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BADLY APPROXIMABLE POINTS ON MANIFOLDS AND
UNIPOTENT ORBITS IN HOMOGENEOUS SPACES

Lei Yang

Abstract. In this paper, we study the weighted n-dimensional badly approximable
points on manifolds. Given a Cn differentiable non-degenerate submanifold U ⊂
R

n, we will show that any countable intersection of the sets of the weighted badly
approximable points on U has full Hausdorff dimension. This strengthens a result
of Beresnevich (Invent Math 202(3):1199–1240, 2015) by removing the condition
on weights and weakening the smoothness condition on manifolds. Compared to the
work of Beresnevich, our approach relies on homogeneous dynamics. It turns out that
in order to solve this problem, it is crucial to study the distribution of long pieces
of unipotent orbits in homogeneous spaces. The proof relies on the linearization
technique and representations of SL(n + 1,R).

1 Introduction

1.1 Badly approximable vectors. Given a positive integer n, a vector r =
(r1, . . . , rn) is called a n-dimensional weight if ri ≥ 0 for i = 1, . . . , n and

r1 + · · · + rn = 1.

The weighted version of Dirichlet’s approximation theorem says the following:

Theorem 1.1 (Dirichlet’s Theorem, 1842). For any n-dimensional weight r = (r1,
. . . , rn), the following statement holds. For any vector x = (x1, . . . , xn) ∈ R

n and
any N > 1, there exists an integer vector p = (p1, . . . , pn, q) ∈ Z

n+1such that
0 < |q| ≤ N and

|qxi + pi| ≤ N−ri , for i = 1, . . . , n.

This theorem is the starting point of simutaneous Diophantine approximation.
Using this theorem, one can easily show the following:
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Corollary 1.2. For any vector x = (x1, . . . , xn) ∈ R
n, there are infinitely many

integer vectors p = (p1, . . . , pn, q) ∈ Z
n+1 with q �= 0 satisfying the following:

|q|ri |qxi + pi| ≤ 1 for i = 1, . . . , n. (1.1)

For almost every vector x ∈ R
n, the above corollary remains true if we replace

1 with any smaller constant c > 0 on the right-hand side of (1.1), see [DS70] and
[KW08]. The exceptional vectors are called r-weighted badly approximable vectors.
We give the formal definition as follows:

Definition 1.3. Given an n-dimensional weight r = (r1, . . . , rn), a vector x ∈ R
n

is called r-weighted badly approximable if there exists a constant c > 0 such that
for any p = (p1, . . . , pn, q) ∈ Z

n+1 with q �= 0,

max
1≤i≤n

|q|ri |qxi + pi| ≥ c.

For an n-dimensional weight r, let us denote the set of r-weighted badly approx-
imable vectors in R

n by Bad(r). In particular, Bad(1) denotes the set of badly
approximable numbers.

Bad(r) is a fundamental object in metric Diophantine approximation. The study
of its properties has a long history and attracts people from both number theory and
homogeneous dynamics. In view of [KW08], we know that the Lebesgue measure of
Bad(r) is zero. However, it turns out that every Bad(r) has full Hausdorff dimen-
sion, cf. [Jar29, Sch66, PV02, KW10]. The intersections of Bad(r) with different
weights r have been of major interest for several decades. In particular, Wolfgang
M. Schmidt conjectured the following:

Conjecture 1.4. (Schmidt’s Conjecture, see [Sch83]). For n = 2,

Bad(1/3, 2/3) ∩ Bad(2/3, 1/3) �= ∅.

In 2011, Badziahin, Pollington and Velani [BPV11] settled this conjecture by
showing the following: for any countable collection of 2-dimensional weights {(it, jt) :
t ∈ N}, if lim inft→∞ min{it, jt} > 0, then

dimH

( ∞⋂
t=1

Bad(it, jt)

)
= 2,

where dimH(·) denotes the Hausdorff dimension of a set. An (see [An13, An16]) later
strengthens their result by removing the condition on the weights. In fact, in [An16],
An proves the following much stronger result: for any 2-dimensional weight (r1, r2),
Bad(r1, r2) is (24

√
2)−1-winning. Here a set is called α-winning if it is a winning

set for Schmidt’s (α, β)-game for any β ∈ (0, 1). This statement implies that any
countable intersection of sets of weighted badly approximable vectors is α-winning.
Nesharim and Simmons [NS14] further show that every Bad(r1, r2) is hyperplane
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absolute winning. The reader is referred to [Sch66] for more details of Schmidt’s
game and to [BFK+12] for details about hyperplane winning sets.

Badly approximable vectors lying on planar curves are studied by An, Beres-
nevich and Velani [ABV18]. They prove that for any non-degenerate planar curve C
and any weight (r1, r2), Bad(r1, r2) ∩ C is 1

2 -winning.
For n ≥ 3, the problem turns out to be essentially more difficult. Beresnevich

[Ber15] makes the first breakthrough:

Theorem 1.5 (see [Ber15, Corollary 1]). Let n ≥ 2 be an integer and U ⊂ R
n be an

analytic and non-degenerate submanifold in R
n. Let W be a finite or countable set

of n-dimensional weights such that infr∈W {τ(r)} > 0 where τ(r1, . . . , rn) := min{ri :
ri > 0} for an n-dimensional weight (r1, . . . , rn). Then

dimH

( ⋂
r∈W

Bad(r) ∩ U
)

= dimU .

Remark 1.6. Here a submanifold is called non-degenerate if the derivatives at each
point span the whole space. In the setting of analytic submanifolds, this is equivalent
to that the submanifold is not contained in any hyperplane of Rn.

1.2 Notation. In this paper, we will fix the following notation.
For a set S, let �S denote the cardinality of S. For a measurable subset E ⊂ R,

let m(E) denote its Lebesgue measure.
For a matrix M , let MT denote its transpose. For integer k > 0, let Ik denote

the k-dimensional identity matrix.
Let ‖ · ‖ denote the supremum norm on R

n and R
n+1. Let ‖ · ‖2 denote the

Euclidean norm on R
n and R

n+1. For x ∈ R
n+1 (or ∈ R

n) and r > 0, let B(x, r)
denote the closed ball in R

n+1 (or R
n) centered at x of radius r, with respect to

‖ · ‖. For every i = 1, . . . , n + 1, there is a natural supremum norm on
∧i

R
n+1. Let

us denote it by ‖ · ‖.
Throughout this paper, when we say that C is a constant, we always mean that

c is a constant only depending on the dimension n. For quantities A and B, let us
use A � B to mean that there is a constant C > 0 such that A ≤ CB. Let A � B
mean that A � B and B � A. For a quantity A, let O(A) denote a quantity which
is � A or a vector whose norm is � A.

1.3 Main results. In this paper, we will strengthen Theorem 1.5 by remov-
ing the condition on weights and weakening the analytic condition to differentiable
condition on submanifolds.

To simplify the exposition, in this paper, we will focus on the case of curves:

Theorem 1.7. Let ϕ : I = [a, b] → R
n be a Cn differentiable and non-degenerate

curve in R
n. Let W be a finite or countable set of n-dimensional weights. Then

dimH

( ⋂
r∈W

Bad(r) ∩ ϕ(I)

)
= 1.
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The proof for curves directly applies to any Cn non-degenerate manifolds, see
Sect. 5.5 for detailed explanation. Therefore, Theorem 1.7 holds for any Cn non-
degenerate manifolds. In Theorem 1.5, the analyticity condition comes from a fiber
lemma (cf. [Ber15, “Appendix C”]) which reduces the general case to the case of
curves.

In fact, we can prove the following stronger statement:

Theorem 1.8. Let W be a finite or countable set of n-dimensional weights and
Fn(B) be a finite family of Cn differentiable non-degenerate maps ϕ : [0, 1] → R

n.
Then

dimH

⎛
⎝ ⋂

ϕ∈Fn(B)

⋂
r∈W

ϕ−1(Bad(r))

⎞
⎠ = 1.

For the same reason as above, this statement holds when [0, 1] is replaced by a
m-dimensional ball B ⊂ R

m for any m ≤ n.
Compared with [Ber15], in this paper, we study this problem through homoge-

neous dynamics and prove Theorems 1.7 and 1.8 using the linearization technique.

1.4 Bounded orbits in homogeneous spaces. Let us briefly recall the cor-
respondence between Diophantine approximation and homogeneous dynamics. The
reader may see [Dan84, KM98, KW08] for more details.

Let G = SL(n + 1,R), and Γ = SL(n + 1,Z). The homogeneous space X = G/Γ
can be identified with the space of unimodular lattices in R

n+1. For any g ∈ SL(n +
1,R), the point gΓ is identified with the lattice gZn+1. For ε > 0, let us define

Kε := {Λ ∈ X : Λ ∩ B(0, ε) = {0}} . (1.2)

By Mahler’s compactness criterion [Mah46], every Kε is a compact subset of X and
every compact subset of X is contained in some Kε.

For a weight r = (r1, . . . , rn), let us define the diagonal subgroup Ar ⊂ G as
follows:

Ar :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ar(t) :=

⎡
⎢⎢⎢⎣

er1t

. . .
ernt

e−t

⎤
⎥⎥⎥⎦ : t ∈ R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

For x ∈ R
n, let us denote

V (x) :=
[
In x

1

]
.

Proposition 1.9 ([Kle98, Theorem 1.5]). x∈Bad(r) if and only if {ar(t)V (x)Zn+1 :
t > 0} is bounded.
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Therefore our main theorem is equivalent to saying that for any Cn non-degene-
rate submanifold U ⊂ R

n and any countable collection of one-parameter diagonal
subgroups {Ars

: s ∈ N}, the set of x ∈ U such that

{ars
(t)V (x)Zn+1 : t > 0}

is bounded for all s ∈ N has full Hausdorff dimension.
The study of bounded trajectories under the action of diagonal subgroups in

homogeneous spaces is a fundamental topic in homogeneous dynamics and has been
active for decades. The basic set up of this type of problems is the following. Let
G be a Lie group and Γ ⊂ G be a nonuniform lattice in G. Then X = G/Γ is
a noncompact homogeneous space. Let A = {a(t) : t ∈ R} be a one-dimensional
diagonalizable subgroup and let Bd(A) be the set of x ∈ X such that A+x is
bounded in X, where A+ := {a(t) : t > 0}. Then one can ask whether Bd(A)
has full Hausdorff dimension. For a submanifold U ⊂ X, one can also ask whether
Bd(A) ∩ U has Hausdorff dimension dim U .

In 1986, Dani [Dan86] studies the case where G is a semisimple Lie group with
R-rank one. In this case, he proves that for any non-quasi-unipotent one parameter
subgroup A ⊂ G, Bd(A) has full Hausdorff dimension. His proof relies on Schmidt’s
game. In 1996, Kleinbock and Margulis [KM96] study the case where G is a semisim-
ple Lie group and Γ is a irreducible lattice in G. In this case, they prove that Bd(A)
has full Hausdorff dimension for any non-quasi-unipotent subgroup A. Their proof
is based on the mixing property of the action of A on X. Recently, An, Guan and
Kleinbock study the case where G = SL(3,R) and Γ = SL(3,Z). They prove that for
any countable collection of diagonalizable one-parameter subgroups {Fs : s ∈ N},
the intersection

⋂∞
s=1Bd(Fs) has full Hausdorff dimension. Their proof closely fol-

lows the argument in the work of An [An16] and uses a variantion of Schmidt’s
game.

