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GENERIC SCARRING FOR MINIMAL HYPERSURFACES
ALONG STABLE HYPERSURFACES

Antoine Song and Xin Zhou

Abstract. Let Mn+1 be a closed manifold of dimension 3 ≤ n+1 ≤ 7. We show that
for a C∞-generic metric g on M , to any connected, closed, embedded, 2-sided, sta-
ble, minimal hypersurface S ⊂ (M, g) corresponds a sequence of closed, embedded,
minimal hypersurfaces {Σk} scarring along S, in the sense that the area and Morse
index of Σk both diverge to infinity and, when properly renormalized, Σk converges
to S as varifolds. We also show that scarring of immersed minimal surfaces along
stable surfaces occurs in most closed Riemannian 3-manifods.

0 Introduction

The existence theory of closed minimal hypersurfaces has enjoyed important ad-
vancements in recent years. However there are only few general results describing
the possible spatial distributions of minimal hypersurfaces in closed manifolds. The
Lawson surfaces [Law70] in the round 3-sphere give examples of sequences of mini-
mal surfaces that either get equidistributed, or “scar” in the sense that the minimal
surfaces concentrate along a proper subset of the ambient manifold even though their
areas diverge. In [MNS19], Marques, Neves and the first-named author proved that
generically in dimensions 3–7, there is a sequence of minimal hypersurfaces equidis-
tributing on average. On the other hand, Colding and De Lellis [CL05] constructed
examples of 3-manifolds where a sequence of minimal surfaces accumulate around a
stable minimal 2-sphere. Wiygul [Wiy20] extended [KY10] and found a sequence of
minimal surfaces scarring along the Clifford torus in the round S

3. In this paper, we
show that generically in dimensions 3–7, scarring for minimal hypersurfaces happens
as soon as there is a stable hypersurface. If Σ is a closed hypersurface in (M, g), we
denote by [Σ] the multiplicity one varifold associated to Σ and by ||Σ|| its area,
or equivalently the mass of [Σ]. We need the varifold F-distance defined in [Pit81,
2.1(19)]. This distance F induces the usual varifold topology on the set of varifolds
of mass at most 1.

Theorem 0.1 (Generic scarring). Let Mn+1 be a closed manifold of dimension 3 ≤
n+1 ≤ 7. For a C∞-generic metric g on M in the sense of Baire, the following holds.
For any connected, closed, embedded, 2-sided, minimal hypersurface S ⊂ (M, g)
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which is stable, there is a sequence of closed, embedded, minimal hypersurfaces
{Σk} with the following properties:

(i) Σk ∩ S = ∅,
(ii) lim

k→∞
||Σk|| = ∞,

(iii) lim
k→∞

Index(Σk)||Σk||−1 = ||S||−1,

(iv) F
(

[S]
||S|| ,

[Σk]
||Σk||

)
≤ 1

log(||Σk||) .

Remark 0.2. This theorem confirms a conjecture by the first-named author; see
[Son19, Conjecture 4]. From the proof of Theorem 0.1, it will be clear that it can be
generalized to 1-sided minimal hypersurfaces S with stable 2-sided double cover. A
particular feature of Theorem 0.1 is that we obtain an explicit quantitative estimate
on how close the minimal hypersurfaces are from S. The logarithm is not sharp and
can at least be replaced by any function f(x) growing slower than positive powers
of x, i.e. limx→∞ f(x)x−α = 0 for all α > 0.

Motivations and historical backgrounds. Minimal hypersurfaces, as critical
points of the area functional, can be considered as non-linear geometric analogues of
the Laplacian eigenfunctions. Equidistribution and scarring have been widely stud-
ied in spectral theory and ergodic theory; we recall here some results that partly
motivate the study of distributions of minimal hypersurfaces. First, pointwise Weyl
laws imply that the L2-densities of eigenfunctions equidistributes on average; see
[Ava56]. In negative curvature, the quantum ergodicity theorem asserts that for
a density one subsequence of eigenfunctions, the normalized densities individually
equidistribute, a fact related to the ergodicity of the geodesic flow in negative curva-
ture; see [Sni74, Zel87, Col85]. The Quantum Unique Ergodicity conjecture [RS94]
predicts that the full sequence should equidistribute; see [Zel17, Sar95, Has11] for
surveys. In contrast, in certain generic situations some subsequences do not equidis-
tribute; instead the L2-densities “scar” along subregions of the ambient manifolds;
we mention [Has10] which treats certain ergodic billiards, and [BL67, Ral80, Col09]
which imply scarring of eigenfunctions along certain elliptic geodesics in generic
closed surfaces. Analogous behaviors for eigenfunctions of certain quantized toral
automorphisms were discovered in [FNB03].

As mentioned earlier, the existence of minimal hypersurfaces in closed manifolds
is rather well understood by now. The Almgren–Pitts min–max theory [Alm62,
Alm65, Pit81, SS81] was much improved starting from the work of Marques-Neves
[MN14, MN17]. Yau’s conjecture on the existence of infinitely many closed minimal
surfaces was proved in the general case by the first-named author [Son18], building on
Marques–Neves’ approach [MN17]. The generic equidistribution theorem in [MNS19]
quantifies the generic density result of Irie et al. [IMN18]. Both proofs uses the
Weyl Law for the area functional by Liokumovich et al. [LMN16]. Around the same
time, a Morse theory was established for the area functional: the second-named
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author [Zho20] proved the Multiplicity One Conjecture raised by Marques–Neves
[MN16, MN21], using theory developed in [ZZ20]; (see also Chodosh–Mantoulidis
[CM20]). When combined with [MN21], this implies that, for bumpy metrics, there is
a closed embedded minimal hypersurface of Morse index p for every p ∈ N. Recently,
the Morse inequalities for the area functional were established for bumpy metrics by
Montezuma et al. [MMN20].

More on dimension 3. In dimension n + 1 = 3, more can be said about the
scarring minimal surfaces Σk produced by Theorem 0.1. They satisfy for instance
a local sheet accumulation property, as we explain now. Given a positive integer
N0, the first-named author introduced in [Son19] a two-piece decomposition for any
minimal surface Σ into a non-sheeted part Σ≤N0 and sheeted part Σ>N0 :

Σ = Σ≤N0 � Σ>N0 ,

in analogy with the usual thick-thin decomposition for manifolds with bounded
sectional curvature. Roughly speaking, at each point of Σ≤N0 (resp. Σ>N0), the
number of sheets at the scale of stability, or equivalently scale of curvature, is at
most N0 (resp. larger than N0). It was proved that the genus and area of Σ≤N0 are
always controlled by the index of Σ, independently of the area of Σ, see [Son19,
Section 4]. For the minimal surfaces Σk in Theorem 0.1, it follows from [Son19,
Theorem 17] that they are mostly locally sheeted in the sense that for any integer
N0,

lim
k→∞

Area(Σk,≤N0)
Area(Σk)

= 0.

Moreover, in dimension n + 1 = 3, topology often helps finding stable minimal
surfaces. Combining this observation with the proof of Theorem 0.1, we show the
following.

Theorem 0.3 (Generic scarring in dimension 3). Let M3 be a closed 3-manifold
which is not diffeomorphic to a spherical quotient S

3/Γ. Then for a C∞-generic
metric g on M , there is a sequence of connected, closed, immersed, minimal surfaces
{Σk} such that their Morse index and the area of their images both diverge to
infinity, and

lim
k→0

F
(

[S]
||S|| ,

[Σk]
||Σk||

)
= 0

for some connected, closed, immersed, stable minimal surface S ⊂ (M, g).

In the case M carries a hyperbolic metric, one can say more: given any π1-injective
surface F , there is a sequence of minimal surfaces scarring along an area minimizing
surface homotopic to F ; see Corollary 4.1. It is known that π1-injective surfaces exist
in abundance by Kahn–Marković [KM12a, KM12]. We point out that the asymptotic
growth of the size of certain families of area minimizing surfaces in negatively curved
closed 3-manifolds was recently studied by Calegari et al. [CMN20].
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Remark 0.4. Compared to Theorem 0.1, we can ensure in Theorem 0.3 that Σk is
connected, on the other we cannot give quantitative estimates relating the index and
area of Σk. Each surface Σk may be a multiple cover of its image, but the degree of
the covering is uniformly bounded as k → ∞.

Overview of proofs. The proof of Theorem 0.1 is based on a perturbation ar-
gument applied to an asymptotic formula for certain min–max widths. In [IMN18],
such a strategy was applied to the Weyl law for the volume spectrum [LMN16] in
order to get generic density of minimal hypersurfaces; (see [Son19a] for an alterna-
tive argument bypassing the Weyl law). This result was quantified in [MNS19]. It
is such a quantified argument that we wish to use here, but with another Weyl law
type formula introduced by the first-named author in the proof of Yau’s conjecture
[Son18]. This formula, that we will call cylindrical Weyl law (see Section 1.1), de-
scribes the growth of a sequence of min–max numbers {ω̃p} canonically associated
with a given strictly stable minimal hypersurface S:

lim
p→∞

ω̃p

p
= Area(S).

These min–max numbers ω̃p are realized as the areas of some minimal hypersurfaces.
When we perturb the metric, these areas are asymptotically only sensitive to the area
of S and not to the changes far from S, by the cylindrical Weyl law. So intuitively it
should imply that “on average” in a neighborhood of the given metric, those minimal
hypersurfaces are accumulating around S. Similarly to [MNS19], the proof relies on
a derivative estimate for the min–max numbers ω̃p.

An important difference with [MNS19] is that we want to obtain minimal hy-
persurfaces with both area and index diverging to infinity. To achieve this, it is not
possible to directly apply the Multiplicity One Conjecture proved by the second-
named author [Zho20] and the Morse Index Conjecture proved in [MN21]. This
issue will require to study a certain codimension 1 Banach submanifold in the space
of minimal embeddings defined in [Whi91].

An additional feature of this cylindrical Weyl law compared to the usual Weyl
law for the volume spectrum is the possibility to estimate the remainder term. This
enables us, after proving a quantitative Constancy Theorem, and by carefully keeping
track of all the perturbations, to prove that the varifold distances between S and
certain normalized minimal hypersurfaces have a quantified estimate in terms of the
areas. The final scarring result follows from an induction argument on all strictly
stable minimal hypersurfaces.

