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THE WEYL LAW FOR THE PHASE TRANSITION
SPECTRUM AND DENSITY OF LIMIT INTERFACES

Pedro Gaspar and Marco A. M. Guaraco

Abstract. We prove a Weyl Law for the phase transition spectrum based on
the techniques of Liokumovich–Marques–Neves. As an application we give phase
transition adaptations of the proofs of the density and equidistribution of minimal
hypersufaces for generic metrics by Irie–Marques–Neves and Marques–Neves–Song,
respectively. We also prove the density of separating limit interfaces for generic
metrics in dimension 3, based on the recent work of Chodosh–Mantoulidis, and
for generic metrics on manifolds containing only separating minimal hypersurfaces,
e.g. Hn(M,Z2) = 0, for 4 ≤ n + 1 ≤ 7. These provide alternative proofs of Yau’s
conjecture on the existence of infinitely many minimal hypersurfaces for generic
metrics on each setting, using the Allen–Cahn approach.

1 Introduction

In this article we are interested in understanding the limit behavior of solutions
to the elliptic Allen–Cahn equation on a closed, orientable, Riemannian manifold
Mn+1, n + 1 ≥ 3. Namely, we will look at u : M → R with

− εΔu + W ′(u)/ε = 0, (1)

on the limit when ε goes to zero, where W is a double-well potential, e.g. W (u) =
(1−u2)2/4. This equation and its parabolic counterpart arise in the gradient theory of
phase transition phenomena within the van der Waals–Cahn–Hilliard theory [CA77].
Its solutions are known to be related to critical points of the area functional since
studied in the context of Γ-convergence by Modica–Mortola in [MM77] (see also
[KS89]), where minimizers of the associated energy functional

Eε(u) =
∫

M
ε
|∇u|2

2
+

W (u)
ε

, u ∈ W 1,2(M), (2)

are shown to converge to minimizers of the area functional. The corresponding prob-
lem with constraint

∫
M u = c is related to constant mean curvature hypersurfaces

(we refer the reader to Modica [MOD87] and Sternberg [STE88]). Since then, strong
parallels between these objects have been drawn, see e.g. the surveys [PAC12,SAV09]
and the references therein.
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For more general variational solutions of the Allen–Cahn equation, the analy-
sis on the limit behavior was carried out by Hutchinson–Tonegawa [HT00], Tone-
gawa [TON05], Tonegawa–Wickramasekera [TW12] and the second author [GUA18].
Roughly speaking, it is known (see [GUA18] for the precise statement):

Convergence Theorem. Let Mn+1 be a closed Riemannian manifold of dimension
n + 1 ≥ 3, and let {uεk

} be a sequence of solutions to (1) in M with ε = εk ↓ 0.
Assume that the sequences supM |uεk

|, Eεk
(uεk

) and Ind(uεk
) are bounded, where

Ind(uε) denotes the Morse index of uε as a critical point of Eε. Then as εk ↓ 0 its
level sets accumulate around a minimal hypersurface Γ ⊂ M which is smooth and
embedded outside a singular set of Hausdorff dimension at most n − 7. Moreover,
there are positive integers m1, . . . , mN such that

lim
k

Eεk
(uεk

) = 2σ

N∑
j=1

mjHn(Γj),

where Γ1, . . . ,ΓN are the connected components of Γ, and σ =
∫ 1
−1

√
W (t)/2 dt.

A minimal hypersurface Γ, produced in this way is called a limit interface and
the positive integers mj are called the multiplicities of Γj .

Remark. For n + 1 = 2 similar conclusions hold, except the regularity of the limit
interface. In this case, the limit varifold is supported in an union Γ of geodesic arcs
with at most p = lim supk Ind(uεk

) junction points, according to [TON05]. It was
proved recently by C. Mantoulidis [MAN17] that if p = 1 then Γ is an immersed
geodesic and the possible junction point is a transverse intersection.

The lower semicontinuity of the index was proven first by Hiesmayr [HIE17],
for two-sided limit interfaces, and then by the first author [GAS17] in the general
case. More precisely, if Γ is the limit interface of a sequence of solutions uε, then
Ind(Γ) ≤ Ind(uε), for small ε.

Using the Convergence Theorem above, along with min-max techniques for semi-
linear PDEs, the second author was able to provide an alternative proof of the cele-
brated result of Almgren-Pitts and Schoen-Simon about the existence of closed min-
imal hypersurfaces in closed Riemannian manifolds. This phase transition approach
simplifies considerably the variational argument of Almgren-Pitts to prove the exis-
tence of a stationary limit but it relies on the regularity theory of Wickramasekera
[WIC14], which is a sharpening of the classical Schoen-Simon compactness theory
for stable minimal hypersurfaces.

In recent work, Chodosh–Mantoulidis [CM18] were able to obtain stronger con-
vergence estimates for the case n+1 = 3. Using the work of Ambrosio-Cabré [AC00]
and building on the techniques from Wang-Wei [WW17], they have shown that, in
the situation of the theorem above and in n + 1 = 3, level sets of the solutions
converge as normal sheets towards a limit interface Γ. Even more, when Γ is a non-
degenerate limit interface then all the multiplicities must be one in addition to Γ
being separating and two-sided.
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Chodosh–Mantoulidis’ results have many important consequences. First, they
imply a strong version of the Multiplicty One Conjecture of Marques and Neves
[MN16] for dimension 3. The general conjecture claims that for generic metrics
in Mn+1, with 3 ≤ n + 1 ≤ 7, two-sided unstable components of closed minimal
hypersurfaces obtained by min-max methods must have multiplicity one. However,
in [CM18] it is shown that the two-sided assumption is not necessary when dealing
with unstable components of limit-interfaces, regardless of whether they come from
a min-max construction or not. Additionally, for generic metrics or for Ricci positive
metrics, they show that all the components are two-sided and occur with multiplicity
one. Second, these results also imply that in dimension 3 it is possible to avoid the use
of Wickramasekera’s regularity results, making the whole theory considerably more
elementary. Finally, in [CM18] they prove the upper semicontinuity of the index for
any dimension, under the assumption that multiplicities are all one, i.e. if Γ is the
multiplicity one limit interface of a sequence of solutions uε, then Ind(Γ)+Nul(Γ) ≤
Ind(uε) + Nul(uε), for small ε.

In [GG18], the authors generalized the phase transitions approach to min-max
theory for minimal hypersurfaces of [GUA18] to higher dimensional min-max fam-
ilies. More precisely, given p ∈ N and small ε, there is at least one uε which is a
solution to (1) with energy cε(p) and Ind(uε) ≤ p ≤ Ind(uε) + Nul(uε). We note
that this min-max construction works also when ∂M 	= ∅. In this case, the method
produces solutions satisfying a Neumann condition in the boundary. Additionally,
the authors proved sublinear bounds for the energy levels of Eε and small ε > 0,
i.e. if one defines �p(M) = limε→0 cε(p) then there is C > 0, independent of p, such
that C−1p

1
n+1 ≤ �p(M) ≤ Cp

1
n+1 (see Section 2 for a precise statement). As a conse-

quence, the Convergence Theorem and the upper bound for the index [GAS17] give
the existence of a limit interface of mass �p(M), supported on an minimal hyper-
surface of index at most p, which is smooth and embedded (away from a small
singularity set in dimensions greater than 7).

The proof of the sublinear bounds for �p(M) is inspired by the techniques used
to obtain similar bounds for the spectrum of the volume functional due to Marques–
Neves [MN17], which, in turn, are based on the work of Gromov [GRO03] and Guth
[GUT07,GUT09]. In light of this analogy, we refer to the sequence {�p(M)}p as the
phase transition spectrum of M .

In [GRO86], M. Gromov studied several nonlinear analogues of the spectrum
of the Laplacian operator in Riemannian manifolds, one of which is precisely the
volume spectrum {ωp(M)}. Similarly to the eigenvalues of the Laplacian, the num-
bers ωp(M), called the p-widths of M , are min-max critical values, in this case, for
the volume functional. They can be described in the framework of Almgren-Pitts
Theory and, in this context, it is shown that ωp(M) are achieved by the volume
of minimal hypersurfaces, possibly with a small singular set, and index at most
p. We refer to [GUT09,MN17,MN16] for the precise definitions and statements of
the theorems regarding the p-widths. Motivated by Weyl’s asymptotic law for the
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eigenvalues of the Laplacian, Gromov conjectured [GRO09,GRO03] that the vol-
ume spectrum should satisfy a similar Weyl law. This result was recently confirmed
by Liokumovich–Marques–Neves in [LMN18] and it has been since used to derive
deep geometric consequences about minimal hypersurfaces [IMN18,MNS17], most
notably the confirmation for generic metrics of Yau’s conjecture, concerning the
existence of infinitely many minimal hypersurfaces.