1.5 The linearization technique. In [Ber15], the proof relies on the theory
of geometry of numbers. In this paper, we study this problem through homogeneous
dynamics and tackle the technical difficulties using the linearization technique. It
turns out that in order to get full Hausdorff dimension, it is crucial to study dis-
tributions of long pieces of unipotent orbits in the homogeneous space G/Γ. To be
specific, for a particular long piece C of a unipotent orbit, we need to estimate the
length of the part in C staying outside a large compact subset K of G/Γ. In homoge-
neous dynamics, the standard tool to study this type of problem is the linearization
technique. The linearization technique is a standard and powerful technique in ho-
mogeneous dynamics. Using the linearization technique, we can transform a problem
in dynamical systems to a problem on linear representations. Then we can study this
problem using tools and results in representation theory.

Let us briefly describe the technical difficulty when we apply the linearization
technique. Let V be a finite dimensional linear representation of SL(n + 1,R) with
a norm ‖ · ‖ and Γ(V) ⊂ V be a fixed discrete subset of V. Let U = {u(r) : r ∈ R}
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be a one parameter unipotent subgroup of G. Given a large number T > 1, we
want to estimate the measure of r ∈ [−T, T ] such that there exists v ∈ Γ(V) such
that ‖u(r)v‖ ≤ ε where ε > 0 is a small number. By Dani-Margulis non-divergence
theorem (see [DM92]), the measure is very small compared with T given that for
any such v ∈ Γ(V)

max{‖u(r)v‖ : r ∈ [−T, T ]} ≥ ρ

where ρ > 0 is some fixed number. The difficulty is to handle the case where there
exists some v ∈ Γ(V), such that

max{‖u(r)v‖ : r ∈ [−T, T ]} < ρ.

Let us call such intervals T -bad intervals. In this paper, we will use representation
theory to study properties of such v’s. We then use these properties to show that in
a longer interval, say [−T 2, T 2], the number of T -bad intervals is � T 1−μ for some
constant μ > 0. This result is sufficient to prove Theorem 1.7.

In this paper, V is the canonical representation of SL(n + 1,R) on
∧i

R
n+1 and

Γ(V) =
∧i

Z
n+1 \ {0} where i = 1, . . . , n.

The main technical results in this paper are proved in Sects. 4, 5.3 and 5.4.
We refer the reader to [Rat91, MT94, MS95, Sha09b, Sha09a, LM14] for more

applications of the linearization technique.

1.6 The organization of the paper. The paper is organized as follows:

• In Sect. 2, we will recall some basic facts on Diophantine approximation, linear
representations and lattices in R

n+1.
• In Sect. 3, we will recall a theorem on computing the Hausdorff dimension of

Cantor-like sets. We will also construct a Cantor-like covering of the set of
weighted badly approximable points.

• In Sect. 4, we will prove two technical results on counting lattice points. Propo-
sition 4.1 is one of the main technical contributions of this paper. Its proof relies
on the linearization technique and SL(n + 1,R) representations.

• In Sect. 5, we will give the proof of Proposition 3.7, which implies Theo-
rems 3.5, 1.7 and 1.8. We split the proof into three parts: the generic case,
the dangerous case and the extremely dangerous case. Section 5.2 han-
dles the generic case. The proof relies on the Dani-Margulis non-divergence
theorem (Theorem 5.1). §5.3 handles the dangerous case. The proof relies on
Proposition 4.1 proved in Sect. 4 and the linearization technique. Section 5.4
handles the extremely dangerous case. The proof relies on Proposition 4.2
proved in 4 and the linearization technique. Finally, we will explain how to
adapt the proof to handle general Cn non-degenerate manifolds.
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2 Preliminaries

2.1 Dual form of approximation. We first recall the following equivalent
definition of Bad(r):

Lemma 2.1 (see [Ber15, Lemma 1]). Let r = (r1, . . . , rn) ∈ R
n be a weight and

x ∈ R
n. The following statements are equivalent:

(1) x ∈ Bad(r).
(2) There exists c > 0 such that for any integer vector (p1, . . . , pn, q) such that

q �= 0, we have that

max
1≤i≤n

|q|ri |qxi + pi| ≥ c.

(3) There exists c > 0 such that for any N ≥ 1, the only integer solution (a0, a1,
. . . , an) to the system

|a0 + a1x1 + · · · + anxn| < cN−1, |ai| < N ri for all 1 ≤ i ≤ n

is a0 = a1 = · · · = an = 0.

Proof. The reader is referred to [Mah39], [BPV11, “Appendix”] and [Ber15, “Ap-
pendix A”] for the proof. ��

Later in this paper we will use the third statement as the definition of Bad(r).
Given a weight r = (r1, . . . , rn), let us define

Dr :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dr(t) :=

⎡
⎢⎢⎢⎣

et

e−r1t

. . .
e−rnt

⎤
⎥⎥⎥⎦ : t ∈ R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

For x ∈ R
n, let us define

U(x) :=
[
1 xT

In

]
.

If we use the third statement in Lemma 2.1 as the definition of Bad(r), then in
view of [Kle98, Theorem 1.5] we have that x ∈ Bad(r) if and only if U(x)Zn+1 ∈
Bd(Dr).

2.2 The canonical representation. Let V = R
n+1. Let us consider the canon-

ical representation of G = SL(n + 1,R) on V : g ∈ G acts on v ∈ V by left ma-
trix multiplication. It induces a canonical representation of G on

∧i V for every
i = 1, 2, . . . , n. For g ∈ G and

v = v1 ∧ · · · ∧ vi ∈
∧i

V,

gv = (gv1) ∧ · · · ∧ (gvi).
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For i = 1, . . . , n, let ei ∈ R
n denote the vector with 1 in the ith component and

0 in other components.
Let us fix a basis for V as follows. Let w+ := (1, 0, . . . , 0). For i = 1, . . . , n, let

wi := (0, . . . , 1, . . . , 0) with 1 in the i + 1st component and 0 in other components.
Then {w+,w1, . . . ,wn} is a basis for V . Let W denote the subspace of V spanned by
{w1, . . . ,wn}. For j = 2, . . . , n, let Wj the subspace of W spanned by {wj , . . . ,wn}.

Let us define

Z :=
{

z(k) :=
[
1
k

]
: k ∈ SO(n)

}
. (2.1)

Let us consider the canonical action of SO(n) on R
n. For k ∈ SO(n) and x ∈ R

n, let
us denote by k · x the canonical action of k on x. It is straightforward to check that
for k ∈ SO(n) and x ∈ R

n,

z(k)U(x)z−1(k) = U(k · x).

For any x ∈ R
n, let us define a subgroup SL(2,x) of G containing U(x) as follows.

For x = e1, let us define

SL(2, e1) :=
{[

h
In−1

]
: h ∈ SL(2,R)

}
.

For general x ∈ R
n, let us choose k ∈ SO(n) such that ‖x‖2k · e1 = x and define

SL(2,x) := z(k)SL(2, e1)z−1(k).

It is easy to see that SL(2,x) is isomorphic to SL(2,R) and U(x) ∈ SL(2,x) corre-
sponds to [

1 ‖x‖2
1

]
∈ SL(2,R).

For r > 0, let ξe1(r) ∈ SL(2, e1) denote the element⎡
⎣r 0

0 r−1

In−1

⎤
⎦

and ξx(r) ∈ SL(2,x) denote z(k)ξe1(r)z−1(k). Then ξx(r) corresponds to
[
r

r−1

]
in

SL(2,R).
Let us study the action of SL(2,x) on V .
Let us first consider the case x = e1. For r ∈ R, let us denote

u1(r) := U(re1),

and

U1 := {u1(r) : r ∈ R}.
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Let us denote

Ξ1 := {ξ1(r) := diag{r, r−1, 1, . . . , 1} : r > 0}.

It is easy to see that ξ1(r)w+ = rw+, u1(r)w+ = w+, ξ1(r)w1 = r−1w1, u1(r)w1 =
w1 + rw+, and for any w ∈ W2, w is fixed by SL(2, e1).

For x ∈ R
n, we have x = ‖x‖2k · e1 for some k ∈ SO(n) and

SL(2,x) = z(k)SL(2, e1)z−1(k).

In particular, we have that

U(x) = z(k)u1(‖x‖2)z−1(k)

and ξx(r) = z(k)ξ1(r)z−1(k). Since z(k)w+ = w+ and z(k)W = W , we have that
ξx(r)w+ = rw+, U(x)w+ = w+, ξx(r)z(k)w1 = r−1k · w1, U(x)z(k)w1 = z(k)w1 +
‖x‖2w+ and for any w ∈ z(k)W2, w is fixed by SL(2,x).

Let us consider the action of SL(2,x) on
∧i V for i = 2, . . . , n. Let us denote

x = ‖x‖2k · e1 as above. For any w ∈ ∧i−1 z(k)W2, we have that

ξx(r)((z(k)w1) ∧ w) = r−1((z(k)w1) ∧ w),
U(x)((z(k)w1) ∧ w) = (z(k)w1) ∧ w + ‖x‖2(w+ ∧ w),

ξx(r)(w+ ∧ w) = r(w+ ∧ w)

and

U(x)(w+ ∧ w) = w+ ∧ w.

For any w ∈ ∧i z(k)W2 and any w′ ∈ ∧i−2 z(k)W2, we have that w and w+ ∧
(z(k)w1) ∧ w′ are fixed by SL(2,x).

2.3 Lattices in R
n+1. In this subsection let us recall some basic facts on lat-

tices and sublattices in R
n+1.

For a discrete subgroup Δ of Rn+1, let SpanR(Δ) denote the R-span of Δ.
Let Λ ∈ X = G/Γ be a unimodular lattice in R

n+1. For i = 1, . . . , n + 1, let
Li(Λ) denote the collection of i-dimensional sublattices of Λ. Given Λ′ ∈ Li(Λ), let
us choose a basis {v1, . . . ,vi} of Λ′ and define

W(Λ′) := v1 ∧ · · · ∧ vi ∈
i∧

V. (2.2)

W(Λ′) is well defined modulo ±1. Thus W defines a map from Li(Λ) to
∧i V/± for

each i = 1, . . . , n + 1. Let us denote d(Λ′) := ‖W(Λ′)‖. We say that Λ′ is primitive
relative to Λ if W(Λ′) can not be written as mW(Λ̃) where |m| > 1 is an integer
and Λ̃ ∈ Li(Λ) (see [Cas57]).

For j = 1, . . . , i, let

λj(Λ′) := inf{r ≥ 0 : B(0, r) contains at least j linearly independent vectors of Λ′}.
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By the Minkowski Theorem (see [Cas57]), we have the following:

λ1(Λ′) · · ·λi(Λ′) � d(Λ′). (2.3)

Moreover, there exists a basis (called Minkowski reduced basis) of Λ′, {vj : j =
1, . . . , i}, such that ‖vj‖ � λj(Λ′) for every j = 1, . . . , i.

For ρ > 0 and i = 1, . . . , n + 1, let Ci(Λ, ρ) denote the collection of i-dimensional
primitive sublattices Λ′ of Λ with d(Λ′) < ρ. We will need the following result on
counting sublattices:

Proposition 2.2 There exists a constant N > 1 such that the following statement
holds. For any 0 < ε < 1 and any i = 1, . . . , n, let Λ ∈ Kε where Kε is defined in
(1.2). Then we have that

�Ci(Λ, 1) ≤ ε−N .

Proof. First note that there exists a constant N1 > 1 such that for any i = 1, . . . , n
and ρ > 0,

�Ci(Zn+1, ρ) ≤ ρN1 .

We also note that there exists a constant N2 > 1 such that for any Λ ∈ Kε, there
exists g ∈ SL(n + 1,R) with ‖g−1‖ < ε−N2 such that Λ = gZn+1. In fact, the fact is
easily seen if g is chosen in a Siegel set (see [EW17, Proposition 10.56]). Let us fix
ρ > ε and i = 1, . . . , n. Then for any Λ′ ∈ Ci(Λ, 1), then we have that g−1Λ′ ⊂ Z

n+1

and

d(g−1Λ′) ≤ ‖g−1‖id(Λ′) ≤ ε−(n+1)N2 .

