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KOBAYASHI HYPERBOLICITY OF THE COMPLEMENTS OF
GENERAL HYPERSURFACES OF HIGH DEGREE

Damian Brotbek And Ya Deng

Abstract. In this paper, we prove that in any projective manifold, the complements
of general hypersurfaces of sufficiently large degree are Kobayashi hyperbolic. We
also provide an effective lower bound on the degree. This confirms a conjecture
by S. Kobayashi in 1970. Our proof, based on the theory of jet differentials, is
obtained by reducing the problem to the construction of a particular example with
strong hyperbolicity properties. This approach relies the construction of higher order
logarithmic connections allowing us to construct logarithmic Wronskians. These
logarithmic Wronskians are the building blocks of the more general logarithmic
jet differentials we are able to construct. As a byproduct of our proof, we prove
a more general result on the orbifold hyperbolicity for generic geometric orbifolds
in the sense of Campana, with only one component and large multiplicities. We
also establish a Second Main Theorem type result for holomorphic entire curves
intersecting general hypersurfaces, and we prove the Kobayashi hyperbolicity of the
cyclic cover of a general hypersurface, again with an explicit lower bound on the
degree of all these hypersurfaces.
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0 Introduction

A complex space X is said to be Kobayashi hyperbolic if the (intrinsically defined)
Kobayashi pseudo distance dX is a distance, meaning that dX(p, q) > 0 for p �= q
in X. One can easily see that a Kobayashi hyperbolic complex space X does not
contain any non-constant entire holomorphic curve f : C → X (this last property is
called Brody hyperbolicity). When X is compact, by a well-known theorem of Brody
[Bro78], these two definitions of hyperbolicity are equivalent. However, in general,
we have many examples of complex manifolds which are Brody hyperbolic but not
hyperbolic in the sense of Kobayashi, see for instance [Kob98].

In 1970, Kobayashi made the following conjecture [Kob70], which is often called
the logarithmic Kobayashi conjecture in the literature.

Conjecture 0.1 (Kobayashi). The complement Pn\D of a general hypersurface
D ⊂ Pn of sufficiently large degree d � dn is Kobayashi hyperbolic.

As is well known, Conjecture 0.1 is simpler to approach when D is replaced by
a simple normal crossing divisor with several components. When D =

∑2n+1
i=1 Hi

with {Hi}i=1,...,2n+1 hyperplanes of Pn in general position, it was proved by Fuji-
moto [Fuj72] and Green [Gre77] that Pn\D is Kobayashi hyperbolic. More generally,
Noguchi–Winkelmann–Yamanoi [NWY07, NWY08, NWY13] and Lu–Winkelmann
[LW12] even proved a stronger result towards the logarithmic Green–Griffiths con-
jecture: if (Y, D) is a pair of log general type with logarithmic irregularity h0(Y,ΩY

(log D)) � dim Y , then (Y, D) is weakly hyperbolic. Here we say a log pair (Y, D)
is weakly hyperbolic if all entire curves in Y \D lie in a proper subvariety Z � Y .
When the logarithmic irregularity is strictly smaller than the dimension of the man-
ifold, or equivalently the number of irreducible components of D are less or equal
than the dimension of the manifold, much less is known for the general logarithmic
Green–Griffiths conjecture. In [Rou03, Rou09] Rousseau dealt with the Kobayashi
hyperbolicity of P2\D where D consists of two irreducible curves of certain degrees.
More recently, in [BD17] we proved a more general result concerning the hyperbol-
icity of the complement of a sufficiently ample divisor with several components.

Theorem 0.2 ([BD17]). Let Y be a smooth projective variety of dimension n
and let c � n. Let L be a very ample line bundle on Y . For any m � (4n)n+2 and
for general hypersurfaces H1, . . . , Hc ∈ |Lm|, writing D =

∑c
i=1 Hi, the logarith-

mic cotangent bundle ΩY (log D) is almost ample. In particular, Y \D is Kobayashi
hyperbolic and hyperbolically embedded into Y .

This result can be seen as a logarithmic analogue of a conjecture of Debarre,
which was established by the first author and Darondeau in [BDa18] and indepen-
dently by Xie [Xie18].

Let us now focus on the case of one component as in Conjecture 0.1. In the
case n = 2, the first proof to Conjecture 0.1 was provided by Siu–Yeung [SY96],
with a very high degree bound, which was later improved to d � 15 by El Goul
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[EG03] and d � 14 by Rousseau [Rou09]. Building on ideas of Voisin [Voi96, Voi98],
Siu [Siu04], Diverio–Merker–Rousseau [DMR10], the first step towards the general
case in Conjecture 0.1 was made by Darondeau in [Dar16b], in which he proved the
weak hyperbolicity of Pn\D for general hypersurfaces D of degree d � (5n)2nn. Very
recently, based on his strategy outlined in [Siu04], in [Siu15] Siu made an important
progress towards Conjecture 0.1, in which he showed that Pn\D is Brody hyperbolic
for D a general hypersurface of degree d � d∗

n, where d∗
n is some (non-explicit)

function depending on n.
The goal of the present paper is to prove Conjecture 0.1 with an effective estimate

on the lower degree bound dn. We also prove a Second Main Theorem type result,
orbifold hyperbolicity of a general orbifold with one component and high multiplicity,
and Kobayashi hyperbolicity of the cyclic cover of a general hypersurface of large
degree.

Main Theorem (=Corollaries 4.6, 4.9 and 4.11). Let Y be a smooth projective
variety of dimension n � 2. Fix any very ample line bundle A on Y . Then for a
general smooth hypersurface D ∈ |Ad| with

d � (n + 2)n+3(n + 1)n+3 ∼n→∞ e3n2n+6,

(i) The complement Y \D is hyperbolically embedded into Y . In particular, Y \D
is Kobayashi hyperbolic.

(ii) For any holomorphic entire curve (possibly algebraically degenerate) f : C → Y
which is not contained in D, one has

Tf (r, A) � N
(1)
f (r, D) + C

(
log Tf (r, A) + log r

) ‖.

Here Tf (r, A) is the Nevanlinna order function, N
(1)
f (r, D) is the truncated

counting function, and the symbol ‖ means that the inequality holds outside a
Borel subset of (1, +∞) of finite Lebesgue measure.

(iii) The (Campana) orbifold
(
Y, (1 − 1

d)D
)

is orbifold hyperbolic, i.e. there exists
no entire curve f : C → Y so that

f(C) �⊂ D with multt(f∗D) � d ∀t ∈ f−1(D).

(iv) Let π : X → Y be the cyclic cover of Y obtained by taking the d-th root along
D. Then X is Kobayashi hyperbolic.

To the best of our knowledge, Main Theorem (iii) is the first general result on the
orbifold Kobayashi conjecture [Rou10, Conjecture 5.5] dealing with general orbifolds
with only one component. We note that Main Theorem (i) immediately follows
from Main Theorem (iii) in view of the definition of orbifold hyperbolicity and our
previous results [Bro17, Den17]. We also observe that Main Theorem (iii) implies
Main Theorem (iv) since π : (X, ∅) → (

Y, (1 − 1
d)D

)
is a d-folded unramified cover

in the category of orbifold. The only result of the type of Main Theorem (iv) we are
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aware of is due to Roulleau–Rousseau [RR13], who proved that for a very general
hypersurface D in Pn of degree d � 2n + 2, the cyclic cover X of Y obtained by
taking the the d-th root along D is algebraically hyperbolic.

Let us mention that in a recent preprint [RY18], which appeared after the first
version of the present paper was made publicly available, Riedl–Yang provide a short
proof of Conjecture 0.1 with an effective bound on dn (which is slightly worse than
the bound we give here). However, their proof relies heavily on a series of work by
Darondeau [Dar16a, Dar16b, Dar16c] whereas our proof is essentially self-contained.

Our approach is inspired by our previous works [Bro17, Den17, BD17]. Those
works were motivated by the compact counterpart of the Kobayashi conjecture, also
conjectured in [Kob70] by Kobayashi: a general hypersurface X ⊂ Pn of sufficiently
high degree d � d′

n is Kobayashi hyperbolic. There are now several proofs of this
result, [Siu15, Bro17] and more recently [Dem18]. Here we will provide a logarithmic
counterpart to the approach of [Bro17] as well as the work [Den17].

Let us now outline the main points of the proof of our main result. First we
observe that the first statement of our main result will follow from the Brody hyper-
bolicity of Y \D in view of a theorem of Green [Gre77] and the results established in
[Bro17, Den17]. In order to control the entire curves in Y \D we rely on the theory
of logarithmic jet differentials. Logarithmic jet differentials on the pair (Y, D) are
higher order generalizations of symmetric differential forms with logarithmic poles
along D and provide obstructions to the existence of entire curves. Roughly speak-
ing, in order to prove that Y \D is Brody hyperbolic it suffices to construct many
logarithmic jet differential forms on (Y, D) vanishing along some ample divisor and
control their geometry. Let us also observe that in general it is critical to use higher
order jet differentials and not merely logarithmic symmetric differential forms. In
general one has to go at least to order k = dim Y (see e.g. [Div09, Theorem 8]).

Let us now explain the approach we use to construct logarithmic jet differential
forms. For simplicity, we suppose until the end of this section that Y = Pn and that
A = OPn(1). The first step is to introduce higher order logarithmic connections.
More precisely for any integer d � 1, any smooth D ∈ |OPn(d)| and any k � 0 we
define the k-th order logarithmic connection associated to the pair (Pn, D)

∇k
D : OPn(d) → EGG

k,k ΩPn(log D) ⊗ OPn(d)

by setting

∇k
Ds = σdk

( s

σ

)
(0.1)

where D = (σ = 0) and s ∈ Γ(U,OPn(d)) for some open set U ⊂ Pn. Here
EGG

k,k ΩPn(log D) denotes the vector bundle of logarithmic jet differentials of order
k and weighted degree k. See Sects. 1.2 and 2.2 for more details. The crucial point
is the following tautological equality for any k � 1

∇k
Dσ = 0. (0.2)
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Next, we follow the general strategy in [BDa18, Bro17, BD17] which consists
in reducing the general case to the construction of a particular example (Pn, D)
satisfying a certain ampleness property, which implies Brody hyperbolicity and which
is a Zariski open property. Such examples are given by suitable deformations of
Fermat type hypersurfaces. For some suitably chosen parameters δ, r, ε, k ∈ N∗,
consider the hypersurface Da ⊂ Pn defined by a polynomial of degree d := ε+(r+k)δ
of the form

F (a) =
∑

I=(i0,...,in)
i0+···+in=δ

aIz
(r+k)I , (0.3)

where we use the multi-index notation z(r+1)I = (zi0
0 · · · zin

n )r+k for I = (i0, . . . , in)
and homogeneous coordinates [z0, . . . , zn] on Pn, and the aI ’s are homogeneous poly-
nomials of degree ε � 1 in C[z0, . . . , zn]. Write Da = (F (a) = 0) ⊂ Pn. By consid-
ering the tautological relation (0.2) for any j = 1, . . . , k we obtain the following
equalities

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 = ∇1
Da

(Fa) =
∑

|I|=δ α̃I,1z
(r+k−1)I =

∑
|I|=δ αI,1z

rI =
∑

|I|=δ αI,1T
I

0 = ∇2
Da

(Fa) =
∑

|I|=δ α̃I,2z
(r+k−2)I =

∑
|I|=δ αI,2z

rI =
∑

|I|=δ αI,2T
I

...
...

...
...

...
0 = ∇k

Da
(Fa) =

∑
|I|=δ α̃I,kz

(r+k−k)I =
∑

|I|=δ αI,kz
rI =

∑
|I|=δ αI,kT

I .

(0.4)

Here (T0, . . . , Tn) := (zr
0, . . . , z

r
n), and for each I and i, one has

αI,i ∈ H0
(
P

n, EGG
i,i ΩPn(log Da) ⊗ OPn(ε + kδ)

)
.

One should think of these elements as some holomorphic functions on some suitable
logarithmic jet space Pn

k (Da) (the logarithmic version of the Demailly–Semple jet
tower constructed in [DL01]). Once suitably interpreted, (0.4) allows us to construct
a rational map

Φa : P
n

k (Da) ��� Y

w
loc�→

(
Span

(
α•,1(w), α•,2(w), . . . , α•,k(w)

)
; [zr

0, z
r
1, . . . , z

r
n]
)

(0.5)

where α•,i(w) :=
(
αI,i(w)

)
|I|=δ

∈ H0
(
Pn,OPn(δ)

)
, and Y is the universal complete

intersections of codimension k and multidegree (δ, . . . , δ):

Y :=
{

(Δ, [T ]) ∈ Grk

(
H0

(
P

n,OPn(δ)
)) × P

n | ∀P ∈ Δ, P ([T ]) = 0
}

.

If one denotes by L the Plücker line bundle on the Grassmannian Grk

(
H0

(
Pn,

OPn(δ)
))

, by (0.5), for any m ∈ N∗ and for r large enough, the pull-back of every
section in

H0
(
Y ,L m � OPn(−1)|Y

)
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induces a logarithmic jet differential equation on the pair (Pn, Da) vanishing along
some ample divisor. Observe that when k � n, the projection map Y → Grk

(
H0

(
Pn,

OPn(δ)
))

is generically finite, and thus the pull back of L to Y is a big and nef
line bundle. Therefore, when m is large enough, there are many global sections of
L m �OPn(−1)|Y . Moreover, in view of a result of Nakamaye [Nak00] the base locus
Bs

(
L m � OPn(−1)|Y

)
can be understood geometrically. Altogether this will allow

us to control the geometry of the logarithmic jet differential forms we construct
this way and eventually prove that for a general a and suitable restrictions on the
different parameters, the pair (Pn, Da) satisfies a property which is Zariski open and
implies, among other things, Brody hyperbolicity.

Let us however emphasize that there are many technical difficulties along the
way. First of all, we are not able to work directly with the pair (Pn, Da), but with
a pair (Ha, Da) which is biholomorphic to (Pn, Da) such that the family of all such
pairs is easier to study. Secondly, the above rational map Φa is not a regular mor-
phism in general. Therefore the above strategy doesn’t provide any information on
what happens along the indeterminacy locus of this map but in order to obtain the
strong hyperbolicity property we seek, we need some information on the entire log-
arithmic jet tower and not merely an open subset of it. Therefore as in [Bro17], we
introduce a suitable modification of the logarithmic jet tower obtained by blowing
up a suitable ideal sheaf induced by the logarithmic Wronskian construction we in-
troduce here. The main difficulty lies in the description of elements αI,i constructed
above as holomorphic functions on the logarithmic Demailly jet tower. This forces
us to introduce another version, more technically involved but more precise, of the
logarithmic connections and the logarithmic Wronskians mentioned previously.

The paper is organized as follows. In Section 1, we recall the technical tools in
studying the hyperbolicity of algebraic varieties, especially the logarithmic Demailly
jet tower and the invariant logarithmic jet differentials. Section 2 is the main tech-
nical part of our paper. In this section, we develop our main tools in this paper: the
higher order logarithmic connections and logarithmic Wronskians associated to fam-
ilies of global sections of a line bundle. We show that logarithmic Wronskians can be
seen as a morphism from the jet bundle of a line bundle to the logarithmic invariant
jet bundle. Based on this interpretation, we prove that for the ideal sheaf induced
by the base ideal of logarithmic Wronskians, its cosupport lies on the set of singular
jets in the log Demailly tower, and its blow-up is functorial under restrictions and
families. This gives rise to a good compactification of the set of regular jets in the
Demailly–Semple jet tower for the interior of the log pair. Using this construction
we build a Zariski open property for the Brody hyperbolicity of the family of log
pairs, and reduce our proof of the main theorem to find some particular examples.
Section 3 is devoted to the construction of the family of these particular hypersur-
faces in (0.3). In Section 4, we provide detailed proofs of the main theorem. We
first prove (0.4) and (0.5), and show the existence of Da ⊂ Pn satisfying the above
Zariski open property when we adjust the parameters. To prove Main Theorems (ii)
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to (iv), we reduce the problems to the existence of sufficiently many logarithmic jet
differentials with a sufficiently negative twist.

1 Jet Spaces, Jet Differentials and Jets of Sections

1.1 Jet spaces and jet differentials.

1.1.1 Jet spaces. Let X be a complex manifold of dimension n. For any k ∈ N∗,
one defines JkX → X to be the bundle of k-jets of germs of parametrized curves
in X, that is, the set of equivalence classes of holomorphic maps f : (C, 0) → X,
with the equivalence relation f ∼k g if and only if all derivatives f (j)(0) = g(j)(0)
coincide for 0 � j � k, when computed in some (equivalently, any) local coordinate
system of X near x. Given any f : (C, 0) → X, we denote by jkf ∈ JkX the class
of f in JkX. There is a projection map pk : JkX → X defined by pk(jkf) = f(0).
Under this map, JkX is a Cnk-fiber bundle over X. This can be seen as follows.

Let U ⊂ X be an open subset. For any holomorphic 1-form ω ∈ Γ(U, ΩU ) and
f : (C, 0) → U , we set f∗ω := A(t)dt and define the following functional:

dk−1ω : p−1
k (U) → C (1.1)

jkf �→ A(k−1)(0).

One immediately checks that this is well defined. In the particular case ω = dϕ for
some ϕ ∈ O(U), one writes dkϕ := dk−1ω. This construction allows us to see JkX
as a Cnk-fiber bundle over X. Indeed, given ω1, . . . , ωn ∈ Γ(U, ΩU ) generating ΩX

at any point x ∈ U , then {d�ωi}0���k−1,1�i�n gives rise to the local trivialization of
p−1

k (U):

p−1
k (U) → U × C

nk (1.2)

jkf �→ (
f(0); d�ωi(j�f)

)
0���k−1,1�i�n

.

In this case the projection to the second factor Cnk is called the jet projection, and
the natural coordinates of Cnk are called jet coordinates.

In particular, if (z1, . . . , zn) are local holomorphic coordinates on U centered at a
point x ∈ U , then dz1, . . . , dzk generates ΩU at each point of U . Any germ of curve
f : (C, 0) → (X, x) can be written as

f = (f1, . . . , fn) : (C, 0) → (Cn, 0).

It follows from the trivialization (1.2) given by {d�zj}1���k,1�j�n that the fiber
p−1

k (x) can be identified with the set of k-tuples of vectors

(ξ1, . . . , ξk) =
(
f ′(0), f ′′(0), . . . , f (k)(0)

) ∈ C
nk.

Observe also that there is a natural C∗-action on fibers of JkX defined by

λ · jkf := jk(t �→ f(λt)), ∀ λ ∈ C
∗, jkf ∈ JkX.
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With respect to the above trivialization, this action is described in jet coordinates
by

λ · (f ′(0), f ′′(0), . . . , f (k)(0)
)

=
(
λf ′(0), λ2f ′′(0), . . . , λkf (k)(0)

)
.

1.1.2 Jet differentials. Let us now recall the fundamental concept of jet differ-
entials. For X as above, any open subset U ⊂ X and any integer k � 1, a jet
differential of order k on U is an element P ∈ O(p−1

k (U)). The (non-coherent) sheaf
of jet differentials is defined to be E GG

k,• ΩX := (pk)∗OJkX .
The C∗-action can be used to define the notion of of weight for jet differentials:

a k-jet differential P ∈ E GG
k,• ΩX(U) = O(p−1

k (U)) is said to be of weight m if for any
jkf ∈ p−1

k (U), one has

P (λ · jkf) = λmP (jkf).