The proof of Theorem 0.3 starts with the following observation: for most closed 3-
manifolds M , after taking a finite cover Mcover, one can find a non-trivial homotopy
class of embedded surfaces. By a standard minimization procedure, one gets an
embedded stable minimal surface in Mcover. Then one would like to apply Theorem
0.1 to Mcover and project back to M . The problem is that generic metrics on Mcover

are in general not lifts of metrics on M , so in the end we prove a scarring result
without quantitative estimates on the Morse index and area.
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Organization. The paper is organized as follows. In Section 1, we collect prelim-
inary results on min–max theory for minimal hypersurfaces in compact manifolds
with boundary, including some properties of the cylindrical volume spectrum. In
Section 2, we prove a quantitative version of the Constancy Theorem. In Section 3,
we use the perturbation argument to prove a key intermediate deformation result.
Finally we finish the proof of our generic scarring theorems in Section 4, and apply
those arguments to 3-manifolds which are not spherical quotients. In “Appendix
A”, we recall a well-known fact on the differentiability of the first eigenvalue of
self-adjoint second order elliptic operators.

1 Preliminaries

1.1 Min–max theory in compact manifolds with boundary. In this part,
we describe results revolving around a procedure to construct closed minimal hy-
persurfaces in a compact manifold M̂ with strictly stable minimal boundary. This
procedure was introduced by the first-named author in [Son18] in relation to Yau’s
conjecture. The idea is to attach a cylindrical end to each connected boundary com-
ponent of M̂ to obtain a non-compact manifold with a Lipschitz metric, and then
study the sequence of its min–max widths (or volume spectrum) [MN17]. It was
proved that these widths grows linearly, with leading coefficient the largest area
among areas of the boundary connected components. Moreover these widths are re-
alized by the areas (with multiplicities) of closed minimal hypersurfaces embedded
in the interior of M̂ , and it was shown by observing that the free boundary min–
max theory of M. M.-C. Li and the second-named author [LZ16] applied to compact
approximations of the non-compact manifold produces compact embedded minimal
hypersurfaces that eventually pull back to the interior of the original manifold M̂ .
These results were recently adapted by Li [Li20] who showed, based on the resolu-
tion of the Multiplicity One Conjecture by the second-named author [Zho20] and the
Morse Index Conjecture by Marques and Neves [MN21], that in a bumpy metric, the
constructed minimal hypersurfaces have multiplicity one and linear growing Morse
index.

Let (M̂n+1, ∂M̂ , g) denote a compact connected (n + 1)-dimensional smooth
manifold with boundary endowed with a Cq metric with q ≥ 3. Assume that
∂M̂ = ∪l

i=1Si is a disjoint union of connected, strictly stable, minimal hypersur-
faces {Si}l

i=1. The metric g is said to be embedded bumpy (resp. immersed bumpy)
if every closed embedded (resp. immersed) minimal hypersurface inside M̂ is non-
degenerate, i.e. has no non-zero Jacobi fields. It is useful to introduce the following
manifold with cylindrical ends [Son18]:

C(M̂) = M̂ ∪id (∂M̂ × [0, ∞)), (1.1)

where id: ∂M̂ × {0} → ∂M̂ is the canonical identity map. Note that C(M̂) is a non-
compact smooth manifold. C(M̂) is endowed with a natural Lipschitz metric h by
simply putting together g with the product metric g|∂M̂ + (dt)2.
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Consider an exhaustion of C(M̂) by compact subsets K1 ⊂ K2 ⊂ · · · ⊂ C(M̂).
The following definition does not depend on the particular choice of exhaustion
K1 ⊂ K2 ⊂ · · · ⊂ C(M̂).

Definition 1.1. [Son18] For each positive integer p, the cylindrical p-width of
(M̂, g) is defined as

ω̃p(M̂, g) := ωp(C(M̂), h) := lim
i→∞

ωp(Ki, h). (1.2)

Here ωp(Ki, h) is the p-width of (Ki, h) defined in [MN17, Definition 4.3]. The se-

quence {ω̃p(M̂, g)}p will be called cylindrical volume spectrum.

These widths satisfy a “cylindrical” Weyl Law; see [Son18, Theorem 8]; (compare
with the classical Weyl Law [LMN16]).

Theorem 1.2. Suppose that S1 has maximal area among the boundary components
{Si}l

i=1. Then there is a constant C = C(g), such that

p · Area(S1) ≤ ω̃p(M̂, g) ≤ p · Area(S1) + C(g)p
1

n+1 . (1.3)

Moreover, the constant C(g) can be chosen to be locally bounded in the set of Cq

metrics endowed with the C1 topology.

The fact that C(g) can be chosen to be bounded in a C1-neighborhood of g
follows from the proof of [Son18, Theorem 8], where it is apparent that this C(g) is
(up to a universal factor) given by the constant in [MN17, Theorem 5.1] applied to
the compact manifold (M̂, g); (see [Gro88, Gru09] for the original versions of this
result). That constant in turn comes from bounds on a cubical complex K and a
Lipschitz homeomorphism G:K → M̂ and so depends only on a C1-neighborhood
of g.

The following min–max theorem is an extension of [Son18, Theorem 9] by Li
[Li20, Theorem 5] using the Multiplicity One Conjecture [Zho20] and the Morse
Index Conjecture [MN16, MN21].

Theorem 1.3. Assume that 3 ≤ n + 1 ≤ 7. Then for each p ∈ N, there exists a Cq

closed, embedded, minimal hypersurface Γp contained in int(M̂), whose connected

components are called Γ(1)
p , . . . ,Γ(kp)

p , and associated positive integer multiplicities
m1, . . . , mkp

such that

ω̃p(M̂, g) =
kp∑
i=1

mi Area(Γ(i)
p ), and

Index(Γp) ≤ p.

(1.4)

Moreover if g is immersed bumpy then Γp can be chosen so that each Γ(i)
p is 2-sided

and mi = 1 for all i ∈ {1, . . . , kp}, and Index(Γp) = p.

The results cited above were originally stated for smooth metrics, but the proofs
directly apply to Cq metrics, for q ≥ 3.
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1.2 Cylindrical widths are locally Lipschitz functions of the metric. Let
(Mn+1, g) be a closed connected (n + 1)-dimensional Riemannian manifold with
3 ≤ (n + 1) ≤ 7. For an integer q ≥ 3 or q = ∞, we denote by Γ(q) the set of Cq

metrics on M , endowed with the Cq topology. In this paper the specific choice of q
will not matter, as long as it is chosen large enough. As in the last section, the metric
g is said to be embedded bumpy (resp. immersed bumpy) if every closed embedded
(resp. immersed) minimal hypersurface in M is non-degenerate. By [Whi91, Whi17],
the set of embedded or immersed bumpy metrics is a Cq-generic subset in Γ(q) for
any q ≥ 3 or q = ∞, in the sense of Baire category.

Fix q ≥ 3 in this Subsection, and let g be a Cq metric. Let S ⊂ (M, g) be a
connected, closed, embedded, minimal hypersurface, which is 2-sided strictly stable.
By the Implicit Function Theorem (see also [Whi91, Theorem 2.1]), given any other
metric ĝ in a small Cq-neighborhood of g, there is a unique minimal hypersurface
Sĝ that can be written as a section of the normal bundle of S, with small Cj,α-norm
(j ≤ q − 1). In particular, Sĝ is also 2-sided and strictly stable.

For ĝ close to g in the Cq topology, we can define M̂ĝ as follows. We pick a
connected component of M\Sĝ, take the metric completion and obtain a compact
Riemannian manifold with boundary (M̂ĝ, ĝ). Note that if Sĝ separates M , we can
choose the component M̂ĝ so that it depends continuously on ĝ, and in this case
∂M̂ĝ = Sĝ. Otherwise, Sĝ does not separate M and ∂M̂ĝ consists of two isometric
copies of Sĝ. The manifold (M̂g, g) obtained for g will be denoted by M̂0.

The following lemma says that the normalized cylindrical widths 1
p ω̃p(M̂ĝ, ĝ)

are Lipschitz functions of the metric ĝ within a small Cq-neighborhood of g. Note
that a similar property for the normalized classical widths was proved in [MNS19,
Lemma 1]; however, in our current situation, we have to take care of the fact that
the underlying manifold is changing when the metric ĝ changes. The norms || · ||Ck

are measured with respect to the metric g.

Lemma 1.4. Fix a positive integer q ≥ 3 and let g be a Cq metric on M . Assume
that S is a connected, closed, embedded, minimal hypersurface which is 2-sided and
strictly stable. Then there exist ε > 0 and C > 0 (depending only on g, S, and q),
such that for any Cq metrics ĝ1 and ĝ2 with ‖ĝi − g‖Cq < ε for i = 1, 2, we have

∣∣∣1
p
ω̃p(M̂ĝ1 , ĝ1) − 1

p
ω̃p(M̂ĝ2 , ĝ2)

∣∣∣ ≤ C‖ĝ1 − ĝ2‖Cq .

Proof. For any Cq metric ĝ with ‖ĝ − g‖Cq � 1, by the Implicit Function Theorem,
Sĝ is a normal graph over S. Choose a unit normal ν of S, and denote the graphical
function by û, then Sĝ = {expp

(
û(p)ν(p)

)
: p ∈ S}. Moreover, we have the following

fact, proved in [Whi91].
Fact. Given j ≤ q − 1, j ∈ N, there exist ε > 0 and C > 0, such that for any two
smooth metrics ĝi, i = 1, 2, if ‖ĝi − g‖Cq < ε, then we have

‖û1 − û2‖Cj,α(S) ≤ C‖ĝ1 − ĝ2‖Cq .
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We will construct diffeomorphisms Φi: M → M which are identity away from a
tubular neighborhood of S and Φi maps S to Sĝi

respectively. Using such diffeomor-
phisms, we can identify (M̂ĝi

, ĝi) with (M̂0, Φ∗
i ĝi) so that the cylindrical widths are

defined on a fixed underlying manifold M̂0.
We will omit the sub-index when describing the construction of Φ. Letting t be

the signed distance function over S (see Section 2 for more details), we have a Fermi
coordinate system in a tubular neighborhood N2δ(S) of S (for some δ > 0), such
that

N2δ(S) = {(x, t): x ∈ S, −2δ < t < 2δ}.