Therefore, we have that

�Ci(Λ, 1) ≤ �Ci(Zn+1, ε−(n+1)N2) ≤ ε−N

where N = N1N2(n + 1).
This completes the proof. ��

3 A Cantor-like Construction

In this section, we will introduce a Cantor-like construction which will help us to
compute Hausdorff dimension.

Since we focus on the case of curves, we may assume that U is given by

ϕ = (ϕ1, . . . , ϕn) : [0, 1] → R
n

where every ϕi(s) is a Cn differentiable function.
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Definition 3.1 (See [Ber15, Sect. 5]). For an integer R > 0 and a closed interval
J ⊂ [0, 1], let us denote by ParR(J) the collection of closed intervals obtained by
dividing J into R closed intervals of the same size. For a collection I of closed
intervals, let us denote

ParR(I) :=
⋃
I∈I

ParR(I).

A sequence {Iq}q∈N of collections of closed intevals is called a R-sequence if for
every q ≥ 1, Iq ⊂ ParR(Iq−1). For a R-sequence {Iq}q∈N and q ≥ 1, let us define

Îq := ParR(Iq−1) \ Iq and

K({Iq : q ∈ N}) :=
⋂
q∈N

⋃
Iq∈Iq

Iq.

Then every R-sequence {Iq}q∈N gives a Cantor-like subset K({Iq}q∈N) of [0, 1].
For q ≥ 1 and a partition {Îq,p}0≤p≤q−1 of Îq, let us define

dq({Îq,p}0≤p≤q−1) :=
q−1∑
p=0

(
4
R

)q−p

max
Ip∈Ip

F (Îq,p, Ip),

where F (Îq,p, Ip) := �{Iq ∈ Îq,p, Iq ∈ Ip}. Let us define

dq(Iq) := min
{Îq,p}0≤p≤q−1

dq({Îq,p}0≤p≤q−1),

where {Îq,p}0≤p≤q−1 runs over all possible partitions of Îq. Let us define

d({Iq}q∈N) := max
q∈N

dq(Iq).

Definition 3.2 (See [Ber15, Sect. 5]). For R > 1 and a compact subset X ⊂ [0, 1],
we say that X is R-Cantor rich if for any ε > 0, there exists a R-sequence {Iq}q∈N

such that

K({Iq}q∈N) ⊂ X

and d({Iq}q∈N) ≤ ε.

Our proof relies on the following two theorems:

Theorem 3.3 (See [Ber15, Theorem 6]). Any R-Cantor rich set X has full Hausdorff
dimension.

Theorem 3.4 (See [Ber15, Theorem 7]). Any countable intersection of R-Cantor
rich sets in [0, 1] is R-Cantor rich.

To show Theorems 1.7 and 1.8, it suffices to find a constant R > 1 and show
that for any weight r, ϕ−1(Bad(r) ∩ ϕ([0, 1])) is R-Cantor rich. We will determine
R > 1 later.
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Theorem 3.5 There exists a constant R > 1 such that for any weight r,
ϕ−1(Bad(r) ∩ ϕ([0, 1])) is R-Cantor rich.

Our main task is to prove Theorem 3.5.
Let us fix R. We will show that for any ε > 0, we can construct a R-sequence

{Iq}q∈N such that K({Iq}q∈N) ⊂ ϕ−1(Bad(r)) and d({Iq}q∈N) < ε.

Standing Assumption 3.6 Let us make some assumptions to simplify the proof.

A.1 Without loss of generality, we may assume that r1 ≥ r2 ≥ · · · ≥ rn. We may
also assume that rn > 0. By [Ber15], if rn = 0, we can reduce the problem to
the (n − 1)-dimensional case.

A.2 Since

ϕ = (ϕ1, . . . , ϕn) : [0, 1] → R
n

is Cn differentiable and non-degenerate, we may assume that for any s ∈ [0, 1]
and any i = 1, . . . , n, ϕ′

i(s) �= 0. If this is not the case, we can replace [0, 1]
with a smaller closed interval I ⊂ [0, 1], cf. [Ber15, Property F]. Then since
[0, 1] is closed, there exist constants C1 > c1 > 0 such that for any s ∈ [0, 1]
and any i = 1, . . . , n, c1 ≤ |ϕ′

i(s)| ≤ C1.

Let us fix some notation. Let κ > 0 be a small parameter which we will determine
later. Let b > 0 be such that b1+r1 = R. For t > 0, let us denote

gr(t) :=

⎡
⎢⎢⎢⎣

bt

b−r1t

. . .
b−rnt

⎤
⎥⎥⎥⎦ .

For i = 1, . . . , n, let λi = 1+ri

1+r1
. Then we have that 1 = λ1 ≥ λ2 ≥ · · · ≥ λn. Let m(·)

denote the Lebesgue measure on [0, 1].
Let us give the R-sequence as follows. Let I0 = {[0, 1]}. Suppose that we have

defined Iq−1 for q ≥ 1 and every Iq−1 ∈ Iq−1 is a closed interval of size R−q+1. Let
us define Iq ⊂ ParR(Iq−1) as follows. For any Iq ∈ ParR(Iq), Iq ∈ Îq if and only
if there exists s ∈ Iq such that gr(q)U(ϕ(s))Zn+1 /∈ Kκ. That is to say, there exists
a ∈ Z

n+1 \ {0} such that ‖gr(q)U(ϕ(s))a‖ ≤ κ. Let us define Iq = ParR(Iq−1) \ Îq.
This finishes the construction of {Iq}q∈N. It is easy to see that

K({Iq}q∈N) ⊂ ϕ−1(Bad(r)).

We need to prove the following:

Proposition 3.7 For any ε > 0, there exists κ > 0 such that the R-sequence
{Iq}q∈N constructed as above with κ satisfies that

d({Iq}q∈N) ≤ ε. (3.1)
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Let N > 1 be the constant from Proposition 2.2 and k > 0 be such that κ = R−k.
We can choose κ so that k is an integer. Let us give a partition {Îq,p}0≤p≤q−1 of Îq

for each q ∈ N which shows that Proposition 3.7 holds.

Definition 3.8 Let us fix a small constant 0 < ρ < 1. We will modify the choice
of ρ later in this paper according to the constants arising from our technical results.
For q ≤ 106n4Nk, let us define Îq,0 := Îq and Îq,p = ∅ for other p’s.

For q > 106n4Nk and l = 2000n2Nk, let p = q − 2l. Let us define Îq,p′ := ∅
for p < p′ ≤ q − 1. Let us define Îq,p to be the collection of Iq ∈ Îq with the
following property: there exists s ∈ Iq such that for any j = 1, . . . , n and any

w = w1 ∧ · · · ∧ wj ∈ ∧j
Z

n+1 \ {0},

max{‖gr(q)U(ϕ(s′))w‖ : s′ ∈ [s − R−q+l, s + R−q+l]} ≥ ρj .

Let η = 1
100n2 and η′ = η

1+r1
. For q > 106n4Nk and 2000n2Nk < l ≤ 2η′q,

let p = q − 2l. Let us define Îq,p+1 := ∅. For j = 1, . . . , n, let us define Îq,p(j)

to be the collection of Iq ∈ Îq \
(⋃

p′<p Îq,p′

)
such that there exists s ∈ Iq and

v = v1 ∧ · · · ∧ vj ∈ ∧j
Z

n+1 \ {0} such that

‖gr(q)U(ϕ(s′))v‖ < ρj ,

for any s′ ∈ [s − R−q+l, s + R−q+l] and for any j′ = 1, . . . , n and any w = w1 ∧ · · · ∧
wj′ ∈ ∧j′

Z
n+1 \ {0},

max
{

‖gr(q)U(ϕ(s′))w‖ : s′ ∈ [s − R−q+l+1, s + R−q+l+1]
}

≥ ρj′
.

Let us define Îq,p =
⋃n

j=1 Îq,p(j).
For j = 1, . . . , n, let us define Îq,0(j) to be the collection of Iq∈Îq \(⋃
p′≤q−4η′q Îq,p′

)
such that there exists s ∈ Iq and v = v1∧· · ·∧vj ∈ ∧j

Z
n+1 \{0}

such that

max
{

‖gr(q)U(ϕ(s′))v‖ : s′ ∈ [s − R−q(1−2η′), s + R−q(1−2η′)]
}

< ρj .

Let us define Îq,0 =
⋃n

j=1 Îq,0(j).
Let us define Îq,p := ∅ for other p’s. It is easy to see that {Îq,p}0≤p≤q−1 is a

partition of Îq.

Besides the definition of {Îq,p}0≤p≤q−1, let us also introduce the notion of dan-
gerous interval and extremely dangerous interval:

Definition 3.9 For q > 106n4Nk, 1000n2Nk ≤ l ≤ η′q, and a ∈ Z
n+1 \ {0}, the

(q, l)-dangerous interval associated with a, which is denoted by Δq,l(a), is a closed
interval of the form Δq,l(a) = [s − R−q+l, s + R−q+l] ⊂ [0, 1] such that Iq ⊂ Δq,l(a)
for some Iq ∈ Îq,

max{‖gr(q)U(ϕ(s′))a‖ : s′ ∈ Δq,l(a)} < ρ

and
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max{‖gr(q)U(ϕ(s′))a‖ : s′ ∈ [s − R−q+l+1, s + R−q+l+1]} ≥ ρ.

The center s of Δq,l(a) is chosen such that the first coordinate of U(ϕ(s))a is zero.
For q ≥ 106n4Nk and a ∈ Z

n+1 \ {0}, the q-extremely dangerous interval
associated with a, which is denoted by Δq(a), is a closed interval of the form
Δq(a) = [s − R−q+l′ , s + R−q+l′ ] with l′ > η′q such that Iq ⊂ Δq(a) for some

Iq ∈ Îq,

max{‖gr(q)U(ϕ(s′))a‖ : s′ ∈ Δq(a) = [s − R−q+l′ , s + R−q+l′ ]} < ρ

and

max{‖gr(q)U(ϕ(s′))a‖ : s′ ∈ [s − R−q+l′+1, s + R−q+l′+1]} ≥ ρ.

Remark 3.10 Note that for any q ≥ 106n4Nk, there are only finitely many a’s such
that Δq,l(a) or Δq(a) exist.

4 Counting Dangerous Intervals

In this section we will count dangerous intervals and extremely dangerous intervals.

Proposition 4.1 Let q ≥ 106n4Nk, 1000n2Nk ≤ l ≤ η′q and p = q − 2l. For
Ip ∈ Ip, let Dq,l(Ip) denote the collection of (q, l)-dangerous intervals which intersect
Ip. Then for any Ip ∈ Ip,

�Dq,l(Ip) � R(1− 1
10n)l.

Proposition 4.2 Let q ≥ 106n4Nk. Let Dq ⊂ [0, 1] denote the union of q-extremely
dangerous intervals contained in [0, 1]. Then Dq can be covered by a collection of
Nq closed intervals of length δq and

Nq ≤ K0(ρn+1b−ηq)α

δq

where δq = R−q(1−η′), K0 > 0 is a constant, and α = 1
(n+1)(2n−1) .

