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REMARKS ON A PAPER BY GAVRILOV:
GRAD–SHAFRANOV EQUATIONS, STEADY SOLUTIONS OF

THE THREE DIMENSIONAL INCOMPRESSIBLE EULER
EQUATIONS WITH COMPACTLY SUPPORTED VELOCITIES,

AND APPLICATIONS

Peter Constantin, Joonhyun La And Vlad Vicol

Abstract. We describe a method to construct smooth and compactly supported
solutions of 3D incompressible Euler equations and related models. The method is
based on localizable Grad–Shafranov equations and is inspired by the recent result
(Gavrilov in A steady Euler flow with compact support. Geom Funct Anal 29(1):90–
197, [Gav19]).

1 Introduction

The three dimensional incompressible Euler equations are the basic equations of
mathematical fluid mechanics. The equations,

∂tu + u · ∇u + ∇p = 0, (1)

together with the incompressibility condition,

∇ · u = 0, (2)

are four equations for the four unknown functions, velocities u(x, t) ∈ R
3, and pres-

sure p(x, t) ∈ R, which depend on four independent variables, x ∈ R
3, t ∈ R. The

pressure enforces the incompressibility condition, and thus obeys

− Δp = ∇ · (u · ∇u) . (3)

The Euler equations are conservative: smooth solutions preserve the energy∫
R3 |u(x, t)|2dx. If the pressure p(x, t) belongs to L1(R3) at any instant of time,

then ∫

R3

ui(x, t)uj(x, t)dx = − δij

∫

R3

p(x, t)dx. (4)

This implies that the components of velocity are orthogonal and have equal norms
in L2(R3), and the integral of pressure is negative. Moreover, if u is Beltrami, i.e. if
the curl of the velocity

ω = ∇ × u (5)
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is parallel to the velocity, and if u ∈ L2(R3), then u must be identically zero
[CC15, Nad14]. In fact, Liouville theorems which assert the vanishing of solutions
which have constant behavior at infinity are often true for systems of the sort we
are discussing. In contrast, vortex rings are examples of solutions of the 3D Euler
equations with compactly supported vorticity [FB74]. However, they have nonzero
constant velocities at infinity. Because of the Biot–Savart law

u(x, t) = − 1
4π

∫

R3

x − y

|x − y|3 × ω(y, t)dy, (6)

if ω is compactly supported, it is hard to imagine that u can also be compactly
supported. In view of these considerations, the following result of Gavrilov [Gav19]
is surprising.

Theorem 1 (Gavrilov [Gav19]). There exist nontrivial time independent solu-

tions u ∈ (
C∞

0 (R3)
)3

of the three dimensional incompressible Euler equations.

The purpose of this paper is to describe a proof of the result above, inspired by the
original proof of Gavrilov, but starting from Grad–Shafranov equations, classical
equations arising in the study of plasmas [GR58, Sha58] augmented by a localizabil-
ity condition (see (21)). This point of view yields a general method which can be ap-
plied to many other hydrodynamic equations, revealing a number of common features
which seem rather universal. The 3D incompressible Euler equations result which ex-
tends Theorem 1 is stated in Theorem 2 below. An application providing multiscale
steady solutions which are locally smooth, vanish at ∂Ω, but globally belong only to
Hölder classes Cα(Ω) is given in Theorem 3. Such solutions can be constructed so
that they belong to L2(Ω)∩C

1
3 (Ω) but not to any Cα(Ω) with α > 1

3 , they have van-
ishing local dissipation u ·∇( |u|2

2 + p) = 0, but have arbitrary large ‖|∇u||u|2‖L∞(Ω).
These solutions conserve energy, as they are stationary in time, and they have the
regularity of the dissipative solutions recently constructed in connection with the
Onsager conjecture (see review papers [BV19, LS17]). Compactly supported weak
solutions which belong to Cα(Ω) but not to Cβ(Ω), 0 < α < β ≤ 1 can also be con-
structed. These examples conclude the analysis of Sects. 2 and 3. We construct by
the same method time independent solutions of the incompressible 2D Boussinesq
system with compactly supported velocities and temperature in Sect. 4 ( Theorem 4).
It is known that smooth compactly supported solutions of the incompressible porous
medium equations are identically zero [Elg17]. In Sect. 5 we construct by the present
method stationary solutions of the incompressible porous medium equation with ve-
locities and temperature supported in arbitrary non-vertical strips (Theorem 5).