We thus define the Green–Griffiths sheaf E GG
k,mΩX of jet differentials of order k and

weighted degree m to be the subsheaf of E GG
k,• ΩX , of jet differentials of weight m

with respect to the C∗-action. With the above local coordinates, any element P ∈
E GG

k,mΩX(U) can be written as

P (z, dz, . . . , dkz) =
∑

|α|=m

cα(z)(d1z)α1(d2z)α2 · · · (dkz)αk , (1.3)

where cα(z) ∈ O(U) for any α := (α1, . . . , αk) ∈ (Nn)k and where we used the usual
multi-index notation with the weighted degree |α| := |α1|+2|α2|+ · · ·+k|αk|. From
this it follows at once that E GG

k,mΩX is locally free, and we shall denote the associated
vector bundle by EGG

k,mΩX . One also defines EGG
k,• ΩX =

⊕
m�0 EGG

k,mΩX , which is in a
natural way a bundle of graded algebras (the product is obtained simply by taking
the product of polynomials).

Besides the multiplication, one can define for every k, m � 0, a C-linear operator
d : E GG

k,mΩX → E GG
k+1,m+1ΩX by

(dP )(jk+1f) :=
d

dt

(
P (jkf(t))

)
(0).

The fact that dP is well defined and holomorphic follows from a local computation.
This operator is coherent with the definition of dk above in the sense that for any
holomorphic one form ω ∈ Γ(U, ΩU ) on some open subset U ⊂ X, and any k ∈ N∗

one has dkω = d(dk−1ω). For instance, this implies that dkω ∈ E GG
k+1,k+1ΩX(U).

In coordinates the operator d can be computed as follows. Take an open subset
U ⊂ X with a coordinate chart (z1, . . . , zn), and let P ∈ E GG

k,mΩX(U) represented in
coordinates by the expression (1.3), then dP is given by
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∑

|α|=m

(
n∑

i=1

∂cα(z)
∂zi

d1zi(d1z)α1 · · · (dkz)αk

+
k∑

j=1

n∑

i=1

cα(z)αi
jd

j+1zi(d1z)α1 · · · (djz)α′
j,i · · · (dkz)αk

⎞

⎠ ,

where α′
j,i = (α1

j , . . . , α
i−1
j , αi

j − 1, αi+1
j , . . . , αn

j ).

1.2 Logarithmic jet spaces and bundles. Let X be a complex manifold
(not necessarily compact), and let D =

∑c
i=1 Di be a simple normal crossing divisor

on X, that is, all the components Di are smooth irreducible divisors that meet
transversally. Such a pair (X, D) is called a (smooth) log manifold. One denotes by
TX(− log D) the logarithmic tangent bundle of X along D. By definition, it is the
subsheaf of the holomorphic tangent bundle TX consisting of vector fields tangent to
D. One can then show that under our assumptions on D, TX(− log D) is a locally free
sheaf. Let U ⊂ X be an open subset of with local coordinates (z1, . . . , zn) such that
for some 0 � c′ � c, D ∩ U = (z1 · · · zc′ = 0) and (up to reordering the components)
one has Di ∩ U = (zi = 0) for all i = 1 . . . c′. Then TX(− log D) is generated by

z1
∂

∂z1
, . . . , zc′

∂

∂zc′
,

∂

∂zc′+1
, . . . ,

∂

∂zn
.

Consider the dual of TX(− log D), which is the locally free sheaf generated by

dz1

z1
, . . . ,

dzc′

zc′
, dzc′+1, . . . , dzn,

and denoted by ΩX(log D). The vector bundle ΩX(log D) is called the logarithmic
cotangent bundle of (X, D). We denote by Jk(X) the set of local holomorphic
sections α : U → JkX of the k-jet bundle JkX → X, and Jk(X, log D) the sheaf
of germs of local holomorphic sections α of JkX such that for any ω ∈ ΩX(log D)x,
(dj−1ω)(α) are all holomorphic for any j = 1, . . . , k. Jk(X, log D) is called the
logarithmic k-jet sheaf and α is called a logarithmic k-jet field. Here we observe
that for any meromorphic 1-form ω ∈ M (U, ΩX), one can also define diω for any
i = 1, . . . , k as (1.1), which can be seen as meromorphic sections of the fiber bundle
JkX → X. It follows from [Nog86] (see also [NW14, §4.6.3]) that there exists also a
natural holomorphic fiber bundle Jk(X, log D) such that

(i) there is a fiber mapping λ : Jk(X, log D) → JkX, locally defined by

λ : Jk(X, log D)�U → JkX�U
(
z; z(j)

� , z
(j)
i

)
1�j�k,1���c′,c′<i�n

�→ (z; z� · z
(j)
� , z

(j)
i )1�j�k,1���c′,c′<i�n;

(ii) the induced mapping between sections of holomorphic fiber bundles

λ∗ : Γ
(
U, Jk(X, log D)

) → Jk(X, log D)(U)

is an isomorphism.
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Let us denote by w1 = log z1, . . . , wc′ = log zc′ , wc′+1 = zc′+1, . . . , wn = zn. The
notation log zi should be understood formally and is used to simplify the notation
dwi = d log zi = dzi

zi
. One then has another trivialization of Jk(X, log D)�U which is

given as follows:

(djwi)1�j�k,1�i�n : Jk(X, log D)�U → U × C
nk.

A local meromorphic k-jet differential α on U is called a logarithmic k-jet differential,
if α(β) is holomorphic for any logarithmic k-jet field β ∈ Jk(X, log D)(U). The sheaf
of logarithmic k-jet differential is denoted by EGG

k,• ΩX(log D), which is also a locally
free sheaf. The associated vector bundle is denoted by EGG

k,• ΩX(log D), and is called
k-jet logarithmic Green–Griffiths bundle. One also the following natural splitting

EGG
k,• ΩX(log D) =

⊕

m�0

EGG
k,mΩX(log D),

where EGG
k,mΩX(log D) is the logarithmic k-jet differentials of weighted degree m.

Any local section P ∈ E GG
k,mΩX(log D)(U) can be written as
∑

|α|=m

cα(z)(d1w)α1(d2w)α2 · · · (dkw)αk , (1.4)

where cα(z) ∈ O(U) for any α := (α1, . . . , αk) ∈ (Nn)k. We will use another trivial-
ization of EGG

k,mΩX(log D). First, let us begin with a lemma.

Lemma 1.1. Assume that locally on an open subset of U ⊂ X with local coordinates
(z1, . . . , zn) such that D∩U = (z1 = 0). Then for any j ∈ N, djz1

z1
is a logarithmic jet

differential and moreover, any local section P ∈ E GG
k,mΩ∗

X(log D)(U) can be written
as

∑

|α|=m

cα(z)

z
α1

1+···+α1
k

1

(d1z)α1(d2z)α2 · · · (dkz)αk , (1.5)

where cα(z) ∈ O(U) for any α := (α1, . . . , αk) ∈ (Nn)k with αj = (α1
j , . . . , α

n
j ) ∈ Nn.

Proof. Let us prove by induction that for any j � 1 and any β = (β1, . . . , βj) ∈ Nj

there exists bjβ ∈ Z such that

djz1

z1
=

∑

β1+2β2+···+jβj=j

bjβ · (d1 log z1)β1(d2 log z1)β2 · · · (dj log z1)βj . (1.6)

By definition, it holds for j = 1. Assume now that (1.6) holds for j. Then

dj+1z1

= d1z1 ·
∑

β1+2β2+···+jβj=j

bjβ · (d1 log z1)β1(d2 log z1)β2 · · · (dj log z1)βj
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+ z1 ·
∑

β1+2β2+···+jβj=j

j∑

i=1

βibjβ · (d1 log z1)β1 · · · (di log z1)βi−1(di+1 log z1)βi+1+1

· · · (dj log z1)βj

= z1 ·
∑

β1+2β2+···+jβj=j

bjβ · (d1 log z1)β1+1(d2 log z1)β2 · · · (dj log z1)βj

+ z1 ·
∑

β1+2β2+···+jβj=j

j∑

i=1

βibjβ · (d1 log z1)β1 · · · (di log z1)βi−1(di+1 log z1)βi+1+1

· · · (dj log z1)βj ,

and thus (1.6) holds also for j + 1.
On the other hand, one will prove by induction on j that

dj log z1 =
∑

β1+2β2+···+jβj=j

bjβ ·
(

d1z1

z1

)β1
(

d2z1

z1

)β2

· · ·
(

djz1

z1

)βj

(1.7)

where bjβ ∈ Z and β = (β1, . . . , βj) ∈ Nj . Assume that (1.7) holds for j. Then

dj+1 log z1

=
∑

β1+2β2+···+jβj=j

j∑

i=1

βibjβ ·
(

d1z1

z1

)β1

· · ·
(

diz1

z1

)βi−1

· · ·
(

djz1

z1

)βj
(

di+1z1

z1
− diz1d

1z1

z2
1

)

.

Hence (1.7) also holds for j + 1. It thus just remains to use (1.7) and (1.4) to show
(1.5). ��
1.3 Demailly–Semple tower. In this section we recall the formalism of di-
rected pairs as introduced by Demailly [Dem97]. A directed manifold (X, V ) is a
complex manifold X equipped with a subbundle V ⊂ TX of rank r. A morphism of
directed manifolds f : (Y, VY ) → (X, VX) is by definition a morphism f : Y → X
such that f∗VY ⊂ f∗VX ⊂ f∗TX . In [Dem97] Demailly introduced the 1-jet func-
tor which to any directed manifold (X, V ) associates the directed manifold defined
by P1V = P(V ) and V1 := (π0,1)−1∗ OP(V )(−1) ⊂ TX1 , where OP1V (−1) denotes
the tautological line bundle OP(V )(−1). This induces a morphism between directed

manifolds (P1V, V1)
π0,1−−→ (X, V ). By iterating this 1-jet functor, Demailly then con-

structed the so-called Demailly–Semple k-jet tower

(PkV, Vk)
πk−1,k−−−−→ (Pk−1V, Vk−1)

πk−2,k−1−−−−−→ · · · → (P1V, V1)
π0,1−−→ (X, V )

such that PkV := P(Vk−1) and Vk := (πk−1,k)−1∗ OPkV (−1) ⊂ TPkV . Here we denote
by OPkV (−1) the tautological line bundle OP(Vk−1)(−1), πk−1,k : PkV → Pk−1V the
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natural projection and (πk−1,k)∗ = dπk−1,k : TPkV → π∗
k−1,kTPk−1V the differential.

By composing the projections we get for all pairs of indices 0 � j � k natural
morphisms

πj,k : PkV → PjV, (πj,k)∗ = (dπj,k)�Vk
: Vk → (πj,k)∗Vj .

For every k-tuple (a1, . . . , ak) ∈ Zk we write OPkV (a1, . . . , ak)=
⊗

1�j�k π∗
j,kOPjV (aj).

One can inductively define k-th lift f[k] : (C, 0) → PkV for germs of non-constant
holomorphic curves f : (C, 0) → X by f[k](t) =

(
f[k−1](t), [f ′

[k−1](t)]
)

(although this
is not well defined when f ′

k−1(t) = 0 one can easily extend this definition to every t
in the domain of definition of f).

On the other hand, let Gk be the group of germs of k-jets of biholomorphisms of
(C, 0), that is, the group of germs of biholomorphic maps

ϕ : t �→ a1t + a2t
2 + · · · + akt

k, a1 ∈ C
∗, aj ∈ C, j > 1,

in which the composition law is taken modulo terms tj of degree j > k. Then Gk

is a k-dimensional nilpotent complex Lie group, which admits a natural fiberwise
right action on JkV . The action consists of reparameterizing k-jets of maps f :
(C, 0) → (X, V ) by a biholomorphic change of parameter ϕ : (C, 0) → (C, 0) defined
by (f, ϕ) �→ f ◦ ϕ. Moreover, if one denotes by

J reg
k V := {jkf ∈ JkV | f ′(0) �= 0}

the space of regular k-jets tangent to V , there exists a natural morphism

J reg
k V → PkV (1.8)
jkf �→ f[k](0)

whose image is an open set in PkV denoted by PkV
reg; in other words, PkV

reg ⊂ PkV
is the set of elements f[k](0) in PkV which can be reached by regular germs of curves
f . It was proved in [Dem97, Theorem 6.8] that Gk acts transitively on J reg

k V , and
thus PkV

reg can be identified with the quotient J reg
k /Gk. Moreover, the singular k-

jets, denoted by PkV
sing := PkV \PkV

reg, is a divisor in PkV . In summary, PkV is a
smooth compactification of J reg

k /Gk. As will become clear later, and as was observed
in [Dem97, §7], when dealing with hyperbolicity questions, the locus PkV

sing is in
some sense irrelevant.

Let us recall the following theorem by Demailly which is a crucial tool in our
paper.

Theorem 1.2 ([Dem97, Corollary 5.12, Theorem 6.8]). Let (X, V ) be a directed
variety.

(i) For any w0 ∈ PkV , there exists an open neighborhood Uw0 of w0 and a family
of germs of curves (fw)w∈Uw0

, tangent to V depending holomorphically on w
such that

(fw)[k](0) = w and (fw)′
[k−1](0) �= 0, ∀w ∈ Uw0 .
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In particular, (fw)′
[k−1](0) gives a local trivialization of the tautological line

bundle OPkV (−1) on Uw0 .
(ii) For any k, m � 1 one has

(π0,k)∗OPkV (m) ∼= Ek,mV ∗. (1.9)

In fact, the isomorphism (1.9) can be understood explicitly in view of Theo-
rem 1.2(i). With the notation therein, for any given local invariant jet differential P ∈
Ek,mV ∗(U), the inverse image under (π0,k)∗ is the section σP ∈ Γ

(
Uw0 ,OPkV (m)�Uw0

)

defined by

σP (w) := P (jkfw)
(
(fw)′

[k−1](0)
)−m

. (1.10)

1.4 Logarithmic Demailly–Semple bundle. In [DL01], Dethloff–Lu exten-
ded the Demailly–Semple tower to the logarithmic setting. They used it in particular
to reprove the Brody hyperbolicity of complements of ample divisors in the abelian
varieties. Following [DL01], a logarithmic directed manifold is a triple (X, D, V )
where (X, D) is a log manifold, and V is a subbundle of TX(− log D). In this sec-
tion, we will recall for the reader’s convenience Dethloff–Lu’s construction of the
logarithmic Demailly(–Semple) k-jet tower associated to any logarithmic directed
manifold.

Given log-manifolds (X ′, D′) and (X, D), a holomorphic map f : X ′ → X such
that f−1(D) ⊂ D′ will be called a log-morphism from (X ′, D′) to (X, D). It induces
morphisms

f∗ : TX′(− log D′)→f∗TX(− log D) and f∗ : f∗EGG
k,mΩX(log D)→EGG

k,mΩX′(log D′).

A log directed morphism between log directed manifolds (X ′, D′, V ′) and (X, D, V )
is a log morphism f : (X ′, D′) → (X, D) such that f∗V ′ ⊂ V .

For any fixed order k, as the Demailly–Semple bundle, the logarithmic Demailly
k-jet tower

(
Xk(D), Dk, Vk

) πk−1,k−−−−→ (
Xk−1(D), Dk−1, Vk−1

) πk−2,k−1−−−−−→ · · ·
→ (

X1(D), D1, V1

) π0,1−−→ (X, D, V )

is constructed inductively. Define Xk(D) := P(Vk−1), and let πk−1,k : Xk(D) →
Xk−1(D) be the natural projection. Set Dk := (πk−1,k)−1(Dk−1) which is a simple
normal crossing divisor, and induces a morphism

(πk−1,k)∗ : TXk(D)(− log Dk) → (πk−1,k)∗TXk−1(D)(− log Dk−1).

Define

Vk := (πk−1,k)−1
∗ OXk(D)(−1) ⊂ TXk(D)(− log Dk),

where OXk(D)(−1) := OP(Vk−1)(−1) is the tautological line bundle, which by def-

inition is also a subbundle of (πk−1,k)∗Vk−1. We say that
(
Xk(D), Dk, Vk

) πk−1,k−−−−→(
Xk−1(D), Dk−1, Vk−1

)
is the 1-jet functor of the log direct manifold

(Xk−1(D), Dk−1, Vk−1).
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Note that ker(πk−1,k)∗ = TXk(D)/Xk−1(D) by definition. This gives the following
short exact sequence of vector bundles over Xk(D)

0 → TXk(D)/Xk−1(D) → Vk
(πk−1,k)∗−−−−−−→ OXk(D)(−1) → 0.

Furthermore, we have the Euler exact sequence for projectivized bundles

0 → OXk(D) → (πk−1,k)∗Vk−1 ⊗ OXk(D)(1) → TXk(D)/Xk−1(D) → 0.

By definition, there is a canonical line bundle morphism

OXk(D)(−1) ↪→ (πk−1,k)∗Vk−1
(πk−1,k)∗(πk−2,k−1)∗−−−−−−−−−−−−−→ (πk−1,k)∗OXk−1(D)(−1) (1.11)

which admits precisely Γk := P
(
TXk(D)/Xk−1(D)

) ⊂ P(Vk) = Xk(D) as its zero
divisor:

OXk(D)(1) = (πk−1,k)∗OXk−1(D)(1) ⊗ OXk(D)(Γk). (1.12)

Let us denote by πj,k : Xk(D) → Xj(D) the composition of the projections πk ◦ · · · ◦
πj+1. Define Xk(D)sing :=

⋃
2�j�k πj,k

∗(Γj), and Xk(D)reg := Xk(D)\Xk(D)sing.

Definition 1.3. For any open subset U ⊂ X, a logarithmic differential operator
P ∈ Γ

(
U, EGG

k,mΩX(log D)
)

is said to be invariant by reparametrization group Gk if
for any g ∈ Gk and any jkf ∈ JkX

reg
�X\D, one has

P
(
jk(f ◦ g)

)
= g′(0)m · P (jkf).

Let us define Ek,mΩX(log D) to be the subsheaf of EGG
k,mΩX(log D) which consists of

invariant logarithmic differential operator. The associated vector bundle is denoted
by Ek,mΩX(log D).

The log Demailly tower is of great importance in the study of the algebraic
degeneracy of entire curves on X\D, granting the following direct image formula in
[DL01, Proposition 3.9]

Ek,mΩ(log D) = (πk)∗OXk(D)(m). (1.13)

The following fundamental result shows that the logarithmic jet differentials
vanishing along some ample divisor provide obstructions to the existence of entire
curves in the complement.