In this work we show that a Weyl Law also holds for {�p(M)}p. Our main result
is:

Main Theorem. (Weyl Law for the phase transition spectrum). There exists τ(n) >
0 such that

lim
p→+∞ p− 1

n+1 �p(M) = τ(n) vol(M, g)
n

n+1 ,

for all compact Riemannian manifolds (Mn+1, g) possibly with a nonempty piecewise
smooth boundary.

One is led then to the problem of describing the limit interfaces which arise from
the Allen–Cahn strategy. For results along these lines see, for instance, [MAN17,
WW17], for finite index solutions on surfaces, [GG18] for least area limit interfaces
(in the sense of Mazet–Rosenberg [MR17]) and [CM18] for n + 1 = 3.

A generic set on a Banach space is one that is the intersection of countably
many open and dense sets. By the Baire Category Theorem such a set must be
dense. From the work of B. White [WHI17] it is known that there exists a set of
metrics on M , generic in the C∞ topology, for which all minimal hypersurfaces are
nondegenerate. Combining this fact, with the finite index min-max constructions
by the authors in [GG18], the multiplicity one and upper semicontinuity results
from [CM18], one obtains an alternative proof of Yau’s conjecture on the exis-
tence of infinitely many minimal surfaces in 3-dimensional manifolds. For dimen-
sions 3 ≤ n + 1 ≤ 7 and generic metrics, the conjecture follows from the fact that
the union of all closed, smooth and embedded minimal hypersurfaces is dense, as
it was proved by Irie–Marques–Neves [IMN18] using the Morse theoretic techniques
developed by Marques–Neves, together with several other authors, in recent years
[LMN18,MN16,MN17]. The main tool is the Weyl Law for the spectrum of the vol-
ume functional proved by Liokumovich–Marques–Neves [LMN18], which describes
the asymptotic behavior of the areas of the min-max minimal hypersurfaces con-
structed by Marques–Neves [MN17].

As an application of our main theorem, we also obtain an alternative proof of the
density and equidistribution of min-max minimal hypersurfaces of [IMN18], which
also implies Yau’s conjecture for dimensions 3 ≤ n+1 ≤ 7. Stretching the techniques
further and using the constructions of Pacard–Ritoré [PR03] and the convergence
results from Chodosh–Mantoulidis [CM18], as well as a local version of the Bumpy
Metrics Theorem of B. White [WHI91], we also obtain the density of separating limit
interfaces for generic metrics (or for Ricci positive metrics) in 3-dimensional mani-
folds. The Local Bumpy Metric Theorem was announced by B. White in [WHI17].
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The proof follow the arguments in [WHI91]. Here we have decided to include the set-
ting for the local version we need, i.e. case of hypersurfaces, as well as the necessary
modifications for its proof.

Similar ideas show that limit interfaces are dense for generic metrics in manifolds
that contain no non-separating minimal hypersurfaces, e.g. Hn(M,Z2) = 0.

Outline of the paper. In Section 2 we define the phase transition spectrum of
an open set in a Riemannian manifold, which is obtained as the volume of limit
interfaces of min-max solutions to equation (1). In Section 3 we prove the Weyl
Law for open sets of the Euclidean space. In Section 4 we prove the Weyl Law for
closed Riemannian manifolds. Finally, in Section 5 we apply the result to the study
of the density and equidistribution of minimal hypersurfaces and the density of limit
interfaces and the local version of the bumpy metrics theorem.

2 The Phase Transition Spectrum

In this section we recall the definition of the min-max values {cε(p) = cε(p, M)}p∈N

for the energy functional and we define the phase transition spectrum, following
the construction of [GG18]. Let (Mn+1, g) be a compact Riemannian manifold of
dimension n + 1 ≥ 3 with a possibly nonempty piecewise smooth boundary. We will
assume hereafter that W ∈ C3(R) is an even nonnegative function which satisfies
the following condition:

(A) W is a double-well potential, namely it has exactly three critical points, two of
which are non-degenerate minima at ±1 with W (±1) = 0 and W ′′(±1) > 0,
and the third is a local maximum point at the origin.

We intend to study the critical points of the Allen–Cahn energy functional

Eε(u) =
∫

M

ε|∇u|2
2

+
W (u)

ε
, u ∈ W 1,2(M),

which are precisely the solutions to the equation (1), and their properties as the
parameter ε converges to 0. Since Eε is an even functional, we can use families
of symmetric, compact and topologically non-trivial subsets of W 1,2(M) to detect
critical points of this functional. This approach was adopted in [GG18] and it is
inspired by the multiparameter min-max construction for the area functional of
[MN17] (see also [GUT09,GRO86]).

2.1 A topological Z/2Z index. Recall that to each (para)compact symmetric
A ⊂ W 1,2(M) we can associate a nonnegative integer which we will call its Z/2Z (or
cohomological) index in the following manner. If 0 /∈ A one verifies that there exists
an odd continuous map f : A → SN for some N ∈ N ∪ {∞}. Here we consider SN ,
N ∈ N, as finite dimensional spheres in S∞ =

⋃
k Sk with the topology given by

the direct limit of {Sk}k∈N ordered by the inclusions Sk → Sk′
for k ≤ k′. Denote

by f̃ : Ã → RP
∞ the induced continuous map, where Ã and RP

∞ are the orbit
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spaces A/{x ∼ −x} and S∞/{x ∼ −x} respectively. Recall the cohomology ring of
the infinite dimensional projective space RP

∞ with Z/2Z coefficients is isomorphic
to the polynomial ring (Z/2Z)[w], with a generator w ∈ H1(RP∞,Z/2Z). Moreover,
the map f̃ is unique modulo homotopy, thus we may define the cohomological index
of A by

ind(A) := sup{k : f̃∗(wk−1) 	= 0 ∈ Hk−1(A,Z/2Z)}.

We set w0 = 1 ∈ H0(RP∞,Z/2Z) and adopt the convention ind(∅) = 0. Moreover we
let ind(A) = +∞ whenever 0 ∈ A. This index was studied by Fadell and Rabinowitz
in [FR77], in the context of bifurcation theory, among others, and it measures the
cohomological non-triviality of A. The set of all paracompact symmetric subsets of
W 1,2(M) will be denoted by C. We list here some of the properties of ind.

(I1) (Normalization) ind(A) = 0 if, and only if, A = ∅.
(I2) (Monotonicity) If A1, A2 ∈ C and there exists an equivariant continuous map

A1 → A2, then ind(A1) ≤ ind(A2).
(I3) (Continuity) If X ⊂ A is an invariant closed subset of A, there exists an

invariant neighborhood V ⊂ A of X such that ind(X) = ind(V ).
(I4) (Subadditivity) For all paracompact symmetric A1, A2 ⊂ W 1,2(M) we have

ind(A1 ∪ A2) ≤ ind(A1) + ind(A2).
(I5) For every paracompact symmetric A ⊂ W 1,2(M), if ind(A) ≥ 1, then the orbit

space Ã has infinitely many elements.
(I6) It holds ind(A) < +∞ for all compact A ⊂ W 1,2(M) \ {0}. More generally

ind(A) ≤ dim A where dim A is the covering dimension of A.

More details on the construction of this invariant may be found also in the
Appendix of [GG18].

2.2 Min-max construction for the energy functional. We can use the
index ind to develop a Z/2Z-equivariant min-max construction for Eε following the
general setting of [GHO91]. For each p ∈ N let

Fp(M) = Fp := {A ⊂ W 1,2(M) : A compact, symmetric, ind(A) ≥ p + 1}.

One verifies that Fp is a p-dimensional Z/2Z-cohomological family in the sense of
[GHO91], so we may expect that the associated min-max values

cε(p, M) := inf
A∈Fp(M)

sup
u∈A

Eε(u), p ∈ N,

are achieved by critical points of Eε. Here some remarks are in order. Firstly we are
interested in non-constant critical points, so we may expect cε(p, M) > 0. This can
be proved using the same strategy of [GUA18, §4], and that Eε(u) = cε(p, M) for a
nonzero critical point. In this regard we also note that the results of [GHO91] cannot
be directly applied to Eε : W 1,2(M) → R, since the Z/2Z action x �→ −x fixes the
origin. In light of these observations, we have the following existence theorem.
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We denote by Kc, for c ∈ R, the set of critical points for Eε with energy c.
Moreover given m ∈ N we let Kc(m) = {u ∈ Kc : m(u) ≤ m}, where m(u) denotes
the Morse index of u.

Theorem 2.1 ([GG18]). Fix ε > 0.

(1) For every p ∈ N it holds 0 < cε(p, M) ≤ Eε(0) = vol(M, g)W (0)/ε.
(2) If cε(p, M) < Eε(0) then there is a critical point u ∈ Kcε(p,M)(p) such that

|u| ≤ 1. Moreover if cε(p, M) = cε(p + k, M) for some k ∈ N then

ind(Kcε(p,M)(p + k)) ≥ k + 1.

