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ON THE POLYNOMIAL WOLFF AXIOMS

Nets Hawk Katz and Keith M. Rogers

Abstract. We confirm a conjecture of Guth concerning the maximal number
of δ-tubes, with δ-separated directions, contained in the δ-neighborhood of a real
algebraic variety. Modulo a factor of δ−ε, we also prove Guth and Zahl’s generalized
version for semialgebraic sets. Although the applications are to be found in harmonic
analysis, the proof will employ deep results from algebraic and differential geometry,
including Tarski’s projection theorem and Gromov’s algebraic lemma.

1 Introduction

For δ > 0, we consider δ-neighborhoods of unit line segments, arbitrarily positioned
in a compact subset of Euclidean space. We call these δ-tubes and, to avoid intro-
ducing an extra parameter, they will be supported in a ball of radius two from now
on. A formulation of the Kakeya conjecture seeks to estimate the number of δ-tubes,
pointing in δ-separated directions, in terms of the Lebesgue measure of any set that
contains them (take λ = 1 in inequality (1.1) below).

Guth and Zahl showed how progress can be made via polynomial partitioning
[GZ18], a technique introduced in [GK15]. This partitions the underlying space with
the zero set of a polynomial of degree D, after which a line cannot intersect more
than D + 1 of the resulting subsets. The problem is typically reduced to the harder
case concerning what happens on or near the zero set. For this it is useful to know
how many δ-tubes, pointing in δ-separated directions, can be contained in the δ-
neighborhood of the zero set. In relation to the closely related Fourier restriction
problem, Guth made the following conjecture [Gut16b, pp. 49].

Conjecture 1.1. For all integers n, D ≥ 2 and all ε > 0, there is a constant
C(n, D, ε) > 0 so that the number of δ-tubes, pointing in δ-separated directions,
contained in the δ-neighborhood of an m-dimensional algebraic variety Z ⊂ R

n, of
degree at most D, is bounded by C(n, D, ε)δ1−m−ε.

This was proven by Guth, with n = 3, yielding progress on the three-dimensional
restriction conjecture [Gut16a,Wan18], and by Zahl, with n = 4, yielding progress
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on the four-dimensional Kakeya conjecture [Zah18], as well as the four-dimensional
restriction conjecture [Dem18]. Here we will prove Conjecture 1.1 in all dimensions.
This implies that δ-neighborhoods of varieties cannot contradict the Kakeya con-
jecture. This should be compared with the grains decomposition of [GZ18] which
tells us that a union of δ-tubes can only have small measure if it has some algebraic
structure. On the other hand, in [Gut16b] it is noted that a resolution of Conjec-
ture 1.1 would lead to further improvements for the restriction conjecture in higher
dimensions. Indeed, the k-broad estimates of [Gut16b] can be improved by arguing
as in [Gut16a], mapping from L∞ rather than L2 so as to take advantage of Conjec-
ture 1.1 with m = n − 1. This controls the k-broad norm with Lebesgue exponent
p = 2n

n−1
n(n+k)−k
n(n+k)−n and so the estimate with k = (n + 1)/2 can be inputted into

Proposition 9.1 from [Gut16b] to provide an improved adjoint restriction estimate
in the range p > 2n

n−1(1 + n−1
(3n−1)n) in odd dimensions.

More generally, Guth and Zahl considered the following definition. In Wolff’s
original version, the semialgebraic sets S are taken to be truncated δ-neighborhoods
of 2-planes [Wol95]. It is clear that δ-tubes, pointing in δ-separated directions, satisfy
the Wolff axioms, and Guth and Zahl conjectured that they also satisfy the following
stronger condition; see [GZ18, pp. 4].

Definition 1.1. We say that sets T of δ-tubes in R
n satisfy the polynomial Wolff

axioms if, for every integer E ≥ 2, there is a constant C(n, E) > 0 so that

#
({

T ∈ T : |T ∩ S| ≥ λ|T |}) ≤ C(n, E)|S|δ1−nλ−n

whenever S is a semialgebraic set, of complexity at most E, and λ ≥ δ > 0.

We will prove the following theorem, confirming their conjecture up to a factor
of Cεδ

−ε. The tubes are contained in a ball of R
n, and the intersection of this

with the δ-neighborhood of an m-dimensional variety, of degree at most D, forms
a semialgebraic set S with complexity bounded in terms of n and D. Moreover, by
Wongkew’s lemma [Won93], the measure of such an S is bounded by c(n, D)δn−m.
Thus, Conjecture 1.1 is proved by taking λ = 1 in the following theorem.

Theorem 1.1. Let n, E ≥ 2 be integers and ε > 0. Then there is a constant
C(n, E, ε) > 0 so that, for every set T of δ-tubes in R

n, pointing in δ-separated
directions,

#
({

T ∈ T : |T ∩ S| ≥ λ|T |}) ≤ C(n, E, ε)|S|δ1−n−ελ−n (1.1)

whenever S is a semialgebraic set, of complexity at most E, and λ ≥ δ > 0.

The proof will employ deep results from both algebraic and differential geometry.
On the one hand, we use quantifier elimination to build new semialgebraic sets with
bounded complexity from known semialgebraic sets. On the other hand, we will
use Gromov’s algebraic lemma to nicely parametrize semialgebraic sets of bounded
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complexity. Rather than apply Gromov’s lemma to S, we would like to apply it to
our set of tubes, however this is not semialgebraic. We replace it with a semialgebraic
version using quantifier elimination. We first consider all the tubes contained in S and
then take a semialgebraic section, the result being that the tubes are repositioned.
This will be discussed in more detail in the following section.

