ≤ 2diam(πL(K) ∪ πR(K)). For any T > 0 and |t| ≤ T we have that the kernel of
X1e

− i
�
tHεΞ(�D)X1 is given by

1
2π�

∫

e
i
�

((x−y)ξ−t|ξ|2)aε(t, x, y, ξ)dξ,

where aε ∈ Scomp
phg,0, aε(0, x, y, ξ) =X1(x)X1(y)Ξ(ξ).

We start by computing E(H(Qε))(x,x,ω) for any x ∈ K. Let f ∈ C∞
c ((−2,2))

with f ≡ 1 near [−1,1]. Then, for �
1/2 <ω < 3b, we have

∂ωE(H(Q)ε)(x,x,ω)

=
2ω

(2π�)2
∫

ν̂(t)e
i
�
t(ω2−|ξ|2)aε(t, x,x, ξ)dξdt

=
2ω2

(2π�)2
∫

ν̂(t)e
iω2

�
t(1−|η|2)aε(t, x,x,ωη)dηdt

=
2ω2

(2π�)2
∫

ν̂(t)e
iω2

�
t(1−|η|2)aε(t, x,x,ωη)f(η)dηdt+O(�−1(�ω−2)∞).

Performing stationary phase in (t, η), we obtain

∂ωE(Hε)(x,x,ω)∼ 1
π�

+
∑

j≥0
cε,j(x,ω)�jω−2(j+1) +O(�−1(�ω−2)∞),

�
1/2 ≤ ω ≤ 3b. (A.1)

Next, we estimate E(H(Q)ε)(x,x,M�
1/2). We have

E(H(Qε))(x,x,M�
1/2) =

1
(2π�)2

∫ M�
1/2

−∞

∫

ν̂(t)e
i
�
t(μ−|ξ|2)aε(t, x,x, ξ)dξdtdμ.

Integration by parts in t then shows that

|E(H(Qε))(x,x,M�
1/2)| ≤CN�

−2
∫ M�

1/2

−∞

∫ 3b

−3b

∫

〈t〉−N 〈�−1(μ− |ξ|2)〉−Ndtdξdμ

≤CN�
−2
∫ M�

1/2

−∞

∫ 3b

−3b
〈�−1(μ− |ξ|2)〉−Ndξdμ≤CM�

−3/4.
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Therefore, by (A.1), we have

E(H(Qε))(x,x,ω) =
∫ ω

M�1/2
∂ωE(H(Q)ε)(x,x, s)ds+OM (�−3/4)

=
ω

π�
+OM (�−3/4).

(A.2)

Using (A.1) again, we have, for ω ∈ [a/2,2b] and |s| ≤ a
4 ,

|E(Hε)(x,x,ω)−E(Hε)(x,x,ω− s)| ≤ (
1
π�

+Oε(1))|s|. (A.3)

Therefore, using Proposition 4.9, with δ = 0, T = ε−1, C1 > 0 bounded uniformly
in 0 < �< �ε, we have

∣
∣
∣E(H(Q))(x,x,ω)−E(H(Qε))(x,x,ω)

∣
∣
∣≤ ε for ω ∈ [a, b].

In particular, by (A.2), we have
∣
∣
∣E(H(Q))(x,x,ω)− ω

π�

∣
∣
∣≤C�

− 3
4 .

This completes the proof of the first part of the lemma.
We now proceed to the off-diagonal part. For δ > 0, to be chosen later, let f ∈

C∞(−2δ,∞) with f ≡ 1 on [−δ,∞),

E(H(Qε))(x, y,ω)

=
1

(2π�)2
∫ ω2

−∞

∫ ∞

−∞

∫ ∞

−∞
e

i
�

(t(μ−|ξ|2)+(x−y)ξ)ν̂(t)aε(t, x, y, ξ)dξdtdμ

=
1

(2π�)2
∫ ω2

−∞

∫ ∞

−∞

∫ ∞

−∞
e

i
�

(t(μ−|ξ|2)+(x−y)ξ)ν̂(t)aε(t, x, y, ξ)f(|x− y|μ)dξdtdμ

+Oε((�|x− y|−1)∞)

=
|x− y|
(2π�)2

∫ ω2

−∞

∫ ∞

−∞

∫ ∞

−∞
e

i
�
|x−y|(s(μ−|ξ|2)+ x−y

|x−y| ξ)ν̂(s|x− y|)

× aε(s|x− y|, x, y, ξ)f(μ|x− y|)dξdsdμ

+Oε((�|x− y|−1)∞).