Theorem 1.4 (Dethloff–Lu, Siu–Yeung). Let X be a smooth complex projective
variety with D ⊂ X a normal crossings divisor on X, and Xk(D) denotes to be the
log Demailly k-jet tower of

(
X, D, TX(− log D)

)
. For any non-constant entire curve

f : C → X\D avoiding D, any ample line bundle A on X, any a1, . . . , ak ∈ N and
any

ω ∈ H0
(
Xk(D),OXk(D)(a1, . . . , ak) ⊗ (π0,k)∗A−1

)
,

one has f[k](C) ⊆ (ω = 0).
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1.5 Jet bundle of a line bundle. We recall here the basic definitions and
properties of jet bundles of a line bundle (we refer to [Gro66, §16.7] for a detailed
presentation). Let X be a complex manifold, and let L be a line bundle on X. For
any integer k � 0, on defines the kth order jet bundle JkL of L as follows. Consider
the product X × X with the canonical projections pr1, pr2 on the first and second
factors. Let ΔX ⊂ X ×X be the diagonal and IΔX

⊂ OX×X denotes its ideal sheaf.
Then one defines

JkL := pr1∗
(
OX×X/I k+1

ΔX
⊗ pr∗

2L
)

. (1.14)

It can be shown that this is a locally free sheaf on X such that for any x ∈ X,
the fiber at x is Jk

xL = L ⊗ OX,x/mk+1
X,x . This construction is also functorial in the

following way: given a complex manifold Y and morphism ϕ : X → Y , one obtains
a natural morphsim of OX -modules

ϕ∗ : ϕ∗JkL → Jkϕ∗L,

induced by the commutativity of the diagram

X × X

pr1
��

ϕ×ϕ �� Y × Y

pr1
��

X
ϕ �� Y

and the fact that (ϕ × ϕ)−1IΔY
⊂ IΔX

.
We shall need the following elementary proposition.

Proposition 1.5. Let L and L′ be line bundles on X. Any morphism of OX -
modules h : L → L′ induces a morphism of OX -modules

JkL
jkh→ JkL′.

Moreover, jkh is an isomorphism whenever h is an isomorphism.

Proof. The morphism jkh is just the push-forward under pr1 of the morphism

pr∗
2h : OX×X/IΔX

⊗ L → OX×X/IΔX
⊗ L′

induced by h. The second assertion follows at once. ��
Observe that there exists a C-linear morphism

jk
L : L → JkL,

which is not a morphism of OX -modules, defined, at the level of presheaves, as the
composition, for any open subset U ⊂ X,

L(U)
pr∗

2→ pr∗
2L(U × U) → OU×U/I k+1

Δ ⊗ pr∗
2L(U × U) = JkL(U).



706 D. BROTBEK, Y. DENG GAFA

More explicitly, for any s ∈ L(U), the section jk
L(s) ∈ JkL(U) is such that for

any x ∈ U , the element jk
L(s)(x) ∈ Jk

xL = L ⊗ OX,x/mk+1
X,x is precisely the image of

s under the map L(U) → L ⊗ OX,x/mk+1
X,x .

This map can also be understood more explicitly in coordinates. Take an open
subset U ⊂ X, up to considering a trivialization of L�U , one is reduced to un-
derstand OU → JkOU . Observe that coordinates (x1, . . . , xn) induce coordinates
(x1, . . . , xn, z1, . . . , zn) on U × U , from which one obtains that the monomials ((z −
x)I)|I|�k form a local frame for JkOU . Here, we use the multi-index notation, (z −
x)α = (z1−x1)α1 · · · (zn−xn)αn for α = (α1, . . . , αn) such that |α| = α1+· · ·+αn � k.
The map jk

OU
: OU → JkOU is then just given by computing, in each x ∈ U , the

Taylor expansion up to order k, namely, for any f ∈ O(U),

jk
OU

(f) =
∑

|α|�k

1
α!

∂|α|f
∂zα

(x)(z − x)α ∈ JkOU (U).

The following definition will be used in the sequel.

Definition 1.6. Let X be a complex manifold and let L be a line bundle on X.
We say that L separates k-jets at every point of X if the natural morphism

jk
L : H0(X, L) ⊗ OX → JkL

is surjective. Observe that this condition is equivalent to the surjectivity, for every
x ∈ X of the natural map

H0(X, L) ⊗ OX → L ⊗ OX,x/mk+1
X,x .

Observe that if L is a very ample line bundle on X, then Lk separates k-jets at
every point of X.

2 Higher Order Logarithmic Connections and Logarithmic
Wronskians

2.1 Wronskians. Let us recall here the Wronskian constructions initiated by
the first named author in [Bro17] and later reinterpreted by the second named author
in an alternative way in [Den17]. Let X be a complex manifold, and let L be a line
bundle on X. Let k � 1 be an integer and take global sections s0, . . . , sk ∈ H0(X, L).
Then for every open subset U ⊂ X on which L is trivialized, by considering the holo-
morphic functions s0,U , . . . , sk,U ∈ O(U) associated to s0, . . . , sk under our choice of
trivialization, we consider the Wronskian

WU (s0, . . . , sk) :=

∣
∣∣
∣∣
∣
∣∣
∣

s0,U . . . sk,U

d1s0,U . . . d1sk,U
...

. . .
...

dks0,U . . . dksk,U

∣
∣∣
∣∣
∣
∣∣
∣

∈ O(p−1
k (U)).
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Denote by k′ = 1 + 2 + · · · + k. It was established in [Bro17] that WU (s0, . . . , sk) ∈
Ek,k′ΩX(U), and that those locally defined elements glue together into a global sec-
tion

WL(s0, . . . , sk) ∈ H0
(
X, Ek,k′ΩX ⊗ Lk+1

)
(2.1)

which is called Wronskian in [Bro17, §2.2]. Moreover, in [Den17], it was proved that
there exists a morphism of OX -modules

jkWL :
k+1∧

JkL → Ek,k′ΩX ⊗ Lk+1

such that for any global section s0, . . . , sk ∈ H0(X, L), one has

jkWL(jk
Ls0 ∧ · · · ∧ jk

Lsk) = WL(s0, . . . , sk).

In Section 2.3, we will construct a logarithmic counterpart of Wronskians.

2.2 Higher order logarithmic connections. Let X be a complex manifold.
Let L be a line bundle on X and suppose that there exists σ ∈ H0(X, L) such that
D = (σ = 0) is a smooth hypersurface of X. Then L is endowed with a natural
logarithmic connection ∇D : L → ΩX(log D) ⊗ L, with logarithmic poles along D,
defined by

∇Ds := σd
( s

σ

)
=loc ds − s

dσ

σ
. (2.2)

The second equality has to be understood locally, i.e. if the open subset U over
which L is trivialized, and if we denote by sU , σU ∈ O(U) the holomorphic functions
associated to s, σ, then one sets

∇DsU = dsU − sU
dσU

σU
.

This object is well defined since s
σ is a meromorphic function on X and that the

local description shows that it has logarithmic poles along D. Let us mention that
in our paper [BD17] we apply this construction to prove Theorem 0.2.

More generally, for every k � 0, one can define a C-linear map ∇k
D : L →

EGG
k,k ΩX(log D) ⊗ L by

∇k
Ds := σdk

( s

σ

)
. (2.3)

Observe that ∇0
Ds = s, and that ∇1

Ds = ∇Ds for any s. Moreover, for any k � 1 one
has the local inductive description

∇k
Ds =loc d∇k−1

D s − ∇k−1
D s · dσ

σ
.
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We will need the following elementary, yet crucial, observation: for any k � 1, one
has

∇k
Dσ = 0. (2.4)

Lastly let us observe that locally (with the above notation) one can use the Leibniz
rule to sU = σU

sU

σU
to obtain

dksU =
k∑

i=0

(
k

i

)
(∇i

DsU )
dk−iσU

σU
. (2.5)

While ∇k
D : L → EGG

k,k ΩX(log D) ⊗ L is only C-linear, we have the following propo-
sition.

Proposition 2.1. With the above notation. There exists a morphism of OX -module

jk∇k
D : JkL → E GG

k,k ΩX(log D) ⊗ L,

such that (jk∇k
D) ◦ jk

L = ∇k
D .

Proof. The kth order jet space of X × X naturally splits as

Jk(X × X) ∼= JkX × JkX,

under the map jk(f1, f2) �→ (jkf1, jkf2). Let us define, for any k, m � 0 an operator
d2 : E GG

k,mΩX×X → E GG
k+1,m+1ΩX×X by setting for any open subset U ⊂ X × X and

any P ∈ Γ(U,E GG
k,mΩX×X)

d2P (jk(f1, f2)) =
d

dt
(P (f1(0), jk−1f2(t)))(0).

We define for every k ∈ N∗ an C-linear morphism ∇k
2 : π∗

2L → E GG
k,k ΩX×X(log π−1

2

(D)) ⊗ π∗
2L inductively by setting

∇0
2s = s

∇k
2s = π∗

2d2

(
s

π∗
2σ

)
=loc d2∇k−1

2 s − ∇k−1
2 s

dπ∗
2σ

π∗
2σ

, for any k � 0.

As before, the last equality has to be understood locally and one verifies that this is
well defined. Observe that for any open subsets V ⊂ X × X and U ⊂ X such that
π1(V ) ⊂ U , and for any f ∈ O(U) one has d2π

∗
1f = 0. Therefore for any s ∈ π∗

2L(U),
one has

∇k
2(π

∗
1f · s) = π∗

1f · ∇k
2s.

We can consider the composition resΔ ◦ ∇k
2:

π∗
2L

∇k
2→ E GG

k,k ΩX×X(log π−1
2 (D)) ⊗ π∗

2L
resΔ→ E GG

k,k ΩΔ(log π−1
2 (D)�Δ) ⊗ π∗

2L�Δ.
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A local computation now proves that for any open subset U ⊂ X × X and every
element s ∈ Γ(U, π∗

2L ⊗ I k+1
Δ ), one has

resΔ ◦ ∇k
2(s) = 0.

Therefore we obtain a C-linear map

∇k
2Δ : π∗

2L × OX×X/I k+1
Δ → E GG

k,k ΩΔ(log π−1
2 (D)�Δ) ⊗ π∗

2L�Δ,

and by applying π1∗, we obtain a C-linear morphism

jk∇k
D : JkL = π1∗

(
π∗

2L × OX×X/I k+1
Δ

)
→ π1∗

(
E GG

k,k ΩΔ(log π−1
2 (D)�Δ) ⊗ π∗

2L�Δ
)

ι∼= E GG
k,k ΩX(log D) ⊗ L.

Let us now prove that jk∇k
D is OX -linear. Take an open subset U ⊂ X and ele-

ments f ∈ O(U), τ ∈ JkL(U). By definition, one can consider (up to shrinking U
if necessary) τ as an element τ ∈ π∗

2L ⊗ OX×X/I k+1
Δ (π−1

1 (U)). Up to shrinking U
if necessary, take τ̃ ∈ π∗

2L(V ) representing τ for some neighborhood V ⊂ X × X of
Δ ∩ π−1

1 (U). By definition,

jk∇k
D(fτ) = ι∇k

2Δ(π∗
1f τ̃) = ι ◦ resΔ ◦ ∇k

2(π
∗
1f · τ̃) = ι ◦ resΔ ◦

(
π∗

1f · ∇k
2(τ̃)

)

= π∗
1f · ι ◦ resΔ∇k

2(τ̃) = f · jk∇k
D(τ).

To see that ∇k
D = jk∇k

D ◦ jk
L, it suffices, by definition of jk

L, to prove that for any
open subset U ⊂ X and every element s ∈ L(U), one has

ι ◦ resΔ ◦ ∇k
2(π

∗
2s) = ∇k

D(s).

But observe that ∇k
2(π

∗
2s) = π∗

2,k∇ks, where

π∗
2,k : π∗ (

E GG
k,k ΩX(log D) ⊗ L

) → E GG
k,k ΩX×X(log(π−1

2 D)) ⊗ π∗
2L

is the map induced by π2. Moreover, if one denotes σ1 : X → Δ the canonical lift,
one has by definition that ι = σ∗

1,k is just the isomorphism induced by σ1 and that
therefore ι ◦ resΔ ◦ π∗

2,k = (π2 ◦ σ1)∗
k = (idX)∗

k is just the identity on E GG
k,k ΩX(U). ��

2.3 Logarithmic Wronskians. Let X be an n-dimensional complex manifold
endowed with a line bundle L. Suppose that there exists a smooth hypersurface
D ∈ |L| defined by a section σD ∈ H0(X, L). Fix a positive integer k � 1. Given
s1, . . . , sk ∈ H0(X, L) we define the logarithmic Wronskian to be

WD(s1, . . . , sk) :=

∣∣
∣
∣∣
∣∣

∇1
D(s1) · · · ∇1

D(sk)
...

. . .
...

∇k
D(s1) · · · ∇k

D(sk)

∣∣
∣
∣∣
∣∣
∈ H0

(
X, EGG

k,k′ΩX(log D) ⊗ Lk
)
. (2.6)



710 D. BROTBEK, Y. DENG GAFA

We shall shortly see that in fact these elements define in fact global sections of
Ek,k′ΩX(log D) ⊗ Lk. We also define a morphism of OX -modules

jkWD :
k∧

JkL → EGG
k,k′ΩX(log D) ⊗ Lk, (2.7)

by setting

jkWD(g1 ∧ · · · ∧ gn) =

∣
∣
∣
∣
∣
∣
∣

j1∇1
D(g1) · · · j1∇1

D(gk)
...

. . .
...

jk∇k
D(g1) · · · jk∇k

D(gk)

∣
∣
∣
∣
∣
∣
∣

for g1, . . . , gk ∈ JkL(U). Here we use for any 1 � j � k the inclusion EGG
j,mΩX(log D)

⊂ EGG
k,mΩX(log D) and the truncating morphism JkL → J jL. This construction is

related to the (non-logarithmic) Wronskian in the following way.

Lemma 2.2. Same notation as above. For any open subset U ⊂ X and any g1, . . . ,
gk ∈ L(U) one has

jkWL(jk
LσD ∧ jk

Lg1 ∧ · · · ∧ jk
Lgk) = σD · jkWD(jk

Lg1 ∧ · · · ∧ jk
Lgk).

Proof. On proves by using elementary operations on the lines and Leibniz relation
(2.5), that for any g0, . . . , gk ∈ L(U) one has

jkWL(jk
Lg0 ∧ · · · ∧ jk

Lgk) =

∣
∣∣
∣∣
∣
∣

j0∇0
D(j0

Lg0) · · · j0∇0
D(j0

Lgk)
...

. . .
...

jk∇k
D(jk

Lg0) · · · jk∇k
D(jk

Lgk)

∣
∣∣
∣∣
∣
∣
.

Then one applies this equality to g0 = σD and use relation (2.4) and Proposition 2.1
to prove that for any p � 1, jp∇p

D(jpσD) = 0. The lemma follows by expanding the
determinant with respect to the first column. ��

In particular, we see that the morphism jkWD factors through a morphism

k∧
JkL → Ek,k′ΩX(log D) ⊗ Lk ↪→ EGG

k,k′ΩX(log D) ⊗ Lk

which we shall denote (slightly abusively) by jkWD in the rest of this paper. There-
fore, by Proposition 2.1 we obtain also that for any s1, . . . , sk ∈ H0(X, L),

WD(s1, . . . , sk) ∈ H0
(
X, Ek,k′ΩX(log D) ⊗ Lk

)
.

By (1.13), there exists a unique global section

ωD(s1, . . . , sk) ∈ H0
(
Xk(D),OXk(D)(k

′) ⊗ π∗
0,kL

k
)

(2.8)

such that (π0,k)∗ωD(s1, . . . , sk) = WD(s1, . . . , sk). These observations will be refined
even further in the next section.
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If Y is a submanifold of X which is transverse to D, then (Y, Y ∩D) is a sub-log
manifold of (X, D). Write DY := Y ∩D. One has the following commutative diagram

L
∇k

D ��

��

EGG
k,k ΩX(log D) ⊗ L

��
L�Y

∇k
DY �� EGG

k,k ΩY (log DY ) ⊗ L�Y .

In particular, for any s1, . . . , sk ∈ H0(X, L), one has

WD(s1, . . . , sk)�Y = WDY
(s1�Y , . . . , sk�Y ). (2.9)

Since the log Demailly k-jet tower Yk(DY ) of (Y, D) can be seen as a smooth sub-
variety of Xk(D), it follows that

ωD(s1, . . . , sk)�Yk(DY ) = ωDY
(s1�Y , . . . , sk�Y ). (2.10)

2.4 Higher order log connections as local functions on the log Demailly
tower. Take X, L and D as in the previous subsection. Fix a positive integer k �
1. Consider the log Demailly k-jet tower Xk(D) associated to

(
X, D, TX(− log D)

)
.

Recall that given any s1, . . . , sk ∈ H0(X, L), one can associate to WD(s1, . . . , sk)
a unique element ωD(s1, . . . , sk) ∈ H0

(
Xk(D),OXk(D)(k′) ⊗ π∗

0,kL
k
)

by (2.8). The
drawback of using (1.13) is that the element ωD(s1, . . . , sk) is not fully explicit,
since the isomorphism in loc. cit. is not completely explicit. To be more precise,
on X\D this isomorphism coincides with (1.9), and can therefore be understood
in view of Theorem 1.2(i) and (1.10). However, (1.13) is only obtained indirectly
in a neighborhood of a point of D. On the other hand, during the proof of our
main result, we will need an explicit description of ωD(s1, . . . , sk) at every point. For
this reason, we provide here an alternative way, closer to Demailly’s philosophy of
directed pairs, to describe this element. To be more precise, we will construct an
element

ω′
D(s1, . . . , sk) ∈ H0

(
Xk(D),OXk(D)(k, k − 1, . . . , 1) ⊗ π∗

0,kL
)

which is sent to ωD(s1, . . . , sk) under the canonical inclusion OXk(D)(k, k−1, . . . , 1) ↪→
OXk(D)(k′) induced by multiplication by

kπ∗
2,kΓ2 + (k + k − 1)π∗

3,kΓ3 + · · · + (k + · · · + 3)π∗
k−1,kΓk−1 + (k + · · · + 2)Γk,

where Γj ∈ H0
(
Xj(D),OXj(D)(1) ⊗ π∗

j−1,jOXj−1(D)(−1)
)

is the effective divisor de-
fined in (1.12).

The starting point of our construction is the following. Let (X, D, V ) be a log
directed manifold, and let (X̃, D̃, Ṽ ) be the derived log directed manifold via the 1-
jet functor as defined in Section 1.4. Consider open subsets U ⊂ X and Ũ ⊂ X̃ such
that π̃(Ũ) ⊂ U . Suppose that we are given a trivialization of OX̃(−1)�Ũ induced
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by a nowhere vanishing section ξ ∈ Γ
(
Ũ ,OX̃(−1)

)
and suppose moreover, that

we are given a trivialization of L�U under which the section σD corresponds to a
holomorphic function σU ∈ O(U). Then, given any f ∈ O(U), we can define

∇Uf = df − f
dσU

σU
∈ Γ(U, ΩX(D)).

Thus we obtain an element π̃∗∇Uf�Ũ ∈ Γ(Ũ , π̃∗ΩX(log D)). Note that since we have
inclusions

OX̃(−1) ↪→ π̃∗V ↪→ π̃∗TX(− log D),

we can see ξ as an element in Γ(Ũ , π̃∗TX(− log D)). Therefore we can define
∇DS

U,σU ,Ũ ,ξ
(f) ∈ O(Ũ) by setting

∇DS
U,σU ,Ũ ,ξ

(f)(a) = π̃∗∇Uf�Ũ
(
ξ(a)

) ∀a ∈ Ũ .