Choose a cutoff function φ: [−2δ, 2δ] → [0, 1] such that φ ≡ 1 on [−δ, δ], φ ≡ 0 on
[−2δ, 2δ] \ [−3

2δ, 3
2δ], and |φ′| ≤ 3

δ . Then ‖φ‖Cj,α is uniformly bounded (depending
only on g, S, j and δ). Let ĝ be a Cq metric with ‖ĝ − g‖Cq < ε � 1, Sĝ the
associated minimal hypersurface arising from S, and û its graphical function over
S. We define Φ = Φĝ: M → M by

Φ(p) =
{(

x, t + φ(t)û(x)
)

if p = (x, t) ∈ N2δ(S)
p if p /∈ N2δ(S)

.

It is easy to see (by the bound |φ′| ≤ 3
δ ) that Φ is a diffeomorphism when ‖û‖L∞

is small enough, which can be satisfied by choosing ε small enough. Also ‖Φ‖Cj,α is
uniformly bounded.

We get the following estimate for the C0 distance between Φ∗
1ĝ1 and Φ∗

2ĝ2 com-
puted with g:

‖Φ∗
1ĝ1 − Φ∗

2ĝ2‖C0 ≤ ‖Φ∗
1ĝ1 − Φ∗

2ĝ2‖Cj−1

≤ ‖Φ∗
1ĝ1 − Φ∗

1ĝ2‖Cj−1 + ‖Φ∗
1ĝ2 − Φ∗

2ĝ2‖Cj−1

≤ C
(‖ĝ1 − ĝ2‖Cj−1 + ‖Φ1 − Φ2‖Cj

)
≤ C

(‖ĝ1 − ĝ2‖Cj + ‖û1 − û2‖Cj

)
≤ C‖ĝ1 − ĝ2‖Cq .

We are now ready to compare the cylindrical widths. Using Definition 1.1, The-
orem 1.2, and the same calculation as in [MNS19, Lemma 1], we obtain for any
compact exhaustion K1 ⊂ K2 ⊂ · · · ⊂ C(M̂0):

ω̃p(M̂ĝ1 , ĝ1) − ω̃p(M̂ĝ2 , ĝ2)

= ω̃p(M̂0, Φ∗
1ĝ1) − ω̃p(M̂0, Φ∗

2ĝ2)
= lim

i→∞
ωp(Ki, h(Φ∗

1ĝ1)) − lim
i→∞

ωp(Ki, h(Φ∗
2ĝ2))
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≤ sup
i

((
1 + sup

v �=0,v∈TKi

|h(Φ∗
1ĝ1)(v, v) − h(Φ∗

2ĝ2)(v, v)|
h(Φ∗

2ĝ2)(v, v)

)n

2 − 1

)

· lim
i→∞

ωp(Ki, h(Φ∗
2ĝ2))

≤ (
(1 + C‖Φ∗

1ĝ1 − Φ∗
2ĝ2‖C0)

n

2 − 1
)
ω̃p(M̂ĝ2 , ĝ2)

≤ (
(1 + C‖ĝ1 − ĝ2‖Cq)

n

2 − 1
)
C · p · Area(Ŝĝ2 , ĝ2)

≤ (
(1 + C‖ĝ1 − ĝ2‖Cq)

n

2 − 1
)
C · p · Area(S, g)

≤ C · p · ‖ĝ1 − ĝ2‖Cq ,

where C depends only on (M, g), q and S. This finishes the proof. ��

We end this section with a formula for the derivatives of the cylindrical widths
whose proof is similar to that of Lemma 2 in [MNS19]. This formula holds at metrics
satisfying a property slightly stronger than embedded bumpiness and involves mul-
tiplicity one min–max hypersurfaces, which is key to obtain the lower index bounds
in Theorem 0.1.

Lemma 1.5. Fix a positive integer q ≥ 3 and let g be a Cq metric on M . Assume
that S is a connected, closed, embedded, minimal hypersurface which is 2-sided and
strictly stable. Let {ĝt}t∈[0,1] be a smooth family of Cq metrics, with ĝ0 = g. Assume
that g is an embedded bumpy metric and that for any 1-sided, connected, closed,
embedded, minimal hypersurface in (M, g), its 2-sided double cover has no positive
Jacobi field. Suppose also that, for some integer p, the cylindrical p-width function

t → ω̃p(M̂ĝt
, ĝt)

is differentiable at time t = 0.

Then there exists a Cq closed, embedded, minimal hypersurface Γp contained in

int(M̂g), such that

ω̃p(M̂g, g) = Areag(Γp), Index(Γp) = p,

and
d

dt

∣∣∣
t=0

ω̃p(M̂ĝt
, ĝt) =

∫
Γp

1
2

TrΓp,g

(∂ĝt

∂t

∣∣∣
t=0

)
dΓp.

Proof. Take a sequence {tm}m∈N ⊂ [0, 1] with tm → 0. For each m, we find a
smooth metric hm which is immersed bumpy and is arbitrarily close to ĝtm

in the
Cq topology, so that

d

dt

∣∣∣
t=0

ω̃p(M̂ĝt
, ĝt) = lim

m→∞
ω̃p(M̂hm

, hm) − ω̃p(M̂g, g)
tm

and
∂ĝt

∂t

∣∣∣
t=0

= lim
m→∞

hm − g

tm
.
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By Theorem 1.3, for each m there is a 2-sided, closed, embedded, minimal hyper-
surface Γ′(m) ⊂ (int(M̂hm

), hm) such that

ω̃p(M̂hm
, hm) = Areahm

(Γ′(m)), Index(Γ′(m)) = p.

By compactness [Sha17], these bounds imply that after taking a subsequence, as
m → ∞, Γ′(m) converges in the varifold sense to a closed embedded minimal hyper-
surface Γp in (M̂g, g). By standard Jacobi field arguments, if the convergence was not
smooth with multiplicity one, then either there is a 2-sided component of Γp with a
nontrivial Jacobi field or a 1-sided component of Γp whose 2-sided double cover has
a positive Jacobi field. In both case, there is a contradiction with the assumptions
on the metric g. Thus the convergence to Γp is smooth with multiplicity one, and
hence convergence also holds in the Hausdorff topology, in particular Γp ⊂ int(M̂g)
(as otherwise by the monotonicity formula a connected component of Γ′(m) would
lie in a tubular neighborhood of Shm

, contradicting strict stability of Shm
). Clearly

the index cannot drop by embedded bumpiness of g, so

ω̃p(M̂g, g) = Areag(Γp), Index(Γp) = p.

Finally, since g is embedded bumpy, it is a regular value of the projection Π
from the Banach manifold of C2,α minimal embeddings to the space of Cq metrics,
defined in [Whi91]; (see Section 3 for more details). The formula for the derivative
then follows readily, as in [MNS19, Lemma 2]. ��

2 A quantitative constancy theorem

The Constancy Theorem in geometric measure theory [All72], [Sim83, §41] says
that if a stationary k-varifold is supported in a smooth embedded k-dimensional
submanifold, then the varifold is represented by a constant multiple of the smooth
submanifold. In this section, we prove a quantified version for varifolds of codimen-
sion one. In particular, we will prove (Theorem 2.1) that if the total mass of a
stationary n-varifold in an (n+1)-dimensional manifold is mostly concentrated in a
tubular neighborhood of a closed embedded hypersurface, then the varifold distance
between the normalized varifold and the hypersurface has a quantitative estimate.

Let (Mn+1, g) be a closed Riemannian manifold, g a Cq metric (q ≥ 3), and
S ⊂ M a 2-sided, closed, embedded hypersurface. Choose a unit normal vector field
ν along S. Let Nε(S) be an ε-tubular neighborhood of S for some small enough ε > 0,
so that the normal exponential map of S has no focal point in Nε(S). Consider a
foliation {St}−ε<t<ε of Nε(S) by a family of equidistant hypersurfaces, that is:

St :=
{
expp(tν(p)): p ∈ S

}
.

Here t: Nε(S) → (−ε, ε) is the signed distance to S. Denote the nearest point pro-
jection map from Nε(S) to S by

π: Nε(S) → S.
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The vector field ν := ∇t is a parallel vector field, i.e. ∇νν = 0, and ν|St
is the unit

normals of St for all t ∈ (−ε, ε). Note that if γ : (−ε, ε) → Nε(p) is an integral curve
of ν with γ(0) ∈ S, then π(γ(t)) = γ(0) for all t ∈ (−ε, ε).

Given a varifold V and a domain U , ||V || is its mass and ||V ||(U) the mass of the
restriction of V to U . Before stating the theorem, let us define the F-distance for
varifolds. The original definition in [Pit81, 2.1(19)] goes as follows: we first embed
(M, g) isometrically in a Euclidean space R

P endowed with the standard inner prod-
uct, then the Grassmannian GRP (P, n) is equipped with a natural distance function,
and the set of continuous functions with Lipschitz constant 1 is well defined. Then
if V, W are two n-varifolds in M ,

F(V, W ) := sup{|V (f) − W (f)|; f : GRP (P, n) → R, |f | ≤ 1, Lip(f) ≤ 1}.

We will use an essentially equivalent but more intrinsic definition, which makes it
easier to see how F changes as the metric g varies. Given a metric g, the Grassman-
nian bundle G(n+1, n) of n-planes in M is identified with a Z2 quotient of the unit
tangent bundle UTM of M , which has a natural metric and thus a natural distance
function distg. This is the distance function on G(n+1, n) that we will use to define
the Lipschitz constant of a function f : G(n + 1, n) → R, and it is clearly equivalent
to that defined by Pitts up to a constant depending on the isometric embedding.
Note that the F-distance induces the usual topology on the set of varifolds with
mass at most 1.

Theorem 2.1. Let (M, g), S, {St}, Nε(S) be as above. Then there exists a constant
C(g, S) depending only on g and S, such that for any 0 < δ < ε, and for any
stationary n-varifold V in (M, g) satisfying

||V ||(M\Nδ(S)
)

||V || ≤ δ, (2.1)

we have

F
(

[S]
||S|| ,

V

||V ||
)

≤ C(g, S)
√

δ. (2.2)

Moreover the constant C(g, S) can be chosen to be locally bounded in the set of
pairs (g, S) endowed with the product C3 topology.