In fact, Proposition 4.2 is a rephrase of the following theorem due to Bernik,
Kleinbock and Margulis:

Theorem 4.3 (See [Ber15, Proposition 2] and [BKM01, Theorem 1.4]). Let q >
106n4Nk. Let us define Eq ⊂ [0, 1] to be the set of s ∈ [0, 1] such that there exists
a = (a0, a1, . . . , an) ∈ Z

n+1 \{0} such that |ai| < ρbriq for i = 1, . . . , n, |f(s)| < ρb−q

and |f ′(s)| < b(r1−η)q where

f(s) = a0 + a1ϕ1(s) + · · · + anϕn(s). (4.1)

Then Eq can be covered by a collection Eq of intervals such that

m(Δ) ≤ δq for all Δ ∈ Eq,
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and

|Eq| ≤ K0(ρn+1b−ηq)α

δq
,

where δq = R−q(1−η′), K0 > 0 is a constant, and α = 1
(n+1)(2n−1) .

The theorem above is a simplified version of [BKM01, Theorem 1.4]. The original
version is more general.

Proof of Proposition 4.2. For every q-extremely dangerous interval Δq(a) = [s −
R−q+l′ , s + R−q+l′ ] where l′ ≥ η′q and a = (a0, a1, . . . , an), we have that

‖gr(q)U(ϕ(s′))a‖ < ρ (4.2)

for every s′ ∈ Δq(a). By direct computation, we have that

gr(q)U(ϕ(s′))a = (v0(s′), v1(s′), . . . , vn(s′))

where

v0(s′) = bq(a0 + a1ϕ1(s′) + · · · + anϕn(s′)),

and vi(s′) = b−riqai for i = 1, . . . , n. Then (4.2) implies that |ai| < ρbriq for i =
1, . . . , n, and |f(s)| < ρb−q, where f is as in (4.1). Since l ≥ η′q, we have that

|f(s′)| < ρb−q

for any s′ ∈ [s − R−q(1−η′), s + R−q(1−η′)]. Let us write s′ = s + rR−q(1−η′) for some
r ∈ [−1, 1]. Then

f(s′) = f(s) + f ′(s)rR−q(1−η′) + O(R−2q(1−η′)).

Therefore, we have that for any r ∈ [−1, 1],

|f ′(s)rR−q(1−η′)| = |f(s′) − f(s) − O(R−2q(1−η′))|
≤ |f(s′)| + |f(s)| + O(R−2q(1−η′))
< ρb−q + ρb−q + ρb−q < b−q.

This implies that

|f ′(s)| < Rq(1−η′)b−q = bq(r1−η).

The last equality above holds because b1+r1 = R and η′ = η
1+r1

. This shows that
x ∈ Eq for any x ∈ Δq(a), i.e., Δq(a) ⊂ Eq. Therefore, we have that Dq ⊂ Eq. Then
the conclusion follows from Theorem 4.3. ��

The rest of the section is devoted to the proof of Proposition 4.1. This is one of
the main technical results of this paper.
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Proof of Proposition 4.1. Let us fix Ip ∈ Ip. Let us write Ip = [s−R−q+2l, s+R−q+2l].
We claim that we can approximate ϕ(Ip) by its linear part. In fact, for any s′ ∈ Ip,
let us write s′ = s + rR−q+2l for some r ∈ [−1, 1]. By Taylor’s expansion, we have
that

gr(q)U(ϕ(s′)) = gr(q)U(ϕ(s) + R−q+2lrϕ′(s) + O(R−2q+4l))

= gr(q)U(O(R−2q+4l))gr(−q)gr(q)U(ϕ(s) + R−q+2lrϕ′(s))

= U(O(R−q+4l))gr(q)U(ϕ(s) + R−q+2lrϕ′(s)).

Since l ≤ η′q, we have that O(R−q+4l) is exponentially small and thus can be ignored.
Therefore, we can approximate ϕ(s′) by ϕ(s) + ϕ′(s)(s′ − s) for any s′ ∈ Ip.

Let us take a (q, l)-dangerous interval Δq,l(a) that intersects Ip. Without loss of
generality, we may assume that Δq,l(a) ⊂ Ip. If this is not the case, we can replace
Ip with a slightly larger interval I ′

p such that Δq,l(a) ⊂ I ′
p and m(I ′

p) < 2m(Ip) and
proceed the same argument. Let us write Δq,l(a) = [s′ − R−q+l, s′ + R−q+l] where
a = (a0, a1, . . . , an) ∈ Z

n+1 \ {0}. For every s0 ∈ Δq,l(a), let us denote

gr(q)U(ϕ(s0))a = v(s0) = (v0(s0), v1(s0), . . . , vn(s0)).

Then we have that
max{‖v(s0)‖ : s0 ∈ Δq,l(a)} < ρ (4.3)

and
max{‖v(s0)‖ : s0 ∈ [s′ − R−q+l+1, s′ + R−q+l+1]} ≥ ρ. (4.4)

Recall that for j = 1, . . . , n, λj = 1+rj

1+r1
. Let 1 ≤ n′ ≤ n be the largest index j

such that (1 − λj)q ≤ l.
For s0 ∈ [s′−R−q+l, s′+R−q+l], let us write s0 = s′+rR−q+l for r ∈ [−1, 1]. As we

explained before, we can approximate ϕ(s0) by ϕ(s′)+R−q+lrϕ′(s′). By our standing
assumption on ϕ (Standing Assumption A.2), we have that c1 ≤ |ϕ′

j(s0)| ≤ C1 for
j = 1, . . . , n. By direct calculation, we have that

gr(q)U(ϕ(s0))a = gr(q)U(ϕ(s0) − ϕ(s′))gr(−q)gr(q)U(ϕ(s′))a

= gr(q)U(rR−q+lϕ′(s′))gr(−q)v(s′).

Recall that ei ∈ R
n denote the vector with ith coordinate equal to 1 and other

coordinates equal to zero. By direct calculation, we have that

gr(q)U(rR−q+lϕ′(s′))gr(−q) = U

(
rRl

n∑
i=1

R−(1−λi)qϕ′
i(s

′)ei

)
.

Therefore, we have

v(s0) = U

(
rRl

n∑
i=1

R−(1−λi)qϕ′
i(s

′)ei

)
v(s′). (4.5)
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For the case n′ < n, let us estimate

U

(
−rRl

n∑
i=n′+1

R−(1−λi)qϕ′
i(s

′)ei

)
v(s0).

By our assumption, for i ≥ n′ + 1, we have that |rRlR−(1−λi)q| ≤ 1. Therefore, if we
write

U

(
−rRl

n∑
i=n′+1

R−(1−λi)qϕ′
i(s

′)ei

)
v(s0) = ṽ(s0) = (ṽ0(s0), ṽ1(s0), . . . , ṽn(s0)),

(4.6)
where ṽ0(s0) = v0(s0) − r

∑n
i=n′+1 RlR−(1−λi)qϕ′

i(s
′)vi(s0) and ṽi(s0) = vi(s0) for

i = 1, . . . , n, then |ṽ0(s0)| < C = (n + 1)C1ρ, and |ṽi(s0)| < ρ for i = 1, . . . , n. Let

h =
n′∑

i=1

R−(1−λi)qϕ′
i(s

′)ei

and

hW =
n′∑

i=1

R−(1−λi)qϕ′
i(s

′)wi ∈ W.

Then ‖h‖2 = ‖hW ‖2 � 1. Combining (4.5) and (4.6), we have

U(rRlh)v(s′) = (ṽ0(s0), ṽ1(s0), . . . , ṽn(s0)), (4.7)

where |ṽ0(s0)| < C, and |ṽi(s0)| < ρ for i = 1, . . . , n. Let En′ be the subspace of Rn

spanned by {e1, . . . , en′} and W ′
n′ be the subspace of W spanned by {w1, . . . ,wn′}.

Then h ∈ En′ . Let k ∈ SO(n) be an element such that k · e1 = h, k · En′ = En′ ,

and k · ei = ei for i = n′ + 1, . . . , n. Let z(k) =
[
1
k

]
∈ Z. It is easy to see that

z(k)w+ = w+, z(k)w1 = hW , z(k)W ′
n′ = W ′

n′ , and z(k)wi = wi for i = n′ + 1, . . . , n.
By the definition of z(k) and our discussion in Sect. 2.2, we have that U(h) =
z(k)U(‖h‖2e1)z−1(k). Therefore, we have that U(h)hW = hW + ‖h‖2w+. Moreover,
we have that U(h)w+ = w+; for i = 2, . . . , n′, U(h)z(k)wi = z(k)wi; and for
i = n′ + 1, . . . , n, U(h)wi = wi. Let us write

v(s′) = a+(s′)w+ +
n′∑

i=1

ai(s′)z(k)wi +
n∑

i=n′+1

ai(s′)wi.

Then the above discussion shows that

U(rRlh)v(s′) = (a+(s′) + rRla1(s′))w+ +
n′∑

i=1

ai(s′)z(k)wi +
n∑

i=n′+1

ai(s′)wi.
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By (4.3), (4.6) and (4.7), we have that there exists a constant C > 0 such that
|ai(s′)| < C for i = 1, . . . , n and |a+(s′) + rRla1(s′)| < C for any r ∈ [−1, 1]. This
implies that |a+(s′)| < C, and |a1(s′)| < CR−l. Therefore, we have that v(s′) ∈
z(k)([−C, C] × [−CR−l, CR−l] × [−C, C]n−1).

Now let us estimate |Dq,l(Ip)|.
Suppose that Dq,l(Ip) = {Δq,l(au) : 1 ≤ u ≤ L}. For each u = 1, . . . , L, let us

take su ∈ Δq,l(au) ∩ Ip such that su ∈ Iq−1,u for some Iq−1,u ∈ Iq−1. Let us denote

vu = gr(q)U(ϕ(su))au.

Then by our previous argument, we have that

vu = au,+w+ +
n′∑

i=1

au,iz(k)wi +
n∑

i=n′+1

au,iwi, (4.8)

where |au,+| < C, |au,1| < CR−l, and |au,i| < C for i = 2, . . . , n.
Now let us consider gr(q)U(ϕ(s1))au. Let us write su = s1 − rR−q+2l for some

r ∈ [−1, 1]. As we explained at the beginning of the proof, we can approximate ϕ(Ip)
by its linear part. Then we have that

gr(q)U(ϕ(s1))au = gr(q)U(ϕ(s1) − ϕ(su))gr(−q)gr(q)U(ϕ(su))au

= gr(q)U(ϕ(s1) − ϕ(su))gr(−q)vu

= gr(q)U(rR−q+2lϕ′(s))gr(−q)vu

= U

(
rR2l

n∑
i=1

R−(1−λi)qϕ′
i(s)ei

)
vu.

Let us denote h =
∑n′

i=1 R−(1−λi)qϕ′
i(s

′)ei as before. Then by (4.8), we have that

gr(q)U(ϕ(s1))au = U(rR2lh + rR2l
n∑

i=n′+1

R−(1−λi)qϕ′
i(s)ei)vu

=

(
au,+ + rR2lau,1 + rR2l

n∑
i=n′+1

R−(1−λi)qϕ′
i(s)au,i

)
w+

+
n′∑

i=1

au,iz(k)wi +
n∑

i=n′+1

au,iwi.
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Since |au,1| ≤ CR−l, and since for i = n′ + 1, . . . , n, (1 − λi)q > l, |au,i| < C, and
|ϕ′

i(x)| ≤ C1, we have that

∣∣∣∣∣au,+ + rR2lau,1 + rR2l
n∑

i=n′+1

R−(1−λi)qϕ′(s)au,i

∣∣∣∣∣
≤ |au,+| + |r|R2l|au,l| + |r|R2l

n∑
i=n′+1

R−(1−λi)q|ϕ′(s)||au,i|

≤ C + R2lCR−l + R2l
n∑

i=n′+1

R−lC1C

≤ C + R2lCR−l + R2lnR−lC1C

≤ C2R
l

where C2 = 2C + nC1C > 0. This implies that for any u = 1, . . . , L, we have that

gr(q)U(ϕ(s1))au ∈ z(k)([−C2R
l, C2R

l] × [−CR−l, CR−l] × [−C, C]n−1).