Observe that this f̃ depends strongly on the choice of trivializations.
This procedure can now be extended by induction on the higher order log De-

mailly tower. Consider a log-manifold (X, D) and write L = OX(D). Consider
the log Demailly tower

(
Xk(D), Dk, Vk

)
k�0

associated to the log directed man-
ifold (X0, D0, V0) =

(
X, D, TX(− log D)

)
. A trivialization tower of oder k, U =(

(U0, σU ), (Uj , ξj)1�j�k

)
, consists of the following data:

(i) An open subset U ⊂ X and for each 1 � j � k, an open subset Uj ⊂ Xj(D)
such that π0,1(U1) ⊂ U and πj,j+1(Uj+1) ⊂ Uj whenever j < k.

(ii) A trivialization of L�U under which the section σD corresponds to a holomor-
phic function σU ∈ O(U0).

(iii) For every 1 � j � k, a nowhere vanishing section ξj ∈ Γ
(
Uj ,OXj(D)(−1)

)

which therefore induces a trivialization of OXj(D)(−1)�Uj
.

Let U =
(
(U, σU ), (Uj , ξj)1�j�k

)
be a trivialization tower of order k and let f ∈ O(U)

be a holomorphic function on U . Then on can define for any 0 � j � k, a holomorphic
function

∇j
Uf ∈ O(Uj)

inductively by setting

∇0
U f = f

∇j+1
U f = ∇DS

Uj ,π∗
0,jσU ,Uj+1,ξj+1

(∇j
Uf

) ∀ 0 � j < k, (2.11)

where we observe that (π∗
0,jσU = 0)∩Uj defines Dj ∩Uj . Here again these functions

all depend in a critical way of the choice of trivialization tower U.
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Consider now global sections s1, . . . , sk ∈ H0(X, L). Let us fix a trivialization
tower U and let s1,U , . . . , sk,U ∈ O(U) be the local representatives of s1, . . . , sk

under our choice of trivialization for L�U (i.e. si,U = σU
si

σD
) and define

ωU(s1, . . . sk) =

∣
∣
∣
∣
∣
∣
∣

∇1
U s1,U · · · ∇1

U sk,U
...

...
∇k
U s1,U · · · ∇k

U sk,U

∣
∣
∣
∣
∣
∣
∣
∈ O(Uk).

Here we abusively write ∇j
Usi,U instead of π∗

j,k∇j
Usi,U ∈ O(Uk) for any 1 � j < k.

The key point is that these locally defined objects can be glued together.

Proposition 2.3. For any s1, . . . , sk ∈ H0(X, L), the family of holomorphic func-
tions

(
ωU(s1, . . . , sk)

)
U

define a global section

ω′
D(s1, . . . , sk) ∈ H0

(
Xk(D),OXk(D)(k, k − 1, . . . , 1) ⊗ π∗

0,kL
k
)
.

More precisely, for any trivialization tower U of order k, one has

ω′
D(s1, . . . , sk)�Uk

= ωU(s1, . . . sk) · (π1,k)∗ξ−k
1 · (π2,k)∗ξ−(k−1)

2 · · · (πk−1,k)∗ξ−2
k−1 · ξ−1

k .

(2.12)

Moreover, under the natural inclusion

H0
(
Xk(D),OXk(D)(k, k − 1, . . . , 1) ⊗ π∗

0,kL
k
)

↪→ H0
(
Xk(D),OXk(D)(k

′) ⊗ π∗
0,kL

k
)

(1.13)� H0
(
X, Ek,k′ΩX(log D) ⊗ Lk

)
,

the element ω′
D(s1, . . . , sk) is sent to WD(s1, . . . , sk).

The proof of this result relies on the following technical lemma.

Lemma 2.4. For any trivializing tower U =
(
(U, σU ), (Uj , ξj)1�j�k

)
and any integers

1 � j < p � k, there exists a holomorphic function βj,p ∈ O(Up+1) such that for any
f ∈ O(U) one has

∇DS
(Up,π∗

pσU ,Up+1,ξp+1)

(
π∗

j,p∇j
U (f)

)
= βj,p · π∗

j+1,p+1∇j+1
U (f)�Up+1 .

Proof. By definition of the log Demailly jet tower, the differential of the map πj,p

induces a morphism

dπj,p : OXp+1(D)(−1) → π∗
j+1,p+1OXj+1(D)(−1).

Over the open subset Up+1, since ξj+1 is nowhere vanishing on Uj+1, there exists
βj,p ∈ O(Up+1) such that

dπj,p(ξp+1) = βj,pπ
∗
j+1,p+1(ξj+1).
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Let us write g = ∇j
U (f) ∈ O(Uj) for simplicity, so that by definition (2.11)

∇j+1
U (f) = ∇DS

Uj ,π∗
0,jσU ,Uj+1,ξj+1

(g) = π∗
j,j+1

(

dg − g
dπ∗

0,jσU

π∗
0,jσU

)

(ξj+1).

The proof of the lemma is then reduced to the following computation:

∇DS
(Up,π∗

pσU ,Up+1,ξp+1)

(
π∗

j,pg
)

= π∗
p,p+1

(

dπ∗
j,pg − π∗

j,pg
dπ∗

0,pσU

π∗
0,pσU

)

(ξp+1)

= π∗
p,p+1

(

π∗
j,pdg − π∗

j,pg · π∗
j,p

dπ∗
0,jσU

π∗
0,jσU

)

(ξp+1)

=

[

π∗
j+1,p+1π

∗
j,j+1

(

dg − g
dπ∗

0,jσU

π∗
0,jσU

)]

(ξp+1)

= π∗
j+1,p+1π

∗
j,j+1

[(

dg − g
dπ∗

0,jσU

π∗
0,jσU

)

(dπj,p(ξp+1))

]

= π∗
j+1,p+1

[

π∗
j,j+1

(

dg − g
dπ∗

0,jσU

π∗
0,jσU

)]

(βj,pξj+1)

= βj,pπ
∗
j+1,p+1∇j+1

U (f). ��
Proof of Proposition 2.3. Consider two trivialization towers

U1 =
(
(U1, σU1), (U1

j , ξ1
j )1�j�k

)
and U2 =

(
(U2, σU2), (U2

j , ξ2
j )1�j�k

)
.

Writing U12 = U1∩U2 Let g ∈ O(U12) be the transition map from U2 to U1 induced
by our choice of trivializations for L, so that for any global section s ∈ H0(X, L),

sU1�U12 = g · sU2�U12 . (2.13)

For any 1 � j � k, let us also write U12
j = U1

j ∩ U2
j and consider the function

θj ∈ O(U12
j ) such that

ξ1
j = θjξ

2
j .

Therefore θj is the transition map from U2
j to U1

j for the trivializations OXj(D)(1)�U2
j∼= U2

j × C and OXj(D)(1)�U1
j

∼= U1
j × C induced by ξ2

j and ξ1
j respectively. We are

now going to establish that for any 0 � p � k, and for any 0 � j < p, there exists
P p

j ∈ O(Up) a holomorphic function such that for any s ∈ H0(X, L) one has

∇p
U1(sU1) = θpθp−1 · · · θ1g∇p

U2(sU2) +
p−1∑

j=0

P p
j ∇j

U2(sU2). (2.14)
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The key point in this formula is that P p
j does not depend on s. From this, and from

elementary operations on the lines in the determinant defining ωUi(s1, . . . , sk), it
will follow that

ωU1(s1, . . . , sk)�U12
k

= θkθ
2
k−1 · · · θk−1

2 θk
1gωU2(s1, . . . , sk)�U12

k

which concludes the proof of the first statement of the proposition.
We will establish (2.14) by induction on p. For p = 0 this is just (2.13). Take

0 � p < k and suppose that formula (2.14) holds for p. Take s ∈ H0(X, L). Recall
that

∇p+1
U1 (sU1) = ∇DS

U12
p ,π∗

0,pσU1 ,U12
p+1,ξ1

p+1

(∇p
U1(sU1)

)
.

On the other hand, one has

∇DS
U12

p ,π∗
0,pσU1 ,U12

p+1,ξ
1
p+1

(∇p
U1(sU1)

)
= ∇DS

U12
p ,π∗

0,p(gσU2 ),U12
p+1,θp+1ξ2

p+1

(∇p
U1(sU1)

)

= θp+1∇DS
U12

p ,π∗
0,p(gσU2 ),U12

p+1,ξ
2
p+1

(∇p
U1(sU1)

)

= θp+1∇DS
U12

p ,π∗
0,pσU2 ,U12

p+1,ξ
2
p+1

(∇p
U1(sU1)

)

− θp+1∇p
U1(sU1)π∗

p,p+1

dπ∗
0,pg

π∗
0,pg

(ξ2
p+1).

Observe that, using our induction hypothesis, the term −θp+1∇p
U1(sU1)π∗

p,p+1
dπ∗

0,pg

π∗
0,pg

(ξ2
p+1) is of the form allowed in formula (2.14) to be considered as an error term

for the rank p + 1. Therefore it only remains to prove that θp+1∇DS
U12

p ,π∗
0,pσU2 ,U12

p+1,ξ
2
p+1(∇p

U1(sU1)
)

is of the form announced in (2.14). To lighten the notation we will now
write ∇DS = ∇DS

U12
p ,π∗

0,pσU2 ,U12
p+1,ξ

2
p+1

. By induction one has

θp+1∇DS
(∇p

U1(sU1)
)

= θp+1∇DS

(

θp · · · θ1g∇p
U2(sU2) +

p∑

j=1

P p
j π∗

j,p∇j
U2(sU2)

)

= θp+1∇DS
(
θp · · · θ1g∇p

U2(sU2)
)

+
p∑

j=1

θp+1∇DS
(
P p

j ∇j
U2(sU2)

)
.

Before continuing, observe that for any f1, f2 ∈ O(U12
p ), one has (by an immediate

computation)

∇DS(f1f2) = f1∇DS(f2) + f2df1(ξ2
p+1).

Applying this to f1 = θp · · · θ1g and f2 = ∇p
U2(sU2) we obtain

θp+1∇DS
(
θp · · · θ1g∇p

U2(sU2)
)

= θp+1θp · · · θ1g∇DS
(∇p

U2(sU2)
)

+ ∇p
U2(sU2)d(θp · · · θ1g)(ξ2

p+1)

= θp+1θp · · · θ1g∇p+1
U2 (sU2) + ∇p

U2(sU2)d(θp · · · θ1g)(ξ2
p+1).
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Observe that the term ∇p
U2(sU2)d(θp · · · θ1g)(ξ2

p+1) is of the form allowed in the last
term of formula (2.14) at rank p + 1. Therefore, the proof of formula (2.14) will be
completed if one proves that for each j < p the term θp+1∇DS

(
P p

j ∇j
U2(sU2)

)
is also

of the form of an error term if (2.14) at rank p+1. To see this, observe that for each
j < p one has

θp+1∇DS
(
P p

j ∇j
U2(sU2)

)
= P p

j θp+1∇DS
(∇j

U2(sU2)
)

+ ∇j
U2(sU2)dP p

j (ξ2
p+1)

= P p
j θp+1βj,p∇j+1

U2 (sU2) + ∇j
U2(sU2)dP p

j (ξ2
p+1),

where βj,p is the function appearing in Lemma 2.4 applied to the trivialization tower
U2. This concludes the proof of (2.14).

To conclude the proof of the proposition, it remains to prove that ω′
D(s1, . . . , sk)

is sent to WD(s1, . . . , sk) under the above natural map. By continuity, it suffices
to prove this over the open subset Xk(D)reg ∩ π−1

k (X\D). Take wk ∈ Xk(D)reg ∩
π−1

k (X\D). From the previous part of the proposition, we are allowed to choose
any trivialization tower in order to make the computation of ω′

D(s1, . . . , sk) in a
neighborhood of wk. On the other hand, to compute the element ωD(s1, . . . , sk) ∈
H0(Xk(D),OXk(D)(k′)⊗π∗

0,kL) associated to WD(s1, . . . , sk) under the isomorphism
(1.13), we are allowed to use the explicit description isomorphism (1.9). Indeed,
outside D the logarithmic and absolute jet towers coincide. Let us therefore apply
Theorem 1.2(i).

Let U ⊂ X\D be an open set with local coordinates (z1, . . . , zn). Take a trivial-
ization of L�U such that σD is identically equal to 1. It follows from [Dem97, Proof
of Theorem 6.8] that Xk(D)reg

⋂
π−1

0,k(U) can be covered by open sets U × C(n−1)k.
Indeed, consider the family of holomorphic curves

γ : U × C
(n−1)k × C → U

(z, w, t) �→ γ(w,z)(t)

defined by

γi
(w,z)(t) =

{
zi + w

(1)
i

1! t + w
(2)
i

2! t2 + · · · + w
(k)
i

k! tk if 1 � i � n − 1
zn + t if i = n,

where w := (w(j)
i )1�j�k

1�i�n−1 and γ(w,z) := (γ1
(w,z), . . . , γ

n
(w,z)). To be precise, the map

γ is only defined on a open neighborhood of U × C(n−1)k × {0} in U × C(n−1)k × C,
but this subtlety will be irrelevant as we will only consider the k-jets of each γ(w,z)

at the point 0.
In this setting, we will prove that its kth lift (γ(w,z))[k](0) gives a holomorphic

embedding

τk : U × C
(n−1)k → Xk(D)reg (2.15)

whose image is an open subset.
Let us take a special trivialization tower of order k, denoted by U =

(
(U0, σU ),

(Uj , ξj)1�j�k

)
in the following way:
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(i) (U0, σU ) = (U, 1).
(ii) Set U1 =

{([
z
(1)
1

∂
∂z1

+ · · · + z
(1)
n−1

∂
∂zn−1

+ ∂
∂zn

]
; z

)
∈ P(TU )

}
� Cn−1 × U with

the coordinate
(
z; z(1)

1 , . . . , z
(1)
n−1

)
. Define ξ1 = z

(1)
1

∂
∂z1

+ · · ·+z
(1)
n−1

∂
∂zn−1

+ ∂
∂zn

∈
Γ
(
U1,OX1(D)(−1)

)
, and take the basis for V1�U1 as

e
(1)
1 =

∂

∂z
(1)
1

, . . . , e
(1)
n−1 =

∂

∂z
(1)
n−1

, e(1)
n =

∂

∂zn
+ z

(1)
1

∂

∂z1
+ · · · + z

(1)
n−1

∂

∂zn−1
.

Then one has (π0,1)∗
(
e
(1)
n

)
= ξ1, and π0,1

(
z; z(1)

1 , . . . , z
(1)
n−1

)
= z.

(iii) Set U2 = {([z(2)
1 e

(1)
1 + · · · + z

(2)
n−1e

(1)
n−1 + e

(1)
n ]) ∈ P(V1)�U1} � U × C2(n−1) with

the coordinate
(
z; z(1), z

(2)
1 , . . . , z

(2)
n−1

)
. Here we write z(1) = (z(1)

1 , . . . , z
(1)
n−1) for

short. Define ξ2 = z
(2)
1 e

(1)
1 + · · · + z

(2)
n−1e

(1)
n−1 + e

(1)
n ∈ Γ

(
U2,OX2(−1)

)
, and take

the basis for V2�U2 as

e
(2)
1 =

∂

∂z
(2)
1

, . . . , e
(2)
n−1 =

∂

∂z
(2)
n−1

,

e(2)
n =

∂

∂zn
+ z

(1)
1

∂

∂z1
+ · · · + z

(1)
n−1

∂

∂zn−1

+z
(2)
1

∂

∂z
(1)
1

+ · · · + z
(2)
n−1

∂

∂z
(1)
n−1

.

Then one has (π1,2)∗
(
e
(2)
n

)
= ξ2, and π1,2

(
z; z(1), z

(2)
1 , . . . , z

(2)
n−1

)
=

(
z; z(1)

)
.

(iv) Inductively, one can define Up with coordinates
(
z; z(1), . . . , z(p)) ∈ U ×C(n−1)p

such that for any j < p, πj,p

(
z; z(1), . . . , z(p)

)
=

(
z; z(1), . . . , z(j)

)
and

ξp =
∂

∂zn
+ z

(1)
1

∂

∂z1
+ · · · + z

(1)
n−1

∂

∂zn−1
+ z

(2)
1

∂

∂z
(1)
1

+ · · · + z
(2)
n−1

∂

∂z
(1)
n−1

+ · · · + z
(p)
1

∂

∂z
(p−1)
1

+ · · · + z
(p)
n−1

∂

∂z
(p−1)
n−1

.

Then (πj,p)∗(ξp) = ξj . In particular, by (1.11) and (1.12), for any 1 � j < p,
there is an isomorphism

OXp(D)(−1)�Up

(πj,p)∗(πj−1,p−1)∗


 �� (πj,p)∗OXj(D)(−1)�Up

OUp

·ξp



������������� ·(πj,p)∗ξj



���������������

and

ξ−1
j · (πj)∗ξj−1 = ξ−1

j · (πj)∗(πj−1)∗(ξj) = Γj�Uj
. (2.16)
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In this setting, one can prove that, within the coordinates for Uk, the k-th lift
(γ(w,z))[k](0) = (z; w). Hence τk : C(n−1)k × U → Xk(D)reg whose image is the open
subset Uk, and under the trivialization tower of order k, τk is an identity map. More-
over, (γ(w,z))′

[k−1](0) = ξk�(γ(w,z))[k](0). Hence a straightforward computation shows

that if we identify the parameter space C(n−1)k × U of γ(w,z)(t) with Uk by

τk : C
(n−1)k × U → Uk

(
w(1), . . . , w(k); z

) �→ (γ(w,z))[k](0),

then for any f ∈ Γ(U,OU ) and for any j = 1, . . . , k one has

dj(f)(jkγ(w,z)) = ∇j
U(f)(w, z) ∈ O(Uj).

For any s1, . . . , sk ∈ Γ(U, L�U ). Write s1,U , . . . , sk,U ∈ O(U) for the local repre-
sentatives of s1, . . . , sk under our choice of trivialization for L�U (i.e. si,U = si

σD
).

Then by (1.10), ωD(s1,U , . . . , sk,U ) ∈ Γ
(
Uk,OXk(D)(k′)

)
is defined by

ωD(s1, . . . , sk)(w, z) = WD(s1,U , . . . , sk,U )
(
jkγ(w,z)

) · ((γ(w,z))
′
[k−1](0)

)−k′

=

∣∣
∣
∣∣
∣∣

∇1
D(s1,U ) · · · ∇1

D(sk,U )
...

. . .
...

∇k
D(s1,U ) · · · ∇k

D(sk,U )

∣∣
∣
∣∣
∣∣

(
jkγ(w,z)

) · (ξk)−k′

=

∣
∣∣
∣
∣∣
∣

d1(s1,U ) · · · d1(sk,U )
...

. . .
...

dk(s1,U ) · · · dk(sk,U )

∣
∣∣
∣
∣∣
∣

(
jkγ(w,z)

) · (ξk)−k′

where the last equality is due to σU = 1. Note that dj : Γ(U,OU ) → EGG
j,j ΩU . Write

Γk = kπ∗
2,kΓ2 + (k + k − 1)π∗

3,kΓ3 + · · · + (k + · · · + 3)π∗
k−1,kΓk−1 + (k + · · · + 2)Γk

(2.17)

for short. Hence

ωD(s1, . . . , sk)�Uk
=

∣
∣
∣∣
∣
∣∣

∇1
U(s1,U ) · · · ∇1

U(sk,U )
...

