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THE SHARP UPPER BOUND FOR THE AREA OF THE
NODAL SETS OF DIRICHLET LAPLACE EIGENFUNCTIONS

A. Logunov, E. Malinnikova, N. Nadirashvili and F. Nazarov

Abstract. Let Ω be a bounded domain in R
n with C1 boundary and let uλ be a

Dirichlet Laplace eigenfunction in Ω with eigenvalue λ. We show that the (n − 1)-
dimensional Hausdorff measure of the zero set of uλ does not exceed C(Ω)

√
λ. This

result is new even for the case of domains with C∞-smooth boundary.

1 Introduction

Let ΔM be the Laplace operator on an n-dimensional smooth compact Riemannian
manifold and let uλ be an eigenfunction of −ΔM with the eigenvalue λ, i.e., ΔMuλ+
λuλ = 0. Denote by Z(uλ) = {uλ = 0} the zero set of uλ. S. T. Yau [21] conjectured
that the surface area of the zero set of uλ satisfies the following inequalities

c
√

λ ≤ Hn−1(Z(uλ)) ≤ C
√

λ,

where the constants c, C depend on M . This conjecture was proved by Donnelly and
Fefferman in [6] under the assumption that the metric is real analytic. The lower
bound and a polynomial in λ upper bound were obtained recently by the first author
in [16] and [15] respectively.

In this article we consider the case of eigenfunctions of the Euclidean Laplace
operator on a bounded domain with sufficiently regular boundary and the Dirichlet
boundary condition. One of our results is the following.

Theorem 1. Let Ω be a bounded domain in R
n with C1 boundary and let uλ be an

eigenfunction of the Laplace operator with the Dirichlet boundary condition, Δuλ +
λuλ = 0 and uλ|∂Ω = 0. Then

Hn−1(Z(uλ)) ≤ C
√

λ, (1)

where C depends only on Ω.
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The lower bound

Hn−1(Z(uλ)) ≥ c
√

λ,

for sufficiently large λ, follows from the results of Donnelly and Fefferman in [6]
combined with Lemma 10 below. We remark that this bound also holds for any
solution of the equation Δuλ + λuλ = 0 and the boundary condition plays no role.
This follows from the fact that the zero set is Cλ−1/2 dense and a non-trivial result
of [16]. The inequality (1) was also proved by Donnelly and Fefferman in [7] for the
case of real analytic boundary ∂Ω. Their result was generalized to eigenfunctions of
elliptic operators with real analytic coefficients by Kukavica [9]. Similar estimates
were recently obtained by Lin and Zhu [14] for eigenfunctions of the bi-Laplace
operator with various boundary conditions under the assumption that the boundary
is real analytic. Also, the polynomial (in the eigenvalue) upper bounds for the area of
the zero set of the Dirichlet, Neumann, and Robin eigenfunctions in smooth bounded
domains in R

n were proved by Zhu in [22].
Our proof of Theorem 1 is based on the results of Donnelly and Fefferman and

the ideas developed in [15–17]. In particular, we reduce the statement of the theorem
to an estimate of the size of the nodal set of a harmonic function with controlled
doubling index (the doubling index in defined in Section 3 below). The novelty of
the current work is the treatment of domains with non-analytic boundaries. More
precisely, we work with Lipschitz domains in the Euclidean space and assume that
(locally) the Lipschitz constant is small enough; the precise definition and the for-
mulation of the main result are given in the next section. This class of domains was
recently considered by Tolsa [20] in a different problem.

The rest of the article is organized in the following way. In Section 3 we first
discuss the doubling index of harmonic functions and its (weak) monotonicity prop-
erties near the boundary of Lipschitz domains with small Lipschitz constant, and
then we formulate the main estimate for the size of the zero set of harmonic func-
tions in terms of the doubling index, see Theorem 2 below. Two auxiliary results
are contained in Section 4, where the low regularity of the boundary requires some
careful considerations. We prove Theorem 2 for harmonic functions in Section 5, and
explain how Theorem 1 follows from Theorem 2 in Section 6.

2 Preliminaries

2.1 Smoothness of the boundary. Some of the tools used in the current
paper should be compared to those in [20], where the following boundary uniqueness
conjecture is studied.

Let h be a bounded harmonic function in a Lipschitz domain Ω. Assume that
h vanishes on a relatively open set U ⊂ ∂Ω and ∇h vanishes on a subset of U of
positive surface measure. Then h = 0.

Recently Xavier Tolsa verified the conjecture for Lipschitz domains with small
Lipschitz constant, see [20]. We use the following definition.
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Definition 1. Let Ω be a domain in R
d, τ ∈ (0, 1), and let B = B(x, r) be a ball

centred on ∂Ω. We say that ∂Ω is τ -Lipschitz in B if there is an isometry T : R
d → R

d

and a function f : Bd−1(0, r) → R such that T (0) = x, f is a Lipschitz function
with the Lipschitz constant bounded by τ , f(0) = 0, and

Ω ∩ B = T
(
{(y′, y′′) ∈ Bd(0, r) ⊂ R

d−1 × R : y′′ > f(y′)}
)

.

In this case we write ∂Ω ∩ B ∈ Lip(τ).

Remark 1. Our considerations are mostly local. When considering the part of the
boundary ∂Ω ∩ B ∈ Lip(τ), we choose local coordinates in B = B(x, r), x ∈ ∂Ω, so
that the isometry T in the definition is the identity. We denote by ed the unit vector
in the direction of the last coordinate, so that x + εed ∈ Ω for 0 < ε < r.

Remark 2. Note that if ∂Ω ∩ B ∈ Lip(τ) and B1 ⊂ B is a ball centred on ∂Ω,
then ∂Ω∩B1 ∈ Lip(τ). Also, rescaling does not change the Lipschitz constant. So if
∂Ω∩B ∈ Lip(τ) and x ∈ ∂Ω is the centre of B, then, denoting Ωc = {x+c(y−x) : y ∈
Ω} and Bc = cB = {x+c(y−x) : y ∈ B} for some c > 0, we have ∂Ωc ∩Bc ∈ Lip(τ).

Definition 2. We say that Ω is a Lipschitz domain with local Lipschitz constant τ
if there exists r > 0 such that ∂Ω ∩ B(x, r) ∈ Lip(τ) for any x ∈ ∂Ω.

Clearly, any bounded C1 domain is a domain with local Lipschitz constant τ for any
positive τ . So Theorem 1 follows from the next result.

Theorem 1′. For each n, there exists τn > 0 such that the following statement holds.
Let Ω be a bounded Lipschitz domain in R

n with local Lipschitz constant τn and let
uλ be an eigenfunction of the Laplace operator in Ω with the Dirichlet boundary
condition, Δuλ + λuλ = 0 and uλ|∂Ω = 0. Then

Hn−1(Z(uλ)) ≤ C
√

λ,

where C depends only on Ω.
The constant C depends only on the parameter r for Ω in the definition of a

Lipschitz domain with local Lipschitz constant τn, on the diameter of Ω, and on the
dimension n. In what follows we assume that the dimension of the ambient Euclidean
space is fixed so usually we will not emphasize the dependence of our constants on
it.

The rest of the article is devoted to a proof of Theorem 1′. We start with the
following property of Lipschitz domains.

Lemma 1. Suppose that ∂Ω ∩ B ∈ Lip(τ), τ < 1/4, where B = B(x, r) and x ∈ ∂Ω.
We choose coordinates as in Remark 1. Let x0 ∈ Ω ∩ 1

4B, and let x1 = x0 + τred.
Then Ω ∩ B(x1, r/2) is star-shaped with respect to x1.

A version of this lemma can be found in [10]. We provide a proof for the convenience
of the reader.
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Proof. Let x1 = (x′
1, x

′′
1). Suppose that x2 = (x′

2, x
′′
2) ∈ Ω ∩ B(x1, r/2). Let now

x3 = (x′
3, x

′′
3) be a point on the interval (x1, x2). Clearly x3 ∈ B(x1, r/2). We want

to check that x′′
3 > f(x′

3).
Let x3 = ax1 + (1 − a)x2, a ∈ (0, 1). We have x′′

1 ≥ f(x′
1) + τr and x′′

2 > f(x′
2).

Therefore, we obtain

x′′
3 = ax′′

1 + (1 − a)x′′
2 > af(x′

1) + aτr + (1 − a)f(x′
2).