Let us consider the range of gr(q − l)U(ϕ(s1))au = gr(−l)gr(q)U(ϕ(s1))au. Let us
write gr(−l) = d2(l)d1(l) where

d1(l) =

⎡
⎢⎢⎢⎢⎢⎣

b−l

br1lIn′

brn′+1l

. . .
brnl

⎤
⎥⎥⎥⎥⎥⎦ ,

and

d2(l) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1

b−(r1−r2)l

. . .
b−(r1−rn′ )l

In−n′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then we have that

gr(q − l)U(ϕ(s1))au ∈ d2(l)d1(l)z(k)([−C2R
l, C2R

l] × [−CR−l, CR−l] × [−C, C]n−1).

By the definition of z(k), we have that d1(l)z(k) = z(k)d1(l). Therefore, we have that
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d1(l)z(k)([−C2Rl, C2Rl] × [−CR−l, CR−l] × [−C, C]n−1)

= z(k)d1(l)([−C2Rl, C2Rl] × [−CR−l, CR−l] × [−C, C]n−1)

= z(k)

⎛
⎝[−C2br1l, C2br1l] × [−Cb−l, Cb−l] × [−Cbr1l, Cbr1l]n1−1 ×

n∏
i=n′+1

[−Cbril, Cbril]

⎞
⎠

⊂ z(k)

⎛
⎝[−C2br1l, C2br1l] × [−1, 1] × [−Cbr1l, Cbr1l]n

′−1 ×
n∏

i=n′+1

[−Cbril, Cbril]

⎞
⎠ .

It is easy to see that

z(k)

(
[−C2b

r1l, C2b
r1l] × [−1, 1] × [−Cbr1l, Cbr1l]n

′−1 ×
n∏

i=n′+1

[−Cbril, Cbril]

)

can be covered by a collection B of O(bλl) balls of radius 1 where λ = n′r1 +∑n
i=n′+1 ri. Then we have that

gr(q − l)U(ϕ(s1))au ∈ d2(l)
⋃

B∈B
B

=
⋃

B∈B
d2(l)B.

Since d2(l) is a contracting map, for every B ∈ B, there exists a ball B′ of radius
C such that d2(l)B ⊂ B′. Let B′ denote the collection of all such B′’s. Then we have
that

gr(q − l)U(ϕ(s1))au ∈
⋃

B′∈B′

B′.

Since gr(q − l)U(ϕ(s1))au ∈ gr(q − l)U(ϕ(s1))Zn+1, we have that

gr(q − l)U(ϕ(s1))au ∈
⋃

B′∈B′

B′ ∩ Λ,

where Λ = gr(q − l)U(ϕ(s1))Zn+1. By our assumption, s1 ∈ Iq−1,1 for some Iq−1,1 ∈
Iq−1. This implies that s1 ∈ Iq−l for some Iq−l ∈ Iq−l. Therefore, Λ = gr(q −
l)U(ϕ(s1))Zn+1 ∈ Kκ, i.e., Λ does not contain any nonzero vectors with norm ≤ κ.
Therefore, there exists a constant C4 such that every ball of radius 1 contains at
most C4κ

−n−1 = C4R
(n+1)k points in Λ. Thus, we have that

�Dq,l(Ip) = �{gr(q − l)U(ϕ(s1))au : 1 ≤ u ≤ L} ≤
∑

B′∈B′

�(B′ ∩ Λ)

≤
∑

B′∈B′

C4R
(n+1)k

≤ C5b
λl+4nk ≤ C5b

(λ+ 1
200n

)l,
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where C5 = C3C4 and λ = n′r1 +
∑n

i=n′+1 ri. Now let us estimate λ. In fact,

λ =
n∑

i=1

ri +
n′∑

i=1

(r1 − ri)

= 1 +
n′∑

i=1

(r1 − ri).

By our assumption, for i = 1, . . . , n′, we have that r1 − ri ≤ l
q ≤ 1

100n2 . Therefore,
we have that

λ ≤ 1 + n
1

100n2
= 1 +

1
100n

.

Thus, we have that

�Dq,l(Ip) ≤ C5b
(1+ 1

100n
+ 1

200n)l ≤ C5R
(1− 1

10n)l.

The last inequality above holds because b = R
1

1+r1 ≤ R
n

n+1 .
This completes the proof. ��

5 Proof of the Main Result

In this section we will finish the proof of Proposition 3.7. By our discussion in Sects.
1 and 3, Proposition 3.7 implies Theorem 3.5, and thus Theorems 1.7 and 1.8.

The structure of the section is as follows. In the first subsection, we will prove
Proposition 3.7 for the case q ≤ 106n4Nk. The second, third and fourth subsections
are devoted to the proof for the case q > 106n4Nk. The key point is to estimate
F (Îq,p, Ip) for Ip ∈ Ip. The second subsection deals with the case p = q−4000n2Nk.
The third subsection deals with the case p = q − 2l where 2000n2Nk < l < 2η′q.
The fourth subsection deals with the case p = 0.

The third and fourth subsections contain some technical results on the canonical
representation of SL(n+1,R) on

∧i V for i = 2, . . . , n. They are also main technical
contributions of this paper.

Our basic tool is the following non-divergence theorem due to Kleinbock:

Theorem 5.1 (see [Kle08, Theorem 2.2]). There exist constants C, α > 0 such that
the following holds: For any g ∈ SL(n+1,R), any one parameter unipotent subgroup
U = {u(r) : r ∈ R} ⊂ SL(n + 1,R) and any R > 0, if for any i = 1, 2, . . . , n and any
v = v1 ∧ · · · ∧ vi ∈ ∧i

Z
n+1 \ {0},

max{‖u(r)gv‖ : r ∈ [−R, R]} ≥ ρi,

then for any 0 < ε < ρ,

m
({r ∈ [−R, R] : u(r)gZn+1 /∈ Kε}

) ≤ C

(
ε

ρ

)α

R.
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We will also need the following important result due to Kleinbock and Margulis
[KM98].

Theorem 5.2 (see [KM98, Proposition 2.3]). Let ϕ : [0, 1] → R
n be a Cn non-

degenerate curve. Then there exists a constant α > 0 such that for any s ∈ [0, 1]
there exists an interval J centered at s and positive constants D and ρ such that for
any t ≥ 0 and 0 < ε < ρ one has

m
({s′ ∈ J : gr(t)u(ϕ(s′))Zn+1 �∈ Kε}

) ≤ D

(
ε

ρ

)α

m(J).

Remark 5.3 The exact statement in [KM98, Proposition 2.3] is more general than
the above theorem. For example, the statement holds for any Cn differentiable non-
degenerate submanifolds.

From Theorem 5.2, one can easily deduce the following corollary:

Corollary 5.4 Let ϕ : [0, 1] → R
n be a Cn non-degenerate curve. Then there exist

constants C > 0, α > 0 and 0 < ρ1 < 1 such that for any t ≥ 0 and 0 < ε < ρ1 one
has

m
({s ∈ [0, 1] : gr(t)u(ϕ(s))Zn+1 �∈ Kε}

) ≤ C

(
ε

ρ1

)α

.

Proof. For any s ∈ [0, 1], one can find the corresponding interval J = J(s), constants
D(s) > 0 and ρ(s) > 0 arising from Theorem 5.2. Then {J(s) : s ∈ [0, 1]} is an
open covering of [0, 1]. Since [0, 1] is compact, there is a finite covering {J(si) :
i = 1, 2, . . . , M}. Without loss of generality, we may assume that m(J(si)) ≤ 2.
Let us choose ρ1 := min{ρ(si) : i = 1, 2, . . . , M} and C := 2M max{D(si) : i =
1, 2, . . . , M}. Then for any t ≥ 0 and 0 < ε < ρ1, we have that

Et,ε ⊂
M⋃
i=1

Et,ε ∩ J(si)

where Et,ε := {s ∈ [0, 1] : [gr(t)u(ϕ(s))] �∈ Kε}. By Theorem 5.2, for any i =
1, 2, . . . , M , we have that

m(Et,ε ∩ J(si)) ≤ D(si)
(

ε

ρ(si)

)α

m(J(si)) ≤ D(si)
(

ε

ρ1

)α

· 2.

Therefore, we have that

m(Et,ε) ≤
M∑
i=1

2D(si)
(

ε

ρ1

)α

≤ C

(
ε

ρ1

)α

.

This completes the proof. ��

Later in this paper, we will choose 0 < ρ < 1 such that C
(
2ρ
ρ1

)α
< 1

1000 .
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5.1 The case where q is small. In this subsection, let us assume that q ≤
106n4Nk. Then Îq,0 = Îq and Îq,p = ∅ for other p.

Proposition 5.5

F (Îq,0, I) � Rq−αk.

Proof. By Corollary 5.4, we have that for any κ = R−k > 0 such that 2κ < ρ, the
following holds:

m({s ∈ [0, 1] : gr(q)U(ϕ(s))Zn+1 /∈ K2κ}) ≤ C

(
2κ

ρ

)α

.

On the other hand, by the definition of Îq, for any Iq ∈ Îq, there exists s ∈ Iq

such that

gr(q)U(ϕ(s))Zn+1 ∈ X \ Kκ.

Since gr(q)U(ϕ(Iq))Zn+1 is contained in 1-neighborhood of gr(q)U(ϕ(s))Zn+1, we
have

gr(q)U(ϕ(Iq))Zn+1 ⊂ X \ K2κ.

Therefore, we have that

F (Îq,0, I)R−q = m

⎛
⎝ ⋃

Iq∈Îq

Iq

⎞
⎠

= m({s ∈ I : gr(q)U(ϕ(s))Zn+1 /∈ K2κ}) ≤ C6κ
α = C6R

−αk

where C6 = C
(
2
ρ

)α
. This finishes the proof. ��

Let us choose R > 1 such that Rα > 100010
6n4N .

Proof of Proposition 3.7 for q ≤ 106n4Nk. It suffices to show that(
4
R

)q

F (Îq,0, I)

can be arbitrarily small. In fact, by Proposition 5.5, we have that(
4
R

)q

F (Îq,0, I) =
(

4
R

)q

O(Rq−αk)

= O

(
4q

Rαk

)
= O

(
410

6n4Nk

Rαk

)
= O

((
4

1000

)106n4Nk
)

.

Then it is easy to see that
(
4
R

)q
F (Îq,0, I) → 0 as k → ∞.

This completes the proof for q ≤ 106n4Nk. ��
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5.2 The generic case. The rest of the section is devoted to the proof of Propo-
sition 3.7 for q > 106n4Nk. In the following subsections, we will estimate F (Îq,p, Ip)
for different p’s. In this subsection we will estimate F (Îq,p, Ip) for p = q−4000n2Nk.
We call it the generic case.

Proposition 5.6 Let q > 106n4Nk and p = q − 4000n2Nk. Then for any Ip ∈ Ip,
we have that

F (Îq,p, Ip) � Rq−p−αk.

Proof. Let us fix Ip ∈ Ip. If F (Îq,p, Ip) = 0, then the statement trivially holds.
Suppose F (Îq,p, Ip) > 0, let us take Iq ∈ Îq,p and s ∈ Iq ∩ Ip. Without loss of

generality, we may assume that [s − R−q+2000n2Nk, s + R−q+2000n2Nk] ⊂ Ip. If this
is not the case, we can replace Ip with a slightly larger interval I ′

p ⊃ Ip such that
[s − R−q+2000n2Nk, s + R−q+2000n2Nk] ⊂ I ′

p and m(I ′
p) < 2m(Ip) and proceed the

same argument. Then for any i = 1, . . . , n and v = v1 ∧ · · · ∧vi ∈ ∧i
Z

n+1 \ {0}, we
have that

max{‖gr(q)U(ϕ(s′))v‖ : s′ ∈ [s − R−q+2000n2Nk, s + R−q+2000n2Nk]} ≥ ρi.