2 Steady Axisymmetric Euler Equations

The stationary 3D axisymmetric Euler equations are solved via the Grad–Shafranov
ansatz

u =
1
r
(∂zψ)er − 1

r
(∂rψ)ez +

1
r
F (ψ)eφ (7)
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where ψ = ψ(r, z) is a smooth function of r > 0, z ∈ R, and the swirl F is a
smooth function of ψ alone. It is known that smooth compactly supported velocities
solving stationary axisymmetric 3D Euler equations must vanish identically if the
swirl F vanishes [JX09]. Above er, ez, eφ are the orthonormal basis of cylindrical
coordinates r, z, φ with the orientation convention er × eφ = ez, er × ez = −eφ,
eφ × ez = er. Note that u is automatically divergence-free,

divu = 0, (8)

and also that, by construction,
u · ∇ψ = 0. (9)

The vorticity ω = ∇ × u is given by

ω = − 1
r
(∂zψ)F ′(ψ)er +

1
r
(∂rψ)F ′(ψ)ez +

Δ∗ψ
r

eφ (10)

where F ′ = dF
dψ and the Grad–Shafranov operator Δ∗ is

Δ∗ψ = ∂2
rψ − 1

r
∂rψ + ∂2

zψ. (11)

In view of (7) and (10), the vorticity can be written as

ω = − F ′(ψ)u +
1
r

(

Δ∗ψ +
1
2
(F 2)′

)

eφ. (12)

As it is very well known, the steady Euler equations

u · ∇u + ∇p = 0 (13)

can be written as

ω × u + ∇
( |u|2

2
+ p

)

= 0, (14)

and therefore the axisymmetric Euler equations are solved if ψ solves the Grad–
Shafranov equation [GR58, Sha58]

− Δ∗ψ = ∂ψ

(
F 2

2
+ r2P

)

(15)

where the function P = P (ψ) represents the plasma pressure:

ω × u = ∇P. (16)

The analogy with the steady MHD equations u ↔ B, ω ↔ J motivates the name.
Both the swirl F and the plasma pressure P are arbitrary functions of ψ. The plasma
pressure and the hydrodynamic pressure are related via

p +
|u|2
2

+ P = constant. (17)
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The constant should be time independent if we are studying time independent so-
lutions, and it may be taken without loss of generality to be zero.

In a remarkable paper, [Gav19], Gavrilov showed that smooth compactly sup-
ported velocities (7) are possible. The construction of [Gav19] is explicit but some-
what obscure, as it starts not from the Grad–Shafranov ansatz, but from a similar
ansatz in terms of the hydrodynamic pressure p. The solution obtained by Gavrilov
ends up though by having the hydrodynamic pressure proportional to the stream
function ψ. Gavrilov’s simple but important insight in [Gav19] is that, if

u · ∇p = 0, (18)

then, together with a solution u, p of (13, 8), any function

ũ = φ(p)u (19)

with φ smooth is again a solution of (13, 8) with pressure given by

∇p̃ = φ2(p)∇p. (20)

This can be used to localize solutions. In his construction Gavrilov obtained solutions
u defined in the neighborhood of a circle, obeying the Euler equations near the
circle, and having a relationship |u|2 = 3p between the velocity magnitude and the
hydrodynamic pressure.

This motivates us to consider the overdetermined system formed by the Grad–
Shafranov equation for ψ (15) coupled with the requirement

|u|2
2

= A(ψ). (21)

This requirement is the constraint of localizability of the Grad–Shafranov equation,
and it severely curtails the freedom of choice of functions F and P . This localiz-
ability is in fact the essence and the novelty of the method. Without this constraint
many solutions (7) with ψ solving the Grad–Shafranov equation (15) exist, including
explicit ones [Sov68], but they cannot be localized in space.

The method we are describing consists thus in seeking functions F, P, A of ψ such
that the system {−Δ∗ψ = ∂ψ

(
1
2F 2(ψ) + r2P (ψ)

)
,

|∇ψ|2 + F 2(ψ) = 2r2A(ψ),
(22)

is solved. Then the function u given in the ansatz (7), and the pressure

p = − P (ψ) − A(ψ) (23)

together satisfy the steady 3D Euler equations (13, 8), and are localizable, meaning
that (21) is satisfied. It is important to observe that it is enough to find smooth
functions F, P, A of ψ and a smooth function ψ in an open set. This open set need
not be simply connected, but once u and p are found using this construction, any
function φ(p)u is again a solution of steady Euler equations, and it is sometimes
possible to extend this solution to the whole space.
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Remark 1. Note that the functions ρ =
√

r2 + z2, ρ = r2

2 and ρ = z are all in the
kernel of Δ∗, i.e.

Δ∗ρ = 0, (24)

and therefore, for ρ =
√

r2 + z2 and ρ = z the function ψ = f(ρ) solves the vacuum
(P = 0) Grad–Shafranov equation if f solves the ODE

− f ′′(ρ) = FF ′(f(ρ)) (25)

because |∇ρ| = 1 in both cases. A function ψ = f
(

r2

2

)
solves the Grad–Shafranov

equation with F = constant if f solves the ODE

− f ′′(ρ) = P ′(f(ρ)). (26)

All these ODEs can be integrated (multiplying by f ′(ρ)) but the solutions ψ cannot
be compactly supported in R

3.
The two dimensional Euler equations have steady solutions with compactly sup-

ported velocities. Indeed, any smooth radial stream function produces a steady so-
lution of the Euler equations in 2D, and if it is compactly supported in R

2 \{0} then
the associated velocity is smooth and compactly supported.