Then, since f(x′
1) ≥ f(x′

2) − τ |x′
1 − x′

2| > f(x′
2) − τr/2, we have

x′′
3 > f(x′

2) + aτr − aτr

2
= f(x′

2) +
aτr

2
> f(x′

3),

where the last inequality holds since |x′
3 − x′

2| = a|x′
1 − x′

2| < ar/2 and f is τ -
Lipschitz. 
�

2.2 Some observations. In this section we recall some results about harmonic
functions.

Suppose that h is a harmonic function in Ω, h ∈ C(Ω), and h = 0 on ∂Ω ∩ B,
where B = B(x, r) and x ∈ Ω. We define the function v in B by v = h2 in Ω ∩ B,
and v = 0 in B\Ω. Then v is subharmonic in B and the mean-value theorem implies
that for any y ∈ B(x, r/2) ∩ Ω,

h2(y) ≤ 1
|B(y, r/2)|

∫

B(y,r/2)∩Ω
h2 ≤ 1

|B(y, r/2)|
∫

B(x,r)∩Ω
h2, (2)

where |E| is the d-dimensional Lebesgue measure of the set E.
Another known fact that we use is the following quantitative version of the Cau-

chy uniqueness theorem.

Lemma 2. Let B+ be the half-ball,

B+ = {(x′, x′′) ∈ R
d−1 × R : |x′|2 + (x′′)2 < 1, x′′ > 0}.

There exist γ ∈ (0, 1) and C > 0 such that if h is harmonic in B+, h ∈ C1(B+)
and satisfies the inequalities |h| ≤ 1, |∇h| ≤ 1 in B+ and |h| ≤ ε, |∂dh| ≤ ε on
Γ = {(x′, x′′) ∈ B+, x′′ = 0}, ε ≤ 1, then

|h(x)| ≤ Cεγ when x ∈ 1
3
B+ =

{
(x′, x′′) : |x′|2 + (x′′)2 <

1
9
, x′′ > 0

}
.

The reader can find a proof of a similar statement in [13] and a general result on
second order elliptic PDEs in Lipschitz domains in [5]. A simple proof is also given
in Section A.3 for the convenience of the reader.
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3 The Doubling Index

3.1 The doubling index inside the domain. Let h ∈ C(Ω) be a non-zero
harmonic function in a domain Ω ⊂ R

d. For each x ∈ Ω and r > 0, we define

Hh(x, r) =
∫

B(x,r)∩Ω
h2 and Nh(x, r) = log

Hh(x, 2r)
Hh(x, r)

, (3)

and, with some abuse of language, we call Nh(x, r) the doubling index of h in B =
B(x, r).

Assume first that B(x, 2R) ⊂ Ω, then

Nh(x, r) ≤ Nh(x, R), when r < R. (4)

An elementary proof can be obtained by decomposing h into spherical harmonics,
see, e.g., [19]. This is a simple and useful result, its various versions go back to the
works of Landis [11, 12], Agmon [1], and Almgren [2].

Suppose that B(x, 4r) ⊂ Ω. Then we rewrite the inequality Nh(x, r) ≤ Nh(x, 2r)
as

(∫

B(x,2r)
h2

)2

≤
∫

B(x,r)
h2

∫

B(x,4r)
h2. (5)

Similarly to (2), for any y ∈ B(x, 3r/2), we have

h2(y) ≤ 1
|B(y, r/2)|

∫

B(y,r/2)
h2 ≤ 1

|B(y, r/2)|
∫

B(x,2r)
h2.

Finally, applying (5) and using the trivial bound of the L2 norms by the L∞ norms,
we obtain

sup
B(x,3r/2)

|h| ≤ 2d( sup
B(x,r)

|h|)1/2( sup
B(x,4r)

|h|)1/2. (6)

3.2 The doubling index on the boundary. We need a version of the mono-
tonicity formula (4) and the three ball inequality (6) near a part of the boundary
on which the harmonic function vanishes. First, we recall a lemma that is proven in
[10].

Lemma 3 (Kukavica, Nyström). Let Ω be a domain in R
d and let B1 be a ball centred

on ∂Ω such that ∂Ω ∩ B1 is C3 smooth. Let also x ∈ Ω be such that Ω ∩ B(x, R) is
star-shaped with respect to x, B(x, R) ⊂ B1. Suppose that h ∈ C(Ω) is a non-zero
harmonic function in Ω and h = 0 on ∂Ω ∩ B1. Then

log
Hh(x, r2)
Hh(x, r1)

≤ log(r2/r1)
log(r3/r2)

log
Hh(x, r3)
Hh(x, r2)

, (7)

when 0 < r1 < r2 < r3 < R.
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The assumption that the boundary of Ω is C3 smooth implies that h ∈ C2(Ω∩B1),
so every integration by parts in [10] can be easily justified.

Now we prove the following almost monotonicity property of the doubling index
in Lipschitz domains.

Lemma 4. Let Ω be a domain in R
d. For any ε > 0, there exists τε > 0 such that if

τ < τε, ∂Ω ∩ B ∈ Lip(τ), where B = B(x, R), x ∈ ∂Ω, and h ∈ C(Ω) is a non-zero
harmonic function in Ω, h = 0 on ∂Ω ∩ B, then

Nh(x0, r) ≤ (1 + ε)Nh(x0, 2r), (8)

for any x0 ∈ Ω ∩ 1
4B and r < R/16.

We remark that a stronger result holds when the boundary of the domain is
smooth. For example for the case of a C1,Dini domain the inequality (8) can be
replaced by Nh(x0, r1) ≤ (1 + ε)N(x0, r2) when r1 < r2 < R/8, see [10]1. Thus for
C1,Dini domains, we know that the doubling index over balls centred on ∂Ω∩B stays
uniformly bounded. We do not know if this is still true for Lipschitz domains. For
the case of the domains with small Lipschitz constant, we can conclude only that
the doubling index Nh(x0, r) does not grow faster than r−a with some small positive
a as r → 0, which is sufficient for our purposes.

Proof. First we assume that ∂Ω∩B is a graph of a C3-smooth function. Let ed be as
in Remark 1 and let x1 = x0 +16τred. We assume that τ < 1/16. Then by Lemma 1
we see that B(x1, 8r)∩Ω is star-shaped with respect to x1. We apply (7) and obtain

Nh(x0, r) = log
Hh(x0, 2r)
Hh(x0, r)

≤ log
Hh(x1, (2 + 16τ)r)
Hh(x1, (1 − 16τ)r)

≤ log((2 + 16τ)/(1 − 16τ))
log((4 − 16τ)/(2 + 16τ))

log
Hh(x1, (4 − 16τ)r)
Hh(x1, (2 + 16τ)r)

≤ (1 + O(τ)) log
Hh(x0, 4r)
Hh(x0, 2r)

= (1 + ε)Nh(x0, 2r),

when τ is small enough.
We want to drop the assumption that ∂Ω∩B is C3 smooth. We fix the ball B and

assume that ∂Ω∩B is given by the graph of a Lipschitz function f : Bd−1(0, R) → R

with the Lipschitz constant bounded by τ . In this coordinate system the ball B is
identified with Bd(0, R)

Let ϕ be a mollifier supported in the unit ball of R
d−1 and let, as usual, ϕδ(x) =

δ−(d−1)ϕ
(

x
δ

)
. We define fn = f ∗ϕR/n+τR/n. Then {fn} is a sequence of C3 smooth

functions such that

fn : Bd−1(0, (1 − 1/n)R) → R, f(y′) < fn(y′) < f(y′) + 2τR/n,

1 We refer the reader also to the preceding works [4] and [3] for related results.
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and the Lipschitz constant of fn is also bounded by τ . We also define

Ωn = {y = (y′, y′′) ∈ Bd(0, (1 − 1/n)R) ⊂ R
d−1 × R : y′′ > fn(y′)}.

Clearly, Ωn ⊂ Bd(0, (1 − 1/n)R) ∩ Ω. Let

Γn = {y = (y′, y′′) ∈ Bd(0, (1 − 1/n)R) : y′′ = fn(y′)}.

First, we see that δn = supΓn
|h| converge to zero as n → ∞ since h is uniformly

continuous on Ω ∩ B, h = 0 on ∂Ω, and dist(y, ∂Ω) < 2τR/n when y ∈ Γn.
Next, we consider the harmonic function hn in Ωn such that on ∂Ωn

hn(x) =

⎧
⎪⎨
⎪⎩

h(x) − δn, if h(x) > δn,

0, if |h(x)| ≤ δn,

h(x) + δn, if h(x) < −δn.