. . .
...

∇k
U(s1,U ) · · · ∇k

U(sk,U )

∣
∣
∣∣
∣
∣∣
· (ξk)−k′

= ωU(s1, . . . sk) · (ξk)−k′

(2.16)
= ωU(s1, . . . sk) · (π1,k)∗ξ−k

1 · (π2,k)∗ξ−(k−1)
2 · · · (πk−1,k)∗ξ−2

k−1

· ξ−1
k · Γk

(2.12)
= ω′

D(s1, . . . , sk)�Uk
· Γk.

Since Uk is dense in π−1
0,k(U) and since ωD(s1, . . . , sk) and ω′

D(s1, . . . , sk) ·Γk coincide
on Uk, it follows by continuity that they also coincide on π−1

0,k(U). Therefore it follows
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that these two sections coincide on π−1
0,k(X\D) and therefore they also coincide on

the whole space Xk(D):

ωD(s1, . . . , sk) = ω′
D(s1, . . . , sk) · Γk. (2.18)

The proposition is thus proved. ��
2.5 Logarithmic Wronskian ideal sheaf. Recall that in (2.7), we defined the
log Wronskian morphism

jkWD :
k∧

JkL → Ek,k′ΩX(log D) ⊗ Lk,

which is a morphism of OX -module. We denote by Wk,L := jkWD(
∧k JkL), which

is a subsheaf of Ek,k′ΩX(log D)⊗Lk. By (1.13) for any m ∈ N there exists a natural
morphism

π∗
0,k

(
Ek,k′ΩX(log D) ⊗ Lm

)

� π∗
0,k(π0,k)∗

(
OXk(D)(k

′) ⊗ π∗
0,kL

m
) → OXk(D)(k

′) ⊗ π∗
0,kL

m.

We denote by wXk(D) the image of the composition

π∗
0,kWk,L ⊗ OXk(D)(−k′) ⊗ π∗

0,kL
−k → π∗

0,kEk,k′ΩX(log D) ⊗ OXk(D)(−k′) → OXk(D),

which is a coherent ideal sheaf on Xk(D). wXk(D) will be called the kth logarithmic
Wronskian ideal sheaf associated to the log manifold (X, D). Let us denote by

WXk(D) := Span{ωD(s1, . . . , sk) | s1, . . . , sk ∈ H0(X, L)}

the sub-linear system of |OXk(D)(k′) ⊗ π∗
0,kL

k|. One thus has the following result

Proposition 2.5. When L generates k-jets everywhere on X, wXk(D) is the base
ideal of WXk(D). It satisfies moreover

Supp(OXk(D)/wXk(D)) ⊂ Xk(D)sing
⋃

π−1
0,k(D).

Proof. For any s1, . . . , sk ∈ H0(X, L), let us define the natural linear map

k∧
H0(X, L) → H0

(

X,

k∧
JkL

)

s1 ∧ · · · ∧ sk �→ jk
Ls1 ∧ · · · ∧ jk

Lsk.

It follows from the definition that

WD(s1, . . . , sk) = jkWD

(
jk
Ls1 ∧ · · · ∧ jk

Lsk

) ∈ H0(X,Wk,L).
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Hence by the definition of wXk(D) and the fact (π0,k)∗ωD(s1, . . . , sk)=WD(s1, . . . , sk),
one concludes that

ωD(s1, . . . , sk) ∈ H0
(
Xk(D),OXk(D)(k

′) ⊗ π∗
0,kL

k ⊗ wXk(D)

)
.

In other words, the base ideal of Wk,L belongs to wXk(D).
On the other hand, since L separates k-jets everywhere on X, the set of global

sections

Span

{

jk
Ls1 ∧ · · · ∧ jk

Lsk ∈ H0

(

X,

k∧
JkL

)

| s1, . . . , sk ∈ H0(X, L)

}

thus generates the locally free sheaf
∧k JkL everywhere on X. Recall that JkWD :∧k JkL → Wk,L is a surjective morphism between sheaves of OX -modules. Therefore,

the set of sections

Span{jkWD

(
jk
Ls1 ∧ · · · ∧ jk

Lsk

) ∈ H0(X,Wk,L) | s1, . . . , sk ∈ H0(X, L)}
generates the sheaf of OX -module Wk,L, which implies that wXk(D) belongs to the
base ideal of WXk(D) by the definition of wXk(D). In conclusion, the base ideal of
WXk(D) is wXk(D). The second assertion follows from [Bro17, Lemma 2.4]. ��

Let us now give a more detailed local description of these objects. Let Dn be the
(unit) polydisc, and denote by E := {(z1, . . . , zn) ∈ Dn | z1 = 0}. As in (2.7), we
define a morphism of ODn-module associated to the log pair (Dn, E)

JkWE :
k∧

JkODn → Ek,k′ΩDn(log E).

Set

JkW :
k∧

JkODn → Ek,k′ΩDn

to be the morphism of ODn-module induced by the following map

k∧
H0(Dn,ODn) → H0(Dn, Ek,k′ΩDn)

f1 ∧ · · · ∧ fk �→

∣
∣∣
∣
∣∣
∣

d1f1 · · · d1fk
...

. . .
...

dkf1 · · · dkfk

∣
∣∣
∣
∣∣
∣
.

Fix an open covering U of X such that for any open set U ∈ U, L�U can be trivialized
and such that one has the following dichotomy:

(1) (U, D ∩ U) is biholomorphic to (Dn, E), and under the trivialization of L�U ,
σD = z1.

(2) U ∩ D = ∅, and under the trivialization of L�U , σD = 1.
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It follows from the very definition that one has the following local trivialization of
the morphism JkWD in Case (1),

∧k JkL�U

�

��

JkWD �� Ek,k′ΩX(log D) ⊗ Lk+1
�U

�

��∧k JkODn
JkWE �� Ek,k′ΩDn(log E);

and in Case (2)

∧k JkL�U

�

��

JkWD �� Ek,k′ΩX(log D) ⊗ Lk+1
�U

�
��∧k JkODn

JkW �� Ek,k′ΩDn .

Therefore, we conclude that the local models of the logarithmic Wronskians are
universal.

Let us denote by Dn
k (resp. Dn

k(E)) the (resp. logarithmic) Demailly–Semple k-jet
tower of (Dn, TDn) (resp.

(
Dn, E, TDn(− log E)

)
). By (1.13), there are natural mor-

phisms of OD
n
k(E)-module and OD

n
k
-module

π∗
0,kEk,k′ΩDn(log E) → OD

n
k(E)(k

′), π∗
0,kEk,k′ΩDn → OD

n
k
(k′).

Set Wk,E and Wk to be the images of JkWE and JkW . Therefore,

π∗
0,kWk,E ⊗ OD

n
k(E)(−k′) → π∗

0,kEk,k′ΩDn(log E) ⊗ OD
n
k(E)(−k′) → OD

n
k(E),

π∗
0,kWk ⊗ OD

n
k
(−k′) → π∗

0,kEk,k′ΩDn ⊗ OD
n
k
(−k′) → OD

n
k
,

whose images are coherent ideal sheaves, which we denote by wD
n
k(E) ⊂ OD

n
k(E) and

wD
n
k

⊂ OD
n
k
. Then for any U ∈ U, under the trivialization Xk(D)�U � Dn

k(E) in Case
(1) and Xk(D)�U � Dn

k in Case (2), one has the isomorphisms wXk(D)�U � wD
n
k(E)

and wXk(D)�U � wD
n
k

respectively. This local description will be used to establish a
certain universal property in Section 2.7.

2.6 Universal property of logarithmic Wronskian ideal sheaves. Let us
begin with the following setting. Let A be a very ample line bundle over a smooth
projective manifold Y , and let L be the total space of the line bundle Am for some
m ∈ N∗. Denote by p : L → Y the natural projection map with L := p∗Am, and
T ∈ H0(L, L) the tautological section such that T (x) = x for any x ∈ L. Note that
Y can be seen as the smooth hypersurface of L defined by {x ∈ L | T (x) = 0}.
Then according to Section 2.2, there exists for any k ∈ N a natural higher order
logarithmic connection ∇k : OL(L) → OL(L) ⊗ EGG

k,k ΩL(log Y ) associated to the log
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manifold (L, Y ). For any sections s1, . . . , sk ∈ H0(Y, Am), it follows from (2.6) that
one has the associated logarithmic Wronskian

WL,Y (p∗s1, . . . , p
∗sk) ∈ H0

(
L, Ek,k′ΩL(log Y ) ⊗ Lk).

By (1.13), there exists a unique section in H0
(
Lk,OLk

(k′) ⊗ π∗
0,kL

k
)
, denoted by

ωlog(s1, . . . , sk), such that

(π0,k)∗ωlog(s1, . . . , sk) = WL,Y (p∗s1, . . . , p
∗sk),

where Lk denotes to be the log Demailly k-jet tower of
(
L, Y, TL(− log Y )

)
.

Let us denote by ω′
log(s1, . . . , sk) the logarithmic Wronskian defined in Proposi-

tion 2.3. Then

ωlog(s1, . . . , sk) = ω′
log(s1, . . . , sk) · Γk, (2.19)

where Γk is an effective divisor of Lk defined in (2.17). Consider the linear systems

Wk,L,Y := Span{ωlog(s1, . . . , sk) | s1, . . . , sk ∈ H0(Y, Am)}
W

′
k,L,Y := Span{ω′

log(s1, . . . , sk) | s1, . . . , sk ∈ H0(Y, Am)}

and define wk,L,Y and w′
k,L,Y to be their base ideal. By (2.19), one has

wk,L,Y = w′
k,L,Y · OLk

(−Γk). (2.20)

It follows from the definition of WL,Y that, there exists a morphism of OL-module

jkWL,Y :
k∧

p∗(JkAm) → Ek.k′ΩL(log Y ) ⊗ Lk (2.21)

such that WL,Y factors through this morphism. Set Wk,L,Y to be the image of jkWL,Y .
We will study the properties of jkWL,Y locally.

Take an open set U with coordinates (z1, . . . , zn) such that A�U can be trivialized.
Then there are local coordinates (t, z1, . . . , zn) for p−1(U) � U×C, such that L�p−1(U)

is trivialized with T�p−1(U) = t. Hence the divisor Y ∩ p−1(U) is defined by the local
equation (t = 0). One thus can regard U as a smooth divisor in p−1(U) defined by
(t = 0). For any k ∈ N, write ∇k

U : OU×C → EGG
k,k ΩU×C(log U) for the higher order

logarithmic connection defined in (2.3). In view of (2.6) we define

Wp−1(U),U :
k∧
O(U) → Γ

(
U × C, Ek,k′ΩU×C(log U)

)
(2.22)

f1 ∧ · · · ∧ fk �→

∣
∣
∣∣
∣∣
∣

∇1
U (p∗

Uf1) · · · ∇1
U (p∗

Ufk)
...

. . .
...

∇k
U (p∗

Uf1) · · · ∇k
U (p∗

Ufk)

∣
∣
∣∣
∣∣
∣
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where pU : U × C → U is the natural projection map. By Lemma 2.2, one has

Wp−1(U),U (f1 ∧ · · · ∧ fk) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 d0(p∗
Uf1) · · · d0(p∗

Ufk)
1
t d

1t d1(p∗
Uf1) · · · d1(p∗

Ufk)
...

...
. . .

...
1
t d

kt dk(p∗
Uf1) · · · dk(p∗

Ufk)

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.23)

Observe that di(p∗
Ufj) does not contain any d� log t, therefore (2.22) induces a mor-

phism between locally free sheaves of Op−1(U)-modules

jkWp−1(U),U :
k∧

p∗(JkOU ) → Ek,k′ΩU×C(log U)

so that Wp−1(U),U factors through this morphism. If we use the basis for the local
trivialization of EGG

k,k′ΩU×C(log U) in Lemma 1.1 and the standard basis for the
trivialization of JkOU induced by the coordinates system (z1, . . . , zn), then by (2.23),
jkWp−1(U),U is represented by a constant matrix with respect to these trivializations.
In particular, the image of jkWU , denoted by Wk,U , is a locally free sheaf. In this
setting, jkWp−1(U),U trivializes jkWL,Y . Hence Wk,L,Y ⊂ Ek,k′ΩL(log Y ) ⊗ Lk is a
locally free sheaf of OL-module on L. As in Proposition 2.5, one has the following

Proposition 2.6. For L := p∗Am, when m � k, the ideal sheaf wk,L,Y coincides
with the image of

ϕk : π∗
0,kWk,L,Y ⊗ OLk

(−k′) ⊗ π∗
0,kL

−k → π∗
0,k Ek,k′ΩL(log Y ) ⊗ OLk

(−k′) → OLk
,

where OLk
(1) denotes to be the tautological line bundle defined in Section 1.4.

Proof. For any s1, . . . , sk ∈ H0(Y, Am), one has the following natural linear map
from the global sections to their k-jets

k∧
H0(Y, Am) → H0

(

Y,

k∧
JkAm

)

s1 ∧ · · · ∧ sk �→ jks1 ∧ · · · ∧ jksk.

Here we write jk instead of jk
Am to lighten the notation. Recall that

WL,Y (s1, . . . , sk) = jkWL,Y

(
p∗jks1 ∧ · · · ∧ p∗jksk

) ∈ H0(L,Wk,L,Y ),

and thus by the definition of wk,L,Y and the fact (π0,k)∗ωlog(s1, . . . , sk) = WL,Y

(s1, . . . , sk), one has

wk,L,Y ⊆ Im(ϕk).

On the other hand, since A is very ample and m � k, then Am generates k-jets, and
the set

Span

{

p∗jks1 ∧ · · · ∧ p∗jksk) ∈ H0

(

L,

k∧
p∗JkAm

)

| s1, . . . , sk ∈ H0(Y, Am)

}
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generates the locally free sheaf of OL-module
∧k p∗JkA

m everywhere on L. It follows
from the definition that JkWL,Y :

∧k p∗JkAm → Wk,L,Y is a surjective morphism
between sheaves of OL-modules. Therefore, the set of sections

Span{jkWL,Y

(
p∗jks1 ∧ · · · ∧ p∗jksk

) ∈ H0(L,Wk,L,Y ) | s1, . . . , sk ∈ H0(Y, Am)}
generates the sheaf of OL-module Wk,L,Y , and one thus has wk,L,Y ⊇ Im(ϕk). This
implies the result. ��
2.7 Universal family of log Demailly towers of general log pairs and its
blow-up. As we did in [BD17], the construction of the log pair (L, Y ) enables us
to “linearize” the family of log manifolds (Y, D) with D varying in the linear system
|Am|. Indeed, for any σ ∈ H0(Y, Am), consider the hypersurface Hσ ⊂ L defined to
be the zero locus of the section

T − p∗σ ∈ H0(L, p∗Am).

When the zero locus Dσ of σ is a smooth hypersurface on Y , Hσ will also be smooth.
A crucial observation is that

pσ = p�Hσ
: (Hσ, Dσ) → (Y, Dσ)

is a biholomorphism between log manifolds, and the hyperbolicity of Y \Dσ is there-
fore equivalent to that of Hσ\Dσ. Moreover, we have the functoriality of the loga-
rithmic Wronskians ideal sheaves.

Lemma 2.7. We denote by Hσ,k the log Demailly k-jet tower of
(
Hσ, Dσ, THσ

(− log Dσ)
)
, and let wHσ,k

be the kth logarithmic Wronskian ideal sheaf of Hσ,k

defined in Section 2.5. When m � k, we have

wk,L,Y �Hσ,k
= wHσ,k

.

Proof. Recall that

pσ = p�Hσ
: (Hσ, Dσ) → (Y, Dσ)

is a biholomorphism between log manifolds. Write Lσ := p∗
σAm = L�Hσ

. Then pσ

induces an isomorphism of linear spaces of global sections

H0(Y, Am) 
−→ H0(Hσ, Lσ)
s �→ p∗

σs.

By the functoriality of the logarithmic Wronskians in (2.10), for any s1, . . . , sk ∈
H0(Y, Am), we have

ωlog(s1, . . . , sk)�Hσ,k
= ωDσ

(p∗
σs1, . . . , p

∗
σsk) ∈ H0

(
Hσ,k,OHσ,k

(k′) ⊗ π∗
0,kL

k
σ

)
.

Hence wk,L,Y �Hσ,k
is the base ideal sheaf of the linear system

WHσ,k;Lσ
:= Span{ωDσ

(s′
1, . . . , s

′
k) | s′

1, . . . , s
′
k ∈ H0(Hσ, Lσ)}.

We note that when m � k, Am generates k-jets everywhere on Y , therefore so does
Lσ. The lemma then follows immediately from Proposition 2.5. ��
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Now let us consider the universal family of hypersurfaces H u ⊂ L × H0(Y, Am)
defined by

H u := {(x, σ) ∈ L × H0(Y, Am) | T (x) − p∗σ(x) = 0},

and define the family of hypersurfaces in Y by

Du := {(y, σ) ∈ Y × H0(Y, Am) | σ(y) = 0}.

One can take a non-empty Zariski open set As of the parameter space Au :=
H0(Y, Am) such that, the shrinking log family over As, denote by of (H s,D s) → As,
is smooth. Set H s

k to be the log Demailly k-jet tower of
(
H s,D s, TH s/As(− logD s)

)
,

and denote by qk : H s
k → As the natural projection. By the choice of As, one notes

that for any σ ∈ As , the fiber q−1
k (σ) is Hσ,k. Observe that we have an embedding

H s
k ↪→ Lk × As. Let us denote by

wH s
k

:= pr∗
1(wk,L,Y )�H s

k
,

where pr1 : Lk × Au → Lk is the natural projection map. By Lemma 2.7, we have

wH s
k �Hσ,k

= wHσ,k
.

In some sense, the ideal wk,L,Y is the obstruction to the positivity of OLk
(1). There-

fore, let us define νk : L̃k → Lk to be the blow-up of the ideal sheaf wk,L,Y . It follows
from (2.20) that νk is also the blow-up for w′

k,L,Y (see [Har77, Chapter II, Exercise

7.11]). We denote by F and F ′ the effective divisors in L̃k such that

ν∗
kwk,L,Y = O

L̃k
(−F ) and ν∗

kw
′
k,L,Y = O

L̃k
(−F ′). (2.24)

We define μk : H̃ s
k → H s

k to be the blow-up of the ideal sheaf wH s
k

with O
H̃ s

k
(−F̃ ) :=

μ∗
kwH s

k
. By the universal property of the blow-up, one has the commutative diagram

H̃ s
k

μk

��

� � �� L̃k × As

νk×1

��
H s

k
� � �� Lk × As.

The following lemma enables us to reduce the desired “general Kobayashi hyper-
bolicity” to a construction of a particular example satisfying a strong Zariski open
property.

Lemma 2.8. When μk is restricted on each fiber H̃σ,k of H̃ s
k → As, μσ,k = μk�H̃σ,k

:

H̃σ,k → Hσ,k is nothing but the blow-up of the ideal sheaf wHσ,k
.
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Proof. Let us first observe that as a consequence of the local inverse theorem in
several complex variables we obtain that in the analytic category, families of smooth
pairs (H s,D s)

ρ→ As are locally trivial in the following sense: for any x ∈ H s there
exists a neighborhood Ω ⊂ H s, a neighborhood V ⊂ As of σ := ρ(x) and an open
subset U ⊂ Cn with coordinates (z1, . . . , zn) such that there exists an isomorphism

Φ : U × V

→ Ω

satisfying ρ ◦ Φ = pr2 (where pr2 : U × V → V is the projection on the first factor)
and such that

Φ∗D s = (z1 = 0) or D s ∩ Ω = ∅.