(3) There is p0 = p0(ε, M) ∈ N such that cε(p, M) = Eε(0) for all p ≥ p0.

Remark. In [GG18], this theorem was proved for compact manifolds with empty
boundary. The adaptations to the case of a non-empty Lipschitz boundary are
straightforward. In this case the solutions u ∈ Kcε(p,M) are weak solutions of the
Neumann problem associated to the (1) with |u| ≤ 1. By elliptic regularity we see
that u is of class C3 in the interior of M . Moreover if ∂M is sufficiently regular, we
get also u ∈ C3(M). The existence question for the Neumann problem in Euclidean
domains was previously tackled by G. Vannella in [VAN02].

By the Convergence Theorem one expects to obtain minimal hypersurfaces from
uε ∈ Kcε(p,M) by making ε ↓ 0, for a fixed p ∈ N. For this purpose we need to
check that cε(p) stays bounded away from both 0 and +∞ for small ε > 0. This is
the content of the following theorem proved in [GG18] and inspired by the works
of Gromov [GRO86], Guth [GUT07,GUT09] and Marques–Neves [MN17]. We note
that, in addition to providing these uniform bounds for cε(p), the theorem describes
how limε cε(p, M) grows with respect to p.

Theorem 2.2 ([GG18]). There exists a constant C = C(M) > 1 such that

C−1p
1

n+1 ≤ lim inf
ε→0+

cε(p, M) ≤ lim sup
ε→0+

cε(p, M) ≤ Cp
1

n+1 .

Remark. Once again these bounds are proved in [GG18] for closed manifolds. The
proof of the upper bounds for the case of nonempty piecewise smooth ∂M are the
same, given the triangulability of such manifolds. The proof of lower bounds are
also similar. In fact, the energy density estimate of [GG18, Lemma 5.2] still holds
for small balls contained in M \ ∂M . Moreover for each integer p we can pick p
disjoint balls in M \ ∂M of radius rp = νp−1/(n+1) for a small ν > 0 depending on
M . Since the variational construction for the energy functional works verbatim the
rest of the proof can be carried out in the context of nonempty boundary.

As an interesting consequence of Theorems 2.1 and 2.2 we remark that the num-
ber of solutions of (1) grows to +∞ as ε goes to 0, since Eε(0) ↑ +∞ as ε ↓ 0.
Regarding minimal hypersurfaces in closed manifolds, the Convergence Theorem
(see [GUA18]) and the index bounds of [GAS17] imply:
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Corollary 2.3 ([GAS17,GG18]). Assume Mn+1 is closed and that n + 1 ≥ 3, fix
p ∈ N and choose {εk}k∈N such that cεk

(p, M) → c(p, M). There exists an integral
varifold Vp such that

(i) ||Vp||(M) = c(p, M)/2σ.
(ii) Vp is stationary in M .
(iii) singV has Hausdorff dimension ≤ n − 7.
(iv) regV is an embedded minimal hypersurface of Morse index ≤ p.

As we mentioned, when ∂M is nonempty the solutions provided by Theorem 2.1
are weak solutions for the Neumann problem associated to the Allen–Cahn equation.
In view of the varifold convergence it is reasonable to expect that solutions with
bounded energy, L∞-norm and Morse index give rise to free boundary minimal
hypersurfaces in M . The main issue with this expectation is the lack of a boundary
regularity theorem in the spirit of [WIC14] and [TW12] (compare with the closed
3-dimensional case in [CM18]). Regarding solutions which are local minimizers of
the volume-constrained energy functional, a similar statement is proved in [HT00],
see Theorem 3.

2.3 The phase transition spectrum. We will denote hereafter

γ(M) := inf
{

γ > 0 : p− 1
n+1 lim sup

ε→0+
cε(p, M) ≤ γ for all p

}
.

It follows from Theorem 2.2 and the Remarks from last section that γ(M) is a
positive real number. We define the upper and lower phase transition spectra of
(M, g) as the sequences {�p(M)}p∈N and {�p(M)}p∈N, respectively, given by

�p(M) =
1
2σ

lim sup
ε→0+

cε(p, M)

and

�p(M) =
1
2σ

lim inf
ε→0+

cε(p, M).

These sequences may be seen as analogues, in the context of phase transition, of the
p-widths ωp(M) – that is, the volume spectrum – for the area functional, as defined in
[GRO86,MN17]. We also remark that, by [GG18], the following comparison between
phase transition and volume spectra holds

ωp(M) ≤ �p(M) ≤ �p(M), for all p ∈ N.

Remark. One can use Corollary 2.3 to show that if Mn+1 is a closed manifold
of dimension 3 ≤ n + 1 ≤ 7 then the upper and lower phase transition spectra
coincide. In fact if �p(M) < �p(M) for some p ∈ N then we can construct, for each
s ∈ (�p(M), �p(M)) a sequence {εk} with εk ↓ 0 such that the varifolds associated
to a sequence of solutions {uk} with Eεk

(uk) = cεk
(p) and index ≤ p converge to
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an integral stationary varifold V (s) with ||V (s)|| = s and such that spt ‖V (s)‖ is a
smooth and embedded minimal hypersurface of index ≤ p. In particular, the number
of minimal hypersufaces with area ≤ �p(M) and index ≤ p cannot be finite. By the
Compactness theorem of B. Sharp [SHA17] and the Bumpy Metrics Theorem of B.
White [WHI17] we see that this can only happen for a meagre set of metrics in M .
On the other hand the limit spectrum values �p(M) and �p(M) depend continuously
on the metric in M , see Lemma 5.4 below. Hence �p(M) = �p(M) for all p and all
metrics on M .

Definition 2.4. From now on we will denote by {�p(M)} the sequence {�p(M)},
which coincide with {�̄p(M)} for 3 ≤ n + 1 ≤ 7, in view of the Remark above.

We state next the Weyl Law for the phase transition spectrum, which is our main
result.

Theorem 2.5. There exists a universal τ(n) > 0, such that

lim
p→+∞ p− 1

n+1 �p(M) = τ(n) vol(M, g)
n

n+1 .

for all compact Riemannian manifolds (Mn+1, g) possibly with a nonempty piecewise
smooth boundary.

3 Weyl Law for Euclidean Domains

In this section we prove the Weyl law for the phase transition spectrum {�p(Ω)}
for Euclidean bounded domains Ω ⊂ R

n+1 with piecewise smooth boundary, for
3 ≤ n + 1 ≤ 7, following the strategy of Liokumovich–Marques–Neves [LMN18]. We
denote by C the unit cube in R

n+1, and we say that two regions Ω1, Ω2 ⊂ R
n+1 are

similar if they differ by isometries and scaling. In this case, if Ω2 = T (Ω1) where T
is a composition of such maps with scaling factor λ > 0, then for all u : Ω2 → R and
ε > 0 it holds

Eε(u ◦ T ) =
∫

Ω1

(
ε|∇(u ◦ T )|2

2
+

W (u ◦ T )
ε

)
dLn+1

=
∫

Ω2

(
ε λ2|∇u|2

2
+

W (u)
ε

)
λ−(n+1) dLn+1

= λ−nEλε(u). (3)

Consequently we have
cλε(p, λΩ1) = λncε(p, Ω1) (4)

for all p ∈ N. In particular the energy spectrum scales as the n-th power of the
scaling factor. The following lemma generalizes this transformation property and it
will be useful throughout the article.
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Lemma 3.1. Let F : (Ω1, g1) → (Ω2, g2) be a diffeomorphism between compact
(n + 1)-manifolds with piecewise C1 boundary. For all ε > 0 and u ∈ W 1,2(Ω2) it
holds

Eε/||DF ||∞(u ◦ F, Ω1) ≤ ||DF ||∞||DF−1||n+1
∞ Eε(u, Ω2).

Proof. Let λ = ||DF ||∞. Since

g1(∇g1(u ◦ F ), v) = d(u ◦ F )(v) = g2(∇g2u, dF (v))

we obtain

|∇g1(u ◦ F )|2g1
≤ λ2|∇g2u|2g2

◦ F.

Moreover by Hadamard’s inequality we can bound the norm of the Jacobian determi-
nant of F−1 from above by ||DF−1||n+1∞ . Thus using the change of variables formula
we obtain

Eε/λ(u ◦ F, Ω1) =
∫

Ω1

(
ε|∇g1(u ◦ F )|2g1

2λ
+

λW (u ◦ F )
ε

)
dHn+1

≤ λ

∫
Ω1

(
ε(|∇g2u|2g2

◦ F )
2

+
W (u ◦ F )

ε

)
|JF−1||JF | dHn+1

≤ λ||DF−1||n+1

∫
Ω2

(
ε|∇g2u|2g2

2
+

W (u)
ε

)
dHn+1. ��

The next Lemma is the phase transition version of the important Lusternik–
Schnirelmann inequality of [LMN18].