Clearly we have hn ∈ C(Ωn), hn = 0 on Γn, and, by the maximum principle,
|h − hn| ≤ δn in Ωn. Thus hn → h uniformly on compact subsets of B ∩ Ω.

We fix x0 ∈ Ω ∩ 1
4B and r ∈ (0, R/16). Then x0 ∈ Ωn ∩ B(0, (1 − 1/n)R/4)

and r < (1 − 1/n)R/16 for n large enough. Also, |hn| ≤ maxΩ∩B |h| and |(Ω ∩
B(x, R))\Ωn| → 0 as n → ∞. Then we have

Nh(x0, r) =

∫
B(x0,2r)∩Ω h2

∫
B(x,r)∩Ω h2

= lim
n→∞

∫
B(x0,2r)∩Ωn

h2
n∫

B(x0,r)∩Ωn
h2

n

= lim
n→∞ Nhn

(x0, r).

The inequality (8) is now obtained as the limit of the corresponding inequalities for
hn. Finally the required inequality (8) for x0 ∈ ∂Ω ∩ 1

4B follows by taking the limit
as ε → 0+ of the corresponding inequalities for x0 + εed. 
�

Corollary 1. Let ∂Ω ∩ B ∈ Lip(τ), τ < τε, B = B(x, R), x ∈ ∂Ω, and let
x1, x2 ∈ Ω ∩ 1

4B with |x1 − x2| < r/4 and r < R/8. If h ∈ C(Ω) is a non-zero
harmonic function in Ω such that h = 0 on ∂Ω ∩ B, then

Nh(x1, r/2) ≤ 3(1 + ε)2Nh(x2, r).

Proof. Note that B(x1, r) ⊂ B(x2, 2r) and B(x1, r/2) ⊃ B(x2, r/4). Thus we obtain

Nh(x1, r/2) ≤ log

∫
B(x2,2r)∩Ω h2

∫
B(x2,r/4)∩Ω h2

= Nh(x2, r/4) + Nh(x2, r/2) + Nh(x2, r).

Now Lemma 4 implies the required estimate. 
�
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3.3 Three ball inequality. We apply the monotonicity lemma a number of
times. First, we claim that it implies a version of the three ball theorem for harmonic
functions vanishing on some part of the boundary.

Lemma 5. Let Ω be a domain in R
d and let B be a ball centred on ∂Ω. We assume

that ∂Ω ∩ B ∈ Lip(τ), where τ is small enough. Then for any function h ∈ C(Ω)
harmonic in Ω and vanishing on ∂Ω ∩ B, we have

sup
3
2
B0∩Ω

|h| ≤ 3d( sup
B0∩Ω

|h|)1/3( sup
4B0∩Ω

|h|)2/3,

for any ball B0 with the centre in Ω ∩ 1
4B and such that 16B0 ⊂ B.

Proof. Assume that τ < τ1 given by Lemma 4 for the case ε = 1. Let B0 = B(x0, r).
We apply Lemma 4. Taking the exponentials, we obtain

∫

2B0∩Ω
h2 ≤

(∫

B0∩Ω
h2

)1/3 (∫

4B0∩Ω
h2

)2/3

.

Then (2) and the trivial bound of the L2-norm by the L∞-norm imply that for any
y ∈ 3

2B0 ∩ Ω,

h2(y) ≤ 1
|B(y, r/2)|

∫

2B0∩Ω
h2 ≤ 8d

(
sup

B0∩Ω
|h|

)2/3 (
sup

4B0∩Ω
|h|

)4/3

.


�
3.4 The maximal doubling index. Let Ω be a domain in R

d and let ∂Ω∩B ∈
Lip(τ) where B is centred on ∂Ω. We consider a closed cube Q ⊂ 1

32B such that
Q∩Ω �= ∅. Assume that a non-zero function h ∈ C(Ω) is harmonic in Ω and vanishes
on ∂Ω ∩ B and let 	 = diam(Q). We define the maximal doubling index of h in Q
by

N∗
h(Q) = sup

x∈Q∩Ω, �

2
≤r≤�

Nh(x, r). (9)

Clearly the function (x, r) �→ Nh(x, r) is continuous on (Q ∩ Ω) × [	/2, 	]. Therefore
the supremum above is finite.

Lemma 4 on the monotonicity of the doubling index implies that if ε > 0 and
τ < τε, then for any cube Q1 ⊂ Q ⊂ 1

32B and Q1 ∩ Ω �= q∅, we have

N∗
h(Q1) ≤

(
2s(Q)
s(Q1)

)2ε

N∗
h(Q),

where s(Q) is the side length of the cube Q; we have used the inequality log2(1+ε) ≤
2ε.
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3.5 A version of the main result for harmonic functions. Let Ω be a
domain in R

d and let h ∈ C(Ω) be a non-zero harmonic function in Ω. We assume
that h = 0 on the part ∂Ω ∩ B of the boundary, where B is a ball centred on ∂Ω
and ∂Ω∩B ∈ Lip(τ). Our aim is to estimate the (d−1)-dimensional measure of the
zero set of h using the doubling index of h. We define the zero set of h by

Z(h) = {x ∈ Ω : h(x) = 0},

so that the boundary points are not included into the zero set.

Theorem 2. Let Ω ⊂ R
d, let x ∈ ∂Ω and let r > 0 be such that ∂Ω ∩ B(x, 128r) ∈

Lip(τ), where τ is small enough. Then there exists C = C(d) such that

Hd−1(Z(h) ∩ B(x, r)) ≤ C(Nh(x, 4r) + 1)rd−1,

for any non-zero function h ∈ C(Ω) that is harmonic in Ω and satisfies h = 0 on
∂Ω ∩ B(x, 128r).

Theorem 2 is proved in Section 5.2. We then deduce Theorem 1’ in Section 6.2,
where we consider the harmonic extension of the eigenfunction and use Lemma 10
below to estimate the doubling index of the extension by a multiple of the square
root of the eigenvalue.

Theorem 2 allows us to estimate the area of the zero set of a harmonic function
near the part of the boundary where the function vanishes. We remark also that the
estimate for the zero set inside the domain was proved by Donnelly and Fefferman
in [6].

Lemma 6 (Donnelly, Fefferman). Let h be a non-zero harmonic function in Ω ⊂ R
d.

There exists C such that

Hd−1(Z(h) ∩ B) ≤ C(Nh(x, 4r) + 1)rd−1,

for any ball B = B(x, r) that satisfies B(x, 8r) ⊂ Ω.

The proof follows from the argument in [6], some versions of this result can be
also found in [13] and [8]. We outline some steps of the proof for the interested reader
in the Appendix, see A.1.

4 Two Auxiliary Lemmas

4.1 A standard construction. In this section we give two versions of the
Hyperplane Lemma. We suggest that the reader compares the statements to the one
of [15, Lemma 4.1]. Both statements refer to the following construction.

Assume that Ω ⊂ R
d and ∂Ω ∩ B ∈ Lip(τ), where B is a ball centred on ∂Ω

and τ ∈ (0, (16
√

d)−1). We fix a coordinate system as in Remark 1. Let Q be a
cube centred at xQ = (x′

Q, x′′
Q) ∈ ∂Ω ∩ B whose sides are parallel to the axes of this

coordinate system and such that Q ⊂ B. As above, the side length of Q is denoted
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w

Ω

q

p

Q

Figure 1: The standard construction.

by s(Q). Our choice of τ implies that ∂Ω does not intersect the two faces of the
cube Q which are orthogonal to ed, moreover, ∂Ω ∩ Q is contained in the middle
part {(x′, x′′) ∈ Q : |x′′ − x′′

Q| < s(Q)/4} of Q.
Let k ≥ 3. We partition the projection π(Q) of Q to the hyperplane R

d−1 × {0}
into 2k(d−1) small equal cubes w with the side length s(w) = 2−ks(Q) in the usual
way so that any two distinct small cubes have no common inner points. For each
small cube w, there is a uniquely defined d-dimensional cube q such that π(q) = w
and the centre of q lies on ∂Ω ∩ Q. Furthermore, we cover (π−1(w) ∩ (Ω ∩ Q))\q by
at most 2k cubes p such that p ⊂ Q, p, π(p) = w, p has no common inner points
with q, and s(p) = s(q) = 2−ks(Q), cubes p may overlap. See Figure 1.