3 Construction

The construction of solutions of (22) starts with a hodograph transformation. We
seek functions U(r, ψ) and V (r, ψ) defined in an open set in the (r, ψ) plane and
a smooth function ψ(r, z) defined in an open set of the (r, z) plane such that the
equations

∂rψ(r, z) = U(r, ψ(r, z)), (27)
∂zψ(r, z) = V (r, ψ(r, z)) (28)

are satisfied. This clearly requires the compatibility

V ∂ψU = U∂ψV + ∂rV. (29)

Once the compatibility is satisfied then the solution ψ exists locally (in simply
connected components). The system (22) becomes

{
∂rU + U∂ψU + V ∂ψV − 1

rU = − F∂ψF − r2∂ψP
U2 + V 2 + F 2 = 2r2A.

(30)

We traded a system of two equations in two independent variables (r, z) of total
degree three, (22), for a system of three first order Eqs. (29, 30) in two independent
variables (r, ψ). We integrate this locally. We start by noticing that the first equation
of (30) is

∂rU − 1
r
U +

1
2
∂ψ

(
U2 + V 2 + F 2

)
= − r2∂ψP, (31)
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which, in view of the second equation in (30), becomes

∂rU − U

r
= − r2∂ψ(A + P ), (32)

and, using (23) we see that

∂ψp =
1
r
∂r

(
U

r

)

, (33)

which then can be used to determine p from knowledge of U . We observe that in
order to have p = p(ψ) a function of ψ alone, from (33) we have to have

U = r3M(ψ) + rN(ψ). (34)

for some functions M , N of ψ. Let us denote

Q2(r, ψ) = 2r2A(ψ) − F 2(ψ), (35)
Q3(r, ψ) = r3M(ψ) + rN(ψ), (36)

and
Q6(r, ψ) = Q2(r, ψ) − (Q3(r, ψ))2 (37)

polynomials of degree 2, 3 and 6 in r with smooth and yet unknown coefficients
depending only on ψ. We note that, in view of (34),

U = Q3, (38)

and that the second equation in (30) yields

V 2 = Q6. (39)

Multiplying (29) by V results in

∂rQ6 + Q3∂ψQ6 − 2(∂ψQ3)Q6 = 0. (40)

Identifying coefficients in the 9th order polynomial Eq. (40) we observe that only odd
powers appear, the equations for powers 9 and 7 are tautological, and the remaining
three equations become the ODE system

{
2(N2 − 2A) + N(F 2)′ − 2N ′F 2 = 0,
8MN + M(F 2)′ − 2M ′F 2 + N(N2 − 2A)′ − 2N ′(N2 − 2A) = 0,

(41)

coupled with a separate equation for A, M , not involving N, F ,

A′M − 3M2 − 2AM ′ = 0. (42)

We recall that ′ = d
dψ . This system of 3 first order ODEs with four unknown functions

is equivalent to the compatibility relation (29). There is of course room to design
solutions. Let us denote

α =
F 2

2A
(43)
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and
β = − N

M
, (44)

assuming that A, M have been chosen satisfying (42). Then (41) can be written as

α′ =
2
M

1
α − β

+
M

A
(β − 3α), (45)

and
β′ =

1
M

1
α − β

. (46)

In order to localize the sought solution u in (r, z) space we need the pressure p to
take a value at a point (r0, z0) which is strictly separated from all the values it
takes on a circle in (r, z) around that point. We seek then conditions which result
in a strict local minimum for the function ψ at the chosen point (r0, z0), and then a
similar behavior for the resulting p. Without loss of generality we may take this local
minimum value of ψ to be zero. We are lead thus to seek solutions of the ODEs (42,
45, 46)) in a small neighborhood of zero. Because U and V represent derivatives of
ψ we are lead to the requirement that the polynomials Q3 and Q6 both vanish at the
point (r0, 0) in the (r, ψ) plane. This implies both Q3(r0, 0) = 0 and Q2(r0, 0) = 0.
Note that

Q3(r, ψ) = rM(ψ)
(
r2 − β(ψ)

)
(47)

and
Q2(r, ψ) = 2A(ψ)

(
r2 − α(ψ)

)
. (48)

The ODEs (45,46) are singular at α = β. In order to still have vanishing of Q2, Q3,
we choose solutions with M(0) 	= 0 and A(0) = 0. The general solution of (42) with
given nonvanishing M(t) and A(0) = 0 is

A(t) = 3M2(t)
∫ t

0

1
M(s)

ds. (49)

We choose the simplest one, the particular solution of (42)

A(t) = 3mt, M(t) = m (50)

with m > 0 a constant. We wrote t instead of ψ for the one dimensional independent
variable in order to avoid confusion with the sought function of (r, z).