Remark 2.2. • Suppose that S is a 2-sided, closed, embedded, strictly stable,
minimal hypersurface of (M, g). We have previously seen that for a Cq metric
ĝ in a small Cq-neighborhood U of g (q ≥ 3), there is a unique stable minimal
hypersurface Ŝ ⊂ (M, ĝ) coming from S and C3 close to S. Thus there is an
even smaller Cq-neighborhood U ′ ⊂ U of g, such that when the theorem above
is applied to the pairs (ĝ, Ŝ) where ĝ ∈ U ′, the constant C(ĝ, Ŝ) can be chosen
uniformly, i.e. independently of ĝ ∈ U ′.

• In the theorem, the bound in
√

δ is probably not sharp as δ gets small.
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Proof. To simplify the notations, we can assume ‖V ‖(M) = 1. Let μV be the Radon
measure on M associated with V , and let us write

dμS =
1

‖S‖dS.

We use Gn(U) to denote the G(n+1, n)-Grassmannian bundle of unoriented n-planes
over a subset U ⊂ M .

We first prove that, under the assumptions of the theorem, V is supported over
n-planes that are “almost parallel” to those of the foliations {St}. Recall that ν is
the vector field ∇t. Given an n-plane P ∈ Gn(M) in the tangent space TxM , denote
by νP a choice of the unit normal of P ; (note that the following statement does not
depend on the choice of νP ).

Lemma. There exists a constant C(g, S) depending only on g and S, such that for
any 0 < δ < ε, ∫

Gn(Nδ(S))
(1 − (ν(x) · νP )2)dV (x, P ) < C(g, S)δ.

Proof. We can extend the signed distance function to M with a uniform C2-bound:

t : M → R, with ||t||C2(M) ≤ C(g, S).

Consider the vector field X = t∇t, and plug X into the first variation formula for
V :

0 =
∫

Gn(M)
divP X(x)dV (x, P )

=
∫

Gn(Nδ(S))
+

∫
Gn(M\Nδ(S))

divP (t∇t)dV (x, P )

=
∫

Gn(Nδ(S))
|πP (ν(x))|2dV (x, P ) +

∫
Gn(Nδ(S))

t divP (∇t)dV (x, P )

+
∫

Gn(M\Nδ(S))
divP (t∇t)dV (x, P ).

Here πP : TxM → P is the orthogonal projection map. And we naturally have

|πP (ν(x))|2 = 1 − (ν(x) · νP )2.

The conclusion then follows directly from the assumption (2.1), the fact that |t| ≤ δ
on Nδ(S), and the C2-bound for t. ��

We now continue the proof of Theorem 2.1. For x ∈ Nε(S), denote by Sx the leaf
in the foliation {St} containing x. Since ν(x) is the unit normal of Sx, we get for a
constant C > 0:

1 − (ν(x) · νP )2 = sin2 ∠(ν(x), νP ) ≥ 1
C

distg(P, TxSx)2.
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Here distg(·, ·) is the choice of distance function on the Grassmannian manifold
G(n+1, n) we explained before the statement of the theorem. Hence by the Cauchy-
Schwartz inequality we have∫

Gn(Nδ(S))
distg(P, TxSx)dV (x, P ) < C(g, S)

√
δ. (2.3)

By the definition of the varifold distance F, to prove (2.2), we need to estimate
the following quantity∣∣∣

∫
Gn(M)

f(x, P )dV (x, P ) −
∫

S
f(p, TpS)dμS(p)

∣∣∣
for any Lipschitz function f defined on the G(n + 1, n)-Grassmannian bundle of M
(endowed with distg(·, ·)) with ‖f‖∞ ≤ 1 and Lipschitz constant Lip(f) ≤ 1.

For any point p ∈ S, write fS(p) = f(p, TpS) and denote by fav =
∫
S fSdμS the

average of fS over S, then

|fav| ≤ 1.

We can solve the following PDE on S

fS = fav + �Sϕ, (2.4)

under the assumption that the average
∫
S ϕdμS = 0. By standard elliptic estimates,

we have

‖ϕ‖C2,α(S) ≤ C(g, S).

We can then find an extension of ϕ to the whole manifold M (still denoted by ϕ)
such that on Nε(S),

ϕ(x) = ϕ(π(x)), for x ∈ Nε(S),

and the C2 norm of ϕ is still bounded by a constant C(g, S). By construction ∇νϕ =
0 in Nε(S).

Given any local coordinate system {xi}i=1,...,n on S, we can extend it to a local
coordinate system {x1, . . . , xn, t} on Nε(S) by adding the variable t. Note that we
naturally have ∂tϕ = 0. We will use this coordinate system to estimate the Hessian
matrix of ϕ. First we have(

(Hess ϕ)|S
)
ij

= (HessS ϕ|S)ij , for i, j = 1, . . . , n.

Given any x ∈ Nε(S), we have that

Hess ϕ(x) =
[

ϕtt − ∇∇ννϕ ϕjt − Γk
jt(x)ϕk(x)

ϕit − Γk
it(x)ϕk(x) ϕij(x) − Γk

ij(x)ϕk(x)

]

=
[

0 −Γk
jt(x)ϕk(π(x))

−Γk
it(x)ϕk(π(x)) ϕij(π(x)) − Γk

ij(x)ϕk(π(x))

]
,
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where we used the Einstein sum convention for k = 1, . . . , n. Therefore, we see that
for any x ∈ Nδ(S)

∣∣(Hess ϕ)ij(x) − (Hess ϕ)ij(π(x))
∣∣ ≤ C(g, S)δ.

So for any x ∈ Nδ(S),

∣∣ TrSx
(Hess ϕ)(x) − TrS(Hess ϕ)(π(x))

∣∣
=

∣∣gij(x)(Hess ϕ)ij(x) − gij(π(x))(Hess ϕ)ij(π(x))
∣∣

≤ C(g, S)δ.

(2.5)

Another observation is that

�Sϕ = TrS(HessS ϕ) = TrS(Hess ϕ)

where HessS is the Hessian intrinsic to S.
Remember that we need to estimate

∣∣∣
∫

Gn(M)
f(x, P )dV (x, P ) −

∫
S

f(p, TpS)dμS(p)
∣∣∣.

First we clearly have by (2.1) and (2.3)

∣∣∣
∫

Gn(M)
f(x, P )dV (x, P ) −

∫
S

f(p, TpS)dμS(p)
∣∣∣

≤ δ +
∣∣∣
∫

Gn(Nδ(S))
f(x, P )dV (x, P ) −

∫
S

f(p, TpS)dμS(p)
∣∣∣

≤ C(g, S)
√

δ +
∣∣∣
∫

Nδ(S)
f(x, TxSx)dμV (x) −

∫
S

f(p, TpS)dμS(p)
∣∣∣

≤ C(g, S)
√

δ +
∣∣∣
∫

Nδ(S)
f(π(x), Tπ(x)S)dμV (x) −

∫
S

f(p, TpS)dμS(p)
∣∣∣.

Next, by (2.4), (2.5) and (2.3), we get

∣∣∣
∫

Nδ(S)
f(π(x), Tπ(x)S)dμV (x) −

∫
S

f(p, TpS)dμS(p)
∣∣∣

≤
∣∣∣
∫

Nδ(S)

(
fav + �Sϕ(π(x))

)
dμV (x) − fav

∣∣∣
≤ δ +

∣∣∣
∫

Nδ(S)
�Sϕ(π(x))dμV (x)

∣∣∣
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= δ +
∣∣∣
∫

Nδ(S)
TrS(Hess ϕ)(π(x))dμV (x)

∣∣∣
≤ C(g, S)δ +

∣∣∣
∫

Nδ(S)
TrSx

(Hess ϕ)(x)dμV (x)
∣∣∣

≤ C(g, S)δ +
∣∣∣
∫

Gn(Nδ(S))

[
TrSx

(Hess ϕ)(x) − TrP (Hess ϕ)(x)
]
dV (x, P )

∣∣∣
+

∣∣∣
∫

Gn(Nδ(S))
TrP (Hess ϕ)(x)dV (x, P )

∣∣∣
≤ C(g, S)δ + C(‖ϕ‖C2)

∣∣∣
∫

Gn(Nδ(S))
distg(TxSx, P )dV (x, P )

∣∣∣
+

∣∣∣
∫

Gn(Nδ(S))
TrP (Hess ϕ)(x)dV (x, P )

∣∣∣
≤ C(g, S)

√
δ +

∣∣∣
∫

Gn(Nδ(S))
divP (∇ϕ)(x)dV (x, P )

∣∣∣
≤ C(g, S)

√
δ +

∣∣∣
∫

Gn(M)
divP (∇ϕ)(x)dV (x, P )

∣∣∣ ≤ C(g, S)
√

δ.

As usual the constant C(g, S) can change from line to line. Note that in the last
line, we used the fact that V is stationary, i.e.

∫
Gn(M) divP X(x)dV (x, P ) = 0 for

any C1 vector field X on M .
Finally all these estimates imply∣∣∣

∫
Gn(M)

f(x, P )dV (x, P ) −
∫

S
f(p, TpS)dμS(p)

∣∣∣ ≤ C(g, S)
√

δ,

and it is clear from our computations that the constant C(g, S) can be chosen to be
uniformly bounded in a C3-neighborhood of (g, S). ��

3 Metric deformation and approximation by minimal
hypersurfaces

Let (Mn+1, g) be a connected closed (n+1)-dimensional manifold with 3 ≤ n+1 ≤ 7.
The main result of this section is a deformation result saying that, given a connected,
closed, embedded, strictly stable, 2-sided, minimal hypersurface S, by perturbing the
metric slightly one can construct a minimal hypersurface of arbitrarily large area
and Morse index, approximating S after renormalization.

We first start by recalling some facts related to White’s Structure Theorem for
the space of minimal submanifolds [Whi91, Theorem 2.1]. Take q ≥ 7 from now on.
Recall that a closed embedded minimal hypersurface Γ ⊂ (M, g) is non-degenerate if
it has no nontrivial Jacobi fields. A non-degenerate minimal hypersurface is isolated
in any C2,α topology. By [Whi91], if Γ ⊂ (M, g) is non-degenerate, then for any
metric g′ close enough to g in the Cq topology there is a unique minimal hypersurface
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in (M, g′) close to Γ in the Cj,α topology (j ≤ q − 1) and it depends in a Cq−j way
on g′. We will say that Γ ⊂ (M, g) deforms to another minimal hypersurface in
(M, g′), and by abuse of notations, we will usually still denote this new hypersurface
(minimal with respect to g′) by Γ.