We denote the set of all boundary cubes q by Bk(Q) and the set of all inner cubes
p by Ik(Q). Note that for each p ∈ Ik(Q), we have dist(p, ∂Ω) > cs(p) for some
absolute constant c. We call the triple (Q,Bk(Q), Ik(Q)) the standard construction.
After we fix a coordinate system, our standard construction depends on the choice of
the cube Q and the parameter k, the family Bk(Q) of the boundary cubes is defined
uniquely and we may fix some choice for the inner cubes Ik(Q).

4.2 The first hyperplane lemma. In the first lemma we assume that the
maximal doubling index N∗

h(Q) is large enough.

Lemma 7. There exist constants k0 ≥ 3 and N0 ≥ 1 such that for any integer k ≥ k0,
there exists τ(k) > 0 for which the following statement holds. Suppose that Ω is a
domain in R

d, ∂Ω ∩ B ∈ Lip(τ), τ < τ(k), and Q ⊂ 1
64B is a cube as above centred

on ∂Ω. Then for any function h ∈ C(Ω) harmonic in Ω, with h = 0 on B ∩ ∂Ω, and
N∗

h(Q) > N0, there exists a cube q ∈ Bk(Q) such that N∗
h(q) ≤ N∗

h(Q)/2.
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Proof. Let xQ be the centre of the cube Q and let B1 = B(xQ, 	), where 	 = diam(Q).
We have B1 ⊂ B and define M2 =

∫
B1∩Ω h2.

Denote N = N∗
h(Q) and suppose that the inequality N∗

h(q) > N/2 holds for each
cube q ∈ Bk(Q). Then for each such q, there exist yq ∈ q ∩Ω and rq ∈ (2−k−1	, 2−k	)
such that Nh(yq, rq) > N/2. Suppose that

τ < τε, and (1 + ε)k < 2, (10)

where we use the notation of Lemma 4. Then the almost monotonicity of the doubling
index, Lemma 4, implies Nh(yq, 2mrq) > N/4 when 0 ≤ m ≤ k.

Assuming that k ≥ 20, we apply the estimate of the doubling index k − 4 times
and use that B(yq, 	/2) ⊂ B1 to obtain

∫

B(yq,2−k+2�)∩Ω
h2 ≤

∫

B(yq,8rq)∩Ω
h2 ≤ e−N(k−4)/4

∫

B(yq,2k−1rq)∩Ω
h2

≤ e−N(k−4)/4

∫

B(yq,�/2)∩Ω
h2 ≤ e−Nk/5M2.

Next, we note that the integral estimate above implies a pointwise estimate in a
smaller ball by (2). We have

sup
B(yq,2−k+1�)∩Ω

h2 ≤ C2dk	−d

∫

B(yq,2−k+2�)∩Ω
h2 ≤ C2dk	−de−Nk/5M2, (11)

where C = C(d).
As above, we assume also that τ < (16

√
d)−1. For each cube q ∈ Bk(Q), denote

by q+ its upper quarter, where ”up” is in the direction of ed. Then q+ ⊂ Ω and
dist(q+, ∂Ω) ≥ 2−ks(Q)/10. For y ∈ q+, the standard Cauchy estimate implies

|∇h(y)| ≤ C2k	−1 sup
B(y,2−ks(Q)/10)

|h|.

We note that B(y, 2−ks(Q)/10) ⊂ B(yq, 2−k+1	) ∩ Ω. Then combining the above
inequality with (11), we obtain

sup
q+

|∇h| ≤ C2k	−1 sup
B(yq,2−k+1�)∩Ω

|h| ≤ C2k(d+2)/2	−(d+2)/2e−Nk/10M. (12)

Let B0 = B(xQ + 3 · 2−k−3s(Q)ed, s(Q)/2) and let

B0,+ = {x = (x′, x′′) ∈ B0 : x′′ ≥ x′′
Q + 3 · 2−k−3s(Q)}

be the upper half of B0. We denote by Γ0 the flat part of the boundary of B0,+. We
note that 2B0 ⊂ B1. Assuming that τ < 2−k−3, we have dist(B0,+, ∂Ω) ≥ 2−k−2s(Q).
Then using (2) and the Cauchy estimate, we get

sup
B0∩Ω

|h| ≤ C	−d/2M, sup
B0,+

|∇h| ≤ C2k	−d/2−1M.
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Also, by (11) and (12), we have

sup
Γ0

|h| ≤ C2kd/2	−d/2e−Nk/10M, sup
Γ0

|∇h| ≤ C2kd/2+k	−d/2−1e−Nk/10M,

since Γ0 ⊂ ⋃
q∈Bk(Q) q+.

Applying Lemma 2 to B0,+, we get

sup
1
3
B0,+

|h| ≤ C2γkd/2+k	−d/2e−γNk/10M.

Let yQ = xQ +s(Q)ed/12 and let m be the least integer such that 2m > 16
√

d. Then
B2 = B(yQ, 2−m	) ⊂ 1

3B0,+ when k is large enough (we remark that B0,+ depends
on k). Integrating the last inequality over B2 and using that vol(B2) ≤ C	d, we
obtain ∫

B2

h2 ≤ C2γkd+2ke−γNk/5M2.

Finally, we compare the last integral to
∫
B1∩Ω h2 = M2. Note that B1 ⊂

B(yQ, 2	) = 2m+1B2. By the almost monotonicity of the doubling index, recalling
that τ < τε < τ1, we have

2m+1Nh(yQ, 	) ≥
m∑

j=0

Nh(yQ, 2−j	) = log

∫
B(yQ,2�)∩Ω h2

∫
B2

h2

≥ log

∫
B1∩Ω h2

∫
B2

h2
≥ γNk/5 − γkd − 2k − C.

Since Nh(yQ, 	) ≤ N∗
h(Q) = N , we get 2m+1N ≥ γNk/5 − γkd − 2k − C. Taking k

large enough we may achieve γk/5 > 2m+2. Then the inequality above implies

N ≤ 10(γkd + 2k + C)
γk

≤ 10
(
d + (2 + C)γ−1

)
.

Taking N0 = 10
(
d + (2 + C)γ−1

)
, we obtain a contradiction for N > N0.

We also choose ε = ε(k) such that (1 + ε)k < 2 and finally choose τ(k) =
min{τε, 2−k−3, (16

√
d)−1}. 
�

4.3 The second hyperplane lemma: cubes without zeros. For cubes with
the maximal doubling index bounded by N0, we use the following version of the
above statement. The reader may compare it to Corollary in Section 3.4 of [18].

Lemma 8. For any N > 0 there exist τ(N) and k(N) such that the following state-
ment holds. Suppose that Ω is a domain in R

d, ∂Ω ∩ B ∈ Lip(τ), τ < τ(N), and
Q ⊂ 1

64B is a cube centred on ∂Ω. Let also h ∈ C(Ω) be a non-zero function har-
monic in Ω, with h = 0 on B ∩ ∂Ω and N∗

h(Q) ≤ N . Then for any k ≥ k(N), there
exists q ∈ Bk(Q) such that Z(h) ∩ q = ∅.
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We remark that in this version both τ and k depend on N . First, we prove the
following version of the lemma for a half ball.

Lemma 9. Let B be the unit ball in R
d and let B+ be the half ball,

B+ = {y = (y′, y′′) ∈ R
d−1 × R : |y′|2 + y′′2 < 1, y′′ > 0}.

Let g be a function harmonic in B+, g ∈ C(B+), g = 0 on B+ ∩ {y′′ = 0}, and

sup
1
4
B+

|g| = 1.

For any N > 0, there exist ρ = ρ(N) ∈ (0, 1/16) and c0 = c0(N) > 0 such that if
Ng(0, 1/4) ≤ N , then there is x′ ∈ R

d−1 with |x′| < 1/16 such that

|g(y)| ≥ c0y
′′, for any y = (y′, y′′) ∈ B((x′, 0), ρ) ∩ B+.

Proof. Let B− be the reflexion of the half-ball B+ with respect to the hyperplane
y′′ = 0. Then g can be extended to a harmonic function in B by g(y′, y′′) =
−g(y′, −y′′) when (y′, y′′) ∈ B−. We denote this extension by g as well. The normal-
ization sup 1

4
B+

|g| = 1 and the standard Cauchy estimate imply that every partial
derivative of g is uniformly bounded in B(0, 1/8).

Let δ = maxx′∈Rd−1,|x′|≤1/16 |∇g(x′, 0)|. Lemma 2, applied to the half ball 1
16B+

implies that

sup
B(0, 1

64
)

|g| ≤ Cδγ .