The initial datum for β is determined by the choice of the location r0. We take
thus β0 =

√
r0 and

β(0) = β0. (51)

In view of the vanishing of A at zero, in order for the Eq. (45) to be nonsingular for
small t we need then to require

α0 =
β0

3
. (52)
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It is possible to locally solve the system (45, 46) with this choice of A, M . The
solution of (45, 46) with coefficients (50) and initial data (51, 52) is most transparent
if we write

z(t) = β(t) − 3α(t), (53)
with initial datum z(0) = 0, and

ζ(t) =
1

β(t) − α(t)
, (54)

with initial datum ζ(0) = 1
2α0

= ζ0. The system (45, 46) becomes

z′ = − z

t
+

5
m

ζ (55)

coupled to

ζ ′ =
z

3t
ζ2 − 1

m
ζ3. (56)

We solve this with the ansatz

z(t) =
∞∑

j=1

zjt
j , ζ(t) =

∞∑

j=0

ζjt
j (57)

and obtain from the first equation

zj =
5

m(j + 1)
ζj−1, j ≥ 1. (58)

Equating coefficients of tj−1 in the second equation we have

jζj =
1
3

(
zζ2

)
j
− 1

m

(
ζ3

)
j−1

(59)

where (f(t))j means the coefficient of tj in the expansion of the function in power
series. Using (58) it follows that

ζj =
5

3mj(j + 1)
ζ2
0ζj−1 + Cj(ζ) (60)

where Cj is a cubic convolution term with bounded coefficients and depending on
the earlier variables ζk, k ≤ j − 1. This proves that the solution exists for short time
t and is analytic. Consequently, α and β exist and are analytic. In order to remove
unnecessary parameters, let us rescale

φ =
ψ

mβ2
0

, (61)

r =
√

β0(1 + x), (62)

z = y
√

β0, (63)

a(φ) =
α(ψ)
β0

, (64)

b(φ) =
β(ψ)
β0

, (65)
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and define, after rescaling

P3(x, φ) =
Q3(r, ψ)

mβ
3
3
0

= (1 + x)[(1 + x)2 − b(φ)] (66)

and
P2(x, φ) =

Q2(r, ψ)
m2β3

0

= 6φ[(1 + x)2 − a(φ)], (67)

resulting in

P6(x, φ) =
Q(r, ψ)
m2β3

0

= 6φ[(1 + x)2 − a(φ)] − {
(1 + x)[(1 + x)2 − b(φ)]

}2
. (68)

These rescalings are natural for the Euler equations, they only look a bit unusual
with our choice of constants. The length scale is � =

√
β0 and the time scale is

τ = (m
√

β0)−1.
The ODEs solved by a and b are the rescaled (45, 46) with the rescaled (50):

da

dφ
=

2
a − b

+
1
3φ

(b − 3a), a(0) =
1
3
, (69)

and
db

dφ
=

1
a − b

, b(0) = 1. (70)

By the previous argument using (55, 56) with m = 1, α0 = 1
3 , their solutions are

defined and analytic a small interval

φ ∈ I = [−ε, ε]. (71)

The functions a(φ), b(φ), Q2(x, φ), Q3(x, φ), Q6(x, φ) are well defined and analytic
for any x, and φ ∈ I, for small and fixed ε > 0. Moreover the compatibility Eq. (40)
is satisfied there

∂xP6 + P3∂φP6 − 2(∂φP3)P6 = 0. (72)

The Eqs. (27), (28) become

∂xφ(x, y) = (1 + x)[(1 + x)2 − b(φ(x, z))] = P3(x, φ(x, z)) (73)

and

(∂yφ(x, y))2 = 6φ[(1 + x)2 − a(φ(x, y))] − {
(1 + x)[(1 + x)2 − b(φ(x, y))]

}2

= P6(x, φ(x, y)). (74)

These need to be solved in the neighborhood of x = 0, y = 0, and to yield a
C1 function φ with φ(0, 0) = 0, and φ > 0 locally near (0, 0). There are no more
parameters in the problem, and the equations are nondimensional.

We are thus interested in the open set D in the (x, φ) plane

D = {(x, φ) | φ ∈ I, P6(x, φ) > 0} (75)
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Note that (0, 0) is in the boundary of this set. Also, if φ(x, y) is differentiable in x
and solves (73) alone, irrespective of its initial datum, then

d

dx
P6(x, φ(x, y)) = 2(∂φP3(x, φ(x, y)))P6(x, φ(x, y))

= −2(1 + x)b′(φ(x, y))P6(x, φ(x, y)). (76)

Consequently, if some (x0, φ(x0, y0)) ∈ D, then the locally (x, φ(x, y0)) must be in
D. Furthermore, if P6(x0, φ0) = 0, then on the solution it stays zero: the boundary
∂D is characteristic.