Recall that Γ(q) denotes the set of Cq metrics on M . Let M be the set of pairs
(γ, [u]) as in [Whi91], where γ ∈ Γ(q) and u is a Cq−2,α minimal embedding of an
n-dimensional connected closed manifold Γ inside (M, γ). Note that a C2,α minimal
embbeding in a Cq metric is Cq,α by elliptic regularity; (see for instance [Whi91,
Theorem 1.1, (4)]). By [Whi91, Theorem 2.1], this space has the structure of a
separable C2 Banach manifold. The natural projection Π:M → Γ(q) is a C2 Fredholm
map with Fredholm index 0. A pair (γ, [u]) is a critical point of Π if and only if the
minimal embedding u into (M, γ) has a nontrivial Jacobi field. Hence a regular
value of the projection Π is an embedded bumpy metric. In this paper we need to
carefully distinguish embedded bumpy metrics from immersed bumpy metrics: while
the above general discussion about transversality characterizes regular values of Π
as the embedded bumpy metrics, it is possible that such metrics are not immersed
bumpy. Min-max theorems which produce minimal hypersurfaces with Morse index
lower bounds generally need immersed bumpiness, not just embedded bumpiness.
The following paragraphs are a preparation to deal with this issue.

Denote by RM and CM ⊂ M respectively the sets of regular and critical points
of Π. Given a regular pair (γ, [u]) ∈ RM, if [u] is 1-sided, its connected 2-sided
double cover may still carry nontrivial Jacobi fields. In this paragraph, we describe
the structure of the set of such 1-sided pairs, whose 2-sided double covers carry a
positive Jacobi field. Set

S1-sided := {(γ, [u]) ∈ RM: [u] is 1-sided, but its 2-sided
double cover carries a positive Jacobi field}.

Lemma 3.1. The set S1-sided is a C2 Banach submanifold of M, of codimension 1.

Proof. By [Whi91], we can cover RM by countably many open sets {Ui}i∈N so that Π
maps each Ui diffeomorphically onto its image Π(Ui) ⊂ Γ(q). Therefore we only need
to consider S1-sided∩Ui, and we will omit the subindex i. Given (γ, [u]) ∈ S1-sided∩U ,
where u: Γ → M , we know that in a neighborhood V ⊂ U of (γ, [u]), all other
pairs (γ′, [u′]) come from graphical deformations from (γ, [u]) and hence are 1-sided.
Consider the following functional defined in this neighborhood V

λ̃1: γ′ → λ̃1(γ′, [ũ′]),

where λ̃1(γ′, [ũ′]) is the first eigenvalue of the Jacobi operator of the 2-sided double
cover ũ′: Γ̃ → M of u′. Note that M and Π are C2 by [Whi91], and the Cq−2 embed-
ding u′ depends in a C2 manner with respect to γ′ ∈ Γ(q). Hence the coefficients of
that Jacobi operator, viewed as elements of Cq−4(Γ̃), also depend in a C2 manner
with respect to γ′ ∈ Γ(q). By Lemma 5 in the “Appendix”, λ̃1: Π(V) ⊂ Γ(q) → R is
a C2 map.
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Claim. The differential of λ̃1 is nonzero at any metric in Π(V) ⊂ Γ(q).

Proof of Claim. It is essentially a computation appearing in the proof of [Whi17,
Lemma 2.6]. Given (γ, [u]) ∈ V, Γ and Γ̃, consider the following metric perturbation.
Choose a small open neighborhood U ⊂ M such that u(Γ) ∩ U is a 2-sided n-ball
with a choice of local unit normal ν. Since by elliptic regularity u is a Cq embedding,
ν is a Cq−1 map. Let f ∈ Cq−1

c (U) be a compactly supported function such that

f = 0, Df = 0 and Hess f(ν, ν) ≥ 0 on U ∩ u(Γ),

and

Hess f(ν, ν) > 0 on some proper open subset of U ∩ u(Γ).

Consider the 1-parameter smooth perturbation gt = e2tfg in Γ(q−1). The discussions
preceding the Claim still hold for q − 1 replacing q. Note that a Cq metric which
is a regular value of Π:M → Γ(q−1) is also a regular value of Π:M → Γ(q) and
vice versa. One can check that u(Γ) remains minimal under gt and the restrictions
(gt)|u(Γ) remain unchanged. Denote by ϕ1,t a normalized first eigenfunction of the
connected 2-sided double cover ũ(Γ̃) of u(Γ) under gt, which by Lemma 5 of the
“Appendix”, can be chosen to be C1 in t, then

λ̃1(gt, [ũ]) =
∫

ũ(Γ̃)
|∇ϕ1,t|2 − (Rict(ν, ν) + |At|2)ϕ2

1,t

=
∫

ũ(Γ̃)
|∇ϕ1,t|2 − (Ric(ν, ν) + |A|2)ϕ2

1,t

+ t

∫
ũ(Γ̃)

(n − 1) Hess f(ν, ν)ϕ2
1,t.

The first integral above has vanishing t-derivative at t = 0 since ϕ1,0 is a first
eigenfunction of the Jacobi operator at t = 0. The second integral has positive t-
derivative at t = 0 by assumption on f and because ϕ1,0 is nowhere vanishing. Now
approximate the variation gt by a smooth variation g̃t of Cq metrics, so that the
t-derivative of λ̃1(g̃t, [ũt]) at t = 0 is still positive. That proves the claim. ��

The Implicit Function Theorem implies that the intersection S1-sided ∩ V is a
codimension 1, C2 Banach submanifold of V. Since there are only countably many
such 1-sided pairs for each fixed γ, we finish the proof. ��

Let gt: [0, 1] → Γ(q) be a smooth 1-parameter family of metrics on M . By Smale’s
transversality theorem [Sma68], since the regularity of Π is C2, we can perturb gt

slightly in the C∞ topology to get another smooth 1-parameter family g̃t: [0, 1] →
Γ(q) that is transversal to both Π:M → Γ(q) and Π

∣∣
S1-sided

:S1-sided → Γ(q). In par-
ticular Π−1({g̃t}) ⊂ M is a smooth 1-dimensional submanifold with boundary of M.
By Sard theorem, for almost every t ∈ [0, 1] in the sense of Lebesgue measure, g̃t is a
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regular value of the restriction Π
∣∣
Π−1({g̃t})

: Π−1({g̃t}) → Γ(q) and thus a regular value

of Π:M → Γ(q) by transversality of {g̃t}. In other words, for almost every t ∈ [0, 1],
g̃t is an embedded bumpy metric. Moreover, by transversality Π−1({g̃t}) intersects
S1-sided locally only at finitely many points, and so for almost every t ∈ [0, 1] in
the sense of Lebesgue measure, for any 1-sided minimal embedding [u] under g̃t, its
2-sided double cover does not have positive Jacobi fields. Thus these metrics satisfy
a condition stronger than embedded bumpiness but a priori weaker than immersed
bumpiness, nevertheless we have seen in the proof of Lemma 1.5 that this condi-
tion was enough to get multiplicity one and lower Morse index bounds in min–max
constructions.

In the following deformation theorem, the norms || · ||Cm are computed with a
fixed metric g.

Theorem 3.2. Let (M, g) be a closed Riemannian manifold of dimension 3 ≤ n +
1 ≤ 7 endowed with a smooth metric g. For any integer m > 0 and for any connected,
closed, embedded, minimal hypersurface S ⊂ (M, g) which is 2-sided and strictly
stable, there is a smooth metric g′ with

||g′ − g||Cm ≤ 1
m

,

so that S deforms to a 2-sided, strictly stable, connected, closed, embedded, minimal
hypersurface, still denoted by S, in (M, g′), and there is a non-degenerate, closed,
embedded, minimal hypersurface Σ ⊂ (M, g′) satisfying the following with respect
to the metric g′:

(i) Σ ∩ S = ∅,
(ii) m < ||Σ||,
(iii)

∣∣ Index(Σ) · ||Σ||−1 − ||S||−1
∣∣ <

1
m

,

(iv) F
(

[S]
||S|| ,

[Σ]
||Σ||

)
<

1
log(||Σ||) .

Proof. We are given (Mn+1, g) (3 ≤ n + 1 ≤ 7), m > 0 and a minimal hypersurface
S as in the statement. For any metric ĝ in a small C3-neighborhood of g, the 2-sided
strictly stable minimal hypersurface coming from S ⊂ (M, g) will be denoted by Sĝ.

For any metric ĝ in this neighborhood, we cut (M, ĝ) along Sĝ and, after contin-
uously choosing a connected component, we get a compact manifold (M̂, ĝ); (more
rigorously, M̂ is the metric completion of the chosen component of (M\Sĝ, ĝ) and
the lift of ĝ to M̂ is still denoted by ĝ). In Section 1.1, we described how to use min–
max theory to define a sequence of min–max widths ω̃p and construct a sequence of
closed minimal hypersurfaces Γp embedded in the interior of (M̂, ĝ), satisfying some
properties related to their areas and Morse indices.

In the following paragraph, we construct certain perturbations of the given metric
g. Let k be a large integer to be fixed later. Consider a smooth nonnegative symmetric
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2-tensor h := ϕg on M , where ϕ: M → [0, 1] is a smooth cut-off function supported
in a 1/(2k)-neighborhood of S, such that ϕ = 1 in a tubular neighborhood of S. It is
not hard to check that we can choose k arbitrarily large and a corresponding cut-off
function ϕ so that

|∇m′
h| ≤ Cm,S,gk

m′
for all 0 ≤ m′ ≤ m (3.1)

where Cm,S,g is a constant depending on m, S and (M, g). Now let

tk := exp(−δ
√

k)

where δ ∈ (0, 1) will be chosen later, and consider the 1-parameter family of smooth
metrics on M :

gt := g + th, t ∈ [0, tk].