Then
∫
B(0, 1

64
) g2 ≤ Cδ2γ and

∫
B(0, 1

2
) g2 ≥ c supB(0, 1

4
) g2 = c. On the other hand,

log

∫
B(0, 1

2
) g2

∫
B(0, 1

64
) g2

≤ 5Ng(0,
1
4
) ≤ 5N.

We have used that the doubling index of g in B+ and of the extension are the same
for balls centred at the origin and that the doubling index inside the domain is
monotone by (4). We conclude that δ ≥ ce−3Nγ−1

.
Let x′∗ ∈ R

d−1, |x′∗| ≤ 1/16, be such that |∇g(x′∗, 0)| = δ. Clearly we have
|∇g(x′∗, 0)| = |∂dg(x′∗, 0)| and we may assume that ∂dg(x′∗, 0) = δ, otherwise we con-
sider the function −g. Then ∂dg(x) > δ/2 when dist(x, (x′∗, 0)) < ρ = min{c0δ, 1/16},
where c0 depends on the constant upper bound for the second derivatives of g in
B(0, 1/8). Therefore

g(y) ≥ δy′′/2 ≥ ce−3Nγ−1
y′′,

when y = (y′, y′′) ∈ B((x′∗, 0), ρ). 
�
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Proof of Lemma 8. Now we deduce Lemma 8 from Lemma 9. By rescaling, see
Remark 2, we can achieve that s(Q) = 4. We may also assume that

sup
B(xQ,3)∩Ω

|h| = 1. (13)

Let x1 = xQ − 3τed, B1 = B(x1, 1), and let B1,+ be the upper half of B1. Let
also B2 = 2B1. First, we consider the harmonic function g0 such that g0 = 1 on the
upper half of the sphere ∂B2 and g0 = −1 on the lower half of ∂B2. We denote as
usual x′′

1 = x1 · ed. Clearly g0 = 0 on

Γ0 = {x = (x′, x′′) ∈ B2 : x′′ = x′′
1}

and g0 ≥ 0 on B2,+. We note that Γ0 does not intersect Ω. Then |h| ≤ g0 on
Ω ∩ B2 ⊂ B2,+ by the maximum principle. We also have g0(x) ≤ C1(x′′ − x′′

1) when
x = (x′, x′′) ∈ B1,+, since g0 = 0 on Γ0 and g0 has bounded derivatives in B1.
Therefore |h(x)| ≤ g0(x) ≤ C1(x′′ − x′′

1) when x = (x′, x′′) ∈ Ω ∩ B1.
Let now g be the harmonic function in B1,+ such that g = h on ∂B1,+ ∩ Ω and

g = 0 on ∂B1,+\Ω. We have |g(x)| ≤ C1(x′′ − x′′
1) in B1,+ by the above estimate on

h and the maximum principle. We consider the difference g − h. We have g = h on
Ω ∩ ∂B1 and |g − h| = |g| ≤ 4C1τ on ∂Ω ∩ B1. Then, by the maximum principle,
|g − h| ≤ 4C1τ in Ω ∩ B1. We extend h by zero to B1,+\Ω. Then |g − h| ≤ 4C1τ
in B1,+.

Let m be the integer such that 2
√

d ≤ 2m < 4
√

d, clearly m ≥ 1. Then the
estimate N∗

h(Q) ≤ N implies Nh(xQ, 2m) ≤ N . We choose ε such that (1+ε)m+3 ≤ 2
and assume that τ < τε using the notation of Lemma 4. Then Nh(xQ, 2j) ≤ 2N when
−3 ≤ j ≤ m. We use (13) and (2) to conclude that

∫

B(xQ, 1
8
)∩Ω

h2 ≥ e−10N

∫

B(xQ,4)∩Ω
h2 ≥ ce−10N .

Suppose that τ < 1
24 . Then B(xQ, 1

8) ∩ Ω ⊂ 1
4B1,+ and we have

(∫
1
4
B1,+

g2

)1/2

≥
(∫

1
4
B1,+

h2

)1/2

− C2τ ≥
(∫

B(xQ, 1
8
)∩Ω

h2

)1/2

− C2τ.

Assuming that τ(N) is small enough, we conclude that
∫

1
4
B1,+

g2 ≥ c1e
−10N . (14)

We also have sup 1
2
B1,+

|g| ≤ supB1∩Ω |h| ≤ 1 by (13). Then

Ng(x1,
1
4
) = log

∫
1
2
B1,+

g2

∫
1
4
B1,+

g2
≤ C(N + 1).
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We note that (14) implies sup 1
4
B1,+

|g| ≥ ce−5N . Then, by Lemma 9, there exist
x∗ ∈ Γ0 ∩ 1

16B1, c2 = c2(N) > 0, and ρ = ρ(C(N + 1)) such that

|g(x)| ≥ c2(x′′ − x′′
1) for x = (x′, x′′) ∈ B(x∗, ρ) ∩ B1,+.

We may assume that g > 0 in B(x∗, ρ) ∩ B1,+, otherwise we consider −h in place of
h. Then we obtain

h(x) ≥ g(x) − 4C1τ ≥ c2(x′′ − x′′
1) − 4C1τ in B(x∗, ρ) ∩ Ω.

We note that ρ does not depend on τ and for τ small enough we have B(x∗, ρ
4)∩

∂Ω �= ∅. We also have B(x∗, ρ
2) ⊂ Q.

Our goal is to show that h > 0 on B(x∗, ρ
2)∩Ω. Let y∗ = (y′∗, y′′∗) ∈ B(x∗, ρ

2)∩∂Ω.
We note that

h(x) ≥ c2(x′′ − y′′
∗) − c3τ in B(x∗, ρ) ∩ Ω, (15)

where c3 = 4C + 4c2. We consider the harmonic function

h∗(x) =
1
dρ

(
(d − 1)(x′′ − y′′

∗)2 − |x′ − y′
∗|2

)
,

where x = (x′, x′′). We claim that h(x) ≥ c2h∗(x), when x ∈ B
(
y∗, ρ

2

) ∩ Ω and τ is
small enough.

First, we note that h∗(x) ≤ 0 if |x′′ − y′′∗ | ≤ (d − 1)−1/2|x′ − y′∗| and therefore
h∗ ≤ 0 on ∂Ω ∩ B(y∗, ρ

2) when τ is small enough, while h = 0 on ∂Ω ∩ B(y∗, ρ
2). On

∂B(y∗, ρ
2) ∩ Ω we have

h∗(x) =
(x′′ − y′′∗)2

ρ
− ρ

4d
.

Comparing (15) to the last identity and denoting t = x′′−y′′∗ , we reduce the inequality
h ≥ c2h∗ on ∂B(y∗, ρ

2) ∩ Ω to the following one:

c2t − c3τ ≥ c2

(
t2

ρ
− ρ

4d

)
,

when t ∈ (−τρ/2, ρ/2) and τ is small enough. It suffices to check the inequality for
t = −τρ/2 and t = ρ/2. For t = −τρ/2 we obtain the inequality

c2ρ

4d
≥ τ

(c2ρ

2
+

c2τρ

4
+ c3

)
,

which holds when τ is small enough. On the other hand, for t = ρ/2, the inequality
is reduced to

c2ρ

(
1
4

+
1
4d

)
≥ c3τ.

This one is also satisfied for small τ .
Thus, by the maximum principle, h ≥ c2h∗ in B(y∗, ρ/2) ∩ Ω. In particular,

h(y′∗, y′′) ≥ c2h∗(y′∗, y′′) > 0 when y′′∗ < y′′ < ρ/2. Therefore h > 0 on B(x∗, ρ
2) ∩ Ω.

Finally, since B(x∗, ρ/2) contains a ball of radius ρ/4 centred on ∂Ω, if k is large
enough, there is q ∈ Bk(Q) such that q ⊂ B(x∗, ρ

2) and then Z(h) ∩ q = ∅. 
�
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5 Proof of Theorem 2

Let N0 be as in Lemma 7 and let Ω, B = B(x, r), and h be as in the statement of
Theorem 2. We remind that the maximal doubling index N∗

h(Q) of h in a cube Q
was defined by (9). For the rest of the proof we modify the maximal doubling index
and write N∗∗

h (Q) = max{N∗
h(Q), N0/2}. Then Lemmas 7 and 8 imply that there

is k such that for τ small enough, if Q ⊂ 2B and (Q,Bk(Q), Ik(Q)) is a standard
construction, then there is a cube q0 ∈ Bk(Q) such that

either (i) N∗∗
h (q0) < N∗∗

h (Q)/2 or (ii) Z(h) ∩ q0 = ∅. (16)

5.1 Reduction to one cube. Let Q be a cube as above. We claim that

Hd−1(Z(h) ∩ Q) ≤ CN∗∗
h (Q)s(Q)d−1. (17)

Assume first that (17) holds. We show that Theorem 2 follows. We need to switch
from cubes to balls and from the maximal doubling index to the doubling index at
a single point.