To obtain the second line, we integrate by parts in t and use that μ < −δ|x − y|
implies |μ− |ξ|2| ≥ cδ|x− y|〈|μ| + |ξ|2〉. In the third line, we changed variables t =
s|x− y|.

Now, performing stationary phase in the (s, ξ) variables, we see that stationary
points do not exist for |μ| ≤ δ|x− y| (provided we have chosen δ small enough). We
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then obtain

E(Hε)(x, y,ω)

=
1

2π�

∫ ω2

−∞

∑

±

1
2
√

|μ|
e±

i
�

(x−y)√μ
(

ν̂(±x− y

2√μ
)f(μ|x− y|)

+ f(μ|x− y|)ν̂1(±
x− y

2√μ
)Oε(�|x− y|−1)

)

dμ+Oε((�|x− y|−1)∞),

where ν̂1 ∈C∞
c with ν̂1 ≡ 1 on suppν. Choosing δ > 0 small enough, we have ν̂1(t)≡ 0

on |t| ≤ δ, and hence, the integrand is supported in μ≥ δ|x− y|. Finally, changing
variables to s= √

μ and integrating by parts once implies

E(Hε)(x, y,ω) =
∑

±
± 1

2πi(x− y)
e±

i
�

(x−y)ω +Oε(�|x− y|−1)

=
sin(ω|x− y|/�)

π|x− y| +Oε(�|x− y|−1)

and has a full asymptotic expansion in powers of �|x− y|−1.
In particular, using this together with (A.3), we see that there is �ε > 0 and

Mε > 0 such that the hypotheses of Proposition 4.9 hold for 0 < � < �ε, and
|x − y| > Mε� with H1 = H(Qε), T (�) = ε−1/2, and R0 = diam(K), and δ(�) = 0.
Therefore,

∣
∣
∣E(H(Q))(x, y,ω)−E(H(Qε))(x, y,ω)

∣
∣
∣≤Cε,

0 < �< �ε, ω ∈ [a, b].

In particular, this implies
∣
∣
∣E(H(Q))(ω ; x, y)− sin(ω|x− y|/�)

π|x− y|
∣
∣
∣≤ ε.

for all 0 < � < �ε, |x − y| > Mε�, and ω ∈ [a, b]. This completes the proof of the
lemma. �

Appendix B: Proof of Lemma 3.5

First, factoring out e
i
�

ξ1+ξ2
2 and introducing

ãj,n(�) := i(aj,n(�) − bj,n(�)), b̃j,n(�) := aj,n(�) + bj,n(�),

we can rewrtite (3.5) as

g(�) := e−
i
�

ξ1+ξ2
2 f(�)

= sin(
ξ1 − ξ2

2�
)

N∑

j=0
ãj,n(�)�

jp + cos(
ξ1 − ξ2

2�
)

N∑

j=0
b̃j,n(�)�

jp +O(μ−M
n(�)), (B.1)
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for

−10≤ n(�) + log2 �≤ 10,

with ãj,n, b̃j,n ∈C, j = 0,1, . . . , satisfying

|ãj,n|+ |b̃j,n| ≤Cjμ
jp(1−ι)
n . (B.2)

For −9≤ n(�) + log2 �≤ 9 we can use (B.1) with n and n− 1. Subtracting one from
another we get

sin(
ξ1 − ξ2

2�
)

N∑

j=0
t̂j,n(�)�

jp + cos(
ξ1 − ξ2

2�
)

N∑

j=0
ťj,n(�)�

jp +O(μ−M
n(�)),

where t̂j,n = ãj,n − ãj,n−1 and ťj,n = b̃j,n − b̃j,n−1.