By (3.1) and the choice of tk, any such gt satisfies

||gt − g||Cm <
1
m

for k large enough, the norm ||·||Cm being measured with g. In general, gt may not be
bumpy for most t ∈ [0, tk], so we need perturb this family in order to obtain minimal
hypersurfaces with lower index bound. Take q > 7 + m. The discussion before the
theorem gives an arbitrarily small perturbation of {gt} (viewed as Cq metrics) in
the C∞ topology into another family {g̃t} of Cq metrics, such that there is a full
Lebesgue measure set A ⊂ [0, tk] satisfying the following: for any t ∈ A, g̃t is “nice”
in the sense that it is embedded bumpy (no closed embedded minimal hypersurface
has a nontrivial Jacobi field) and the 2-sided double cover of any 1-sided closed
embedded minimal hypersurface has no positive Jacobi field (i.e. it is not weakly
stable). These metrics g̃t on M lift to metrics on M̂ still denoted by g̃t. We can also
ensure that for a constant c depending only on (M, g), S the following holds: for k
large enough, for all t ∈ [0, tk], and all n-plane P in the Grassmannian of tangent
n-planes of M̂ ,

||g̃t − g||Cm <
1
m

,

∣∣ TrP,g̃t

∂g̃t

∂t
− nϕ

∣∣ ≤ ∣∣ TrP,g̃t

∂g̃t

∂t
− TrP,gt

∂gt

∂t

∣∣ +
∣∣ TrP,gt

∂gt

∂t
− nϕ

∣∣
≤ exp(−δ

√
k) +

∣∣ TrP,gt
(ϕg) − nϕ

∣∣
= exp(−δ

√
k) +

∣∣ nϕ

1 + tϕ
− nϕ

∣∣
≤ c exp(−δ

√
k),

TrP,g̃t

∂g̃t

∂t
≤ n + c exp(−δ

√
k).

(3.2)
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The areas of Sgt
and Sg̃t

are differentiable in t, and by a computation, Sgt
= S

remains minimal as t varies; moreover

d

dt
Areagt

(Sgt
) =

n

2
(1 + t)

n−2
2 Areag(S) =

n

2(1 + t)
Areagt

(Sgt
).

For any k, by choosing the perturbation {g̃t} of {gt} smaller if necessary, we can
then assume that for all t ∈ [0, tk],

∣∣ d

dt
Areag̃t

(Sg̃t
) − n

2
Areag̃t

(Sg̃t
)
∣∣ ≤ c0

ntk
2(1 + tk)

≤ c0 exp(−δ
√

k),
(3.3)

where c0 is a constant depending only on (M, g) and S.
We are now ready to describe a quantitative perturbation argument in the same

spirit as [MNS19], using the cylindrical Weyl Law with remainder term. Consider
the cylindrical widths {ω̃p(M̂, g̃t)} of the connected compact manifold with stable
boundary (M̂, g̃t), as defined in Section 1.1. Roughly speaking, taking derivatives
of ω̃p(M̂, g̃t) for large enough p will give rise to the desired minimal hypersurfaces.
Recall that the cylindrical Weyl Law Theorem 1.2 implies for all p ∈ N:

Areag̃t
(Sg̃t

) ≤ 1
p
ω̃p(M̂, g̃t) ≤ Areag̃t

(Sg̃t
) + Cp− n

n+1 for all t ∈ [0, tk] (3.4)

for a constant C > 0 depending on (M, g), S, but independent of t ∈ [0, tk]. Define

pk := [exp(2δ
√

k)] + 1.

The derivative of ω̃pk
(M̂, g̃t) exists at almost every s ∈ [0, tk] in the sense of Lebesgue

measure, because it is a Lipschitz function by Lemma 1.4. Let A′ ⊂ [0, 1] be the full
Lebesgue measure set of times in A where the derivative of ω̃pk

(M̂, g̃t) exists. Recall
that A is the set of times where the metric g̃t is “nice”. By Lemma 1.5, at each
s ∈ A′, there is a closed embedded minimal hypersurface Γpk

⊂ int(M̂, g̃s) (which is
necessarily non-degenerate) such that

ω̃pk
(M̂, g̃s) = Area(Γpk

), Index(Γpk
) = pk and

d

dt

∣∣∣
t=s

ω̃pk
(M̂, g̃t) =

∫
Γpk

1
2

TrΓpk
,g̃s

(∂g̃t

∂t

∣∣∣
t=s

)
dΓpk

.
(3.5)

Consequently at a time s ∈ A′, since TrΓpk
,g̃s

(∂g̃t

∂t |t=s) ≤ n + c exp(−δ
√

k) by
(3.2), we get

d

dt

∣∣∣
t=s

1
pk

ω̃pk
(M̂, g̃t) ≤

(n

2
+ c exp(−δ

√
k)

) 1
pk

ω̃pk
(M̂, g̃s).
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Next, by the cylindrical Weyl law (3.4) and (3.3), we obtain for each k and all s ∈ A′:

d

dt

∣∣∣
t=s

1
pk

ω̃pk
(M̂, g̃t) ≤

(n

2
+ c exp(−δ

√
k)

) 1
pk

ω̃pk
(M̂, g̃s)

≤ n

2
Areag̃s

(Sg̃s
) + c exp(−δ

√
k) Areag̃s

(Sg̃s
)

+
(n

2
+ c exp(−δ

√
k)

)
Cpk

− n

n+1

≤ n

2
Areag̃s

(Sg̃s
) + c1 exp(−δ

√
k) + c1pk

− n

n+1

≤ d

dt

∣∣∣
t=s

Areag̃t
(Sg̃t

) + c1 exp(−δ
√

k) + c1pk
− n

n+1 ,

(3.6)

where c1 depends only on (M, g), S and can change from line to line.

Since we defined pk := [exp(2δ
√

k)] + 1, we have p
− n

n+1

k = o(tk). Thus for k large
enough (depending on δ, c0, c1), by the cylindrical Weyl law (3.4) and (3.6), there
exists s ∈ A′ such that:

− 1
k2

≤ d

dt

∣∣∣
t=s

1
pk

ω̃pk
(M̂, g̃t) − d

dt

∣∣∣
t=s

Areag̃t
(Sg̃t

) ≤ 1
k2

. (3.7)

Here the upper bound is ensured by (3.6), and then the lower bound at some s
follows from (3.4) and the Fundamental Theorem of Calculus.

By (3.5) we find a closed non-degenerate minimal hypersurface Σ embedded in
the interior of (M̂, g̃s), which projects to an embedded minimal hypersurface (M, g̃s)
still denoted by Σ, with support disjoint from Sg̃s

. This minimal hypersurface Σ has
multiplicity one, and index exactly pk. By (3.4) its mass satisfies for k large enough

||Σ|| = ω̃pk
(M̂, g̃s) > m and

∣∣pk · ||Σ||−1 − ||Sg̃s
||−1

∣∣ <
1
m

. (3.8)

Furthermore by (3.5), (3.7), (3.2), (3.3) and (3.4), we have

1
k2

≥
∣∣∣ 1
pk

∫
Σ

1
2

TrΣ,g̃s

(∂g̃t

∂t

∣∣∣
t=s

)
dΣ − d

dt

∣∣∣
t=s

Areag̃t
(Sg̃t

)
∣∣∣

≥
∣∣∣ ω̃pk

pk

1
||Σ||

∫
Σ

nϕ

2
dΣ − d

dt

∣∣∣
t=s

Areag̃t
(Sg̃t

)
∣∣∣ − c2 exp(−δ

√
k)

≥
∣∣∣ ω̃pk

pk

1
||Σ||

∫
Σ

nϕ

2
dΣ − n

2
Areag̃s

(Sg̃s
)
∣∣∣ − c2 exp(−δ

√
k)

≥ n

2
Areag̃s

(Sg̃s
)
∣∣∣ 1
||Σ||

∫
Σ

ϕdΣ − 1
∣∣∣ − c2 exp(−δ

√
k) − c2 exp

(
−2δ

√
kn

n + 1

)
,

where c2 is only depending on (M, g), S and can change from line to line. From that
we get for k large enough:

∣∣ 1
||Σ||

∫
Σ

ϕdΣ − 1
∣∣ <

1
k
. (3.9)
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Note that for k large enough, Sg̃s
lies in a 1/(2k)-neighborhood of S and recall that ϕ

is also supported in a 1/(2k)-neighborhood of S by definition. Inequality (3.9) then
implies that the varifold Σ has most of its mass concentrated in a 1/k-neighborhood
of Sg̃s

:

||Σ\N1/k(Sg̃s
)||

||Σ|| ≤ 1
k
. (3.10)

By Section 2 and our Quantitative Constancy Theorem 2.1, (3.10) implies that for
some constant C(g, S) depending on (M, g) and S:

F(
[Sg̃s

]
||Sg̃s

|| ,
[Σ]
||Σ||) ≤ C(g, S)√

k
. (3.11)

Since pk = [exp(2δ
√

k)] + 1 by definition, and by (3.8), we get for large k:

C(g, S)√
k

≤ 2δC(g, S)
log(pk)

≤ 3δC(g, S)
log(||Σ||) . (3.12)

Hence we can take δ < 1
3C(g,S) and a corresponding large k, then we slightly perturb

the Cq metric g̃s to a smooth metric g′ and the theorem is proved by (3.8), (3.11),
(3.12) and non-degeneracy of Σ. ��

4 Generic scarring for minimal hypersurfaces along stable
hypersurfaces

In this section, we prove our main Theorem 0.1, as well as a generic scarring result
for most closed Riemannian 3-manifolds, Theorem 0.3.

4.1 Proof of Theorem 0.1. Now we are ready to prove the main theorem
using Theorem 3.2.

Proof of Theorem 0.1. Let A > 0. We say that a smooth metric g on M satisfies
Property (PA) if:

(PA) any connected, closed, embedded, stable, minimal hypersurface S ⊂ (M, g)
with area at most A has a non-degenerate 2-sided double cover (which may
be disconnected). If moreover S is 2-sided, there is a closed, embedded, non-
degenerate, minimal hypersurface Σ satisfying:

– Σ ∩ S = ∅,
– A < ||Σ||,
–

∣∣ Index(Σ) · ||Σ||−1 − ||S||−1
∣∣ <

1
A

,

– F
(

[S]
||S|| ,

[Σ]
||Σ||

)
<

1
log(||Σ||) .
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The set of metrics satisfying (PA) is denoted by MA. We want to show that for
all A > 0, MA is open and dense in the C∞ topology. Then

⋂
A>0 MA would be

a C∞-generic family of metrics on M in the sense of Baire and any metric in this
family would satisfy the main theorem.