To this end, we cover the ball B(x, r) with cubes Qj ⊂ B(x, 2r) such that
diam(Qj) = r/10 and either dist(Qj , ∂Ω) > s(Qj)/10 (inner cubes) or Qj satis-
fies the assumptions in the main construction (boundary cubes). We may assume
that there are not more than C = C(d) of such cubes.

First, for each cube Q = Qj in this cover, we have Q ∩ B(x, r) �= ∅, and we
compare N∗

h(Q) to Nh(x, 4r). There exists y ∈ Q ∩ Ω and ry ∈ [r/20, r/10] such
that N∗

h(Q) = Nh(y, ry). Assuming that τ < τ1 in the notation of Lemma 4, we get
Nh(y, 32ry) ≥ 2−5N∗

h(Q). We have dist(x, y) ≤ 11
10r and

Nh(y, 32ry) = log

∫
B(y,64ry)∩Ω h2

∫
B(y,32ry)∩Ω h2

≤ log

∫
B(x,8r)∩Ω h2

∫
B(x,r/2)∩Ω h2

≤ 16Nh(x, 4r)

by Lemma 4. Hence, N∗
h(Q) ≤ 29Nh(x, 4r) and N∗∗

h (Q) ≤ C(Nh(x, 4r) + 1).
Each inner cube Q ⊂ Ω can be covered by at most C balls b with centres in Q

and with radii s(Q)/100. Then 8b ⊂ Ω. Moreover, if b = B(y, s(Q)/100), we have
Nh(y, s(Q)/25) ≤ CN∗

h(Q) by Lemma 4 again. Then we use Lemma 6 to estimate
the area of the zero set of h in each of the balls b and obtain

Hd−1(Z(h) ∩ b) ≤ C(Nh(y, s(Q)/25) + 1)rd−1

≤ C ′(N∗
h(Q) + 1)rd−1 ≤ C ′′(Nh(x, 4r) + 1)rd−1.

For the boundary cubes, we use the inequality (17). Thus for every Qj , we obtain

Hd−1(Z(h) ∩ Qj) ≤ C(Nh(x, 4r) + 1)s(Qj)d−1.

Summing these inequalities over all cubes, we obtain the required estimate. It
remains to prove (17).
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5.2 Proof of (17). We fix a compact set K ⊂ Ω and prove that

Hd−1(Z(h) ∩ Q ∩ K) ≤ C0N
∗∗
h (Q)s(Q)d−1, (18)

where Q ⊂ 2B is a cube as in the standard construction and C0 is independent of
K. Then (17) follows.

First, note that (18) holds for all cubes Q small enough, since Q ∩ K = ∅ for
such cubes. We prove (18) by induction on the size of Q, going from small cubes to
larger ones. Assume that it holds for cubes with s(Q) < s, we want to prove it for
cubes with s(Q) < 2ks, where k is as in (16).

We consider the standard construction (Q,Bk(Q), Ik(Q)). Each inner cube q ∈
Ik(Q) can be covered by balls b centred in q with radii s(q)/100 and such that 8b ⊂ Ω,
so that the number of balls is bounded by a dimensional constant. For each such ball
b = B(y, s(q)/100), applying Lemma 4, we get Nh(y, s(q)/25) ≤ C(k)N∗

h(Q) when
τ is small enough. Then by Lemma 6, we have

∑
q∈Ik(Q)

Hd−1(Z(h) ∩ q) ≤ C(N∗
h(Q) + 1)s(Q)d−1 ≤ C1N

∗∗
h (Q)s(Q)d−1, (19)

where C and C1 depend on k.
For all other boundary cubes q, we have N∗∗

h (q) ≤ (1 + ε)kN∗∗
h (Q). Also (16)

implies that there is a cube q0 ∈ Bk(Q) such that either N∗∗
h (q0) ≤ N∗∗

h (Q)/2 or
Z(h) ∩ q0 = ∅. We apply the induction assumption to each boundary cube and
obtain

Hd−1(Z(h) ∩ K ∩ (∪q∈Bk(Q)q))

≤
∑

q∈Bk(Q),q 
=q0

Hd−1(Z(h) ∩ K ∩ q) + Hd−1(Z(h) ∩ K ∩ q0)

≤
∑

q∈Bk(Q),q 
=q0

C0N
∗∗
h (q)s(q)d−1 +

C0

2
N∗∗

h (Q)s(q0)d−1

≤
(

2k(d−1) − 1
2k(d−1)

(1 + ε)k +
1
2

· 1
2k(d−1)

)
C0N

∗∗
h (Q)s(Q)d−1.

Finally, we choose ε small and C0 large enough so that

C1 +
(

2k(d−1) − 1
2k(d−1)

(1 + ε)k +
1
2

· 1
2k(d−1)

)
C0 < C0.

Note that C0 does not depend on K. Then, assuming that τ is small enough and
taking into account (19), we obtain

Hd−1(Z(h) ∩ K ∩ Q) ≤ C0N
∗∗
h (Q)s(Q)d−1.

This concludes the induction step and the proof of (17).
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6 Dirichlet Laplace Eigenfunctions

6.1 Harmonic extension and an estimate of the doubling index. Let
Ω0 ⊂ R

n be a bounded Lipschitz domain. Let uλ be an eigenfunction of the Dirichlet
Laplace operator, uλ ∈ W 1,2

0 (Ω0), Δuλ + λuλ = 0. Then uλ ∈ C(Ω0). This fact is
well-known, we provide a proof in the Appendix below, see Section A.2.

We consider the harmonic extension of uλ to the domain Ω = Ω0 × R ⊂ R
n+1,

given by

h(x, t) = uλ(x)e
√

λt.

Then h ∈ C(Ω) and, clearly, Z(h) = Z(uλ) × R, where the zero sets are sets inside
the domains Ω and Ω0 respectively. We need the following estimate of the doubling
index of this harmonic extension.

Lemma 10. Let Ω0 be a bounded domain in R
n with a sufficiently small local Lips-

chitz constant τ . Let r0 > 0 be such that ∂Ω0 ∩ B(x, r0) ∈ Lip(τ) for any x ∈ ∂Ω0.
Then for any r ∈ (0, r0/16), there exists C = C(r, Ω0) > 0 such that for any Dirichlet
Laplace eigenfunction uλ, the corresponding harmonic extension h(x, t) = uλ(x)e

√
λt

satisfies Nh(y, r) ≤ C
√

λ when y = (x, t) ∈ Ω.

This result is similar to the results of Donnelly and Fefferman, [6, 7], who consid-
ered eigenfunctions on compact manifolds and on domains with C∞-smooth bound-
aries and obtained the above estimate of the doubling index for eigenfunctions.
However, in contrast to the previous results, the doubling index is allowed to blow
up as r → 0 in the above lemma. The statement of the lemma follows by application
of Lemma 5 and inequality (6) to a chain of balls, the argument is similar to the one
in [18, Section 2.4]. For the convenience of the reader, we provide the details below.

Proof. We consider any y = (x, t) ∈ Ω and let y0 = (x, 0). Since h(x, t + s) =
e
√

λth(x, s), we have Nh(y, r) = Nh(y0, r). So it is enough to estimate the doubling
index of h in the balls centred on Ω0 × {0}.

We fix r ∈ (0, r0/16) and let S ∈ Ω0 be a finite r/8-net for Ω0, i.e., Ω0 ⊂⋃
p∈S B(p, r/8). Let B∗ = B(y, r) be a ball of radius r centred at y = (y∗, 0) ∈

Ω0 ×{0}. Assume that maxΩ0 |uλ| = |uλ(x0)| = 1. We consider a path γ : [0, 1] → Ω0

from y∗ to x0 such that γ((0, 1)) ⊂ Ω0. Now we construct a chain of balls {Bj}J
j=0.

Let B0 = B(y∗, r/2). Assuming that Bj = B(yj , r/2) is constructed, we define

sj = sup{s ∈ [0, 1] : |γ(s) − yj | ≤ r/8}.