By the local description of the logarithmic Wronskian ideal sheaves established in
Section 2.5, via the isomorphism Φ one has

wH s
k �π−1

0,k(Ω) � pr∗
1wD

n
k(E) or wH s

k �π−1
0,k(Ω) � pr∗

1wD
n
k
.

This implies the result of the lemma. ��
On the other hand, for any sections s1, . . . , sk ∈ H0(Y, Am), by (2.20) and (2.24)

there exists a (unique) section

ω̃log(s1, . . . , sk) ∈ H0
(
L̃k, ν

∗
k

(
OLk

(k′) ⊗ π∗
0,kL

k
) ⊗ O

L̃k
(−F )

)
,

= H0
(
L̃k, ν

∗
k

(
OLk

(k, k − 1, . . . , 1) ⊗ π∗
0,kL

k
) ⊗ O

L̃k
(−F ′)

)

such that

ν∗
kωlog(s1, . . . , sk) = ω̃log(s1, . . . , sk) · F, (2.25)

ν∗
kω′

log(s1, . . . , sk) = ω̃log(s1, . . . , sk) · F ′. (2.26)

We will also need the following crucial lemma.

Lemma 2.9. For any sections s1, . . . , sk, s
′
1, . . . , s

′
k ∈ H0(Y, Am) and any point y ∈

Y , if the k-jets jksi(y) = jks′
i(y) ∈ (JkAm)y for each i = 1, . . . , k, then on the fiber

L̃k,y := (p ◦ π0,k ◦ νk)−1(y) of p ◦ π0,k ◦ νk : L̃k → Y , one has

ω̃log(s1, . . . , sk)�L̃k,y
= ω̃log(s′

1, . . . , s
′
k)�L̃k,y

.

Proof. Define Lk,x to be the fiber (π0,k)−1(x) of π0,k : Lk → L. Note that the natural
morphism

Ek,k′ΩL(log Y ) ⊗ k(x) 
−→ (π0,k)∗OLk
(k′) ⊗ k(x) → H0

(
Lk,x,OLk

(k′)�Lk,x

)

is an isomorphism, where k(x) is the residue field of L at x. By the assumption that
jksi(y) = jks′

i(y) for each i = 1, . . . , k, one has

jks1 ∧ · · · ∧ jksk(y) = jks′
1 ∧ · · · ∧ jks′

k(y) ∈
k∧

JkAm ⊗ k(y).
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Hence for any x ∈ p−1(y), one has

jkWk,L,Y

(
p∗jks1 ∧ · · · ∧ p∗jksk

)
(x)

= jkWk,L,Y

(
p∗jks′

1 ∧ · · · ∧ p∗jks′
k

)
(x) ∈ Ek,k′ΩL(log Y ) ⊗ Lk ⊗ k(x),

and we conclude that ωlog(s1, . . . , sk)�Lk,y
= ωlog(s′

1, . . . , s
′
k)�Lk,y

.
It now suffices to observe that the co-support of the ideal sheaf wk,L,Y does not

contain the fiber Lk,x. Indeed, the announced statement will follow at once by conti-
nuity. To see this, it suffices to take coordinates (z1, . . . , zn) centered at y = p(x) and
consider the functions z1, . . . , z

k
1 in a neighborhood of y. A direct computation then

shows that ωlog(z1, . . . , z
k
1 )�Lk,x

is not identically zero, which implies the announced
result. ��

3 Main Constructions

3.1 Fermat type hypersurfaces and associated pairs. To begin with, we
construct a family of hypersurfaces in Y parametrized by certain Fermat type as in
[Bro17]. Let A be a very ample line bundle on Y . For an integer N � n = dim(Y ), we
fix N + 1 sections in general position τ0, . . . , τN ∈ H0(Y, A). By “general position”
we mean that the divisors defined by (τj = 0)j=0,...,N are all smooth and meet
transversally. For any two positive integers ε, δ, set

I := {I = (i0, . . . , iN ) | |I| = δ}
and

a :=
(
aI ∈ H0(Y, Aε)

)
|I|=δ

∈ A :=
⊕

I∈I

H0(Y, Aε).

For two positive integers r and k fixed later according to our needs, consider the
family D → A of hypersurfaces in

∣
∣(ε + (r + k)δ

)
A
∣
∣ defined by the zero locus of the

bihomogenous sections

σ(a)(y) : y �→
∑

|I|=δ

aI(y)τ(y)(r+k)I ,

where (aI)|I|=δ varies in the parameter space A, and τ := (τ0, . . . , τN ). For any
a ∈ A, let us write Da for the fiber of the family D → A.

Write m := ε + (r + k)δ. Consider the total space p : L → Y of Am defined in
Section 2.6, and write L := p∗Am. With the same notation in loc. cit., consider the
family of hypersurfaces H → A in L defined by the vanishing of the section

T − p∗σ(a) ∈ H0(L, L).

For any a ∈ A, write Ha := (T − p∗σ(a) = 0) ⊂ L. By [BDa18] there exists a
non-empty Zariski open subset Asm ⊂ A such that Da is a smooth hypersurface for
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any a ∈ Asm, and so is Ha. Let us now shrink the family H (resp. D) to Asm, and
let us denote abusively H → Asm (resp. D → Asm) this restricted family. Since we
can see D as a hypersurface in H defined by the equation (T = 0). Then, by the
choice of Asm, D is a smooth hypersurface of H and moreover, (H ,D) → Asm is a
smooth family of log pairs.

Let us define Hk to be the log Demailly k-jet tower of (H ,D , TH /Asm
(− logD)).

Under the natural inclusion morphism

Asm ↪→ A
s

a �→ σ(a)

to the universal family defined in Section 2.7, and by the flat base change theorem,
one simply obtains Hk := H s

k ×As Asm. Let us define

H̃k := H̃ s
k ×As Asm.

For any a ∈ Asm, the fibers of Hk → Asm and H̃k → Asm are denoted by Ha,k and
H̃a,k respectively. Observe that in view of Lemma 2.8, this notation is consistent in
the sense that H̃a,k is indeed the blow-up of Ha,k along the logarithmic Wronskian
ideal sheaf wHa,k

.

3.2 Mapping to the Grassmannians. Consider the log pair (L, Y ) defined
in Section 3.1 equipped with the line bundle L := p∗Am. By (2.3), one can define
the higher order logarithmic connection ∇j : L → EGG

j,j ΩL(log Y ) ⊗ L. As in Sec-
tion 2.4, let us take a trivialization tower U =

(
(U, TU ), (Uj , ξj)1�j�k

)
of order k. A

straightforward induction implies the following

Lemma 3.1. For any I ∈ I and for any 1 � j � k, there exist C-linear maps

∇j
I : H0(Y, Aε) → H0

(
L, EGG

j,j ΩL(log Y ) ⊗ p∗Aε+kδ
)
,

∇j
U,I : H0(Y, Aε) → O(Uk),

such that for any aI ∈ H0(Y, Aε), one has

∇j(p∗aI · (p∗τ)(r+k)I) = (p∗τ)rI · ∇j
I (aI),

∇j
U (p∗aI · (p∗τ)(r+k)I) = (τUk

)rI · ∇j
U,I(aI).

Here we denote by τUk
the pull-back of trivialization of p∗τ under L�U to Uk.

Therefore, for any I1, . . . , Ik ∈ I and any aI1 , . . . , aIk
∈ H0(Y, Lε) one can define

Wlog,I1,...,Ik
(aI1 , . . . , aIk

)

:=

∣∣
∣
∣∣
∣∣

∇1
I1

(aI1) · · · ∇1
Ik

(aIk
)

...
. . .

...
∇k

I1
(aI1) · · · ∇k

Ik
(aIk

)

∣∣
∣
∣∣
∣∣
∈ H0(L, Ek,k′ΩL(log Y ) ⊗ p∗Ak(ε+kδ)).
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It then follows from Lemma 3.1 that

WL,Y (p∗aI1 · (p∗τ)(r+k)I1 , . . . , p∗aIk
· (p∗τ)(r+k)Ik)

= (p∗τ)r(I1+···+Ik) · Wlog,I1,...,Ik
(aI1 , . . . , aIk

). (3.1)

Set

ωlog,I1,...,Ik
(aI1 , . . . , aIk

) ∈ H0
(
Lk,OLk

(k′) ⊗ (p ◦ π0,k)∗Ak(ε+kδ)
)
,

to be the inverse image of (π0,k)∗ under the isomorphism (1.13), then

ωlog(aI1τ
(r+k)I1 , . . . , aIk

τ (r+k)Ik) = ωlog,I1,...,Ik
(aI1 , . . . , aIk

) · (p ◦ π0,k)∗τ r(I1+···+Ik).
(3.2)

Moreover from Proposition 2.6 one can deduce at once

Lemma 3.2. The section ωlog,I1,...,Ik
(aI1 , . . . , aIk

) vanishes along wk,L,Y . In other
words,

ωlog,I1,...,Ik
(aI1 , . . . , aIk

) ∈ H0
(
Lk,OLk

(k′) ⊗ (p ◦ π0,k)∗Ak(ε+kδ) ⊗ wk,L,Y

)
,

where wk,L,Y is the ideal sheaf defined in Section 2.6.

Proof. By (3.1), one has

Wlog,I1,...,Ik
(aI1 , . . . , aIk

) ∈ H0(L,Wk,L,Y ⊗ p∗A−rkδ),

where we recall that Wk,L,Y is the image of the morphism jkWL,Y defined in (2.21).
Then the base ideal of ωlog,I1,...,Ik

(aI1 , . . . , aIk
) belongs to the ideal sheaf of OLk

defined by the image of the morphism

π∗
0,k(Wk,L,Y ⊗ p∗A−rkδ) ⊗ (p ◦ π0,k)∗A−k(ε+kδ) ⊗ OLk

(−k′)
→ π∗

0,k Ek,k′ΩL(log Y ) ⊗ OLk
(−k′) → OLk

.

Note that the image of the above morphism coincides with that of the following one

π∗
0,kWk,L,Y ⊗ π∗

0,kL
−k ⊗ OLk

(−k′)⊗ → π∗
0,k Ek,k′ΩL(log Y ) ⊗ OLk

(−k′) → OLk
.

The lemma follows immediately from Proposition 2.6. ��
Recall that we define νk : L̃k → Lk to be the blow-up of the ideal sheaf wk,L,Y .

By Lemma 3.2 and (2.25) there exists a unique

ω̃log,I1,...,Ik
(aI1 , . . . , aIk

) ∈ H0
(
L̃k, ν

∗
k

(
OLk

(k′) ⊗ (p ◦ π0,k)∗Ak(ε+kδ)
) ⊗ O

L̃k
(−F )

)

such that

ν∗
kωlog,I1,...,Ik

(aI1 , . . . , aIk
) = F · ω̃log,I1,...,Ik

(aI1 , . . . , aIk
).
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By definition ωlog,I1,...,Ik
(aI1 , . . . , aIk

) is alternating with respect to (I1, . . . , Ik). We
then can define a rational map

Φ : A × Lk ��� P
(
Λk(CI)

)

(a, w) �→ [(
ωlog,I1,...,Ik

(aI1 , . . . , aIk
)(w)

)
I1,...,Ik∈I

]
.

The map Φ can also be interpreted explicitly using our intrinsic construction in
Section 2.4. Let us fix a tower trivialization U of order k. If we denote by

∇i
U,•(a, w) :=

(∇j
U,I(aI)(w)

)
I∈I

∈
⊕

I∈I

O(A × Uk),

for any 1 � i � k, then we can define another rational map locally by

ΦU : A × Uk ��� Grk(CI)

(a, w) �→ Span
(∇1

U,•(a, w), · · · , ∇k
U,•(a, w)

)
I1,...,Ik∈I

and this is indeed the localization of Φ.

Lemma 3.3. One has Φ�A×Uk
= Pluc ◦ ΦU, where Pluc : Grk(CI) ↪→ P

(
Λk(CI)

)

denotes the Plücker embedding.

Proof. Let us define

ωU,I1,...,Ik
(aI1 , . . . , aIk

) :=

∣∣
∣∣
∣
∣∣

∇1
U,I1

(aI1) · · · ∇1
U,I1

(aIk
)

...
. . .

...
∇k
U,I1

(aI1) · · · ∇k
U,Ik

(aIk
)

∣∣
∣∣
∣
∣∣
∈ O(A × Uk),

which corresponds to the Plücker coordinate of Pluc ◦ ΦU. By Lemma 3.1, one has

ωU,I1,...,Ik
(aI1 , . . . , aIk

) · τ
r(I1+···+Ik)
Uk

=

∣
∣
∣
∣
∣∣
∣

∇1
U (p∗aI1 · (p∗τ)(r+k)I1) · · · ∇1

U (p∗aIk
· (p∗τ)(r+k)Ik)

...
. . .

...
∇k
U (p∗aI1 · (p∗τ)(r+k)I1) · · · ∇k

U (p∗aIk
· (p∗τ)(r+k)Ik)

∣
∣
∣
∣
∣∣
∣
.

It follows from Proposition 2.3 that under the trivialization of U, one has

ωlog(aI1τ
(r+k)I1 , . . . , aIk

τ (r+k)Ik)�Uk
= ωU,I1,...,Ik

(aI1 , . . . , aIk
) · τ

r(I1+···+Ik)
Uk

· Γk,U,

here Γk,U ∈ O(Uk) is the holomorphic function defining Γk via the trivialization of
U. By (3.2) we conclude the proof of the lemma. ��
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Remark 3.4. By the proof of Lemma 3.3, one can glue ωU,I1,...,Ik
(aI1 , . . . , aIk

) to-
gether to obtain a global section

ω′
log,I1,...,Ik

(aI1 , . . . , aIk
) ∈ H0

(
Lk,OLk

(k, k − 1, . . . , 1) ⊗ (p ◦ π0,k)∗Ak(ε+kδ)
)

(3.3)

such that

ωlog,I1,...,Ik
(aI1 , . . . , aIk

) = ω′
log,I1,...,Ik

(aI1 , . . . , aIk
) · Γk.

It follows from (2.24) that

ν∗
kω′

log,I1,...,Ik
(aI1 , . . . , aIk

) = F ′ · ω̃log,I1,...,Ik
(aI1 , . . . , aIk

). (3.4)

Consider the following rational map

Φ̃ : A × L̃k ��� P
(
Λk(CI)

)
(3.5)

(a, w̃) �→ [(
ω̃log,I1,...,Ik

(aI1 , . . . , aIk
)(w̃)

)
I1,...,Ik∈I

]
.

Since L̃k\Supp(F ) νk−→ Lk\Supp(OLk
/wk,L,Y ) is a isomorphism, one has Φ̃ = Φ ◦ νk

outside Supp(F ), and by the fact that L̃k is irreducible, this implies that Φ̃ also
factors through the Plücker embedding, which is also denoted by Φ̃. One thus has
the following commutative diagram

A × L̃k

1×νk

��

Φ̃

���
�

�
�

�

A × Lk
Φ ����� Grk(CI)

3.3 Partially resolving the indeterminacy. In this subsection, we will find
a local and linear description for Φ̃, and use this to prove that νk partially resolves
the indeterminacies of rational map Φ̃ in the same spirit as [Bro17, Lemmata 3.6 &
3.7].

Lemma 3.5. Fix any ε � k and any N > n. For any w̃0 ∈ L̃k, there exists an open
neighborhood Ũw̃0 of w̃0 such that we can define C-linear maps

�p
I : H0(Y, Aε) → O(Ũw̃0)

for any I ∈ I and p = 1, . . . , k satisfying the following conditions.

(i) Write �p
•(a, w̃) :=

(
�p
I(aI)(w̃)

)
I∈I

∈ CI. The Plücker coordinates of Φ̃(a, w̃) in

Grk(CI) all vanishes if and only

dim Span
(
�1
•(a, w̃), . . . , �k

•(a, w̃)
)

< k.

(ii) When dim Span
(
�1•(a, w̃), . . . , �k•(a, w̃)

)
= k, one has

Φ̃(a, w̃) =
(
�1
•(a, w̃), . . . , �k

•(a, w̃)
)
.
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(iii) Set y := p ◦ π0,k ◦ νk(w̃0) ∈ Y and define ρy : (CI)k → (CIy)k to be the natural
projection map, where

Iy := {I ∈ I | τ I(y) �= 0}.

Define a linear map

ϕ̃w̃0 : A → (CI)k (3.6)

a �→ (
�1
•(a, w̃0), . . . , �k

•(a, w̃0)
)
.

Then one has

rank ρy ◦ ϕ̃w̃0 = k · #Iy, (3.7)

where #Iy denotes to be the cardinality of Iy.

Proof. Set w0 := νk(w̃0), x0 = π0,k(w0) and thus y = p(x0). Since m := ε +
(r + k)δ � k, by Proposition 2.6 there exist b1, . . . , bk ∈ H0(Y, Am) such that
ω̃log(b1, . . . , bk)(w̃) �= 0 on some neighborhood Ũw0 of w̃0 in L̃k. Pick a trivializa-
tion tower U of order k such that w0 ∈ Uk. We shrink Ũw0 such that Ũw0 ⊂ ν−1

k (Uk).
For any σ ∈ H0(Y, Am), one has ∇i

U(σ) ∈ O(Uk), thus by abuse of notation, we also
write ∇i

U(σ) as a holomorphic function on Ũw̃0 under the pull-back νk : Ũw̃0 → Uk.
It follows from Lemma 3.1 that, for any p = 1, . . . , k, one can define

ω′
log,p,I(b1, . . . , bp−1, aI , bp+1, . . . , bk)∈H0

(
Lk,OLk

(k, k − 1, . . . , 1)⊗(p ◦ π0,k)∗Akm−rδ
)

such that

ω′
log(b1, . . . , bp−1, aI · τ (r+k)I , bp+1, . . . , bk)

= (p ◦ π0,k)∗τ rI · ω′
log,p,I(b1, . . . , bp−1, aI , bp+1, . . . , bk).

Indeed, locally ω′
log,p,I(b1, . . . , bp−1, aI , bp+1, . . . , bk) is defined by

∣
∣∣
∣
∣
∣
∣

∇1
U(b1) · · · ∇1

U(bp−1) ∇1
U,I(aI) ∇1

U(bp+1) · · · ∇1
U(bk)

...
. . .

...
...

...
. . .

...
∇k

U(b1) · · · ∇k
U(bp−1) ∇k

U,I(aI) ∇k
U(bp+1) · · · ∇k

U(bk)

∣
∣∣
∣
∣
∣
∣
.