Therefore, we have that

max{‖gr(q)U(ϕ(s′))v‖ : s′ ∈ Ip} ≥ ρi.

On the other hand, as we explained in the proof of Proposition 4.1, we can
approximate ϕ(Ip) by its linear part, that is to say, for any s′ ∈ Ip, we approximate
ϕ(s′) by ϕ(s) + (s′ − s)ϕ′(s). For s′ ∈ Ip, let us write s′ = s + rR−q+4000n2Nk where
r ∈ [−1, 1] and denote g = gr(q)U(ϕ(s)). Then

gr(q)U(ϕ(s′)) = gr(q)U(ϕ(s′) − ϕ(s))gr(−q)gr(q)U(ϕ(s))

= gr(q)U(rR−q+4000n2Nkϕ′(s))gr(−q)g

= U(rR4000n2Nkh)g,

where h = ϕ′
1(s)e1 +

∑n
i=2 R−(1−λi)qϕ′

i(s)ei. Recall that λi = 1+ri

1+r1
. Since

{U(rR4000n2Nkh) : r ∈ R} is a one parameter unipotent subgroup, by Theorem 5.1,
we have that

m({r ∈ [−1, 1] : U(rR4000n2Nkh)gZn+1 /∈ K2κ}) ≤ 2C

(
2κ

ρ

)α

.

This implies that

m({s ∈ Ip : gr(q)U(ϕ(s))Zn+1 /∈ K2κ}) ≤ 2C

(
2κ

ρ

)α

m(Ip).
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On the other hand, it is easy to see that gr(q)U(ϕ(Iq))Zn+1 ⊂ X \ K2κ for any
Iq ∈ Îq. Therefore we have that

F (Îq,p, Ip)R−q

≤ m({s ∈ Ip : gr(q)U(ϕ(s))Zn+1 /∈ K2κ})

≤ 2C
(
2κ
ρ

)α
m(Ip)

= 2C
(
2
ρ

)α
καR−p = C7R

−p−αk

where C7 = 2C
(
2
ρ

)α
. This proves the statement. ��

By Proposition 5.6, we have that for p = q − 4000n2Nk and any Ip ∈ Ip, the
following holds:(

4
R

)q−p

F (Îq,p, Ip) �
(

4
R

)q−p

Rq−p−αk =
44000n

2Nk

Rαk
=
(

4
1000

)4000n2Nk

. (5.1)

Then it is easy to see that
(
4
R

)q−p
F (Îq,p, Ip) → 0 as k → ∞.

5.3 Dangerous case. In this subsection, we will consider the case where 2000n2N
k < l < 2η′q and p = q − 2l. We call this case the (q, l)-dangerous case.

Proposition 5.7 For any Ip ∈ Ip, we have that

F (Îq,p, Ip) � Rq−p− l

20n .

Let us recall that for 1000n2Nk < l′ < η′q, a (q, l′)-dangerous interval Δq,l′(a)
associated with a nonzero integer vector a ∈ Z

n+1 is a closed interval of the form

Δq,l′(a) = [s − R−q+l′ , s + R−q+l′ ]

such that Iq ⊂ Δq,l′(a) for some Iq ∈ Îq,

max{‖gr(q)U(ϕ(s′))a‖ : s′ ∈ Δq,l′(a)} < ρ

and

max{‖gr(q)U(ϕ(s′))a‖ : s′ ∈ [s − R−q+l′+1, s + R−q+l′+1]} ≥ ρ.

The following lemma is crucial to prove Proposition 5.7 and is one of the main
technical contributions of this paper:

Lemma 5.8 For any i = 1, . . . , n and Iq ∈ Îq,p(i) intersecting Ip, one of the following
two cases holds:

Case 1. there exists a (q, l′)-dangerous interval Δq,l′(a) containing Iq for some l/2 ≤
l′ ≤ l;
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Case 2. there exists s ∈ Iq and

v = v1 ∧ · · · ∧ vi ∈
∧i

Z
n+1 \ {0}

such that if we write

gr(q)U(ϕ(s))v = w+ ∧ w(i−1) + w(i)

where w(i−1) ∈ ∧i−1 W and w(i) ∈ ∧i W , then we have that ‖w+ ∧
w(i−1)‖ = ‖w(i−1)‖ < ρi and ‖w(i)‖ ≤ ρiR−l/2.

Proof. If i = 1, then the first case holds. We may assume that i ≥ 2.
By the definition of Îq,p(i), there exists v = v1 ∧ · · · ∧ vi ∈ ∧i

Z
n+1 \ {0} such

that for any s ∈ Iq,

max{‖gr(q)U(ϕ(s′))v‖ : s′ ∈ [s − R−q+l, s + R−q+l]} < ρi

and

max{‖gr(q)U(ϕ(s′))v‖ : s′ ∈ [s − R−q+l+1, s + R−q+l+1]} ≥ ρi.

Without loss of generality, we may assume that the sublattice Li generated by
{v1, . . . ,vi} is a primitive i-dimensional sublattice of Zn+1. Then Λi=gr(q)U(ϕ(s))Li

is a primitive i-dimensional sublattice of Λ = gr(q)U(ϕ(s))Zn+1. For simplicity, let us
denote g = gr(q)U(ϕ(s)). Let us choose the Minkowski reduced basis {gv′

1, . . . , gv
′
i}

of Λi. Since

d(Λi) = ‖gv‖ < ρi,

we have that ‖gv′
1‖ < ρ by the Minkowski Theorem.

Let us repeat the argument in the proof of Proposition 4.1. Recall that for j =
1, . . . , n, λj = 1+rj

1+r1
. Let 1 ≤ n′ ≤ n be the largest index j such that (1 − λj)q ≤ l.

By Standing Assumption A.2, we have that c1 ≤ |ϕ′
i(s)| ≤ C1 for any i = 1, . . . , n

and s ∈ [0, 1]. Fix any s ∈ Iq and let h =
∑n′

i=1 R−(1−λi)qϕ′(s)ei. For any s′ ∈
[s − R−q+l, s + R−q+l], let us write s′ = s + rR−q+l where r ∈ [−1, 1]. By the same
argument as in the proof of Proposition 4.1, we have that

gr(q)U(ϕ(s′)) = U(O(1))U(rRlh)gr(q)U(ϕ(s)) = U(O(1))U(rRlh)g.

Therefore, we have that

‖U(rRlh)gv‖ < ρi

for any r ∈ [−1, 1].
Following the notation in the proof of Proposition 4.1, let us denote h = k · e1

for k ∈ SO(n) and

z(k) =
[
1
k

]
∈ Z.
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For j = 1, . . . , i, let us write

gv′
j = a+(j)w+ + a1(j)z(k)w1 + w′(j)

where w′(j) ∈ z(k)W2. Then

gv = (gv′
1) ∧ · · · ∧ (gv′

i)

=
i∧

j=1

(a+(j)w+ + a1(j)z(k)w1 + w′(j))

= w+ ∧ (z(k)w1) ∧
⎛
⎝∑

j<j′

ε+,1(j, j′)a+(j)a1(j′)
∧

k 	=j,j′

w′(k)

⎞
⎠

+ w+ ∧
⎛
⎝ i∑

j=1

ε+(j)a+(j)
∧
k 	=j

w′(k)

⎞
⎠+ (z(k)w1) ∧

⎛
⎝ i∑

j=1

ε1(j)a1(j)
∧
k 	=j

w′(k)

⎞
⎠

+
i∧

j=1

w′(j)

where ε+,1(j, j′), ε+(j), ε1(j) ∈ {±1} for every j, j′ ∈ {1, . . . , i}. By our discussion in
Sect. 2.2 on the representation of SL(2,h) on

∧i V , we have that

U(rRlh)gv = w+ ∧ (z(k)w1) ∧
⎛
⎝∑

j<j′

ε+,1(j, j′)a+(j)a1(j′)
∧

k 	=j,j′

w′(k)

⎞
⎠

+ w+ ∧
⎛
⎝ i∑

j=1

ε+(j)a+(j)
∧
k 	=j

w′(k)

⎞
⎠

+ rRlw+ ∧
⎛
⎝ i∑

j=1

ε1(j)a1(j)
∧
k 	=j

w′(k)

⎞
⎠

+ (z(k)w1) ∧
⎛
⎝ i∑

j=1

ε1(j)a1(j)
∧
k 	=j

w′(k)

⎞
⎠+

i∧
j=1

w′(j).

Since ‖U(rRlh)gv‖ < ρi for any r ∈ [−1, 1], we have that∥∥∥∥∥∥
i∑

j=1

ε1(j)a1(j)
∧
k 	=j

w′(k)

∥∥∥∥∥∥ ≤ ρiR−l.

Let us consider the following two cases:

(1) |a1(1)| ≤ R−l/2.
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(2) |a1(1)| > R−l/2.
Let us first suppose |a1(1)| ≤ R−l/2. Note that ‖gv′

1‖ < ρ. Then by repeating
the calculation in the proof of Proposition 4.1, we conclude that

max{‖gr(q)U(ϕ(s′))v′
1‖ : s′ ∈ [s − R−q+l/2, s + R−q+l/2]} < ρ.

On the other hand, by our definition on Îq,p(i), we have that

max{‖gr(q)U(ϕ(s′))v′
1‖ : s′ ∈ [s − R−q+l+1, s + R−q+l+1]} ≥ ρ.

This implies that Iq ⊂ Δq,l′(v′
1) for some l/2 ≤ l′ ≤ l. This proves the first part of

the statement.
Now let us suppose |a1(1)| > R−l/2. Then we have that

ε1(1)a1(1)
i∧

j=1

w′(j) = w′(1) ∧
⎛
⎝ε1(1)a1(1)

∧
k 	=1

w′(k)

⎞
⎠

= w′(1) ∧
⎛
⎝ i∑

j=1

ε1(j)a1(j)
∧
k 	=j

w′(k)

⎞
⎠ .

Therefore, we have that

|a1(1)|
∥∥∥∥∥∥

i∧
j=1

w′(j)

∥∥∥∥∥∥ =

∥∥∥∥∥∥w′(1) ∧
⎛
⎝ i∑

j=1

ε1(j)a1(j)
∧
k 	=j

w′(k)

⎞
⎠
∥∥∥∥∥∥

≤ ‖w′(1)‖
∥∥∥∥∥∥

i∑
j=1

ε1(j)a1(j)
∧
k 	=j

w′(k)

∥∥∥∥∥∥
≤ ρ · ρiR−l = ρi+1R−l.

Since |a1(1)| > R−l/2 and ρ < 1, we have that∥∥∥∥∥∥
i∧

j=1

w′(j)

∥∥∥∥∥∥ ≤ ρiR−l/2.

If we write

gv = w ∧ w(i−1) + w(i)

where w(i−1) ∈ ∧i−1 W and w(i) ∈ ∧i W , then

w(i) = (z(k)w1) ∧
⎛
⎝ i∑

j=1

ε1(j)a1(j)
∧
k 	=j

w′(k)

⎞
⎠+

i∧
j=1

w′(j).

By our previous argument, we have that

‖w(i)‖ ≤ ρiR−l/2.

This proves the second part of the statement. ��
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The following lemma takes care of the second case of Lemma 5.8.