If sj < 1, we have |γ(sj)−yj | = r/8 and we choose yj+1 ∈ S such that |yj+1−γ(sj)| <
r/8. If sj = 1, we define yj+1 = yJ = x0 and stop the chain. We have |yj−yj+1| < r/4
and define Bj+1 = B(yj+1, r/2). We note that sj+1 > sj when 0 ≤ j < J − 1 and
that yj+1 ∈ S\{y0, . . . , yj} when 0 ≤ j < J − 1. We also have Bj+1 ⊂ 3

2Bj . The
resulting chain is finite, moreover, the number of balls in the chain is bounded by
the number of elements in S plus two.
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Let now B̃j = B((yj , 0), r/2) be the corresponding ball in R
n+1. Then

sup4B̃j∩Ω |h| ≤ e2
√

λr. If 4B̃j ⊂ Ω, then (6) gives

sup
3
2
B̃j

|h| ≤ 2n+1(sup
B̃j

|h|)1/2(sup
4B̃j

|h|)1/2

≤ 3n+1(sup
B̃j

|h|)1/3(sup
4B̃j

|h|)2/3 ≤ 3n+1e4
√

λr/3(sup
B̃j

|h|)1/3.

Otherwise we have dist(yj , ∂Ω0) < 2r < r0/8. In this case, there is a ball B̃ of radius
r0 centred on ∂Ω0 × {0} such that (yj , 0) ∈ Ω ∩ 1

4B̃ and 16B̃j ⊂ B̃. Then Lemma 5,
applied to the ball B̃j , implies that

sup
3
2
B̃j∩Ω

|h| ≤ 3n+1( sup
B̃j∩Ω

|h|)1/3( sup
4B̃j∩Ω

|h|)2/3 ≤ 3n+1e4
√

λr/3( sup
B̃j∩Ω

|h|)1/3.

Therefore, we obtain for each j,

sup
B̃j∩Ω

|h| ≥ 3−3(n+1)( sup
3
2
B̃j∩Ω

|h|)3e−4
√

λr ≥ 3−3(n+1)( sup
B̃j+1∩Ω

|h|)3e−4
√

λr.

We also have supB̃J∩Ω |h| = e
√

λr/2. Combining the above inequalities, we get

sup
B̃0∩Ω

|h| ≥ c1e
−C2

√
λ,

where c1 and C2 depend on r and J but not on λ. We can choose the r/8-net S so
that the number of points in S depends only on diam(Ω0), r, and the dimension.
Thus we conclude that the constants in the last inequality depend only on r, the
diameter of Ω0, and n.

Finally, applying (2), we obtain

Nh(y, r) = log

∫
4B̃0∩Ω h2

∫
2B̃0∩Ω h2

≤ log
sup4B̃0∩Ω |h|2
supB̃0∩Ω |h|2 + C

≤ (4r + 2C2)
√

λ + C ≤ C
√

λ,

where C = C(Ω0, r). We remark that λ ≥ λ1(Ω0) > 0, where λ1(Ω0) is the first
Dirichlet Laplace eigenvalue in Ω0. Moreover, if B∗ is a ball of radius diam(Ω0) then
λ1(Ω0) ≥ λ1(B∗). Thus the constant C in the conclusion of this Lemma depends
only on r, diam(Ω0), and n. 
�
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6.2 Proof of Theorem 1′. Let Ω0 ⊂ R
n be a bounded domain with a suffi-

ciently small local Lipschitz constant τ . Let also r0 > 0 be such that ∂Ω0∩B(x, r0) ∈
Lip(τ) for every x ∈ ∂Ω0. We consider the domain Ω = Ω0 × R ⊂ R

n+1 and let
Ω1 = Ω0 × [−1, 1]. For each x ∈ ∂Ω× [−1, 1] we consider a ball centred at x of radius
2−9r0. These balls cover the closed 2−10r0-neighborhood of the set ∂Ω × [−1, 1]. We
can choose a disjoint collection of these balls bj such that the balls Bj = 4bj cover
the same closed neighborhood of ∂Ω × [−1, 1]. Then for each point of Ω1\ ∪j Bj , we
choose a ball b centred at the point of radius 2−15r0, so that 32b ⊂ Ω. Once again,
we find a finite sub-collection of disjoint balls b′

k such that B′
k = 4b′

k cover Ω1\∪j Bj .
We note that 8B′

k ⊂ Ω. We fix this covering of Ω1 and remark that radii of all balls
depend only on r0 and the number of balls depends on r0, the diameter of Ω0, and
n.

Let now uλ be a Dirichlet Laplace eigenfunction in Ω0: Δuλ + λuλ = 0 in Ω0

and uλ = 0 on ∂Ω0. We consider its harmonic extension h(x, t) = e
√

λtuλ(x). Then
h ∈ C(Ω) is non-zero, and h = 0 on ∂Ω. Let C0 = max{C(2−5r0, Ω0), C(2−11r0, Ω0)},
where C(r, Ω0) is as in Lemma 10. Then for B(x, r) ∈ {Bj} ∪ {B′

k}, we have
Nh(x, 4r) ≤ C0

√
λ. Finally, we apply Theorem 2 to each of the balls Bj and Lemma

6 to each of the inner balls B′
k. We conclude that

Hn(Z(h) ∩ Ω1) ≤
∑

j

Hn(Z(h) ∩ Bj) +
∑

k

Hn(Z(h) ∩ B′
k)

≤ C(C0

√
λ + 1)

⎛
⎝∑

j

r(Bj)n +
∑

k

r(B′
k)

n

⎞
⎠ ≤ C1

√
λ.

Then Hn−1(Z(uλ) ∩ Ω0) ≤ C1

√
λ, which finishes the proof of Theorem 1′.
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Appendix: Proofs of Some Auxiliary Results

A.1 Estimates for the zero set of harmonic functions inside the domain.
We outline some steps of the proof of Lemma 6. First the harmonic function h is
extended to a holomorphic function H on a domain in C

d, see Lemma 7.2 in [6].
Our situation is particularly simple, since we only consider the standard Laplace
operator on Euclidean domains. For this case the holomorphic extension is given by
the complexification of the Poisson kernel. The Poisson kernel in a ball B(x, r) ⊂ R

d

is given by

Pr(z, y) = cd
r2 − |z − x|2

r|z − y|d , |z − x| < r, |y − x| = r.

For any y ∈ ∂B(x, r), the function z = (z1, . . . , zd) �→ ∑
j(zj−yj)2 maps the complex

ball BC(x, r/
√

2) ⊂ C
d of radius r/

√
2 centred at x ∈ R

d ⊂ C
d to the half-plane

�ξ > 0. Then the Poisson kernel has the holomorphic extension to BC(x, r/
√

2).
Moreover, for any a < 1/

√
2,

|Pr(z, y)| ≤ C(a)r−(d−1), z ∈ BC(x, r0), r0 ≤ ar.

We consider a ball B = B(x, 8r) such that B ⊂ Ω. Then there exists a holomorphic
extension H(z) of h defined on a ball BC(x, 3r),

H(z) =
∫

∂B(x,6r)
P6r(z, y)h(y)dσ(y),

such that |H(z)| ≤ C maxB(x,6r) |h|. Then

sup
BC(x,3r)

|H(z)| ≤ C ′r−d/2

(∫

B(x,8r)
h2

)1/2

.

Now we can cover the set Z(h) ∩ B(x, r) by a finite number of balls with centrs
in B(x, r) of radii r/20 so that the number of the balls is bounded by a constant
depending on the dimension only. Let B(y, r/20) be one of such balls. By a version
of Corollary 1 for the doubling index inside the domain, we have Nh(y, 2r) ≤ 3N ,
where N = Nh(x, 4r), and, therefore, Nh(y, r1) ≤ 3N when r1 < 2r. Thus

sup
B(y, r

16
)
h2 ≥ cr−d

∫

B(y, r

16
)
h2 ≥ cr−de−15N

∫

B(y,2r)
h2 ≥ cr−de−15N

∫

B(x,r)
h2.

Therefore,

sup
B(y, r

10
)
|H| ≥ sup

B(y, r

16
)
|h| ≥ cr−d/2e−7.5N

(∫

B(x,r)
h2

)1/2

.
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Combining the inequalities above, we obtain

supBC(y,2r) |H|
supB(y,r/10) |H| ≤ supBC(x,3r) |H|

supB(y,r/10) |H| ≤ Ce7.5N

(∫
B(x,8r) h2

∫
B(x,r) h2

)1/2

≤ Ce9N .