Fix A > 0. If g ∈ MA then by definition of (PA), by Sharp’s compactness result
[Sha17] and a standard Jacobi field argument, there exists a small ε0 > 0 depending
on g, such that no connected, closed, embedded, stable minimal hypersurface in
(M, g) has area lying inside (A, A+ ε0), and there are only finitely many such stable
minimal hypersurfaces in (M, g) with area at most A + ε0. Therefore, given g ∈
MA, any stable minimal hypersurface S′ under a small perturbed metric g′ with
Areag′(S′) ≤ A must come from a stable minimal hypersurface S under g with
Areag(S) ≤ A. Openness of MA then follows from the Implicit Function Theorem.

To prove denseness of MA, consider an immersed bumpy metric g on M ; (recall
that the set of immersed bumpy metrics is dense by [Whi91, Theorem 2.2] and
[Whi17, Theorem 2.1]). The set of connected, closed, embedded, stable, minimal
hypersurfaces in (M, g) with area at most 2A is finite. By slightly rescaling the
metric, we can make sure that no such stable closed minimal hypersurface has area
between A− ε0 and A+ ε0 for some small ε0 > 0. All the deformations below will be
chosen small enough to preserve that condition. Let us call those connected, closed,
embedded, stable, minimal hypersurfaces with area less than A which are 2-sided by
{S1, . . . , SJ}, and those which are 1-sided by {T1, . . . , TK}. We can now apply the
deformation result Theorem 3.2 to each Sj successively, and get a metric g′ ∈ MA

arbitrarily close to g. More precisely, fix an ε > 0 and an integer l > 0. We use
Theorem 3.2 with m > l very large depending on A and ε, on the stable hypersurface
S1 and we get a metric g1 such that ||g−g1||Cl ≤ ε/J , together with a non-degenerate
minimal hypersurface Σ1 satisfying the four bullets of Theorem 3.2 with A (resp.
S1, Σ1) replacing m (resp. S, Σ). We can now apply Theorem 3.2 to the next stable
hypersurface S2 (deformed from S2 and still denoted by S2), and we get another
metric g2 with ||g−g2||Cl ≤ 2ε/J and a corresponding minimal hypersurface Σ2. We
can also ensure that Σ1 deforms to a minimal hypersurface still denoted by Σ1 in
(M, g2) and still satisfying the four bullets of Theorem 3.2. We continue to deform
the metric for each subsequent Si (i = 3, . . . , J) and eventually we get a metric
gJ with ||g − gJ ||Cl ≤ ε and non-degenerate minimal hypersurfaces Σ1, . . . ,ΣJ . The
stable hypersurfaces S1, . . . , SJ ⊂ (M, g) deform to stable hypersurfaces still denoted
by S1, . . . , SJ . One checks that if the deformation at each step is taken small enough,
the only connected, closed, embedded, stable hypersurfaces with area less than A
in (M, gJ) are S1, . . . , SJ and the minimal hypersurfaces coming from T1, . . . , TK .
Thus, gJ ∈ MA and this concludes the proof of the denseness of MA. ��

4.2 Generic scarring in most closed Riemannian 3-manifolds. As a con-
sequence of the proof of Theorem 0.1, we can show that scarring occurs for a generic
metric on any closed 3-manifold which does not admit a metric of constant positive
curvature.
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Proof of Theorem 0.3. Let M3 be a closed 3-manifold not diffeomorphic a quo-
tient of the 3-sphere. Then by the Geometrization Conjecture [Per03, KL08, MT14,
BBMBP10, MF10] and the Virtually Haken Conjecture [Ago13, Theorems 9.1 and
9.2], there is an oriented finite cover π: Mcover → M , so that Mcover is either not
irreducible or contains an incompressible 2-torus or has non-vanishing second Betti
number. Let S0 ⊂ Mcover be either a topologically non-trivial embedded 2-sphere,
or an embedded incompressible 2-torus or an embedded closed surface representing
a non-trivial element in the second homology group of Mcover, according to the case.

For a smooth metric g on M , which lifts to a metric on Mcover still denoted by
g, one can minimize the area of S0 in its isotopy class by Meeks et al. [MSY82],
and get a connected, closed, smooth embedded, minimal surface S1 ⊂ (Mcover, g).
By taking a double cover if necessary, we can assume that S1 is 2-sided stable.
Moreover, by White’s Bumpy Metric Theorem [Whi91, Whi17] and Transversality
Theorem [Whi19], if the metric g is well chosen, S1 is strictly stable and the image
π(S1) is a strongly self-transverse immersed surface, which implies that the surface
is self-transverse and the multiplicity of the image π(S1) is at most 2 at all points of
π(S1) except maybe a finite number of points where three different tangent planes
intersect transversely; (see [Whi19, Theorem 20, Theorem 21] for definitions of being
strongly self-transverse). Let Mtransverse be the set of metrics g on M such that there
is a connected, closed, embedded, 2-sided, strictly stable, minimal surface S1 ⊂
(Mcover, g) such that π(S1) is strongly self-transverse. By [Whi91, Whi17, Whi19],
Mtransverse is open and dense.

We would like to apply the quantitative perturbation arguments used in the proof
of Theorem 0.1. The idea is to generically construct minimal surfaces in (Mcover, g)
and then project back to the original manifold M . However, in order to be able
to project the minimal surfaces downstairs, we need to deform the metric g in an
equivariant way so that it projects to an honest metric on M . Let us see how we
can prove the following analogue of Theorem 3.2.
Fact. Let π: Mcover → M , g ∈ Mtransverse, and S1 ⊂ (Mcover, g) be as above. For
any integer m > 0, there is a smooth metric g′ with ‖g′ − g‖Cm < 1

m , which lift to
the metric g′ on Mcover, such that π(S1) deforms to an immersed minimal surface
Sg′ ⊂ (M, g′), and there is a non-degenerate, connected, closed, embedded, minimal
surface Z ⊂ (Mcover, g

′) satisfying the following with respect to g′:

(i) m < ||Z||, m < Index(Z),

(ii) F
(

[Sg′ ]
||Sg′ || ,

[π(Z)]
||π(Z)||

)
<

1
m

.

Here π(Z) denotes as usual the image of Z by the projection π, || · || denotes the area
and [π(Z)] is the multiplicity one integer rectifiable varifold associated to the image
π(Z).

Once this Fact is checked, one can argue as follows to conclude. Since the subset
of metrics Mtransverse is dense, it is enough to prove the theorem in a small neigh-
borhood of any metric g ∈ Mtransverse. Given such a g, let π(S1) be the associated
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strongly self-transverse minimal surface constructed in the first paragraph. There
is a C∞-neighborhood U of g so that for any metric g′′ ∈ U , the minimal surfaces
π(S1) ⊂ (M, g) and S1 ⊂ (Mcover, g) deform respectively uniquely to some strictly
stable minimal surfaces Sg′′ and S̃g′′ , and Sg′′ remains strongly self-transverse (which
is an open condition). For any m > 0, let M′

U ,m be the set of metrics g′ ∈ U
such that there is a non-degenerate, connected, closed, embedded, minimal surface
Z ⊂ (Mcover, g

′) with

Area(Z) > m, Index(Z) > m,

F
(

[Sg′ ]
||Sg′ || ,

[π(Z)]
||π(Z)||

)
<

1
m

.

Then M′
U ,m is open by the Implicit Function Theorem, and dense in U by the Fact.

By taking the intersection
⋂

m>0 M′
U ,m, one concludes for the neighborhood U (note

that the degree degπ of the covering map π: Mcover → M is fixed so the area of π(Z)
is at least m/ degπ), and thus one finishes the proof.

It remains to verify the Fact. Let g ∈ Mtransverse as before. Similarly to the proof
of Theorem 3.2, the idea is to perturb the metric g and use the cylindrical Weyl law
to find Σ. However, in the present case, the fact that we work on a cover will cause
some issues. On the other hand, embeddedness of the stable surface was previously
used to construct effective deformations, and here we do not require any quantitative
estimates on how close Σ is to Sg′ depending on the area of Σ. Let h := ϕg be a
nonnegative symmetric 2-tensor on M , where ϕ: M → [0, 1] is a smooth cut-off
function supported in a 1/(2k)-neighborhood of the immersed surface π(S1) , and
ϕ = 1 in a smaller tubular neighborhood of π(S1). This tensor lifts to ϕ̂g on Mcover

still called h by abuse of notations, where ϕ̂ is equal to 1 on a neighborhood of S1.
ϕ̂ is not supported in a 1/(2k)-neighborhood of S1, but instead is supported in the
1/(2k)-neighborhood of the union of the lifts of π(S1) that we call

X := π−1
(
π(S1)

)
.

The set X is a finite union of embedded strictly stable minimal surfaces, and it is
strongly self-transverse. Let T1, . . . , TL be a maximal disjoint family of connected
lifts of π(S1) embedded in Mcover, meaning that any lift of π(S1) has to intersect
one of the Ti. After cutting (Mcover, g) along T1 ∪ · · · ∪TL and choosing a connected
component, we are left with a compact manifold Ng with strictly stable boundary.
Consider the 1-parameter family of metrics on Mcover:

gt := g + th.