Lemma 3.2 (Lusternik–Schnirelman Inequality). Consider domains Ω, {Ωi}N
i=1 and

{Ω∗
i }N

i=1 in R
n+1 with piecewise smooth boundaries such that

• |Ω| = |Ωi| = 1 for i = 1, . . . , N,
• Ω∗

i is similar to Ωi for i = 1, . . . , N,
• {Ω∗

i } are pairwise disjoint subsets of Ω.

Then

p− 1
n+1 �p(Ω) ≥

N∑
i=1

|Ω∗
i |p

− 1
n+1

i �pi
(Ωi) − c

pV
,

where pi = �p|Ω∗
i |�, V = mini{|Ω∗

i |} and c = maxi γ(Ωi).

Proof. Denote

p̄ :=
N∑

i=1

pi ≤
N∑

i=1

p|Ω∗
i | ≤ p|Ω| = p.
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Given ε > 0, A ∈ Fp(Ω) and δ > 0 for each i = 1, . . . , N consider

Ai = {u ∈ A : Eε(u, Ω∗
i ) ≤ cε(pi, Ω∗

i ) − δ/N}.

By definition we have ind(Ai) ≤ pi. Hence by the subadditivity of ind we see that
there exists u ∈ A \ ∪N

i=1Ai and

sup
A

Eε ≥ Eε(u, Ω) ≥
N∑

i=1

Eε(u, Ω∗
i ) >

N∑
i=1

cε(pi, Ω∗
i ) − δ.

Therefore

cε(p, Ω) ≥
N∑

i=1

cε(pi, Ω∗
i ). (5)

Since Ωi is isometric to |Ω∗
i |−1/(n+1)Ω∗

i and

1 ≥ pi

p|Ω∗
i |

≥ 1 − 1
p|Ω∗

i |
≥

(
1 − 1

p|Ω∗
i |

)n+1

,

we conclude that

p− 1
n+1 cε(p, Ω) ≥ p− 1

n+1

N∑
i=1

cε(pi, Ω∗
i )

=
N∑

i=1

|Ω∗
i |

(
pi

p|Ω∗
i |

) 1
n+1

p
− 1

n+1

i cε/|Ω∗
i |1/(n+1)(pi, Ωi)

≥
N∑

i=1

|Ω∗
i |

(
1 − 1

p|Ω∗
i |

)
p

− 1
n+1

i cε/|Ω∗
i |1/(n+1)(pi, Ωi).

By making ε ↓ 0 we get

p− 1
n+1 �p(Ω) ≥

N∑
i=1

|Ω∗
i |p

− 1
n+1

i �pi
(Ωi) − 1

p

N∑
i=1

|Ω∗
i |

minj |Ω∗
j |

p
− 1

n+1

i �pi
(Ωi)

≥
N∑

i=1

|Ω∗
i |p

− 1
n+1

i �pi
(Ωi) − maxj γ(Ωj)|Ω|

pV
. ��

Theorem 3.3. There is a positive constant τ(n, W ) > 0 such that for all Lipschitz
domains Ω ⊂ R

n+1 with piecewise smooth boundary it holds

lim
p→+∞ p− 1

n+1 �p(Ω) = τ(n, W )|Ω| n

n+1 .

It follows from (4) that we may assume, without loss of generality, that |Ω| = 1.
As in [LMN18], we write �̃p = p−1/(n+1)�p. We first prove the following
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Lemma 3.4. Let C be the unitary cube in R
n+1. Then,

lim inf
p

�̃p(C) = lim sup
p

�̃p(C)

Proof. Choose sequences {pk}k∈N and {qj}j∈N such that

lim
k

�̃pk
(C) = lim sup

p
�̃p(C), and lim

j
�̃qj

(C) = lim inf
p

�̃p(C).

For a fixed k and all j such that δj := pk/qj < 1 let Nj be the maximal number
of cubes {C∗

i }Nj

i=1 of volume δj contained in C and with pairwise disjoint interiors.
Note that δjNj =

∑
i |C∗

i | → 1 as j → ∞. Since

�qj |C∗
i |� = �qjδj� = pk

from the Lusternik–Schnirelman inequality we obtain

�̃qj
(C) ≥

Nj∑
i=1

|C∗
i |�̃pk

(C) − γ(C)
qjδj

= Njδj �̃pk
(C) − γ(C)

pk
.

By letting j → +∞ it follows that

lim inf
p

�̃p(C) ≥ �̃pk
(C) − γ(C)

pk

and thus

lim inf
p

�̃p(C) ≥ lim sup
p

�̃p(C). ��

We denote τ(n, W ) := limp �̃p(C). Next, we prove that �̃p(Ω) → τ(n, W ).

Lemma 3.5. lim inf
p

�̃p(Ω) ≥ τ(n, W ).

Proof. Given δ > 0 there is a family {C∗
i }N

i=1 of cubes with volume vi ∈ (0, 1)
contained in Ω with pairwise disjoint interiors and

N∑
i=1

|C∗
i | ≥ 1 − δ.

From Lusternik–Schnirelman inequality we get

�̃p(Ω) ≥
N∑

i=1

|C∗
i |�̃�pvi	(C) − γ(C)

p mini vi
.

Hence

lim inf
p

�̃p(Ω) ≥ (1 − δ) lim inf
p

�̃p(C) = (1 − δ)τ(n, W ).

Since δ > 0 is arbitrary, this concludes the proof. ��
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The following lemma is proved in [LMN18] and it shows that we can fill as much
of the volume of C as we want by domains which are similar to Ω.

Lemma 3.6. There is a sequence {Ω∗
i }i∈N of domains contained in C which are

similar to Ω and have pairwise disjoint interiors such that for all δ > 0 we can find
N = N(δ) ∈ N satisfying

N∑
i=1

|Ω∗
i | ≥ 1 − δ.

We conclude the proof of Theorem 3.3 by proving:

Lemma 3.7. τ(n, W ) ≥ lim sup
p

�̃p(Ω).

Proof. As in [LMN18], we will use the previous lemma for each cube of a maximal
disjoint collection of cubes in C with small volume. By applying the Lusternik–
Schnirelman inequality to C and the family of all these domains similar to Ω we get
the desired inequality.

Choose a sequence {qk}k such that limk �̃qk
(Ω) = lim supp �̃p(Ω) =: β. Consider

the family {Ω∗
i } given by Lemma 3.6. For a fixed k and all p ∈ N such that δp :=

qk/(p|Ω∗
1|) < 1 let Np be the maximal number of cubes {C∗

j }Np

j=1 contained in C with
pairwise disjoint interiors and volume δp. Again we have δpNp → 1 as p → +∞.

For all δ > 0 and each j = 1, . . . , Np, by Lemma 3.6 we can choose regions
{Ωi,j}N

i=1 inside C∗
j with pairwise disjoint interiors and similar to Ω such that

|Ωi,j | = |C∗
j ||Ω∗

i | = δp|Ω∗
i |.

If v = min{|Ω∗
i | : i = 1, . . . , N} and

pi := �p|Ωi,j |� = �pδp|Ω∗
i |� =

⌊
qk

|Ω∗
i |

|Ω∗
1|

⌋
,

then

min{|Ωi,j | : i = 1, . . . , N, j = 1, . . . , Np} = δpv

and

�̃p(C) ≥
Np∑
j=1

N∑
i=1

|Ωi,j |�̃pi
(Ω) − γ(Ω)

pδpv

= δpNp

(
|Ω∗

1|�̃qk
(Ω) +

N∑
i=2

|Ω∗
i |�̃pi

(Ω)

)
− γ(Ω)|Ω∗

1|
qkv

.

Hence

τ(n, W ) ≥ |Ω∗
1|�̃qk

(Ω) +
N∑

i=2

|Ω∗
i |�̃�qk|Ω∗

i |/|Ω∗
1 |	(Ω) − γ(Ω)|Ω∗

1|
qkv



GAFA THE WEYL LAW FOR THE PHASE TRANSITION SPECTRUM 395

and by letting k → +∞ and using Lemma 3.5 we get

τ(n, W ) ≥ |Ω∗
1|β + lim inf

p
�̃p(Ω)

N∑
i=2

|Ω∗
i | ≥ |Ω∗

1|β + τ(n, W )(1 − δ − |Ω∗
1|).

Therefore

(δ + |Ω∗
1|)τ(n, W ) ≥ |Ω∗

1|β
and, since δ is arbitrary, τ(n, W ) ≥ β, as we wanted to prove. ��

4 Weyl Law for Closed Manifolds

Consider a closed Riemannian manifold (Mn+1, g). As in the previous section, we
will denote by C the unit cube in R

n+1 and

τ(n) = τ(n, W ) = lim
p

�̃p(C) = lim
p

p− 1
n+1 �p(C).