Finally an estimate for the size of the zero set of a holomorphic function, Proposition
6.7 in [6], implies that

Hd−1(Z(h) ∩ B(y, r/20)) ≤ C(Nh(x, 4r) + 1).

We sum these inequalities over all balls B(y, r/20) to obtain the required estimate
for Hd−1(Z(h) ∩ B(x, r)).

A.2 Continuity of eigenfunctions in Lipschitz domains. First we prove
the following regularity result.

Lemma 11. Let Ω be a domain in R
d and let h be a harmonic function in Ω. Suppose

that B is a ball centred on ∂Ω and that there exists a sequence of functions {hn},
hn ∈ C∞

0 (Rd) with the support of hn contained in Ω, such that hn → h and ∇hn →
∇h in L2(B ∩ Ω). Assume also that ∂Ω ∩ B ∈ Lip(τ) and define h = 0 on ∂Ω ∩ B.
Then h ∈ C(Ω ∩ 1

2B).

Proof. We define the function

v =

{
h2 in Ω ∩ B,

0 in B\Ω.

Then v ∈ L1(B). Let ϕ ∈ C∞
0 (B). We have

∫

B
vΔϕ = lim

n→∞

∫

B
h2

nΔϕ

= −2 lim
n→∞

∫

B
hn∇hn · ∇ϕ = −2

∫

B∩Ω
h∇h · ∇ϕ. (20)

On the other hand, since h is harmonic in Ω, we obtain

0 =
∫

Ω
∇h · ∇(hnϕ) =

∫

Ω
hn∇h · ∇ϕ +

∫

Ω
ϕ∇h · ∇hn.

Taking the limit as n → ∞, we get
∫

Ω
h∇h · ∇ϕ = −

∫

Ω
ϕ|∇h|2.

Combining the last identity and (20) gives
∫

B
vΔϕ = 2

∫

B∩Ω
|∇h|2ϕ.
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In particular, v is subharmonic in B in the weak sense: If ϕ ≥ 0, ϕ ∈ C∞
0 (B), then∫

B vΔϕ ≥ 0. If α is a standard mollifier, αδ(x) = δ−dα(δ−1x), and vε = v ∗ αεr,
where r is the radius of B. Then vε is subharmonic in (1− ε)B and vε → v in L1(B)
and almost everywhere. In particular, v satisfies the mean value inequality at each
of its Lebesgue points. Clearly any y ∈ Ω ∩ B is a Lebesgue point of v as v = h2 in
Ω ∩ B and h ∈ C(Ω). So for any y ∈ Ω ∩ B and any ball B1 ⊂ B centred at y we
have

v(y) ≤ 1
|B1|

∫

B1

v.

In particular,

sup
2
3
B∩Ω

h2 ≤ 3d

|B|
∫

B∩Ω
h2 < ∞.

Suppose that x1 ∈ ∂Ω ∩ 1
2B. There exists a cone C with the vertex at x1 such that

C ∩(Ω∩B) = ∅ and the aperture of C does not depend on x1 (it depends on τ only).
We use the following simple fact. If y1 ∈ R

d and ρ > 2 dist(x1, y1), then

|B(y1, ρ) ∩ C| ≥ α|B(y1, ρ)|,
for some α = α(τ) ∈ (0, 1).
Let mk = supB(x1,3−kr)∩Ω |h| for k ≥ 2. We know that mk < ∞. Let y ∈ B(x1, 3−kr)∩
Ω, k ≥ 3. By the mean value inequality applied to v, we obtain

v(y) ≤ 1
|B(y, 2 · 3−kr)|

∫

B(y,2·3−kr)
v ≤ (1 − α)m2

k−1.

Thus supB(x1,3−kr)∩Ω |h| ≤ (1 − α)(k−2)/2 sup 2
3
B∩Ω |h|. We conclude that

lim
y→x1,y∈Ω

h(y) = 0. 
�

We remark that the argument above implies that h is Hölder continuous in Ω ∩ B
and there exist C > 0 and β ∈ (0, 1) such that

|h(y)| ≤ Cdist(y, ∂Ω)βr−β sup
Ω∩ 2

3
B

|h|, y ∈ Ω ∩ 1
2
B.

Corollary 2. Let Ω0 ⊂ R
n be a bounded Lipschitz domain. Let uλ be Laplace

Dirichlet eigenfunction in Ω0. Then uλ extended by zero to ∂Ω0 is continuous on
Ω0.

Proof. We have uλ ∈ W 1,2
0 (Ω0) ∩ C∞(Ω0) and Δuλ + λuλ = 0 in Ω0. We consider

the harmonic function h(x, t) = e
√

λtuλ(x) in Ω = Ω0 × R. We note that for any B
centred on ∂Ω, h satisfies the assumptions of Lemma 11. Then h is continuous in Ω
and vanishes on ∂Ω. This implies that uλ ∈ C(Ω0) and uλ = 0 on ∂Ω0. 
�
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A.3 Quantitative Cauchy uniqueness. We give an elementary proof of
Lemma 2 in this section for the convenience of the reader.
Let G(x, y) = −cd|x − y|2−d be the fundamental solution of the Laplace equation
in R

d when d ≥ 3 (similar computations can be done with G(x, y) = c2 log |x − y|
for d = 2). We write ∂B+ = Γ ∪ Σ, where Γ is the flat part of the boundary and
Σ = ∂B+\Γ. We denote by n the outer normal to ∂B+. Then for x ∈ B+, the Green
formula implies

h(x) =
∫

∂B+

[
∂G

∂n
(x, y)h(y) − G(x, y)

∂h

∂n
(y)

]
dy

=
∫

Γ

[
∂G

∂n
(x, y)h(y) − G(x, y)

∂h

∂n
(y)

]
dy

+
∫

Σ

[
∂G

∂n
(x, y)h(y) − G(x, y)

∂h

∂n
(y)

]
dy

= h1(x) + h2(x).

The functions h1 and h2 are defined in the complements of Γ and Σ respectively and
are harmonic in the corresponding domains. Moreover, for x �∈ B+, applying the
Green formula to the functions h and G(x, ·) in B+, we obtain h1(x) + h2(x) = 0.
First, we estimate the value of h1 at some point x = (x′, x′′) ∈ B\Γ ⊂ R

d−1 ×R. We
divide the integral into two

h1(x) =
∫

Γ

∂G

∂n
(x, y)h(y)dy −

∫

Γ
G(x, y)

∂h

∂n
(y)dy = I1(x) + I2(x).

Since |∂h/∂n| < ε on Γ, the second integral is bounded by

|I2(x)| ≤ cdε

∫

Bd−1(x′,2)
|x′ − y′|2−ddy′ ≤ Cε.

To estimate the first term, we note that for y ∈ Γ,

∂G

∂n
(x, y) = c′

dx
′′|x − y|−d,

and thereby
∫

Γ

∣∣∣∣
∂G

∂n
(x, y)

∣∣∣∣ dy ≤ c′
d

∫

Rd−1

|x′′|
(x′′2 + |x′ − y′|2)d/2

dy′ = c′′
d.

Using that |h(y)| < ε on Γ, we conclude that |I1(x)| < Cε in B\Γ. Therefore
|h1(x)| ≤ Cε in B\Γ. Since h1(x) + h2(x) = 0 when x ∈ R

d\B+, and |h1 + h2| =
|h| ≤ 1 in B+, we obtain that h2(x) satisfies

|h2(x)| < Cε in B− = B\B+ and |h2(x)| ≤ 1 + Cε in B+.
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Now we apply the three sphere inequality (6). We note that h2 is harmonic in B.
First we take x = (0, −1/5) and r = 1/5 and obtain

sup
B(0,1/10)

|h2| ≤ sup
B(x,3/10)

|h2| ≤ 2d( sup
B(x,1/5)

|h2|)1/2( sup
B(x,4/5)

|h2|)1/2 ≤ Cε1/2.

Next, we apply inequality (6) to the ball centred at the origin with r = 1/10. We
obtain

sup
B(0,3/20)

|h2| ≤ Cε1/4.

Iterating two more times, by applying the same inequality to the balls centred at
the origin and r = 3/20 and, finally, r = 9/40, and noticing that 27/80 > 1/3, while
9/10 < 1, we conclude that

sup
1
3
B

|h2| ≤ Cε1/16.

Finally, combining the last inequality with the bound |h1| ≤ Cε in B+, we get the
required estimate |h| ≤ Cεγ in 1

3B+.
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