We can slightly perturb gt to a family g̃t of Cq metrics transversal with respect to
White’s projection Π (on Mcover). Note that g̃t may not be equivariant and may not
descend to a metric on M . For any metric g′′ close enough to g, the Ti deform to
some nearby surfaces, so Ng deforms to a compact manifold Ng′′ with strictly stable
boundary. Similarly X deforms to Xg′′ , which remains strongly self-transverse.
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Fix an integer m > 0. We can use the same arguments as in the proof of Theorem
3.2 applied to Ng̃t

. Note that here the function

max{Areag̃t
(T ); T is a connected component of ∂Ng̃t

}
may not be differentiable. Remember that this number is the leading coefficient in
the cylindrical Weyl law of the min–max widths {ω̃p(Ng̃t

, g̃t)}; see Theorem 1.2.
Nevertheless it is Lipschitz in t so differentiable almost everywhere and the deriva-
tive can easily be estimated. Apart from that point, the arguments of the proof of
Theorem 3.2 are unchanged. We find for a large k0, a small tk0 , a metric g̃s close to
gs for some s ∈ [0, tk0 ], and a large pk0 (we do not need to control how large com-
pared to k0), so that there is a non-degenerate, closed, embedded, minimal surface
Σ ⊂ (Ng̃s

, g̃s) of Morse index pk0 , disjoint from the boundary ∂Ng̃s
such that

∣∣ 1
||Σ||

∫
Σ

ϕ̂dΣ − 1
∣∣

is arbitrarily small depending on the choice of k0. Since ϕ̂ is supported in a 1/(2k0)-
neighborhood of Xg̃s

, Σ is mostly supported in a 1/k0-neighborhood of Xg̃s
: in other

words

||Σ\N1/k0
(Xg̃s

)||
||Σ|| (4.1)

can be made arbitrarily small if k0 was taken large enough.
Note that, by the usual Constancy Theorem and by strong-transversality of Xg̃s

,
any stationary varifold V supported on Xg̃s

is a union of constant multiples of lifts
of Sg̃s

. If moreover V is a stationary varifold in (Ng̃s
, g̃s), then by construction of

Ng̃s
, V has to be supported in the boundary ∂Ng̃s

. So by a compactness argument,
the minimal surface Σ can be chosen so that [Σ]

||Σ|| is arbitrarily close to a stationary
varifold supported in ∂Ng̃s

if k0 was large enough.
In all these arguments, it can be checked that the perturbation {g̃t} can be

chosen arbitrarily close to {gt} in the C∞ topology, independently of k0. It means
that for some large but uniform k0, t−1

k0
and pk0 , the above conclusions (i.e. the

construction of a Σ with some properties) hold for all small enough perturbations
{g̃t}. Then by compactness [Sha17] (letting the perturbations {g̃t} converging back
to {gt}), we get an s ∈ [0, 1] and a limit minimal surface Z in (Ngs

, gs). Note that
no component of Z is contained in ∂Ngs

; in fact, if this was not true, a sequence
of connected minimal surfaces (in some (Ng̃s

, g̃s)) would converge to ∂Ngs
in the

Hausdorff distance (by a standard argument using the monotonicity formula), which
contradicts the maximum principle as a neighborhood of ∂Ngs

has a mean convex
foliation. Moreover, [Z]

||Z|| is arbitrarily close to a stationary varifold supported in
∂Ngs

if k0 was large enough. Note that Z could a priori be degenerate, since gs is in
general not bumpy in any sense. However gs is smooth, equivariant and descends to
a metric on M . By a counting argument, we can take a connected component of Z,
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still denoted as Z, such that the quantity (4.1) is arbitrarily small when k0 is large
enough. Therefore, we can make sure that the connected immersed minimal surface
π(Z) satisfies

F
(

[Sgs
]

||Sgs
|| ,

[π(Z)]
||π(Z)||

)
<

1
m

.

By a conformal perturbation of gs, we can make Z non-degenerate; (see for
instance [Whi17, Proof of Lemma 2.6]). It only remains to prove that the area and
Morse index of Z can be chosen arbitrarily large (if k0 was chosen large enough).
The area of Z has to be large by the maximum principle; indeed if Z had uniformly
bounded area as k0 gets larger, Z would be close to a union of boundary components
of ∂Ngs

in the Hausdorff topology by monotonicity formula, and this contradicts the
strict stability of ∂Ngs

.
As for the Morse index of Z, it follows from [CKM17, Theorem 1.17]. The details

were written in [CHMR19] for a special case. We can sketch the idea as follows. Sup-
pose towards a contradiction that Z cannot be chosen to have arbitrarily large Morse
index (when taking k0 large), then we would be able to construct a sequence metrics
gs(j) and a sequence of closed embedded minimal hypersurfaces Z(j) ⊂ (Ng

s(j) , gs(j)),
such that

(1) gs(j) converges smoothly to g as j → ∞,
(2) [Z(j)]

||Z(j)|| converges (with respect to g) to a varifold supported in the boundary
∂Ng,

(3) the area of Z(j) goes to infinity as j → ∞,
(4) but the index of Z(j) stays uniformly bounded as j → ∞.

Next by bullet (4), Z(j) converges to a smooth minimal lamination of (Ng, g), and
a connected component ∂Ng has to be a leaf of this lamination because of bullet
(2) above and the Constancy Theorem. In [CHMR19] the authors studied bounded
index minimal hypersurfaces converging to a minimal lamination staying “on one
side” of a certain closed minimal leaf. Their arguments imply here that for any ε > 0,
for j large, there is a closed connected component of Z(j) contained in the ε-tubular
neighborhood of ∂Ng

s(j) . This contradicts the maximum principle since ∂Ng
s(j) is

strictly stable with respect to gs(j) .
The Fact is proved and this finishes the proof of Theorem 0.3. ��
For closed hyperbolic 3-manifolds, we get a stronger result:

Corollary 4.1. If M3 admits a hyperbolic metric, then for a generic metric g on
M , any π1-injective closed surface has an area minimizing representative in its ho-
motopy class, which is the scarring limit of a sequence of closed, immersed, minimal
surfaces with area and Morse index diverging to infinity.

Proof. If M admits a hyperbolic metric, then by Kahn and Marković [KM12a,
KM12], there are π1-injective surfaces in M . By Agol [Ago13], π1(M) is LERF
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so each of these π1-injective surfaces lifts to an embedded 2-sided surface in a finite
cover of M ; (see for instance [Mat02]). Given a π1-injective surface F and any metric
g on M , we get an immersed area minimizing surface S ⊂ (M, g) in its homotopy
class by Schoen and Yau [SY79] or Sacks and Uhlenbeck [SU82]. Let S1 be an em-
bedded 2-sided stable lift of S in a finite cover Mcover. By inspecting the proof
of Theorem 0.3, we see that the arguments apply to S1 ⊂ Mcover so for a generic
smooth metric on M , there is a sequence of immersed minimal surfaces scarring along
an area minimizing surface S in the homotopy class of F . By taking a countable
intersection of sets of metrics, we obtain a generic set of smooth metrics for which
any oriented π1-injective surface has an area minimizing representative which is the
scarring limit of a sequence of immersed minimal surfaces. ��
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Appendix A. Differentiability of the first eigenvalue

For the reader’s convenience, we give a proof of the known fact that the first eigen-
value of a self-adjoint elliptic operator depends in a differentiable way on the co-
efficients; (see [Uhl76] for related results). Let Σ be a smooth closed n-manifold.
Fix two integers r ≥ 2, k ≥ 1. Let U be a smooth Banach manifold and let
Φ: U → (

Cr(Σ)
)n2+n+1 be a Ck map which associates to any γ ∈ U a triple

Φ(γ) =
(
(aij)1≤i,j≤n, (bi)1≤i≤n, c

)
, where aij , bi, c ∈ Cr(Σ), such that (aij) > 0 is

positive definite and such that the following elliptic operator

Lγu := aijuij + biui + cu

is self-adjoint with respect to a volume measure depending on γ ∈ U .
A number λ1(γ) is the first eigenvalue of Lγ if and only if

Lγϕ1 = −λ1(γ)ϕ1

for some ϕ1 ∈ H1(Σ) ∩ C0(Σ) with ϕ1 > 0. The eigenfunctions of Lγ span L2(Σ)
and are in Cr(Σ).

Lemma A.1. λ1(γ) is a Ck function of γ ∈ U .
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Proof. Fix a metric g0 on Σ and let Sr(Σ) be the space of functions u ∈ Hr(Σ) with
‖u‖L2(Σ,g0) = 1, where the L2-norm is computed with g0. Note that Hr(Σ) does not
depend on the metric. Consider the operator T : U × R × Sr(Σ) → Hr−2(Σ) defined
by

T
(
γ, μ, u

)
= Lγu + μu.

Since Φ: U → (
Cr(Σ)

)n2+n+1 is a Ck map by assumption, T is also Ck-differentiable
in its variables. We have T

(
γ, λ, ϕ

)
= 0 if and only if λ is an eigenvalue of Lγ and ϕ

is an associated normalized eigenfunction. An eigenvalue is simple if the associated
eigenspace is one dimensional. It is known that the first eigenvalue of Lγ is always
simple. Given γ1 ∈ U , consider the first eigenvalue λ1 of Lγ1 and a normalized
positive first eigenfunction ϕ1 ∈ Sr(Σ), and then consider the following differential

D(μ,u)T |(γ1,λ1,ϕ1)(s, v) = Lγ1v + λ1v + sϕ1,

where s ∈ R, v ∈ span{ϕ1}⊥g0 = {u ∈ Hr(Σ),
∫
Σ uϕ1dvolg0 = 0}. We know that

the null space of Lγ1 + λ1 is span{ϕ1}. Moreover since Lγ1 + λ1 is self adjoint for a
volume measure ν, and since λ1 is simple, the image of span{ϕ1}⊥g0 by this operator
is {u ∈ Hr−2(Σ),

∫
Σ uϕ1dν = 0}. Hence

D(μ,u)T |(γ1,λ1,ϕ1) : R × span{ϕ1}⊥g0 → Hr−2(Σ)

is an isomorphism. By the Implicit Function Theorem, near γ1, there exist Ck maps:

γ → λ(γ) ∈ R and γ → ϕ(γ) ∈ Hr(Σ)

with

λ(γ1) = λ1 and ϕ(γ1) = ϕ1,

such that Lγϕ(γ) = −λ(γ)ϕ(γ). Note that ϕ(γ) is also positive when γ is close
enough to γ1, so λ(γ) is indeed the first eigenvalue of Lγ . The conclusion then
follows. ��

References

[Ago13] I. Agol. The virtual Haken conjecture. Doc. Math., 18 (2013), 1045–1087
[All72] W.K. Allard. On the first variation of a varifold. Ann. Math. (95), 95 (1972),

417–491
[Alm62] F.J. Almgren, Jr. The homotopy groups of the integral cycle groups. Topology,

1 (1962), 257–299
[Alm65] F.J. Almgren, Jr. The theory of varifolds. Mimeographed notes, Princeton

(1965)
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