In this section we prove:

Theorem 4.1 (Weyl Law for the phase transition spectrum). For all compact Rie-
mannian manifolds (Mn+1, g), possibly with a nonempty piecewise smooth bound-
ary, it holds

lim
p→+∞ p− 1

n+1 �p(M) = τ(n) vol(M, g)
n

n+1 .

First, we show:

Proposition 4.2. It holds

lim inf
p→+∞ p− 1

n+1 �p(M) ≥ τ(n) vol(M, g)
n

n+1 .

Proof. Without loss of generality we may assume vol(M, g) = 1. Given δ > 0 there is
r̄ > 0 such that for all r ∈ (0, r̄] and x ∈ M the Euclidean metric g0 = (exp−1

x )∗geucl

induced on the geodesic ball Br(x) ⊂ M satisfies (1 + δ)−2g ≤ g0 ≤ (1 + δ)2g, and
consequently

(1 + δ)−(n+1) vol(Br(x)) ≤ |Br(0)| ≤ (1 + δ)n+1 vol(Br(x)).

Moreover, by arguing as we did in Lemma 3.1 we see that for all ε > 0 and u ∈
W 1,2(Br(x)) we have

Eε(u, Br(x)) ≥ (1 + δ)−(n+2)Eε/(1+δ)(u ◦ expx, Br(0))

and consequently

cε(p, Br(x)) ≥ (1 + δ)−(n+2)cε/(1+δ)(p, Br(0)), for all p ∈ N.
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Choose a collection {Bi}N
i=1 of pairwise disjoint geodesic balls in M with radius

ri ≤ r̄ and such that
∑

i vol(Bi) ≥ (1 + δ)−1. If B is a ball of volume 1 in R
n+1 and

Bi is for each i = 1, . . . , N an Euclidean ball of radius ri then we see that

cε(p, M) ≥
N∑

i=1

cε (�p vol(Bi)� , Bi) .

Therefore by writing pi = �p volBi� and εi = ε/((1 + δ)|Bi|1/(n+1)) we get

p− 1
n+1 cε(p, M) ≥ p− 1

n+1

N∑
i=1

cε(pi, Bi)

≥ (1 + δ)−(n+2)p− 1
n+1

N∑
i=1

cε/(1+δ)(pi, Bi)

= (1 + δ)−(n+2)p− 1
n+1

N∑
i=1

|Bi|
n

n+1 cεi
(pi, B)

≥ (1 + δ)−(n+2)
N∑

i=1

|Bi|
(

pi

p|Bi|
) 1

n+1

p
− 1

n+1

i cεi
(pi, B)

≥ (1 + δ)−(2n+3)
N∑

i=1

vol(Bi)
(

vol(Bi)
|Bi| − 1

p|Bi|
) 1

n+1

p
− 1

n+1

i cεi
(pi, B).

Thus

p− 1
n+1 �p(M) ≥ (1 + δ)−(2n+3)

N∑
i=1

vol(Bi)
(

vol(Bi)
|Bi| − 1

p|Bi|
) 1

n+1

p
− 1

n+1

i �pi
(B).

Finally, the Weyl Law for Euclidean domains implies

lim inf
p

p− 1
n+1 �p(M) ≥ (1 + δ)−(2n+3)

N∑
i=1

vol(Bi)(1 + δ)−1τ(n)|B| n

n+1

= (1 + δ)−2(n+2)τ(n)
N∑

i=1

vol(Bi) ≥ (1 + δ)−(2n+5)τ(n).

Since δ > 0 is arbitrary, the inequality above concludes the proof of the
theorem. ��

In order to prove Theorem 4.1 it remains to show that

lim sup
p→+∞

p− 1
n+1 �p(M) ≤ τ(n) vol(M, g)

n

n+1 .

Our proof differs from the one in [LMN18] as we do not have the spaces of chains
in our disposal to perform the cutting and gluing argument. Nevertheless we will
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still use the strategy of decomposing M into domains {Ci} with piecewise smooth
boundaries which are bi-Lipschitz equivalent to Euclidean domains Ci having also
piecewise smooth boundaries, and glue them by small tubes obtaining Ω ⊂ R

n+1 on
which we know that the Weyl law holds. Then we follow the ideas of [GUA18] and
[GG18] to modify a given p-sweepout A ∈ Fp(Ω) so that it induces a p-sweepout of
M gluing back the domains Ci. More precisely, given u ∈ A we construct a function
wε ∈ W 1,2(Ω) which vanishes in the boundary of all Ci, and this allows us to extend
it to Ω in a way that, roughly,

Eε(wε, Ω) ≤ Eε(u, Ω) + 2σ

N∑
i=1

Hn(∂Ci) + O(ε),

in terms of ε. This implies a similar inequality for cε(p, Ω) in terms of cε(p, M) and the
area of the boundaries ∂Ci similarly to [LMN18]. Hence we obtain lim supp �̃p(M) ≤
τ(n)|Ω|n/(n+1). The Theorem follows then by noting that we can choose Ω so that
its volume is as close to vol(M, g) as we want.

Firstly we choose a decomposition of M in a similar manner to [LMN18, §4.2].
More precisely given η > 0 there is a collection {Ci}N

i=1 of domains in M with
piecewise smooth boundary and the following properties. Here we denote by di the
Euclidean distance function dist(x, ∂Ci) for x ∈ Ci, for each i = 1, . . . , N .

(1) Each Ci is (1 + η/2)-bi-Lipschitz diffeomorphic to a domain Ci ⊂ R
n+1 with

piecewise smooth ∂Ci endowed with the Euclidean metric.
(2) {Ci} covers M .
(3) The domains Ci have mutually disjoint interiors.
(4) Given η1 > 0 there is s0 > 0 such that, for all s ∈ [0, s0), we have Hn({di =

s} ∩ Ci) ≤ (1 + η1)Hn(∂Ci).

The existence of such a cover is proved in [LMN18]. To see why the last property
holds it suffices to see that {di = s} is contained in a union of spheres of radii r − s,
for some r = r(M) > 0. Alternatively we can construct {Ci} using a sufficiently fine
triangulation – or cubulation – of M , as in [GG18]. Clearly we may assume that the
domains Ci are pairwise disjoint in R

n+1. Moreover we can construct an Euclidean
domain Ω ⊂ R

n+1 such that

Ω =
N⋃

i=1

Ci ∪
N−1⋃
i=1

Ti

where each Ti is a tube – e.g. it is diffeomorphic to Bn × [0, 1] – connecting Ci to
Ci+1, such that {Ci} ∪ {Ti} have pairwise disjoint interiors and |Ti| may be chosen
as small as we want. In particular we may assume

|Ω| ≤ (1 + η)n+1 vol(M, g).
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We can also suppose (by suitably choosing Ti and making s0 smaller, if necessary)
that

Hn({dist(·, ∂Ti) = s} ∩ Ti) ≤ (1 + η1)Hn(∂Ti)

for all s ∈ [0, s0).
We recall now some properties of the 1-dimensional heteroclinic solution of (1),

as presented in [GUA18, §7.3]. Let ψ denote the solution to the IVP
{

ψ′ =
√

2W (ψ)
ψ(0) = 0.

Then ψ solves (1) in R for ε = 1, and it holds:

(1) |ψ| < 1 and ψ is monotone increasing.
(2) ψ(s) → ±1 as s → ±∞.
(3) sW (ψ(s)) → 0 as s → ±∞.
(4)

∫
R
(ψ′)2/2 + W (ψ) = 2σ =

∫ 1
−1

√
2W .

Given ε > 0 we denote also ψε(s) = ψ(s/ε) for s ∈ R. Clearly ψε solves (1) in R.
Denote by d : Ω̄ → R the function given by d(x) = di(x), if x ∈ C̄i, and d(x) =
dist(x, ∂Ti) if x ∈ T̄i. Clearly d is a Lipschitz function and it satisfies the Eikonal
equation |∇d| = 1 almost everywhere in Ω. Now fix δ > 0 and define vδ,ε : Ω → R

by

vδ,ε(x) =
{

ψε(d(x)), if d(x) ≤ δ,
ψε(δ), if d(x) > δ.

(6)

Again we can verify that vδ,ε is a Lipschitz function, and moreover

|∇vδ,ε|x| =
{

ψ′
ε(d(x)), for a.e. x ∈ {d ≤ δ} ∩ Ω,

0, for all x ∈ {d > δ} ∩ Ω.

Now given u : Ω → R we define a new function wε : Ω → R by truncating u by ±vδ,ε

in Ω, that is

wε(x) = max{−vδ,ε(x), min{u(x), vδ,ε(x)}}, for x ∈ Ω.