Lemma 5.9 Let i ∈ {2, . . . , n}. Let Dq,p(Ip, i) denote the collection of Iq ∈ Îq,p

intersecting Ip and not contained in any (q, l′)-dangerous interval for any l/2 ≤ l′ ≤ l.
Let

Dq,p(Ip, i) :=
⋃

Iq∈Dq,p(Ip,i)

Iq.

Then for any closed subinterval J ⊂ Ip of length R−q+(1+ 1
2n

)l, we have that

m(Dq,p(Ip, i) ∩ J) � R− l

20n m(J).

Proof. Let us fix a closed subinterval J ⊂ Ip of length R−q+(1+ 1
2n

)l.
For any s ∈ Iq ∈ Dq,p(Ip, i), there exists v = v1 ∧ · · · ∧ vi ∈ ∧i

Z
n+1 \ {0} such

that

max{‖gr(q)U(ϕ(s′))v‖ : s′ ∈ [s − R−q+l, s + R−q+l]} < ρi.

Let us denote the interval [s − R−q+l, s + R−q+l] by Δq,l(v, i). Then every Iq ∈
Dq,l(Ip, i) is contained in some Δq,l(v, i) and every Δq,l(v, i) contains at most O(Rl)
different Iq ∈ Dq,l(Ip, i).

We will follow the notation used in the proof of Lemma 5.8. Let g = gr(q)U(ϕ(s)),
h = k · e1 and

z(k) =
[
1
k

]
∈ Z

be as in the proof of Lemma 5.8. For j = 1, . . . , i, let us write

gvj = a+(j)w+ + a1(j)z(k)w1 + w′(j)
= a+(j)w+ + w(j)

where w′(j) ∈ z(k)W2 and w(j) = a1(j)z(k)w1 + w′(j) ∈ W . Then

gv = w+ ∧ (z(k)w1) ∧
⎛
⎝∑

j<j′

ε+,1(j, j′)a+(j)a1(j′)
∧

k 	=j,j′

w′(k)

⎞
⎠

+ w+ ∧
⎛
⎝ i∑

j=1

ε+(j)a+(j)
∧
k 	=j

w′(k)

⎞
⎠

+ (z(k)w1) ∧
⎛
⎝ i∑

j=1

ε1(j)a1(j)
∧
k 	=j

w′(k)

⎞
⎠+

i∧
j=1

w′(j).
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By Lemma 5.8, we have that∥∥∥∥∥∥(z(k)w1) ∧
⎛
⎝ i∑

j=1

ε1(j)a1(j)
∧
k 	=j

w′(k)

⎞
⎠
∥∥∥∥∥∥ ≤ ρiR−l

and ∥∥∥∥∥∥
i∧

j=1

w′(j)

∥∥∥∥∥∥ ≤ ρiR−l/2.

Let us take the collection of all possible Δq,l(v, i)’s intersecting J , say

{Δq,l(v(M), i) = [s(M) − R−q+l, s(M) + R−q+l] : M = 1, . . . , L}.

For simplicity, let us denote g(M) = gr(q)U(ϕ(s(M))) for M = 1, . . . , L. Since ϕ(J)
can be approximated by its linear part, we have that the corresponding h and k for
s(M) is the same for M = 1, . . . , L. Then

g(M)v(M) = w+ ∧ w(i−1)(M) + (z(k)w1) ∧ (w′)(i−1)(M) + w(i)(M)

where w(i−1)(M) ∈ ∧i−1 W , (w′)(i−1)(M) ∈ ∧i−1 z(k)W2 and w(i)(M) ∈ ∧i z(k)W2.
By our previous discussion, we have that∥∥∥w+ ∧ w(i−1)(M)

∥∥∥ < ρi,

‖(w′)(i−1)(M)‖ =
∥∥∥(z(k)w1) ∧ (w′)(i−1)(M)

∥∥∥ ≤ ρiR−l,

and ∥∥∥w(i)(M)
∥∥∥ ≤ ρiR−l/2.

Now let us consider g(1)v(M). Let us write s(1) − s(M) = rR−q+(1+ 1
2n

)l where
r ∈ [−1, 1]. By our previous discussion, we have that

g(1) = gr(q)U(ϕ(s(1))) = U(O(1))U
(
rR(1+ 1

2n)lh
)

gr(q)U(ϕ(s(M)))

= U(O(1))U
(
rR(1+ 1

2n)lh
)

g(M).

Therefore, we have that

g(1)v(M) = U(O(1))U
(
rR(1+ 1

2n)lh
)

g(M)v(M).

It is easy to see that we can ignore the contribution of U(O(1)) and identify
g(1)v(M) with U(rR(1+ 1

2n
)lh)g(M)v(M). Then we have that

g(1)v(M) = U
(
rR(1+ 1

2n)lh
)

g(M)v(M)

= w+ ∧ w(i−1)(M) + rR(1+ 1
2n)lw+ ∧ (w′)(i−1)(M)

+ (z(k)w1) ∧ (w′)(i−1)(M) + w(i)(M).
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Now let us look at the range of

gr(−l/2)g(1)v(M) = gr(q − l/2)U(ϕ(s(1)))v(M).

It is easy to see that gr(−l/2)w+ = b−l/2w+, ‖gr(−l/2)z(k)w1‖ ≤ br1l/2‖z(k)w1‖,

‖gr(−l/2)w(i−1)(M)‖ ≤ bl/2‖w(i−1)(M)‖,

‖gr(−l/2)(w′)(i−1)(M)‖ ≤ b(1−r1)l/2‖(w′)(i−1)(M)‖,

and

‖gr(−l/2)w(i)(M)‖ ≤ bl/2‖w(i)(M)‖.

Since

gr(−l/2)g(1)v(M) = b−l/2w+ ∧ (gr(−l/2)w(i−1)(M))

+ rR(1+ 1
2n)lb−l/2w+ ∧ (gr(−l/2)(w′)(i−1)(M))

+ (gr(−l/2)z(k)w1) ∧ (gr(−l/2)(w′)(i−1)(M))

+ gr(−l/2)w(i)(M),

we have that

‖gr(−l/2)g(1)v(M)‖ ≤ b−l/2‖w+ ∧ (gr(−l/2)w(i−1)(M))‖
+ R(1+ 1

2n)lb−l/2‖w+ ∧ (gr(−l/2)(w′)(i−1)(M))‖
+ ‖gr(−l/2)z(k)w1‖ · ‖gr(−l/2)(w′)(i−1)(M)‖
+ ‖gr(−l/2)w(i)(M)‖

≤b−l/2bl/2‖w(i−1)(M))‖+R(1+ 1
2n)lb−l/2b(1−r1)l/2‖(w′)(i−1)(M)‖

+ br1l/2‖z(k)w1‖ · b(1−r1)l/2‖(w′)(i−1)(M)‖ + bl/2‖w(i)(M)‖
≤ b−l/2bl/2ρi + R(1+ 1

2n)lb−l/2b(1−r1)l/2ρiR−l

+ br1l/2b(1−r1)l/2ρiR−l + bl/2ρiR−l/2

≤ ρi + ρi + ρiR−l/2 + ρi ≤ 1.

For M = 1, . . . , L, let Λi(v(M)) denote the i-dimensional primitive sublattice of
Z

n+1 corresponding to v(M). We will apply Proposition 2.2 to estimate L. Thus, let
us keep the notation used there. By the inequality above, we have that gr(−l/2)g(1)
Λi(v(M)) ∈ Ci(gr(−l/2)g(1)Zn+1, 1) for every M = 1, . . . , L. On the other hand,
since x(1) ∈ Iq ∈ Îq, we have that

gr(−l/2)g(1)Zn+1 = gr(q − l/2)U(ϕ(s(1)))Zn+1 ∈ Kκ.

By Proposition 2.2, we have that

L ≤ �Ci(gr(−l/2)g(1)Zn+1, 1) ≤ κ−N = RNk.
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Therefore, we have that

m(Dq,p(Ip, i) ∩ J) ≤ LR−q+l ≤ R−q+l+Nk

≤ R−q+l+ l

100n ≤ R− l

20n R−q+(1+ 1
2n)l = R− l

20n m(J).

This completes the proof. ��

Lemma 5.9 easily implies the following:

Corollary 5.10 Let us keep the notation as above. Then

m(Dq,p(Ip, i)) � R− l

20n m(Ip).

Proof. The statement follows from Lemma 5.9 by dividing Ip into subintervals of
length R−q+(1+ 1

2n
)l. ��

Now we are ready to prove Proposition 5.7.

Proof of Proposition 5.7. Let us fix Ip ∈ Ip. For every l/2 ≤ l′ ≤ l, let us denote by
Dq,l′(Ip) denote the union of (q, l′)-dangerous intervals intersecting Ip. By Proposi-

tion 4.1, we have that m(Dq,l′(Ip)) = O
(
R− l′

10n

)
m(Ip). Therefore, we have that

m

⎛
⎝ ⋃

l/2≤l′≤l

Dq,l′(Ip)

⎞
⎠ ≤

∑
l/2≤l′≤l

m(Dq,l′(Ip))

�
∑

l/2≤l′≤l

R− l′
10n m(Ip)

� R− l

20n m(Ip).

By Corollary 5.10, we have that

m

(
n⋃

i=2

Dq,p(Ip, i)

)
≤

n∑
i=2

m(Dq,p(Ip, i))

�
n∑

i=2

R− l

20n m(Ip) � R− l

20n m(Ip)

By Lemma 5.8, we have that

Iq ⊂
⋃

l/2≤l′≤l

Dq,l′(Ip) ∪
n⋃

i=2

Dq,p(Ip, i)
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for any Iq ∈ Îq,p. Therefore, we have that

F (Îq,p, Ip)R−q ≤ m

⎛
⎝ ⋃

l/2≤l′≤l

Dq,l′(Ip)
n⋃

i=2

Dq,p(Ip, i)

⎞
⎠

≤ m

⎛
⎝ ⋃

l/2≤l′≤l

Dq,l′(Ip)

⎞
⎠+ m

(
n⋃

i=2

Dq,p(Ip, i)

)

� R− l

20n m(Ip) = R−p− l

20n .

This proves that

F (Îq,p, Ip) � Rq−p− l

20n . ��
By Proposition 5.7, we have that

2η′q∑
l=2000n2Nk

(
4
R

)2l

max
Iq−2l∈Iq−2l

F (Îq,q−2l, Iq−2l)

�
2η′q∑

l=2000n2Nk

(
4
R

)2l

R2l− l

20n (5.2)

≤
2η′q∑

l=2000n2Nk

(
16

1000

)l

�
(

16
1000

)2000n2Nk

. (5.3)

From this it is easy to see that

2η′q∑
l=2000n2Nk

(
4
R

)2l

max
Iq−2l∈Iq−2l

F (Îq,q−2l, Iq−2l) → 0 (5.4)

as k → ∞.

5.4 Extremely dangerous case. In this subsection we will estimate F (Îq,0, I).
We call this case the extremely dangerous case.

Proposition 5.11 There exists a constant ν > 0 such that for any q > 106n4Nk,
we have that

F (Îq,0, I) � R(1−ν)q.

Similarly to Lemma 5.8, we have the following:

Lemma 5.12 For any i = 1, . . . , n and Iq ∈ Îq,0(i), one of the following two cases
holds:

Case 1. there exists a q-extremely dangerous interval Δq(a) such that Iq ∈ Δq(a);
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Case 2. there exists v = v1 ∧ · · · ∧ vi ∈ ∧i
Z

n+1 \ {0} such that the following holds:
for any s ∈ Iq, if we write

gr(q)U(ϕ(s))v = w+ ∧ w(i−1) + w(i)

where w(i−1) ∈ ∧i−1 W and w(i) ∈ ∧i W , then ‖w+ ∧ w(i−1)‖ ≤ ρi and
‖w(i)‖ ≤ ρiR−η′q.