By the relation between ωlog(•) and ω′
log(•) in Section 2.4 and similar arguments as

Lemma 3.2, one deduces that

ω′
log,p,I(b1, . . . , bp−1, aI , bp+1, . . . , bk)

∈ H0
(
Lk,OLk

(k, k − 1, . . . , 1) ⊗ (p ◦ π0,k)∗Akm−rδ ⊗ w′
k,L,Y

)
,

where w′
k,L,Y is the ideal sheaf of Lk defined in Section 2.6. By (2.26), there exists

a unique holomorphic section
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ω̃log,p,I(b1, . . . , bp−1, aI , bp+1, . . . , bk)

∈ H0
(
L̃k, ν

∗
k

(
OLk

(k, k − 1, . . . , 1) ⊗ (p ◦ π0,k)∗Akm−rδ
) ⊗ O

L̃k
(−F ′)

)

such that

ν∗
kω′

log,p,I(b1, . . . , bp−1, aI , bp+1, . . . , bk) = F ′ · ω̃log,p,I(b1, . . . , bp−1, aI , bp+1, . . . , bk).

On Ũw̃0 , within the trivialization of U, we now define

�p
I(aI) : =

ν∗
kω′

log,p,I(b1, . . . , bp−1, aI , bp+1, . . . , bk)
ν∗

kω′
log(b1, . . . , bk)

=
F ′ · ω̃log,p,I(b1, . . . , bp−1, aI , bp+1, . . . , bk)

F ′ · ω̃log(b1, . . . , bk)

=
ω̃log,p,I(b1, . . . , bp−1, aI , bp+1, . . . , bk)

ω̃log(b1, . . . , bk)

where the second equality is due to (2.26). Hence �p
I(aI) are all holomorphic functions

over Ũw̃0 . Consider the matrix of functions G(w̃) over Ũw̃0 defined by

G(w̃) :=

⎛

⎜
⎝

∇1
U (b1) . . . , ∇1

U (bk)
...

. . .
...

∇k
U (b1) . . . ∇k

U (bk)

⎞

⎟
⎠ ,

then by definition, one has

G ·

⎛

⎜
⎝

�1
I(aI)

...
�k
I (aI)

⎞

⎟
⎠ =

det G

ν∗
kω′

log(b1, . . . , bk)
·

⎛

⎜
⎝

∇1
U,I(aI)

...
∇k
U,I(aI)

⎞

⎟
⎠ =

⎛

⎜
⎝

∇1
U,I(aI)

...
∇k
U,I(aI)

⎞

⎟
⎠ .

For any I1, . . . , Ik ∈ I, on Ũw̃0 one has
∣
∣
∣
∣∣
∣∣

�1
I1

(aI1) . . . �1
Ik

(aIk
)

...
. . .

...
�k
I1

(aI1) . . . �k
Ik

(aIk
)

∣
∣
∣
∣∣
∣∣
=

ν∗
kω′

log,I1,...,Ik
(aI1 , . . . , aIk

)
ν∗

kω′
log(b1, . . . , bk)

=
ω̃log,I1,...,Ik

(aI1 , . . . , aIk
)

ω̃log(b1, . . . , bk)
, (3.8)

where the last equality is due to (2.26) and (3.4). This implies Lemmas 3.5(i) and
3.5(ii).

In order to prove Lemma 3.5(iii), we first observe that the linear map ϕ̃w̃0 is
block with respect to I ∈ I. Thus set

ϕ̃I : H0(Y, Aε) → C
k

aI �→ (
�1
I(aI)(w̃0), . . . , �k

I (aI)(w̃0)
)
.
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Note that Aε generates k-jets everywhere on Y by the assumption that ε � k. For
any I ∈ Iy, by the definition of Iy one has τ I(y) �= 0, and one can therefore take
c1, . . . , ck ∈ H0(Y, Aε) such that the k-jets

jkci(y) = jk

(
bi

τ (r+k)I

)
(y)

for any i = 1, . . . , k. Then

jkbi(y) = jk(ci · τ (r+k)I)(y)

for any i = 1, . . . , k. It follows from Lemma 2.9 that

ω̃log(c1 · τ (r+k)I , . . . , ck · τ (r+k)I)(w̃0) = ω̃log(b1, . . . , bk)(w̃0).

Hence
∣
∣∣
∣∣
∣
∣

�1
I(c1) . . . �1

I(ck)
...

. . .
...

�k
I (c1) . . . �k

I (ck)

∣
∣∣
∣∣
∣
∣
(w̃0)

(3.8)
=

ω̃log,I,...,I(c1, . . . , ck)(w̃0)
ω̃log(b1, . . . , bk)(w̃0)

(3.2)
=

ω̃log(c1 · τ (r+k)I , . . . , ck · τ (r+k)I)(w̃0)
τ(y)krI · ω̃log(b1, . . . , bk)(w̃0)

=
1

τ(y)krI
�= 0.

This implies that rank ϕ̃I = k. Lemma 3.5(iii) immediately follows from that ϕ̃w̃0 :=⊕
I∈I

ϕ̃I . We finish the proof of the whole lemma. ��

Let us apply Lemma 3.5 to show that Φ̃(a, •) : L̃k ��� Grk(CI) is a regular
morphism for general a ∈ A when we choose the parameters N, δ, k properly.

Lemma 3.6. Assume that N > n, δ � (k+1)n+k. Then there exists a Zariski dense

open set Adef ⊂ Asm such that Φ̃ : Adef × L̃k → Grk(CI) is a regular morphism.

Proof. By (3.5) the indeterminacy locus of Φ̃ is contained in the subvariety

Z := {(a, w̃) ∈ A × L̃k | ω̃log,I1,...,Ik
(aI1 , . . . , aIk

)(w̃) = 0 ∀I1, . . . , Ik ∈ I}.

Denote pr1 : A × L̃k → A and pr2 : A × L̃k → L̃k to be the projection maps.
It then suffices to show that pr1(Z) � A. Fix any w̃0 ∈ L̃k. Set w0 := νk(w̃0),
x = π0,k(w0) and y = p(x0). Define Zw̃0 := Z ∩pr−1

2 (w̃0). For the linear map defined
in Lemma 3.5(iii), it follows from Lemma 3.5(i) that

pr1(Zw̃0) = (ϕ̃w̃0)
−1(Δ),

where

Δ := {(v1
•, . . . , v

k
• ) ∈ (CI)k | dim Span(v1

•, . . . , v
k
• ) < k}.
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Define a linear subspace of (CIy)k by

Δy := {(v1
•, . . . , v

k
• ) ∈ (CIy)k | dim Span(v1

•, . . . , v
k
• ) < k},

and one has Δ ⊆ ρ−1
y (Δy), where ρy : (CI)k → (CIy)k is the natural projection map.

Hence

pr1(Zw̃0) ⊂ (ρy ◦ ϕ̃w̃0)
−1Δy,

and

dim Zw̃0 � dim ker(ρy ◦ ϕ̃w̃0) + dim Δy

= dim A − rank (ρy ◦ ϕ̃w̃0) + dim Δy

(3.7)
= dim A − k#Iy + (k − 1)(#Iy + 1)

= dim A + (k − 1) − #Iy.

Therefore,

dim Z � dim L̃k + max
w̃0∈L̃k

dim Zw̃0

� dim L̃k + dim A + (k − 1) − min
y∈Y

#Iy

� (k + 1)n + 1 + (k − 1) + dim A − (δ + 1)
< dim A.

Here we observe that #Iy �
(
N−n+δ

δ

)
� δ + 1 for any y ∈ Y when N > n. Let us

define Adef :=
(
A\pr1(Z)

) ∩ Asm, which is a Zariski dense open set of A. By the
definition of Z, we conclude that Φ̃(a, •) : L̃k → Grk(CI) is a regular morphism for
any a ∈ Adef . ��

4 Proof of the Main Results

4.1 Associated universal complete intersection variety. We are now in
position to introduce the main geometric framework used during the proof of our
main result. As in [BDa18, Bro17, Den17, BD17] we rely on the universal complete
intersection variety associated to our problem defined by

Y :=
{

(Δ, [z]) ∈ Grk

(
H0

(
P

k,OPk(δ)
)) × P

k | ∀ P ∈ Δ, P ([z]) = 0
}

,

where we fix the parameter N = k = n + 1 now. Let us write Grk := Grk

(
H0

(
Pk,

OPk(δ)
))

for simplicity. For technical reasons, we will also need to adapt this con-
struction to the stratification on Y induced by the vanishings of the τj ’s. To do this,
let us define for any J ⊂ {0, . . . , k},

PJ := {[z] ∈ P
k | zj = 0 if j ∈ J},
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YJ := {y ∈ Y | τj(y) = 0 ⇔ j ∈ J},

IJ := {I ∈ I | Supp(I) ⊂ {0, . . . , k}\J},

and let us also consider the restricted universal complete intersection varieties

YJ := {(Δ, [z]) ∈ Grk × PJ | ∀P ∈ Δ, P ([z]) = 0}
= Y ∩ (Grk × PJ) ⊂ Y .

Let us denote by pr : Y → Grk the canonical projection, and for any J ⊂ {0, . . . , k}
we set prJ := pr�YJ

: YJ → Grk. Observe that the prJ is generically finite. This
observation is crucial in the rest of the argument which highly rests on the under-
standing of the geometry of the non-finite locus of prJ :

EJ :=
{
y ∈ YJ | dimy pr−1

J (prJ(y)) > 0
}

,

and its image in Grk:

G∞
J := prJ(EJ) =

{
Δ ∈ Grk | dim pr−1

J (Δ) > 0
}

.

4.2 Factorization through the universal complete intersection variety.
Let us now relate this universal complete intersection to our special families of

Fermat type pairs constructed in the previous sections by considering the morphism

Ψ̃ : Adef × L̃k → Grk × P
k (4.1)

(a, w̃) �→
(
Φ̃(a, w̃),

[
τ r
0 (p ◦ π0,k ◦ νk)(w̃), . . . , τ r

k (p ◦ π0,k ◦ νk)(w̃)
])

.

For any J ⊂ {0, . . . , k} let us write,

Lk,J := (p ◦ π0,k)−1(YJ) and L̃k,J := ν−1
k (Lk,J).

Recall the definition of the (restricted) families Hk → Adef and H̃k → Adef and
denote, for any J ⊂ {0, . . . , k},

Hk,J = Hk ∩ (Adef × L̃k,J) and H̃k,J = H̃k ∩ (Adef × L̃k,J).

For any a ∈ Adef , let us denote by Ha,k,J and H̃a,k,J the fiber above a of Hk,J and
H̃k,J respectively. One then has the crucial factorizing property of Ψ̃.

Lemma 4.1. For any J ⊂ {0, . . . , k}, when restricted to H̃k,J , the morphism Ψ̃
factors through YJ ⊂ Grk × Pk.

Proof. It suffices to prove that Ψ̃ restricted to L̃k,J × Adef factors through Grk × PJ

and that Ψ̃ restricted to H̃k factors through Y . The first claim is straightforward
to prove. For the second one, since Φ̃ = Φ ◦ νk, it suffices to prove that the rational
map

Ψ : Adef × Lk ��� Grk × P
k
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(a, w) �→
(

Φ(a, w),
[
τ r
0

(
(p ◦ π0,k)(w)

)
, . . . , τ r

k

(
(p ◦ π0,k)(w)

)]
)

factors through Y when restricted to Hk.
Let us take a trivialization tower U of order k as in Section 2.4. Pick any a ∈ Adef .

Recall that Ha is defined by the vanishing of the section

T − p∗σ(a) = T − p∗

⎛

⎝
∑

|I|=δ

aI · τ (r+k)I

⎞

⎠ ∈ H0(L, p∗L).

Then over Ha,k ∩ Uk, for any i = 1, . . . , k one has

0 = ∇i
U

(
T − p∗σ(a)

) (2.4)
= −∇i

U p∗σ(a) = −
∑

|I|=δ

(τUk
)rI · ∇j

U,I(aI),

where the last equality is due to Lemma 3.1, and we denote by τUk
the pull-back of

trivialization of τ under L�U to Uk. By the alternative definition of Φ in Lemma 3.3,
we conclude the first claim. The second claim of the lemma follows directly from
Lemma 3.6. ��
4.3 An effective Nakamaye type result. Let us denote by pr1, pr2 the pro-
jection on the first and second factor of Grk × Pk, and let us consider the Plücker
line bundle L on Grk. By definition, one has L := Pluc∗OP(Λk(CI))(1) where Pluc :
Grk ↪→ P

(
Λk(CI)

)
denotes the Plücker embedding. The use of the universal com-

plete intersection in our situation is justified by the following formula: for any d ∈ N,
one has

Ψ̃∗(L d � OPk(−1)
)

= ν∗
k

(
OLk

(dk′) ⊗ (p ◦ π0,k)∗Adk(ε+kδ)−r
) ⊗ O

L̃k
(−dF ). (4.2)

where we write L d�OPk(−1) := pr∗
1L

d⊗pr∗
2OPk(−1). In particular, if r > dk(ε+kδ),

every global section of L d � OPk(−1) gives rise to a logarithmic jet differentials
vanishing along an ample divisor of Y . Of course, there may not exist such global
sections due to the presence of the negative twist pr∗

2OPk(−1). However, observe
that the line bundle L is ample on Grk and the projection prJ : YJ → Grk is
generically finite, therefore, pr∗

JL = pr∗L�YJ
is big and nef for any J ⊂ {0, . . . , k}

and therefore, for d large enough, there are many global sections of the line bundle
L d �OPk(−1)�YJ

. In view of the factorization property established in the previous
section, we obtain that for any J ⊂ {0, . . . , k}, any integer m and any a ∈ Adef ,

Bs
(
ν∗

k

(
OHa,k,J

(dk′) ⊗ (p ◦ π0,k)∗Adk(ε+kδ)−r
) ⊗ OH̃a,k,J

(−dF )
)

⊆ Ψ̃−1
(
Bs

(
L d � OPk(−1)�YJ

))
.

These considerations lead us to study the right hand side in this formula. Since
pr∗

JL is big and nef for any J ⊂ {0, . . . , k}, Nakamaye’s theorem [Nak00] on the
augmented base locus guaranties that

EJ = B+(pr∗
JL ) = Bs

(
L d � OPk(−1)�YJ

)
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for d large enough. To determine an explicit bound for the values of d satisfying this
formula is critical in order to obtain an effective bound on the degree in our main
theorem. While we don’t know a bound for this exact problem, the second named
author was able in [Den17] to obtain the following bound for a slightly weaker
inclusion sufficient for our purposes.

Theorem 4.2 ([Den17]). For any d � δk−1, and any J ⊂ {0, . . . , k}, the base locus
of the line bundle L d � OPk(−1)�YJ

satisfies

Bs
(
L d � OPk(−1)�YJ

) ⊂ pr−1
J (G∞

J ). (4.3)

Recall that G∞
J is the set of points in Grk such that the fiber of prJ : YJ → Grk is

not a finite set.

4.4 Avoiding the exceptional locus. In this section we explain how one can
control Ψ̃−1

(
pr−1

J (G∞
J )

)
.

Lemma 4.3. For any J ⊂ {0, . . . , k}, when δ � n(k+1)+1, there exists a non-empty
Zariski open subset AJ ⊂ Adef such that

Φ̃−1(G∞
J ) ∩ (AJ × L̃k,J) = ∅.

Proof. Take any w̃0 ∈ L̃k,J . Set w0 := νk(w̃0), x = π0,k(w0) and y = p(x0). Then
we have IJ = Iy, and we define the following analogues of Y parametrized by affine
spaces

ỸJ := {(P1, . . . , Pk, [z]
) ∈ (CI)k × PJ

∣∣ P1([z]) = · · · = Pk([z]) = 0},

Ỹy := {(P1, . . . , Pk, [z]
) ∈ (CIJ )k × PJ

∣
∣ P1([z]) = · · · = Pk([z]) = 0}.

Here we use the identification CI ∼= H0
(
Pk,OPk(δ)

)
and CIJ ∼= H0

(
PJ ,OPJ

(δ)
)
. By

analogy with G∞
J , we denote by V ∞

1,J (resp. V ∞
2,J) the set of points in (CI)k (resp.

(CIJ )k) at which the fiber in ỸJ (resp. Ỹy) is positive dimensional.
We take the linear map ϕ̃w̃0 : A → (CI)k

ϕ̃w̃0 : A → (CI)k

a �→ (
�1
•(a, w̃0), . . . , �k

•(a, w̃0)
)

defined in Lemma 3.5 so that, for any a ∈ Adef , we have

Φ̃(a, w̃0) = Span
(
�1
•(a, w̃0), . . . , �k

•(a, w̃0)
)
.

Then we have

Φ̃−1(G∞
J ) ∩ (Adef × {w̃0}) = ϕ̃−1

w̃0
(V ∞

1,J) ∩ Adef = (ρy ◦ ϕ̃w̃0)
−1(V ∞

2,J) ∩ Adef .

Recall that we have IJ = Iy. Therefore
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dim
(
Φ̃−1(G∞

J ) ∩ (Adef × {w̃0})
)

� dim
(
(ρy ◦ ϕ̃w̃0)

−1(V ∞
2,J)

)

� dim V ∞
2,J + dim ker (ρy ◦ ϕ̃w̃0)

� dim V ∞
2,J + dim A − rank (ρy ◦ ϕ̃w̃0)

= dim V ∞
2,J + dim A − k#Iy.

Since

dim (V ∞
2,J) = dim (CIJ )k − codim

(
V ∞

2,J , (CIy)k
)

= k#IJ − codim
(
V ∞

2,J , (CIy)k
)

= k#Iy − codim
(
V ∞

2,J , (CIy)k
)
,

by putting the above inequalities together, one obtains

dim
(
Φ̃−1(G∞

J ) ∩ Adef × {w̃0}
)

� dim A − codim (V ∞
2,J , (CIy)k),

which yields

dim
(
Φ̃−1(G∞

J ) ∩ Adef × L̃k,J

)
� dim A − codim (V ∞

2,J , (CIy)k) + dim L̃k,J .

By a result due to Benoist (see [Ben11] or [BDa18, Corollary 3.2]), we have

codim
(
V ∞

2,J , (CIy)k
)

� δ + 1.

Therefore, if
dim L̃k,J � (k + 1)n + 1 < δ + 1, (4.4)

Φ̃−1(G∞
J ) doesn’t dominate Adef via the projection Adef × L̃k,J → Adef , and hence

there exists a non-empty Zariski open subset AJ ⊂ Adef such that

Φ̃−1(G∞
J ) ∩ (AJ × L̃k,J) = ∅. ��

4.5 Proof of the logarithmic Kobayashi conjecture. We are now in posi-
tion to conclude the proof of our first main result. With the notation of Lemma 4.3,
set

Anef :=
⋂

J⊂{0,...,k}
AJ ,

which is a non-empty Zariski open subset Adef by Lemma 4.3. Fix δ = (k + 1)n + k
so that the conditions in Lemmas 4.3 and 3.6 are fulfilled.

Theorem 4.4. Same notation as above. For any a ∈ Anef , the line bundle

ν∗
k

(
OLk

(δk−1k′) ⊗ (p ◦ π0,k)∗Aδk−1k(ε+kδ)−r
) ⊗ O

L̃k
(−δk−1F )�H̃a,k

is nef on H̃a,k.
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Proof. It suffices to show that for any irreducible curve C ⊂ H̃a,k, one has

C · ν∗
k

(
OLk

(δk−1k′) ⊗ (p ◦ π0,k)∗Aδk−1k(ε+kδ)−r
) ⊗ O

L̃k
(−δk−1F ) � 0.