If u ∈ W 1,2(Ω) then we have wε ∈ W 1,2(Ω) and |∇wε| = |∇u| a.e. in {|u| ≤ vδ,ε}∩Ω,
whereas |∇wε| = ψ′

ε(d) almost everywhere in {|u| > vδ,ε} ∩ Ω. Hence

Eε(wε, Ci) =
∫

{|u|≤vδ,ε}∩Ci

(
ε|∇u|2

2
+

W (u)
ε

)

+
∫

{|u|>vδ,ε}∩Ci

(
εψ′

ε(di)2

2
+

W (ψε(di))
ε

)

≤ Eε(u, Ci) + I1 + I2
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for each i = 1, . . . , N , where

I1 =
∫

{di>δ}∩Ci

W (ψε(δ))
ε

≤ W (ψ(δ/ε))
ε

|Ci|,

and

I2 =
∫

{di≤δ}∩Ci

(
ε(ψ′

ε(di))2

2
+

W (ψε)
ε

)

=
1
ε

∫ δ

0

(
ψ′(t/ε)2

2
+ W (ψ(t/ε))

)
Hn({di = t} ∩ Ci) dt

=
∫ δ/ε

0

(
ψ′(s)2

2
+ W (ψ(s))

)
Hn({di = εs} ∩ Ci) ds

≤ 1
2

(∫
R

(ψ′)2/2 + W (ψ)
) (

sup
|s|≤δ

Hn({di = s} ∩ Ci)

)
≤ σ(1 + η1)Hn(∂Ci)

provided we pick a sufficiently small δ depending only on M and the cover {Ci}.
Similarly for i = 1, . . . , N − 1 we have

Eε(wε, Ti) =
∫

{|u|≤vδ,ε}∩Ti

(
ε|∇u|2

2
+

W (u)
ε

)

+
∫

{|u|>vδ,ε}∩Ti

(
εψ′

ε(dist(·, ∂Ti))2

2
+

W (ψε(dist(·, ∂Ti)))
ε

)

≤ Eε(u, Ti) +
W (ψ(δ/ε))

ε
|Ti| + σ(1 + η1)Hn(∂Ti)

for sufficiently small δ > 0. Therefore

Eε(wε, Ω) =
N∑

i=1

Eε(wε, Ci) +
N−1∑
i=1

Eε(wε, Ti)

≤ Eε(u, Ω) +
W (ψ(δ/ε))

ε
|Ω| + σ(1 + η1)β(Ω),

where β(Ω) =
∑N

i=1 Hn(∂Ci)+
∑N−1

i=1 Hn(∂Ti). On the other hand, since wε vanishes
on ∂Ci for all i, we may use the (1 + η/2)-bi-Lipschitz equivalence Fi : Ci → Ci to
define Uε : M → R by Uε(x) = (wε ◦ Fi)(x) for x ∈ C̄i, so that Uε ∈ W 1,2(M) and
by Lemma 3.1

Eε/(1+η/2)(Uε, Ci) ≤ (1 + η/2)n+2Eε(wε, Ci).

Thus

Eε/(1+η/2)(wε, M) ≤ (1 + η/2)n+2

(
Eε(u, Ω) +

W (ψ(δ/ε))
ε

|Ω| + σ(1 + η1)β(Ω)
)

.
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If we prove that u ∈ W 1,2(Ω) �→ Uε ∈ W 1,2(M) defines a continuous odd map then
the monotonicity of the Z/2Z index and the inequality above give us

cε/(1+η/2)(p, M) ≤ (1 + η/2)n+2

(
cε(p, Ω) +

W (ψ(δ/ε))
ε

|Ω| + σ(1 + η1)β(Ω)
)

for all p ∈ N. Consequently

�p(M) ≤ (1 + η/2)n+2 (�p(Ω) + σ(1 + η1)β(Ω))

and

lim sup
p

p− 1
n+1 �p(M) ≤ (1 + η/2)n+2 lim sup

p
p− 1

n+1 �p(Ω)

= (1 + η/2)n+2τ(n)|Ω| n

n+1

≤ (1 + η)2n+3τ(n) vol(M, g)
n

n+1 .

The continuity of the truncation and gluing construction used above is a consequence
of the following lemma.

Lemma 4.3. Fix ε, δ > 0 and consider the decomposition {Ci} and the bi-Lipschitz
diffeomorphisms Fi : Ci → Ci ⊂ R

n+1 described above, and the function vδ,ε defined
in (6). The map Ψ : W 1,2(Ω) → W 1,2(M),

(Ψu)(x) := max{−(vδ,ε ◦ Fi)(x), min{(vδ,ε ◦ Fi)(x), (u ◦ Fi)(x)}}, for x ∈ Ci

is odd and continuous.

Proof. By the continuity of the maximum and minimum functions in W 1,2 we see
that

(Ψ̄u)(x) := max{−vδ,ε(x), min{vδ,ε(x), u(x)}}, x ∈ ⋃
i Ci

defines a continuous map Ψ̄ : W 1,2(Ω) → W 1,2
0 (

⋃
i Ci).

On the other hand, since each Fi is a bi-Lipschitz diffeomorphism, the map

Φi : W 1,2
0 (Ci) � u �→ u ◦ Fi ∈ W 1,2

0 (Ci)

is also continuous. By extending Φiu to 0 outside Ci we get a continuous map into
W 1,2(M). Using also that W 1,2

0 (
⋃

i Ci) = ⊕iW
1,2
0 (Ci) we can put

Φ : W 1,2
0 (

⋃
i Ci) → W 1,2(M), Φu =

∑N
i=1Φi(u|Ci

).

Then Φ is also continuous and the claimed result follows by noting that Ψ = Φ ◦
Ψ̄. ��
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5 Density of Limit Interfaces

The proofs of the main theorems in [IMN18] and [MNS17] rely on the Weyl law for
the volume spectrum together with some perturbation arguments. In our context,
we may replace the former by our main theorem, the Weyl law for the phase transi-
tion spectrum. While the perturbation arguments remain roughly unchanged, some
adaptations are needed. Before talking about limit interfaces we will indicate the
changes needed in [IMN18] and [MNS17] in order to obtain phase transition based
proofs of:

Theorem 5.1 (from [IMN18]). Let Mn+1 be a closed manifold of dimension 3 ≤
n + 1 ≤ 7. For a C∞-generic Riemannian metric g on M , the union of all closed,
smooth, embedded minimal hypersurfaces in (M, g) is dense.

Theorem 5.2 (from [MNS17]). Let Mn+1 be a closed manifold of dimension n+1,
with 3 ≤ n + 1 ≤ 7. Then for a C∞-generic Riemannian metric g on M , there exists
a sequence {Σj}j∈N of closed, smooth, embedded, connected minimal hypersurfaces
that is equidistributed in M : for any f ∈ C∞(M) one has

lim
q→∞

1∑q
j=1 volg(Σj)

q∑
j=1

∫
Σj

f dΣj =
1

volg M

∫
M

fdM.

Even more, for any symmetric (0, 2)-tensor h on M , one has

lim
q→∞

1∑q
j=1 volg(Σj)

q∑
j=1

∫
Σj

TrΣj
(h) dΣj =

1
volg M

∫
M

n TrM h

n + 1
dM.

Moreover, combining the argument of [IMN18] with the construction of Pacard–
Ritoré [PR03] and with the multiplicity one of the interfaces in 3-dimensional man-
ifolds of Chodosh–Mantoulidis [CM18], we obtain the density of separating limit
interfaces. We recall that a separating hypersurface is one that is the boundary of
an open region and its closure, while a two-sided hypersurface is one that is separat-
ing relative to a small tubular neighborhood (i.e. it splits its tubular neighborhoods
in two parts).

Theorem 5.3. Let Mn+1 be a closed manifold of dimension (n + 1), such that

(1) n + 1 = 3, or
(2) 4 ≤ n + 1 ≤ 7 and M contains only separating minimal hypersurfaces e.g.

Hn(M,Z2) = 0.

Then, for a C∞-generic Riemannian metric g on M , the union of all closed, smooth,
embedded separating limit interfaces in (M, g) is dense.

First, we need to prove that the volume spectrum depends continuously on the
metric:
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Lemma 5.4. The p-th liminf (resp. limsup) min-max value for the energy �p(M, g)
(resp. �p(M, g)) depends continuously on the metric g, with respect to the C0 topol-
ogy.