Proof. The proof is the same as the proof of Lemma 5.8. In fact, the argument in
the proof of Lemma 5.8 works for l = 2η′q and thus concludes the statement. ��
Definition 5.13 For i = 2, . . . , n, let Dq(i) denote the collection of Iq ∈ Îq,0(i)
such that the second case in Lemma 5.12 holds and let

Dq(i) :=
⋃

Iq∈Dq(i)

Iq.

Moreover, for Iq ∈ Dq(i), let v = v1 ∧ · · · ∧ vi ∈ ∧i
Z

n+1 \ {0} be the vector given
in the second case of Lemma 5.12. Then for s ∈ Iq, we can write

gr(q)U(ϕ(s))v = w+ ∧ w(i−1) + w(i)

as in the second case of Lemma 5.12. For l ≥ η′q, let D′
q,l(i) denote the collection of

Iq ∈ Dq(i) such that

ρiR−l+1 ≤ ‖w(i)‖ ≤ ρiR−l,

and let

D′
q,l(i) :=

⋃
Iq∈D′

q,l(i)

Iq.

Lemma 5.14 There exists a constant ν > 0 such that for any q > 106n4Nk and any
i = 2, . . . , n, we have that

m(Dq(i)) � R−νq.

Proof. For any η′q ≤ l ≤ 2η′q, using the same argument as in the proof of Lemma 5.9,
we can prove that

m(D′
q,l(i)) � R− l

20n .

Therefore, we have that

m

⎛
⎝ 2η′q⋃

l=η′q

D′
q,l(i)

⎞
⎠ ≤

2η′q∑
l=η′q

m(D′
q,l(i))

�
2η′q∑
l=η′q

R− l

20n � R− η′q

20n .
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Let us denote

D′
q(i) :=

⋃
l>2η′q

D′
q,l

and

D′
q(i) :=

⋃
Iq∈D′

q(i)

Iq.

Then it is enough to show that

m(D′
q(i)) � R−νq.

For any Iq ∈ D′
q(i) and s ∈ Iq, there exists v = v1 ∧ · · · ∧vi ∈ ∧i

Z
n+1 \ {0} such

that if we write

gr(q)U(ϕ(s))v = w+ ∧ w(i−1) + w(i)

where w(i−1) ∈ ∧i−1 W and w(i) ∈ ∧i W , then we have that ‖w+ ∧ w(i−1)‖ ≤ ρi

and ‖w(i)‖ ≤ ρiR−2η′q.
Recall that η = (1 + r1)η′. Let us deal with the following two cases separately:

(1) rn ≥ η
n .

(2) There exists 1 < n1 ≤ n such that for ri ≥ η
n for 1 ≤ i < n1 and ri < η

n for
n1 ≤ i ≤ n.

Let us first deal with the first case. For this case, let us define

gη(t) :=
[
b−ηt

bηt/nIn

]
∈ SL(n + 1,R)

and gr,η(t) := gη(t)gr(t). It is easy to see that

gη(t)w+ = b−ηtw+ = R−η′tw+,

and

gη(t)w = bηt/nw = Rη′t/nw

for any w ∈ W .
Then we have that

‖gr,η(q)U(ϕ(s))v‖ = ‖gη(q)(w+ ∧ w(i−1) + w(i))‖
≤ ‖gη(q)(w+ ∧ w(i−1))‖ + ‖gη(q)w(i)‖
= b−ηq(1− i−1

n )‖w+ ∧ w(i−1)‖ + b
ηqi

n ‖w(i)‖
≤ b− ηq

n ρi + bηqR−2η′qρi ≤ R− η′q

n ρi.



GAFA BADLY APPROXIMABLE POINTS ON MANIFOLDS. . . 1229

By the Minkowski Theorem, the above inequality implies that the lattice gr,η(q)U

(ϕ(s))Zn+1 contains a nonzero vector with norm ≤ R− η′q

n2 ρ. Therefore, for any Iq ∈
D′

q(i) we have that

gr,η(q)U(ϕ(Iq))Zn+1 �∈ Kσ

where σ = R− η′q

n2 ρ. Then by Corollary 5.4, we have that

m
({s ∈ I : gr,η(q)U(ϕ(s))Zn+1 �∈ Kσ}) � σα = R− αη′q

n2 .

This proves that

m(D′
q(i)) � R− αη′q

n2 .

This finishes the proof for the first case.
Now let us take care of the second case. Let us denote

ξ(t) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−βt

1
. . .

1
brn1 t

. . .
brnt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ SL(n + 1,R)

where β =
∑n

j=n1
rj < η and

g′(t) := ξ(t)gr(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bχt

b−r1t

. . .
b−rn1−1t

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where χ =
∑n1−1

j=1 rj . Then it is easy to see that

ξ(t)w+ = b−βtw+,

ξ(t)wj = wj

for j = 1, . . . , n1 − 1, and

ξ(t)wj = brjtwj
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for j = n1, . . . , n. Then we have that

‖g′(q)U(ϕ(s))v‖ = ‖ξ(q)(w+ ∧ w(i−1) + w(i))‖
≤ ‖ξ(q)(w+ ∧ w(i−1))‖ + ‖ξ(q)w(i)‖
≤ ‖w+ ∧ w(i−1)‖ + bβq‖w(i)‖
≤ ρi + bβqR−2η′qρi

≤ ρi + bηqR−2η′qρi ≤ ρi + R−η′qρi < (2ρ)i.

Moreover, for any s′ ∈ Δ(s) := [s − R−q(1−2η′), s + R−q(1−2η′)], we also have that

‖g′(q)U(ϕ(s′))v‖ < (2ρ)i.

Let C > 0 and α > 0 be the constants given in Theorem 5.1. Then by the
Minkowski Theorem, the inequality above implies that for any s′ ∈ Δ(s), the lattice
g′(q)U(ϕ(s′))Zn+1 contains a nonzero vector of length < 2ρ. Let vs′ ∈ Z

n+1 \ {0}
be the vector such that ‖g′(q)U(ϕ(s′))vs′‖ < 2ρ. Let us write

vs′ = (vs′(0), vs′(1), . . . , vs′(n)).

Then for j = n1, . . . , n, we have that |vs′(j)| < 2ρ. Therefore, vs′(j) = 0 for any
j = n1, . . . , n. In other words, vs′ is contained in the subspace spanned {w+,w1, . . . ,
wn1−1}. For notational simplicity, let us denote this subspace by R

n1 and denote the
set of integer points contained in the subspace by Z

n1 . Accordingly, let us denote by
SL(n1,R) the subgroup{[

X
In+1−n1

]
: X ∈ SL(n1,R)

}
⊂ SL(n + 1,R)

and denote by SL(n1,Z) the subgroup of integer points in SL(n1,R). Note that
g′(q) ∈ SL(n1,R). U(ϕ(s′)) can also be considered as an element in SL(n1,R) since
it preserves R

n1 . Then ‖g′(q)U(ϕ(s′))vs′‖ < 2ρ implies that for any s′ ∈ Δ(s), the
lattice g′(q)U(ϕ(s′))Zn1 contains a nonzero vector of length < 2ρ. Let K2ρ(n1) ⊂
X(n1) = SL(n1,R)/SL(n1,Z) denote the set of unimodular lattices in R

n1 which do
not contain any nonzero vector of length < 2ρ. Then the claim above implies that

m({s′ ∈ Δ(s) : g′(q)U(ϕ(s′))Zn1 �∈ K2ρ(n1)}) = m(Δ(s)).

By Theorem 5.1, there exist j ∈ 1, . . . , n1 − 1 and v′ = v′
1 ∧ · · · ∧ v′

j ∈ ∧j
Z

n1 \ {0}
such that

max{‖g′(q)U(ϕ(s′))v′‖ : s′ ∈ [s − R−q(1−2η′), s + R−q(1−2η′)]} < ρj
1 (5.5)

since otherwise we will have that

m({s′ ∈ Δ(x) : g′(q)U(ϕ(s′))Zn1 �∈ K2ρ(n1)}) ≤ C

(
2ρ

ρ1

)α

m(Δ(s)) <
1

1000
m(Δ(s)).

Now we have (5.5) in dimension n1 and every weight of g′(q) is at least η/n. Then
we can repeat the argument for the first case with n + 1 replaced by n1 to complete
the proof. ��
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Now we are ready to prove Proposition 5.11.

Proof of Proposition 5.11. Recall that in Proposition 4.2, we denote by Eq the union
of all q-extremely dangerous intervals. By Lemma 5.12, we have that

Iq ⊂ Eq ∪
n⋃

i=2

Dq(i).

By Proposition 4.2 we have that

m(Eq) � R−νq

for some constant ν > 0. On the other hand, by Lemma 5.14, we have that

m(Dq(i)) � R−νq

for any i = 2, . . . , n. Therefore, we have that

F (Îq,0, I)R−q = m

⎛
⎝ ⋃

Iq∈Îq,0

Iq

⎞
⎠

≤ m

(
Eq

n⋃
i=2

Dq(i)

)
≤ m(Eq) +

n∑
i=2

m(Dq(i)) � R−νq.

This completes the proof. ��
Now we are ready to prove Proposition 3.7 for q > 106n4Nk.

Proof of Proposition 3.7 for q > 106n4Nk. We can choose R such that Rν > 1000.
By Proposition 5.11, we have that(

4
R

)q

F (Îq,0, I) �
(

4
R

)q

R(1−ν)q =
(

4
Rν

)q

<

(
4

1000

)q

. (5.6)

Combining (5.1), (5.2) and (5.6), we have that

q−1∑
p=0

(
4
R

)q−p

max
Ip∈Ip

F (Îq,p, Ip) → 0

as m → ∞. This proves the statement. ��
Remark 5.15 In [BHNS18], Cantor winning property is introduced. It is equivalent
to Cantor rich over R and is defined for higher dimensions.

Proof of Theorem 3.5. By Definition 3.2, Theorem 3.5 follows from Proposition 3.7.
��

By Theorems 3.3, 3.4 and 3.5 implies Theorems 1.7 and 1.8.
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5.5 General case. Finally, let us explain how to adapt the proof for curves to
handle general Cn non-degenerate submanifolds.

Let ϕ = ϕ(x1, . . . , xm) : [0, 1]m → R
n be the Cn differentiable map defining

U , where m = dimU . Then Definitions 3.1 and 3.2 will change according to the
dimension. Intervals will be replaced by m-dimensional regular boxes. It is easy to
see that higher dimensional versions of Theorems 3.3 and 3.4 still hold. Therefore,
to prove Theorem 1.7 for higher dimensional manifolds, it suffices to prove higher
dimensional versions of Proposition 3.7.

Following the argument for curves, we split the proof into four parts: the case
where q is small, the generic case, the dangerous case and the extremely
dangerous case. When q is small, we can repeat the same argument since The-
orem 5.2 holds for any dimension. In the generic case, we can repeat the same
argument since Thereom 5.1 holds for any dimension. In the dangerous case,
we can consider ∂ϕ

∂xj
for j = 1, . . . , m instead of ϕ′(x) to prove higher dimensional

versions of Proposition 4.1 and Lemma 5.8. Then the argument works through. In
the extremely dangerous case, we can consider partial derivatives as in the
dangerous case to prove higher dimension version of Lemma 5.12. Then we can
repeat the same argument since higher dimensional versions of Proposition 4.2 and
Theorem 5.2 still hold.

Combining the three cases above, we can deduce Theorem 1.7 for higher dimen-
sional Cn non-degenerate submanifolds.
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