Proposition B.1. For each j = 0,1, . . . ,N , we have:

t̂j,n =O(μjp−M
n(�) ), ťj,n =O(μjp−M

n(�) ). (B.3)

Proof. Put

s := (�μn(�))−1, τ̂j,n := t̂j,nμ
M−jp
n(�) , τ̌j,n := ťj,nμ

M−jp
n(�) .

Then

sin(
ξ1 − ξ2

2
μn(�)s)

N∑

j=0
τ̂j,n(�)s

−jp + cos(
ξ1 − ξ2

2
μn(�)s)

N∑

j=0
τ̌j,n(�)s

−jp =O(1), (B.4)

whenever 2−9 < s< 29. Now, we choose 2N + 2 points in the following way. Assume
for definiteness that ξ1 > ξ2. We put

sl :=
4π

(ξ1 − ξ2)μn(�)

([

(ξ1 − ξ2)μn(�)

4π

]

+ l

[

(ξ1 − ξ2)μn(�)

4π · 2N

])

, l = 0, . . . ,N,

so that sin( ξ1−ξ2
2 μn(�)s) = 0 and cos( ξ1−ξ2

2 μn(�)s) = 1, and

s′l :=
4π

(ξ1 − ξ2)μn(�)

([

(ξ1 − ξ2)μn(�)

4π

]

+ l

[

(ξ1 − ξ2)μn(�)

4π · 2N

])

+
π

(ξ1 − ξ2)μn(�)
,

l = 0, . . . ,N,

so that sin( ξ1−ξ2
2 μn(�)s) = 1 and cos( ξ1−ξ2

2 μn(�)s) = 0. We also notice that, assum-
ing μn(�) is sufficiently large, we have s−p

l+1 − s−p
l ∼N−1 and (s′)−p

l+1 − (s′)−p
l ∼N−1

uniformly in n and |ξ1 − ξ2| ∼ 1.
Now, substituting the points {sl, s′l} into (B.4) and using the Cramer’s Rule we

find that τ̂j,n(�) and τ̌j,n(�) are fractions with the bounded numerator and uniform
non-zero denominator (the denominator is a Vandermonde determinant in s−p). This
proves the proposition. �
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Thus, for j < [Mp−1], the series
∑∞

n=n0
t̂j,n(�) is absolutely convergent; moreover,

for such j we have:

ãj,n = ãj,n0 +
n∑

n=n0+1
t̂j,n = ãj,n0 +

∞∑

n=n0+1
t̂j,n +O(μ−M+jp

n ) =: ã′j +O(μ−M+jp
n ),

where we have denoted ã′j := ãj,n0 +
∑∞

n=n0+1 t̂j,n. Similarly,

b̃j,n = b̃j,n0 +
n∑

n=n0+1
ťj,n = b̃j,n0 +

∞∑

n=n0+1
ťj,n +O(μ−M+jp

n ) =: b̃′j +O(μ−M+jp
n ),

where we have denoted b̃′j := b̃j,n0 +
∑∞

n=n0+1 ťj,n.
By (B.2) we also have

N∑

j=[Mp−1]
(|ãj,n|+ |b̃j,n|)μ−jp

n =O(μ−ιM
n ).

Thus, for −10≤ n(�) + log2 �≤ 10 we have

g(�) = sin(
ξ1 − ξ2

2�
)

[Mp−1]−1
∑

j=0
ã′j�

jp + cos(
ξ1 − ξ2

2�
)

[Mp−1]−1
∑

j=0
b̃′j�

jp +O(μ−ιM
n(�) ).

Since constants in O do not depend on n, for all �< �0 we have the expansion

g(�) := e−
i
�

ξ1+ξ2
2 f(�)

= sin(
ξ1 − ξ2

2�
)

[Mp−1ι−1]−1
∑

j=0
ã′j�

jp + cos(
ξ1 − ξ2

2�
)

[Mp−1ι−1]−1
∑

j=0
b̃′j�

jp +O(�M ), (B.5)

with some ã′j , b̃
′
j ∈C, j = 0,1, . . . . Defining

a′j :=
ã′j + ib̃′j

2i
, b′j :=

−ã′j + ib̃′j
2i

we obtain (3.7).
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