Proof. Assume gi is a sequence of smooth Riemannian metrics converging in the C0

topology to g. For all i write

λi = max

⎧⎨
⎩

(
sup
v �=0

gi(v, v)
g(v, v)

)1/2

,

(
sup
v �=0

g(v, v)
gi(v, v)

)1/2
⎫⎬
⎭

so that λ−2
i g ≤ gi ≤ λ2

i g and λi → 1, by the convergence gi → g0 in C0. Note that
this implies that the W 1,2 norm induced by each gi is equivalent to the one induced
by g. Given ε > 0 choose a compact and symmetric subset A ⊂ W 1,2(M) such that

sup
u∈A

Eε(u, g) ≤ cε(p, g) + ε.

where Eε(·, g) is the Allen–Cahn energy calculated with respect to the metric g.
Proceeding as in the proof of Lemma 3.1, we get

Eε/λi
(u, gi) ≤ λn+2

i Eε(u, g)

for all W 1,2 functions u on M . Moreover A ∈ Fp(M, gi) (as a subset of W 1,2(M, gi))
and thus

cε/λi
(p, gi) ≤ sup

u∈A
Eε/λi

(u, gi) ≤ λn+2
i sup

u∈A
Eε(u, g) ≤ λn+2

i (cε(p, g) + ε).

Hence

lim sup
i

�p(M, gi) ≤ �p(M, g)

and

lim sup
i

�p(M, g) ≤ �p(M, g).

Similarly, we may prove that lim infi �p(M, gi) ≥ �p(M, g) and lim infi �p(M, gi) ≥
�p(M, g). ��

In fact, we can proof the following equivalent to Lemma 1 from [MNS17].

Corollary 5.5. Let g̃ be a C2 Riemannian metric on M , and let C1 < C2 be
positive constants. Then there is K = K(g̃, C1, C2) > 0 such that

|p 1
n+1 �p(M, g′) − p

1
n+1 �p(M, g)| ≤ K · |g − g′|g̃,

for any g, g′ ∈ {h ∈ Γ2; C1g̃ ≤ h ≤ C2g̃} and any p ∈ N.
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Proof. The proof is identical to Lemma 1 from [MNS17], it uses the Gromov–Guth
sublinear bounds, which in the phase transitions context were proved by the authors
on [GG18]; and the proof of the equivalent of Lemma 5.4, which was proved by Irie–
Marques–Neves in [IMN18]. By substituting this two results in the proof we obtain
the Lipschitz continuity. ��

The next result tells us that, for 3 ≤ n + 1 ≤ 7, �p(M) = �p(M) = �p(M)
is achieved by limit interfaces with Morse index at most p, and its proof follows
directly from [GG18] and [GAS17].

Proposition 5.6. Suppose 3 ≤ n + 1 ≤ 7. Then for each p ∈ N there exists a finite
disjoint collection {Γ1, . . . ,ΓU} of closed, smooth, embedded minimal hypersurfaces
in M , and positive integers {m1, . . . , mU} such that

�p(M, g) =
U∑

j=1

mj volg(Γj),

and
U∑

j=1

Ind(Γj) ≤ p.

Furthermore,
∑U

j=1 mjΓj is a limit interface, i.e. the limit of the varifolds associated
to sequences of solutions to the Allen–Cahn equation with Morse index at most p
and parameter ε converging to 0.

Remark. Different from Proposition 2.2 in [IMN18] we do not need to use Sharp’s
Compactness Theorem [SHA17] in the proof of Proposition 5.6. In Marques–Neves’
setting this happens because the p-widths are defined using cohomological classes
of maps into the space of n-cycles modulo Z2 while Almgren-Pitts Regularity the-
ory works with homotopy classes. In our case, the phase transition spectrum and
also the existence theorems of [GG18] may be described in terms of cohomological
families while the convergence to a smooth limit interface is independent of these
constructions.

Finally we need a version of Proposition 2.3 in [IMN18] which preserves separat-
ing limit interfaces. This is the content of the next result.

Proposition 5.7. Let Γ be a closed, smooth, embedded and separating minimal
hypersurface in (Mn+1, g). Then, there exists a sequence of metrics gi converging
to g in the smooth topology such that Γ is a nondegenerate limit interface for each
(Mn+1, gi).

Proof. By Proposition 2.3 [IMN18] we know there exists a sequence of metrics gi

such that Γ is a nondegerate minimal hypersurface on every (Mn+1, gi). Since Γ is
also separating, Theorem 4.1 of [PR03] gives, for every gi, the existence of εi such
that for each ε ∈ (0, εi) there is a solution to ε2Δgi

uε − W ′(uε) = 0, having Γ as a
limit interface, as ε → 0. ��



404 P. GASPAR, M. A. M. GUARACO GAFA

Density and Equidistribution of Minimal Hypersurfaces.

Proof of Theorem 5.1. Similarly to [IMN18], we will show that given an open set
U ⊂ M the space M(U) of all smooth metrics on M for which there exists an
embedded nondegenerate minimal hypersurface intersecting U is open and dense,
with respect to the C∞ topology.

Let g ∈ M(U) as above. The openness of M(U) follows from the Inverse Function
Theorem applied to the Jacobi operator of Γ, or from White Structure Theorem
[WHI17] as argued in Proposition 3.1 of [IMN18].

To see that M(U) is dense one can proceed as in the proof of Proposition 3.1
[IMN18] substituting the continuity of the area functional spectrum, i.e. Lemma 2.1
[IMN18] by Lemma 5.4, Propositon 2.2 [IMN18] by Propostion 5.6 and restricting
the set of all possible areas of min-max stationary varifolds to the possible areas of
limit interfaces, all on a fixed bumpy metric. The Weyl law for the volume spec-
trum Theorem [LMN18] is then replaced by the Weyl law for the phase transition
spectrum, Theorem 4.1 and the same contradiction argument shows that we can
find an arbitrarily small deformation g′ of a bumpy metric in U so that some limit
interface intersects U . Then, the deformation of Proposition 2.3 [IMN18] concludes
the density of M(U). ��
Proof of Theorem 5.2. We indicate how each one of the lemmas in [MNS17] is
affected when one wants to use the Weyl law for the phase transition spectrum.
Lemma 1 [MNS17] is based on the Guth-Gromov Bounds from Marques–Neves
[MN17] and Lemma 2.1 [IMN18], which should then be replaced by Theorem 3.2
[GG18] and Lemma 5.4, respectively. Lemma 2 [MNS17] uses only Proposition 2.2
[IMN18], which can be replaced by our Proposition 5.6. Lemma 3 and 4 may then
be used verbatim. The main result in [MNS17] is then consequence of Lemmas 1, 2,
3 and 4, [MNS17]. ��
Density of Limit Interfaces.

Proof of Theorem 5.3. Differently from above, let M2(U) be all smooth metrics on
M for which there exists a closed, two-sided, separating, smooth and embedded
nondegenerate minimal hypersurface (not necessarily connected) intersecting U . We
show that this set is open and dense, with respect to the C∞ topology.

The openness of M2(U) follows from a similar argument as in Theorem 5.1
since the hypersurface given by the application of the Inverse Function Theorem is
presented as a normal graph. Therefore, it is also two-sided, separating and non-
degenerated. Then Theorem 4.1 of [PR03] implies that it is also a limit interface.

To see that M2(U) is dense, the idea is again to proceed as in the proof of
Proposition 3.1 [IMN18], nonetheless, it is necessary to know that the limit interfaces
given by the Allen–Cahn min-max, Proposition 5.6, are also separating. This is
directly the case if one assumes (1) n + 1 = 3 and Ric(M) > 0, as a consequence of
the multiplicity one property recently shown by Chodosh–Mantoulidis [CM18] or if
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(2) 3 ≤ n + 1 ≤ 7 and M contains only separating minimal hypersurfaces as is the
case when Hn(M,Z2) = 0. The proof is then the same as in Theorem 5.1 except in
the last step, where we can replace Proposition 2.3 [IMN18] by Proposition 5.7 in
the deformation argument on U .

In order to show the result for n + 1 = 3 in a generic set of metrics, the fact
that M2(U) is dense must be argued differently. The reason for this is that the
deformed metric on U is not bumpy in general. Therefore, Chodosh–Mantoulidis
Sheet Convergence Theorem [CM18] does not rule out the possibility of having
only unstable one-sided interfaces, or non-separating interfaces with multiplicity,
intersecting the set U .

To fix this problem we consider the following local version of B. White’s Bumpy
Metrics Theorem (which was announced by White in [WHI17]). Roughly speaking,
the result will be used to produce a deformation of U that preserves bumpiness
allowing us to apply the Sheet Convergence Theorem [CM18] to conclude that the
interfaces are separating minimal hypersurfaces. We present the statements now but
we postpone its proofs to the end of this section.

Theorem 5.8 (Local Bumpy Metrics Theorem). Let g be a Cq Riemannian met-
ric on M and U ⊂ M an open set. Define the Banach space

S(U) = {γ : γ = 0 on M \ U},

where γ varies on the space of Cq sections of symmetric bilinear forms on M , and
its open subset

Γg(U) = {γ ∈ S(U) : g + γ is a metric on M}.

Then, the set of γ ∈ Γg(U) such that any component of a (g + γ)-minimal hyper-
surface intersecting U is non degenerate in (M, g + γ), is a generic subset of Γg(U).