Let us consider the boundary of D more closely. By the implicit function theorem,
in view of the fact that

∂φP6(0, 0) = 4 	= 0, (77)

we have the existence of a smooth function δ : [−ε, ε] → R,

x �→ δ(x), (78)

with δ(0) = 0 and satisfying on I × I

P6(x, φ) = 0 ⇔ φ = δ(x). (79)

We might need to shrink the size of I, but we use the same ε as in the definition
(71) of I, without loss of generality, in order not to clutter the notation. From the
definition of P6 and the fact that a(0) = 1

3 it follows that in fact

δ(x) ≥ 0, for x ∈ I. (80)

Also, computing with the aid of (72) we see that

dδ

dx
(x) = − ∂xP6(x, δ)

P ′
6(x, δ)

= P3(x, δ) − 2P ′
3(x, δ)

P6(x, δ)
P ′

6(x, δ)
, (81)

(where ′ = d
dφ) and, using (79) we deduce, importantly

dδ

dx
(x) = P3(x, δ(x)). (82)

Consequently
dδ

dx
(0) = 0, (83)

and
d2δ

dx2
(0) = ∂xP3(0, 0) = 2. (84)

Therefore δ(0) = 0 is the strict local minimum of δ(x), and locally D is the super-
graph

D = {(x, φ) ∈ I × I | φ > δ(x)}, (85)
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which means that if (x0, φ0) ∈ D then (x0, φ) ∈ D for φ ∈ I, φ > φ0. We define now
for (x, φ) ∈ I × I ∩ D and y 	= 0,

V (x, y, φ) =
{√

P6(x, φ), when y > 0,

−√
P6(x, φ), when y < 0,

(86)

i.e.,
V (x, y, φ) = sgn (y)

√
P6(x, φ), (87)

and we recall that, independently of y,

U(x, φ) = P3(x, φ). (88)

We set
φ(x, 0) = δ(x) (89)

for all x ∈ I. We remark that, in view of (82), we have

δ(x) =
∫ x

0
P3(ξ, δ(ξ))dξ. (90)

Then, for y > 0 and y < 0, (each case separately), we define

φ(x, y) =
∫ y

0
V (0, η, φ(0, η))dη +

∫ x

0
P3(ξ, φ(ξ, y))dξ (91)

where φ(0, η) is the positive smooth solution of

d

dy
φ(0, y) = V (0, y, φ(0, y)) (92)

with initial data φ(0, 0) = 0. This requires a discussion because this is a non-Lipschitz
ODE with infinitely many solutions, including an identically zero one. The function

π(φ) = P6(0, φ) = 6φ(1 − a(φ)) − (1 − b(φ))2 (93)

is positive for φ > 0 and vanishes like 4φ at φ = 0. The primitive

Y (φ) =
∫ φ

0

dt
√

π(t)
(94)

is positive, increasing, vanishes at 0, is smooth on (0, ε], and has

Y ′(0) = ∞. (95)

Because of monotonicity, Y −1 is locally defined, and we put

φ(0, y) = Y −1(y) (96)

for y ≥ 0. Note that
d

dy
φ(0, y) = V (0, y, φ(0, y)) (97)
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holds fror all 0 ≤ y ≤ ε. A similar construction is done for y ≤ 0. In fact we are
constructing via (91) two functions, φ±(x, y), one for y ≥ 0 and one for y ≤ 0, glued
by (89, 90) and satisfying by construction

φ−(x,−y) = φ+(x, y). (98)

Obviously P3(x, φ(x, y)) = ∂xφ(x, y), that is (73), is true by construction from
(91) and from (82). Now we claim that φ(x, y) ∈ D. Indeed,

d

dx
(φ(x, y) − δ(x)) = P3(φ(x, y)) − P3(δ(x)) = I((φ(x, y) − δ(x)) (99)

where I = I(x, y) =
∫ 1
0 P ′

3(δ(x) + t(φ(x, y)) − P3(δ(x)))dt is bounded. The initial
data is positive φ(0, y) − 0 > 0. Therefore φ(x, y) − δ(x) > 0 and φ ∈ D. (The same
conclusion follows also from (76) which needs only (73)).

The vertical derivative is obtained differentiating the construction (91) and we
see that it is given by

∂yφ(x, y) = V (0, y, φ(0, y)) +
∫ x

0
P ′

3(ξ, φ(ξ, y))∂yφ(ξ, y)dξ. (100)

Its x derivative at fixed y obeys

d

dx
Z(x) = P ′

3(x, φ(x, y))Z(x), (101)

and this is also the equation obeyed by V (x, y, φ(x, y)) in virtue of the fact that
φ ∈ D and the compatibility Eq. (72). This again uses only (73). The values at
x = 0 equal both V (0, y, φ(0, y)) and because P ′