By (4.2) this is equivalent to

C · Ψ̃∗(L δk−1 � OPk(−1)
)

� 0. (4.5)

Let J ⊂ {0, . . . , k} be such that H̃a,k,J contains a non-empty open subset C◦ of C
(there exists a unique such J). By the factorization property in Lemma 4.1, one has
Ψ̃(C) ⊂ YJ . Moreover, by Lemma 4.3, we see that

Ψ̃(C◦) ∩ EJ ⊂ Ψ̃(C◦) ∩ pr−1
J (G∞

J ) = ∅.

In particular, Ψ̃(C) �⊂ pr−1
J (G∞

J ) and therefore it follows from Theorem 4.2 applied
to m = δk−1 that

Ψ̃(C) �⊂ Bs
(
L δk−1 � OPk(−1)�YJ

)
,

from which (4.5) follows at once. ��
Observe that Theorem 4.4 implies the following result.

Corollary 4.5. Same notation as above. There exists β, β̃ ∈ N such that for any
α � 0, and for a general hypersurface D ∈ |Aε+(r+k)δ|, denoting by Yk(D) the log
Demailly k-jet tower associated to

(
Y, D, TY (− log D)

)
, the stable base locus

B
(
OYk(D)(β + αδk−1k′) ⊗ π∗

0,kA
β̃+α(δk−1k(ε+kδ)−r)

) ⊆ Yk(D)sing ∪ π−1
0,k(D).

Proof. Fix any a ∈ Anef . Observe now that there exists β̃, a1, . . . , ak, q ∈ N such that
the line bundle

μ∗
a,k

(
OHa,k

(a1, . . . , ak)⊗π∗
0,kA

β̃
)⊗OH̃a,k

(−qF )

is ample, where μa,k : H̃a,k → Ha,k is the blow-up of the logarithmic Wronskian ideal
sheaf wHa,k

. By Theorem 4.4 as well as the functorial properties for the restriction
of Wronskians in (2.10) and the blow-up of logarithmic Wronskian ideal sheaves in
Lemma 2.8, for any α ∈ N the line bundle

(
ν∗

k

(
OLk

(a1, . . . , ak + αδk−1k′) ⊗ (p ◦ π0,k)∗Aβ̃+α(δk−1k(ε+kδ)−r)
)

⊗ O
L̃k

( − (q + δk−1)F
))

�H̃a,k

= μ∗
a,k

(
OHa,k

(a1, . . . , ak + αδk−1k′) ⊗ L
β̃+α(δk−1k(ε+kδ)−r)
a

)

⊗ OH̃a,k

( − (q + δk−1)F
)
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is ample, where La := (p ◦ π0,k)∗A�Ha,k
. Recall that H̃a,k is a fiber of the smooth

family H̃ s
k → As, where H̃ s

k is the functorial blow-up of the universal family of log
Demailly towers of general log pairs defined in Section 2.7. Since ampleness is an
open condition in families [Laz04, Theorem 1.2.17], then by Lemma 2.8 again we
conclude that there exists an non-empty Zariski open subset Aamp ⊂ As such that
for any σ ∈ Aamp, the line bundle

(
ν∗

k

(
OLk

(a1, . . . , ak + αδk−1k′) ⊗ (p ◦ π0,k)∗Aβ̃+α(δk−1k(ε+kδ)−r)
)

⊗ O
L̃k

( − (q + δk−1)F
))

�H̃σ,k

= μ∗
σ,k

(
OHσ,k

(a1, . . . , ak + αδk−1k′) ⊗ Lβ̃+α(δk−1k(ε+kδ)−r)
σ

)

⊗ OH̃σ,k

( − (q + δk−1)F
)

is ample. Here Hσ,k is the log Demailly k-jet tower of
(
Hσ, Dσ, THσ

(− log Dσ)
)
,

Lσ := (p◦π0,k)∗A�Hσ,k
, and μσ,k : H̃σ,k → Hσ,k denotes to be the blow-up of the k-th

log Wronskian ideal sheaf wHσ,k
. By our construction of Hσ, the log pairs (Hσ, Dσ)

and (Y, Dσ) are isomorphic. Hence the line bundle

ν∗
k

(
OYk(Dσ)(a1, . . . , ak + αδk−1k′)⊗π∗

0,kA
β̃+α(δk−1k(ε+kδ)−r)

)⊗OỸk(Dσ)(−(q + δk−1)F )

is ample as well, where we denote by Ỹk(Dσ) the blow-up along the Wronskian ideal
sheaf wYk(Dσ). In particular, its stable base locus is empty, which implies that the
stable locus

B
(
OYk(Dσ)(a1, . . . , ak + αδk−1k′) ⊗ π∗

0,kA
β̃+α(δk−1k(ε+kδ)−r)

)

is contained in the cosupport of the logarithmic Wronskian ideal sheaf wYk(Dσ),
which is contained in Yk(Dσ)sing ∪ π−1

0,k(Dσ) by Proposition 2.5. Now it suffices to
take β = a1 + · · ·+ ak and apply the relation (1.12) to conclude that the stable base
locus of the line bundle

OYk(Dσ)(β + αδk−1k′) ⊗ π∗
0,kA

β̃+α(δk−1k(ε+kδ)−r)

is also contained in Yk(Dσ)sing ∪ π−1
0,k(Dσ). Recall that As is the Zariski open subset

of Au := H0(Y, Am) parameterizing all smooth hypersurfaces, where we recall m :=
ε + (r + k)δ. Aamp therefore parametrizes a general hypersurface in |Am|, whence
the result. ��

From Corollary 4.5 the first statement of our main theorem follows at once.

Corollary 4.6. Let Y be a projective manifold of dimension n � 2, and A a very
ample line bundle over Y . Then for any

m � (n2 + 3n + 1)n+3 ∼n→∞ e3n2n+6,

if D ∈ |Am| is a general smooth hypersurface, then Y \D is hyperbolically embedded
in Y .
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Proof. Recall first that a result of Green [Gre77] guaranties that if D is a smooth
hypersurface in Y such that D and Y \D are both Brody hyperbolic, then Y \D is
hyperbolically embedded. Moreover, under the assumption of the corollary, it was
established in [Bro17, Den17], that D is (Brody) hyperbolic, therefore it remains to
prove that Y \D is Brody hyperbolic. To see this we will just give an explicit bound
on the degrees ε + (r + k)δ covered by Corollary 4.5. Therefore recall that we have
k = n + 1, and take δ = (k + 1)n + k = n2 + 3n + 1 and set

r0 = δk−1(δ + 1)2 = (n2 + 3n + 1)n(n2 + 3n + 2)2.

By the basic inequality

k(k + δ − 1 + kδ) < (δ + 1)2, (4.6)

one can show that any m � (r0 + k)δ + 2δ can be written in the form

m = ε + (r + k)δ

with k � ε � k + δ − 1, and r > δk−1k(ε + kδ). In particular, applying Corollary 4.5
for α large enough and applying Theorem 1.4, we see that for general hypersurface
D ∈ |Am|, Y \D are Brody hyperbolic. In order to obtain an explicit bound on m it
then suffices to give a bound on (r0 + k)δ + 2δ:

(r0 + k)δ + 2δ =
(
δk−1(δ + 1)2 + k + 2

)
δ

< (n + 2)n+3(n + 1)n+3 ∼n→∞ e3n2n+6. ��
4.6 Application to value distribution theory. In this section, we show how
Corollary 4.5 allows us to obtain a result in Nevanlinna theory. Let us recall the main
definition used in Nevanlinna theory and refer the reader to the book [NW14] for
a detailed presentation. Let X be a projective manifold and let A be an ample line
bundle on X endowed with a smooth hermitian metric h whose curvature tensor√−1Θh,A satisfies

√−1Θh,A � ω for some Kähler form ω. For any entire curve
f : C → X, the Nevanlinna order function is defined by

Tf (r, A) :=
∫ r

1

dt

t

∫

Δ(t)
f∗(

√−1Θh,A),

where Δ(t) is the disc of radius t in C. For any simple normal crossing divisor D
such that f is not contained in D, and for any k ∈ N∗ ∪ {∞} one sets

n
(k)
f (t, D) :=

∑

|z|<t

min
{
k, multz(f∗D)

}
for any t > 0,

where multz(f∗D) denotes the multiplicity of f∗D at the point z. For k = ∞ one
just writes nf (t, D). One then defines the truncated counting function at order k by

N
(k)
f (r, D) :=

∫ r

1
n

(k)
f (t, D)dt, r > 1.
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In the case k = ∞ we simply write Nf (r, D) and call it Nevanlinna’s counting
function. One of the purpose of Nevanlinna theory is to compare the order function
and the counting functions. If for instance D ∈ |A| then it is known that for all
r � 0, one has

Nf (r, D) � Tf (r, A) + O(1),

where O(1) is some bounded function. The so called “Second Main Theorems” are
inequalities in the opposite direction of the form

Tf (r, KX) + Tf (r, A) � Nf (r, D) + Sf (r) ‖,

where Sf (r) is a small term compared to Tf (r, A), and where ‖ means that the
inequality holds outside a set of finite Lebesgue measure in R+. Those inequalities are
mainly conjectural and we refer to [NW14] for a detailed account on the main known
second main theorem type results. In the rest of this section we will consider the
following weaker version of the Second Main Theorem, which consists in establishing
inequalities of the form

Tf (f, A) � cNf (r, D) + Sf (r) ‖
for some constant c. The theory of jet differentials provides a direct way to produce
such inequalities. This relies mainly on the lemma on logarithmic derivatives and
appears in several places in the literature more or less explicitly (see e.g. [Yam15,
Corollary 4.9]). Here we will apply the following precise statement recently estab-
lished in [HVX17, Theorem 3.1].

Lemma 4.7. Let (X, D) be a smooth logarithmic pair, and let A be an ample line
bundle on X. For any positive integers k, N, N ′, for any global jet differential P ∈
H0

(
Y, EGG

k,NΩX(log D) ⊗ A−N ′)
, and for any entire curve f : C → X which is not

contained in Supp(D), if f∗P �≡ 0, then there exists a constant C such that

Tf (r, A) � N

N ′ · N (1)(f, D) + C
(
log Tf (r, L) + log r

) ‖. (4.7)

Here the symbol ‖ means that the inequality holds outside a Borel subset of (0, +∞)
of finite Lebesgue measure.

Let us mention that in [HVX17] the authors only state their result in the case
X = Pn, but this restriction is unnecessary.

As an immediate consequence of Lemma 4.7 we obtain the following.

Corollary 4.8. Let (X, D) be a smooth log pair, and let A be an ample line bundle
on X. Let π0,k : Xk(D) → X be the log Demailly tower associated to the pair (X, D).
For any positive integers k, N, N ′, if the stable base locus

B
(
OXk(D)(N) ⊗ π∗

0,kA
−N ′) ⊆ Xk(D)sing

⋃
π−1

0,k(D),
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then, for any entire curve f : C → X not contained in Supp(D), one has

Tf (r, A) � N

N ′ · N (1)(f, D) + C
(
log Tf (r, A) + log r

) ‖. (4.8)

It now suffices to combine this result with Corollary 4.5 to obtain a Second Main
Theorem type result for general log pairs.

Corollary 4.9. Let Y be a projective manifold of dimension n � 2, and let A be
a very ample line bundle over Y . If D ∈ |Am| is a general smooth hypersurface with

m � (n + 2)n+3(n + 1)n+3 ∼n→∞ e3n2n+6,

then for any entire curve f : C → Y not contained in Supp(D), there exists C ∈ R+

such that

Tf (r, A) � N (1)(f, D) + C
(
log Tf (r, A) + log r

) ‖.

Proof. Let us take k = n + 1, δ = (k + 1)n + k = n2 + 3n + 1 and set

r0 = δk−1k′ + δk−1(δ + 1)2 = δk−1(δ + 1)
(

δ +
3
2

)
.

By (4.6) one can prove that any m � (r0 + k)δ + 2δ can be written in the form

m = ε + (r + k)δ

with k � ε � k + δ − 1, and r > δk−1k′ + δk−1k(ε + kδ). In particular, applying
Corollary 4.5 for α � 0 such that −β̃ − α(δk−1k(ε + kδ) − r) > 0 and applying
Corollary 4.8 we see that for such m, general hypersurface D ∈ |Am| and for any
entire curve f : C → Y not contained in Supp(D), there exists C ∈ R+ such that

Tf (r, A) � β + αδk−1k′

−β̃ − α(δk−1k(ε + kδ) − r)
· N (1)(f, D) + C

(
log Tf (r, A) + log r

) ‖.

However,

β + αδk−1k′

−β̃ − α(δk−1k(ε + kδ) − r)
→α→∞

δk−1k′

r − (δk−1k(ε + kδ)
< 1.

Therefore, in order to complete the proof, it now suffices to give a bound on (r0 +
k)δ + 2δ:

(r0 + k)δ + 2δ =
(

δk−1(δ + 1)
(

δ +
3
2

)
+ k + 2

)
δ

< (n + 2)n+3(n + 1)n+3 �n→∞ e3n2n+6. ��
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4.7 Orbifold hyperbolicity and hyperbolicity for the cyclic cover. The
orbifold introduced by Campana arises naturally in his study of the birational clas-
sification of varieties in [Cam04]. One can also generalize the definition of Kobayashi
hyperbolicity and the tools of jet differentials to orbifolds, which were first studied
by Rousseau in [Rou10]. We refer the readers to the very recent paper [CDR18] for
the hyperbolicity and orbifold jet differentials in the orbifold category. In this last
section, we will apply Corollary 4.5 to prove the orbifold hyperbolicity for general
orbifolds. From [CDR18] one can easily derive the following lemma.

Lemma 4.10. Let Y be an n-dimensional projective manifold, and let D be a smooth
hypersurface of Y . Then for the Campana orbifold

(
Y,Δ) := (Y, (1 − 1

m)D
)

where
m ∈ N∗, one has natural inclusions

EGG
k,NΩY (log D) ⊗ OY

(
−

⌈
N

m

⌉
D

)
↪→ EGG

k,NΩY,Δ ↪→ EGG
k,NΩY (log D)

where EGG
k,NΩY,Δ is the orbifold jet differential of degree k and weight N defined in

[CDR18].

Proof. Take any open subset of U ⊂ Y with local coordinates (z1, . . . , zn) such that
D ∩U = (z1 = 0). By Lemma 1.1, for any j ∈ N, djz1

z1
is a logarithmic jet differential

and moreover, EGG
k,NΩY (log D) is the locally free sheaf generated in local coordinates

by elements
{

1

z
α1

1+···+α1
k

1

(d1z)α1(d2z)α2 · · · (dkz)αk

}

|α1|+2|α2|+···+k|αk|=N

,

where αj = (α1
j , . . . , α

n
j ) ∈ Nn. By [CDR18, §2.3] EGG

k,NΩY,Δ is the locally free sub-
sheaf of Ek,NΩY (log D) generated in local coordinates by elements
{

z

⌈
α1
1min(1,m)+···+kα1

kmin(k,m)
m

⌉

1 · 1

z
α1

1+···+α1
k

1

(d1z)α1(d2z)α2 · · · (dkz)αk

}

|α1|+2|α2|+···+k|αk|=N

.

The lemma then follows immediately from the obvious inequality
⌈α1

1min(1, m) + · · · + kα1
kmin(k, m)

m

⌉
�

⌈N

m

⌉
. ��

Now let us combine Lemma 4.10 with Corollary 4.5 to prove the orbifold hyper-
bolicity.

Corollary 4.11. Let Y be a projective manifold of dimension n � 2, and A a very
ample line bundle over Y . Then for any

m � (n + 2)n+3(n + 1)n+3 ∼n→∞ e3n2n+6,

if D ∈ |Am| is a general smooth hypersurface,
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(i) the orbifold
(
Y,Δ) := (Y, (1 − 1

m)D
)

is orbifold hyperbolic.
(ii) For the cyclic cover π : X → Y obtained by taking the m-th root along D, X

is Kobayashi hyperbolic.

Proof. As in the proof of Corollary 4.9, we take k = n+1, δ = (k+1)n+k = n2+3n+1
and

r0 = δk−1(δ + 1)
(

δ +
3
2

)
.

Then by the computations therein and Corollary 4.5, for any general smooth hyper-
surface D ∈ |Am| with

m � (n + 2)n+3(n + 1)n+3,

we can take α � 0 so that

N := β + αδk−1k′ < N ′ := −β̃ − α(δk−1k(ε + kδ) − r)

with

B
(
OYk(D)(N) ⊗ π∗

0,kA
−N ′) ⊆ Yk(D)sing ∪ π−1

0,k(D).

By (1.13), for any � � 0 one has sufficiently many log jet differentials in Ek,�NΩY

(log D)⊗OY (−�N ′A) in the sense that, for any germ of curve γ : (C, 0) → (Y \D, y)
whose k-jet jkγ(0) �= 0, there always exists a logarithmic jet differential

P ∈ H0
(
Y, Ek,�NΩY (log D) ⊗ OY (−�N ′A)

)

with P (jkγ)(0) �= 0. By the inclusive relation in Lemma 4.10, one also has sufficiently
many orbifold jet differentials in

Ek,�NΩY,Δ(log D) ⊗ OY

(
−�N ′A +

⌈
�N

m

⌉
D

)

= Ek,�NΩY,Δ(log D) ⊗ OY

((
−�N ′ + m

⌈
�N

m

⌉)
A

)
.

Take � divisible enough (i.e. m | �) and one thus has

�N ′ − m

⌈
�N

m

⌉
> 0

which implies the orbifold hyperbolicity of (Y,Δ) by the fundamental vanishing
theorem in the orbifold setting (cf. [CDR18, Corollary 3.11]). Hence the first claim
is proved.

To prove the second statement, since X is compact, it is equivalent to show that
X is also Brody hyperbolic. To prove this, we assume that there exists an entire
curve f : C → X on X, and the contradiction is derived immediately by observing
that π ◦ f : C → Y is an orbifold entire curve with respect to the orbifold (Y,Δ),
whereas (Y,Δ) is orbifold hyperbolic by the first claim. This proves the second
claim. ��
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Let us mention that in Corollaries 4.6, 4.9 and 4.11 we made an approximation in
order to give readable bound. In all cases, as is clear from the proof, we could obtain
a slightly better bound. The fact that the same bound appears in Corollaries 4.6
and 4.9 is due to this approximation. In fact, our method would provide a slightly
better bound in Corollary 4.6 than that in Corollaries 4.9 and 4.11.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.
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(3)88 (2007), 293–306. https://doi.org/10.1016/j.matpur.2007.07.003

[NWY08] J. Noguchi, J. Winkelmann, and K. Yamanoi. The second main theorem for
holomorphic curves into semi-abelian varieties. II. Forum of Mathematics, (3)20
(2008), 469–503. https://doi.org/10.1515/FORUM.2008.024

[NWY13] J. Noguchi, J. Winkelmann, and K. Yamanoi. Degeneracy of holomorphic
curves into algebraic varieties II. Vietnam Journal of Mathematics, (4)41 (2013),
519–525. https://doi.org/10.1007/s10013-013-0051-1

[RY18] E. Riedl and D. Yang. Application of a grassmannian technique in hypersur-
faces. arXiv e-prints (2018). arXiv:1806.02364
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