This is a consequence of following theorem, where [w] represents the equivalence
class of a Cj,α embedding w : Σ → M , modulo diffeomorphisms of Σ, with q ≥
j + 1 ≥ 3.

Theorem 5.9 (Local Manifold Structure Theorem). Following the same notation
as in the last Theorem, let Σ be a smooth n-dimensional closed Riemannian manifold
and Γ an open subset of Γg(U). Denote by Mg(Σ, U) the set of ordered pairs (γ, [w])
where γ ∈ Γ, w ∈ Cj,α(Σ, M) is a (g + γ)-minimal embedding and w(Σ) ∩ U 	= ∅.

Then Mg(Σ, U) is a separable Cq−j Banach manifold modelled on Γ, and the
map

Π : Mg(Σ, U) → Γ
Π(γ, [w]) = γ

is a Cq−j Fredholm map with Fredholm index 0. Moreover, the kernel of DΠ(γ, [w])
has dimension equal to the nullity of [w] with respect to g + γ, in particular (γ, [w])
is a critical point for Π if and only if the embedding w admits non trivial Jacobi
fields with respect to g + γ.
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Remark. We emphasize that Γ is not a set of metrics, but an open set of sections
of symmetric bilinear forms γ, with supp γ ⊂ U such that g + γ is a metric on M .

These results allows us argue following ideas from Lemma 2 of [MNS17]. Let g̃ be
a metric on M and V an open set of metrics containing g̃. Fix g0 ∈ V a bumpy
metric on M . Remember that, as mentioned before, there exists a generic set of
such metrics.

Define Mg0(U) = ∪iMg0(Σi, U), where {Σi}i enumerates all the diffeomorphism
types of closed manifolds of dimension n. By Theorem 5.9, Mg0(U) is a separable
Cq−2 Banach manifold and Π : Mg0(U) → Γg0(U) is a Fredholm map of index 0.

Let g(t) = g0 + γ(t) be a smooth deformation of the metric g0 = g(0) on the set
U , such that g(t) ∈ V and vol(M, g(t)) > vol(M, g0) for all non-zero t ∈ I = [0, 1],
as constructed in Proposition 3.1 of [IMN18].

Since the metric g0 is bumpy, it follows from Theorem 5.9 that DΠ has no kernel
on the points of Mg0(U) with first coordinate γ = 0, i.e. before deforming the
metric g0. Π is a Fredholm map of index 0 and the dimension of the kernel of DΠ
at ([w], g]) is the dimension of the kernel of the Jacobi operator of the embedding
[w]. This implies that DΠ is onto on ([w], g]) for g bumpy. In particular, the maps
γ and Π are transversal at γ(0) = 0. Moreover, by Smale’s Transversality Theorem
(Theorem 3.1 [SMA00]) there exists γ′, a perturbation of γ arbitrarily small on
the C∞ topology, such that γ′ and Π are transversal maps, γ′(0) = γ(0) = 0 and
J = Π−1(γ(I)) is a smooth embedded curve on Mg0(U). In particular, we can assume
that g′(t) = g0 + γ′(t) ∈ V, for all t ∈ I and that vol(M, g′(1)) > vol(M, g0). Note
also that γ(t) ∈ Γg0(U) by construction.

Let A be the set of regular values of the map π : J → I, given by π = (γ′)−1◦Π|J .
A is a set of full measure by Sard’s Theorem. Therefore, reparametrizing if necessary,
we can assume that 1 is a regular value for π. Since vol(M, g′(1)) > vol(M, g0) by the
Weyl Law for the Phase Transition Spectrum, Theorem 4.1, there must be a p ∈ N,
for which �p(M, g′(1)) > �p(M, g0). Since the function fp : t ∈ I �→ �p(M, g′(t)) is
Lipschitz by Corollary 5.5, it follows that fp(I \ A) has null measure. On the other
hand, by continuity [�p(M, g(0)), �p(M, g′(1))] ⊂ fp(I). This implies that fp(A) has
positive measure.

We will now reach a contradiction. Assume that for all t ∈ A, limit interfaces
never intersect U . On one hand, we have that g′(t)|M\U = g0|M\U is a fixed bumpy
metric, for all t ∈ I. Then, fp(A) must be contained in the set of possible values for
�k(M, g0), k ∈ N. On the other hand, this is a countable set for bumpy metrics, by
Sharp Compactness Theorem [SHA17] and Proposition 5.6.

Therefore, there exists t0 ∈ A such that �p(M, g′(t0)) is attained by a limit
interface intersecting U . Notice that the metric g′(t0) ∈ V is bumpy, since for minimal
hypersurfaces that do not intersect U the relevant ambient metric coincides with
g0, which we chose to be bumpy. Additionally, components intersecting U are also
nondegenerate since t0 is a regular value of π and therefore γ(t0) is a regular value of
Π. By Chodosh–Mantoulidis Sheet Convergence Theorem it follows that the phase
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transition spectrum is attained by limit interfaces with multiplicity one on this
metric and therefore separating. ��

We now present the proof of the Local version of Structure Theorem by B. White.

Proof. We adapt the proof of B. White’s Manifold Structure Theorem (Theorem 2.1,
[WHI91]) to our setting. As in Theorem 2.1 [WHI91], we can parametrize a small
open neighborhood of a given [w0] by an equivalence class of sections u : Σ → V ,
modulo diffeomorphisms of Σ, where V is a normal vector bundle over w0(Σ) with
respect to a fixed smooth background metric on M .

The main tools in proving White’s Manifold Structure Theorem are Theorem 1.1
[WHI91] and Theorem 1.2 [WHI91]. We claim that in our case all the hypothesis
of such theorems (even Hypothesis (C), which is discussed below) are satisfied by
replacing the functionals Aγ and H(γ, ·) by Ag+γ and H(g +γ, ·), respectively. More
precisely, let G be the Banach space of Cq functions f that assign to each x ∈ M ,
v ∈ Vx, and linear map L : TxM → Vx a real number f(x, v, L) in such a way
that D3f is also Cq. In order to apply Theorem 1.1 [WHI91] to our case we need
for γ �→ Ag+γ to be a smooth map from Γ to G. Similarly, to apply Theorem 1.2
[WHI91] we need for

γ × u �→ A(g + γ, u) =
∫

M
Ag+γ(x, u(x), ∇u(x))dx

to be C2 and for γ × u → H(g + γ, u) to be Cq. This follows since the function
γ �→ g + γ is just a translation by a constant fixed metric, so all the differentiability
properties on the parameter γ are preserved for the translated maps.

To see that Hypothesis (C) also holds in our case, namely, that given (γ0, [u0]) ∈
Mg(Σ, U) and κ ∈ ker D2H(γ0, u0), we can find a family γs ∈ Γ so that

(
∂2

∂s∂t

)
(s=t=0)

∫
M

Ag+γs
(x, u0 + tκ, ∇(u0 + tκ)))dx 	= 0,

we argue that the conformal family of metrics

gs(z) = (1 + sf(z))(g(z) + γ0(z))

constructed by B. White can be chosen so that the function f has support on the
open set U . In this way gs = g + γs, with γs(z) = γ0(z) + sf(z)g(z) ∈ Γ, for small
values of s. Following the computation in [WHI91] one would have

(
∂2

∂s∂t

)
(s=t=0)

∫
M

Ag+γs
(x, u0 + tκ, ∇(u0 + tκ)))dx

=
∫

M

n

2
[∇f(E(x, u0)) · D2E(x, u0(x))κ(x)]Ag+γ0(x, u0(x), ∇u0)dx

Indeed, notice that not only Ag+γ0 > 0, as in the original proof, but also the Jacobi
vector field κ cannot be identically zero over the non-empty open set w−1

0 (U) ⊂ Σ
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by the (weak) principle of unique continuation for Schrödinger operators. In this
way we can find a Cq function f , with supp f ⊂ U , such that the second integral is
not zero.

The last steps of the proof of the Structure Theorem of White adapt to our
situation verbatim. ��

Finally we prove

Proof of Theorem 5.8. Consider a sequence {Σn
i }i,n, that enumerates all the diffeo-

morphism types of closed manifolds of dimension n. Let M(Σn
i , U) be the set given

by Theorem 5.9 for Σ = Σn
i . Since M(Σn

i , U) is separable and the projection Π
is proper, the regular values of Π are generic by the Sard-Smale Theorem. Since
{Σn

i }i,n is countable we conclude the proof. ��
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ful discussions and their interest in this work. The first author is grateful to the
Department of Mathematics at Princeton University for its hospitality. Part of this
work and the first drafts were carried out while visiting during the academic year
of 2017–2018. The second author would like to thank FIM - ETH, Zurich for their
kind hospitality, where this work was finished during a visit in Spring 2018.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

References
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