3(x, φ(x, y)) is bounded it follows
that

dφ(x, y)
dy

= V (x, y, φ(x, y)) (102)

for y > 0, respectively y < 0. We have thus the nontrivial solution φ(x, y) ∈ D for
y 	= 0, and, from the compatibility (72) we have the Eqs. (73) and (74) verified. We
note that, in view of (82) we have that

φ(x, y) =
∫ x

0
P3(ξ, φ(ξ, 0))dξ +

∫ y

0
V (x, η, φ(x, η))dη (103)

which is natural because once φ ∈ C1 has been constructed and (73) and (74) have
been verified, then the one form

P3(x, φ(x, y))dx + V (x, y, φ(x, y))dy (104)

is closed. The function φ is C1 near the origin, and the functions V (x, y, φ) and
P3(x, φ(x, y) are continuous. Successive differentiations of (73) and (74) imply that
φ is actually smooth.
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In order to understand this better let us compare with the (simpler to compute)
case in which we need to solve ODEs

(
dφ(x, y)

dy

)2

= φ(x, y) − δ(x), φ(x, 0) = δ(x). (105)

In this case P6(x, φ) = φ − δ(x), D = {φ > δ(x)}. There is no uniqueness, the
boundary ∂D is characteristic, and, in addition to the solution φ(x, y) = δ(x) we
have the analytic solution φ(x, y) = y2

4 + δ(x) and infinitely many discontinuous
solutions

φ(x, y) =
{

δ(x), for |x| < ε1,
y2

4 + δ(x), for ε1 ≤ |x| < ε,
(106)

for any ε1 < ε. The case of the true P6(x, φ) is similar.
We have proved therefore

Theorem 2. Let � > 0, τ > 0 ∈ R be given. There exists ε > 0 and a function
ψ ∈ C∞(B), where B = {(r, z) | |r − �|2 + |z|2 < ε2�2} satisfying ψ(�, 0) = 0,
ψ > 0 in B and such that (22) holds with A, P and F 2 real analytic functions of
ψ. The Grad–Shafranov equation (15) is solved pointwise and has classical solutions
in B. The associated velocity u given by the Grad–Shafranov ansatz (7) is Hölder
continuous in B. The Euler Eq. (13, 8) holds weakly in B. The pressure is given by
p = 1

�τ ψ. The vorticity is bounded, ω ∈ L∞(B) and (14) holds a.e. in B.

We wrote the theorem in a nondimensional form. In order to return to dimensional
variables we translate in z, so that z0 = 0 dilate in r so that r0 = � =

√
β0 and choose

2m = 1
�τ . We note that F (ψ) vanishes like

√
ψ. Therefore, while the ansatz (7) gives

a bounded swirl and a Hölder continuous velocity, the vorticity is not smooth. In
fact, in view of (12) the vorticity equals

ω(r, z) = − F ′(ψ)u(r, z) + smooth. (107)

Thus, ω ∈ L∞(B), because u vanishes to first order at (�, 0), but the r derivative of
the z component of vorticity is infinite there.

Once ψ has been constructed so that it has a local minimum at (�, 0), then p has
also a local minimum there, because, by (33),

p = 2mψ =
ψ

�τ
(108)

is monotonic in ψ.
Theorem 1 holds because the cutoff can be chosen so that the point (�, 0) is

omitted. By choosing a suitable cutoff function φε(p), the solution ũ = φε(p)u is
supported in the region A = {(r, z) | 1

2�2ε2 < |r − �|2 + |z|2 < ε2�2}.
An immediate consequence of Theorem 2 is the following.
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Theorem 3. Let 0 < α < 1. In any domain Ω ⊂ R
3 there exist steady solutions

of Euler equations belonging to Cα(Ω) and vanishing at ∂Ω, but such that they do
not belong to Cβ(Ω) for β > α. There exist such solutions which are locally smooth,
meaning that for every x ∈ Ω there exists a neighborhood of x where the solution is
C∞. For any Γ > 0, there exist steady solutions u which belong to L2(Ω) ∩ C

1
3 (Ω),

vanish at ∂Ω, are locally smooth and have

sup
x∈Ω

|∇u(x)||u(x)|2 ≥ Γ,

while the local dissipation vanishes, i.e. u · ∇( |u|2
2 + p) = 0 in the sense of distribu-

tions. There exist steady solutions which are locally smooth and whose Lagrangian
trajectories have arbitrary linking numbers. For any 0 < α < β ≤ 1 there exist weak
solutions which are compactly supported in Ω, belong to Cα(Ω) but not to Cβ(Ω).

Proof. Taking a smooth template uB constructed in Theorem 2 and compactly sup-
ported in the toroidal shell B in R

3

B = {(r, z) | 1
2

< (|r − 1|2 + z2 < 1}, (109)

we write

u(x) =
∞∑

n=1

UnRnuB

(
RT

n (x − xn)
�n

)

=
∞∑

n=1

un(x) (110)

where the positive numbers Un > 0, �n > 0, the rotations Rn ∈ O(3) with their
transposed RT

n , and the vectors xn ∈ R
3 are arbitrary. We may take for instance an

helicoidal curve of infinite length in Ω and decorate it with small disjoint toroidal
shells of scales �n, centered at points xn on the curve and whose symmetry axes are
tangent to it (determing thus Rn). Then the supports of the terms in the sum are
mutually disjoint and u given above is a steady solution of the incompressible Euler
equations, because uB is one, and thus, by scaling and rotating,

un · ∇un + ∇pn = 0. (111)

The supports of the gradients of pressure ∇pn of the individual terms in the sum
are mutually disjoint. Solutions are locally smooth if all the accumulation points of
{xn} belong to the boundary ∂Ω. Compactly supported solutions can be obtained by
taking accumulation points belonging to Ω. The norm of u in Wm,p is proportional
to

‖u‖W α,p(Ω) ∼
( ∞∑

n=1

Up
n�(3−pα)

n

) 1
p

(112)

for any α ≥ 0, 1 ≤ p ≤ ∞. In particular, we can find square integrable time
independent solutions u such that u ∈ C

1
3 (Ω) but u /∈ Cβ(Ω) for β > 1

3 . The L∞(Ω)
norms of ∂αu are of the order supn≥1 Un�−α

n . ��
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4 2D Boussinesq

The time independent 2D Boussinesq system [MB02], [Con17, Section 2.4] is
⎧
⎨

⎩

u · ∇u + ∇p = θe2,
u · ∇θ = 0,
∇ · u = 0,

(113)

in R
2. The function u = (u1, u2) is the incompressible velocity, θ is the temperature

and e2 is the direction of gravity. We write this as

ωu⊥ = ∇P + θe2 (114)

where ω = ∂1u2 − ∂2u1 is the vorticity and u⊥ = − u2e1 + u1e2. In terms of the
stream function ψ we have

u = ∇⊥ψ, (115)
ω = Δψ. (116)

The Eq. (114) is therefore

− (Δψ)∇ψ = ∇P + θe2 (117)

and choosing
θ(x) = Θ(ψ(x)) (118)

and
P (x) = − x2Θ(ψ(x)) − G(ψ(x)) (119)

with G(ψ) an arbitrary function, we see that the steady Boussinesq equation is
satisfied if ψ satisfies the corresponding Grad–Shafranov-like equation

Δψ = x2Θ′(ψ) + G′(ψ) (120)

where, like before ′ = d
dψ . Identifying the hydrodynamic pressure, and requiring it

to be a function of ψ alone we see that

p(ψ) = G + x2Θ − 1
2
|∇ψ|2. (121)

Let us seek solutions of (120, 121) by hodograph transformation

∂2ψ(x1, x2) = U(x2, ψ(x1, x2)) (122)

and
∂1ψ(x1, x2) = V (x2, ψ(x1, x2)). (123)

The compatibility equation is

V U ′ = ∂2V + UV ′ (124)
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and the Grad–Shafranov-like Eq. (120) becomes

UU ′ + ∂2U + V V ′ = x2Θ′ + G′. (125)

Using (121) we deduce that

∂2U(x2, ψ) = p′(ψ). (126)

This requires U to be a linear polynomial

U = p′(ψ)(x2 − β(ψ)). (127)

Defining the polynomial

Q1(x2, ψ) = 2(x2Θ(ψ) + H(ψ)) (128)

where
H(ψ) = G(ψ) − p(ψ), (129)

we see that (121) becomes
V 2 = Q1 − U2. (130)

To summarize, after the transformation, we arrived at the Eqs. (124), (127) and
(130). Now (124), after multiplication by V becomes a polynomial identity,

2V 2U ′ = ∂2V
2 + U(V 2)′ (131)

which, using (130) simplifies to read

2Q1U
′ − UQ′

1 + 2U∂2U − ∂2Q1 = 0. (132)

Identifying coefficients in the ensuing ODEs we deduce

Θ = k(p′)2, (133)

with k a constant, which of course we need to be nonzero,

Θ = − 2p′β′(βΘ + H), (134)

and
(p′)2 − 2Θp′β′ + 2Hp′′ − p′H ′ = 0. (135)

Now we would like to localize, so we would need U and V to vanish at (x0
2, 0). From

(127) this requires either p′(0) = 0 or x0
2 = β(0). If the latter, then the vanishing of

V requires the vanishing of Q1 and that implies β(0)Θ(0) + H(0) = 0. But, in view
of (134) this, in turn implies that Θ(0) = 0 or p′β′ to be infinite at 0. If p′β′ is finite,
then by (133) we are lead to p′(0) = 0. So, if we wish to localize we take

p′(0) = 0. (136)

We denote
q = p′ (137)
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and define α via
H = αq2. (138)

The equations for α and β become

qα′ = 1 +
k2

α + kβ
(139)

and
qβ′ = − k

2(α + kβ)
. (140)

Introducing
γ = α + kβ (141)

we deduce

qγ′ = 1 +
k2

2γ
. (142)

We integrate the latter, denoting

q
d

dψ
=

d

dτ
(143)

and we obtain

γ − k2

2
log

(

γ +
k2

2

)

= τ + C. (144)

We choose
γ(0) = 1 (145)

by adjusting C in (144) appropriately. We then have from (144), which we solve
implicitly, a unique smooth function

γ = γ(τ), (146)

that is defined for small τ and is bounded away from zero. The Eqs. (139, 140) are

dα

dτ
= 1 +

k2

γ(τ)
(147)

and
dβ

dτ
= − k

2γ(τ)
. (148)

These yield functions
α(τ), β(τ) (149)

which are smooth, finite for small τ , and remain close to values α(0), β(0) that are
not restricted, except by our choice of γ(0) = 1,

α(0) + kβ(0) = 1. (150)
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We abused notation by using the same letters α, β for the functions of τ solving the
explicit ODEs in τ (147, 148). In fact a more precise notation would have been to use
different letters, α̃, β̃ and write α(ψ) = α̃(τ), β(ψ) = β̃(τ) where τ(ψ) is determined
by the defining relation (143),

dτ

dψ
= q−1. (151)

If we set

q = ψs, (152)

with 0 < s < 1, and seek ψ > 0, then

τ =
1

1 − s
ψ1−s. (153)

Returning to the Eq. (130) for V , we see that

V 2 = q2
(−x2

2 + 2x2(k + β) + 2α − β2
)
. (154)

Choosing for instance x0
2 = β(0) gives that the term in paranthesis equals 2 at ψ = 0.

Thus, we have that

V = ψs
√

−x2
2 + 2x2(k + β) + 2α − β2 (155)

and

U = ψs(x2 − β) (156)

are Hölder continuous. For instance, if s = 1
2 we obtain equations for

√
ψ with

coefficients which depend smoothly on
√

ψ. These can be integrated locally easily
with the result that

ψ(x0) = 0 (157)

and ψ ∈ C∞(B), where B is a small ball around x0. Notice that

p =
1

1 + s
ψ1+s (158)

yields then a regular function with local minimum at x0 and therefore we can localize
the system.

By taking ũ = φ(p)u, θ̃ = φ(p)θ and ∇p̃ = φ2(p)∇p with appropriate smooth
cutoff φ we have obtained thus the following result.

Theorem 4. There exist smooth nontrivial time independent solutions of (113)
such that (u, θ) are compactly supported.
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5 Incompressible Porous Medium Equation

The 2D time independent inviscid porous medium (IPM) Eq. [CGO07], [Con17,
Section 2.3] is ⎧

⎨

⎩

u · ∇θ = 0,
∇ · u = 0,
u = θe2 + ∇p,

(159)

where e2 is the direction of gravity. We write u = ∇⊥ψ and require

p = p(ψ) (160)

and
θ = Θ(ψ). (161)

The equations are {−∂yψ = p′∂xψ,
∂xψ = p′∂yψ + Θ.

(162)

Consequently

∂xψ =
Θ(ψ)

1 + (p′(ψ))2
= U(ψ) (163)

and

∂yψ = − Θ(ψ)p′(ψ)
1 + (p′(ψ))2

= V (ψ). (164)

In view of the fact that ∂xψ = U(ψ) and ∂yψ = −p′(ψ)U(ψ) the compatibility
equation is

p′(ψ) = k (165)

where k is a constant. Because

∂yψ = − k∂xψ (166)

then the solution must depend on a single variable

ψ(x, y) = f(x − ky). (167)

The Eqs. (163, 164) reduce to

f ′(z) =
1

1 + k2
Θ(f(z)) (168)

where
z = x − ky. (169)

Because we seek to localize, we look for functions Θ(ψ) which vanish at ψ = 0.
Taking for instance

Θ(ψ) = ψs (170)
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with 0 < s < 1 we obtain

f(z) =
(

(1 − s)(z − z0)
1 + k2

) 1
1−s

(171)

and then we have

ψ(x, y) =
(

(1 − s)(x − x0 − k(y − y0))
1 + k2

) 1
1−s

, (172)

and

p(x, y) = k

(
(1 − s)(x − x0 − k(y − y0))

1 + k2

) 1
1−s

. (173)

If s = 1
2 we obtain parabolas, ψ = ckz

2, p = kψ which can be localized in the z
variable.

By setting ũ = φ(p)u, θ̃ = φ(p)θ and ∇p̃ = φ(p)∇p with appropriate smooth
cutoff φ, we have thus proved the following result.

Theorem 5. Let S be any strip in R
2 of finite width, and whose direction is not

parallel to the direction of gravity e2. There exist smooth time independent solutions
of the incompressible porous medium Eq. (159) for which the velocities u and the
temperature θ vanish outside the strip S.
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