In the third section, we prove a simplified version of Theorem 1.1, where the
intersections of the tubes with S contain truncated δ-tubes of length λ, the advantage
being that we can perform the previous steps to obtain a semialgebraic set of tubes.
We bound |S| below by the measure of the union of these tubes, each slice of which
can be written in terms of the parametrisation given by Gromov’s lemma. One part
of the parametrisation maps into the directions (and there is no more than one tube
for each direction), and the other part into the uncontrolled position of the tube.
We approximate the parametrisation by a polynomial, allowing us to apply Bézout’s
theorem, in order to ensure that this uncontrolled part does not interfere too often.

In the final section, we complete the proof. This involves a further application of
Bézout’s theorem, a change of scales, and dyadic pigeonholing in order to obtain a
version of (1.1) with |S| on the right-hand side replaced by the measure of the δn-
neighborhood of S. The proof is then completed by bounding |Sδn | = |Sδn\S| + |S|
by a constant multiple of |S|, an easy consequence of the Milnor–Thom theorem
[Mil64] combined with Wongkew’s lemma [Wol95].

2 Semialgebraic Sets, Quantifier Elimination and Gromov’s
Algebraic Lemma

Following [BPR03], we say that the semialgebraic sets of Rn are the smallest family
of sets, closed under finite unions, intersections, and complements, that contains
both {x : P (x) = 0} and {x : Q(x) > 0} for all polynomials P and Q. We say
that the complexity of a semialgebraic set is the smallest sum of the degrees of the
polynomials appearing in a complete description of the set.

Perhaps the most fundamental result in the subject of semialgebraic sets is
Tarski’s projection theorem; see for example [BPR03].

Theorem 2.1 (Tarski). Let Π be the orthogonal projection of Rn into its first n−1
coordinates. Then for every E ≥ 1, there is a constant C(n, E) > 0 so that, for every
semialgebraic S ⊂ R

n of complexity at most E, the projection Π(S) has complexity
at most C(n, E).

Noting that (x1, . . . , xn−1) ∈ Π(S) if and only if ∃ (x1, . . . , xn−1, xn) ∈ S, we
associate this theorem with quantifiers. Roughly speaking, Tarski’s theorem tells us
that any set described using semialgebraic sets and quantifiers is semialgebraic with
complexity depending only on the length of the description and the complexity of
the semialgebraic sets used in the description.
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For notational convenience we work in R
n+1 rather than R

n. With λ ≥ δ and
t0 ∈ [−2, 2], we will consider truncated λ × δ-tubes in R

n+1 defined by

Ta,d =
{
(x, t) ∈ R

n × [t0, t0 + λ] : |x − a − td| ≤ δ
}
, (a,d) ∈ [0, 1]2n.

Note that Ta,d is a semialgebraic set of fairly small complexity.

Lemma 2.1. Let S ⊂ R
n+1 be a semialgebraic set of complexity at most E. Then

LS :=
{
(a,d) ∈ [0, 1]2n : Ta,d ⊂ S

}

is a semialgebraic set of of complexity at most C(n, E), a constant depending only
on n and E.

Proof. This is an immediate consequence of Tarski’s projection theorem. First we
write

LS =
{
(a,d) ∈ [0, 1]2n : (x, t) ∈ S ∀ (x, t) ∈ Ta,d

}
.

We then define the clearly semialgebraic Y by

Y =
{
(a,d,x, t) ∈ [0, 1]2n × R

n × [t0, t0 + λ] : (x, t) /∈ S, (x, t) ∈ Ta,d

}
.

Writing Z = Π(Y ), where Π is the projection (a,d,x, t) 	→ (a,d), by Theorem 2.1
we conclude that Z is semialgebraic of complexity depending only on n and E. The
proof is completed by noting that LS is the complement of Z in [0, 1]2n. ��

Noting that LS is closed if S is closed, we have shown that given a closed semi-
algebraic set, the set of tubes it contains is closed and semialgebraic. Next we will
show that we can extract a section semialgebraically. That is, we can choose one
tube for each direction.

Lemma 2.2. Let S ⊂ R
2n be a compact semialgebraic set of complexity at most E.

Let Π be the orthogonal projection into the final n coordinates (a,d) 	→ d. Then
there is a constant C(n, E) > 0, depending only on n and E, and a semialgebraic
set Z, of complexity at most C(n, E), so that

Z ⊂ S, Π(Z) = Π(S),

and so that for each d, there is at most one a with (a,d) ∈ Z.

Proof. It suffices to show that for the projection Π1 defined by (a,d) 	→(a2, . . . , an,d),
there is a constant C(E) > 0 and a semialgebraic Z1 of complexity at most C(E),
so that

Z1 ⊂ S, Π1(Z1) = Π1(S),

and so that for any (a2, . . . , an,d) there is at most one a1 with (a,d) ∈ Z1. Having
done that, we obtain Z2 by applying the same result to Z1 with the first coordinate
replaced by the second, obtain Zj from Zj−1 with the first coordinate replaced by
the jth, and finally setting Z = Zn.
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It suffices to see that there is a semialgebraic choice of Z1. Whenever
(a2, . . . , an,d) ∈ Π1(S) we let (a,d) ∈ Z1 for a1 the maximal value so that (a,d) ∈ S.
More logically, we write

Z1 =
{
(a,d) ∈ S : x ≤ a1 ∀ (x, a2, . . . , an,d) ∈ S

}
.

As before we introduce the clearly semialgebraic Y defined by

Y =
{
(x,a,d) ∈ R × S : x > a1, (x, a2, . . . , an,d) ∈ S

}
,

and use Theorem 2.1 to project Y to its last 2n coordinates. We then recover Z1,
by taking the complement in S, to complete the proof. ��

An elementary proof of the following algebraic lemma can be found in the work
of Burguet [Bur08].

Lemma 2.3 (Gromov). For all integers d, E, r ≥ 1, there exists M(d, E, r) < ∞
with the following properties. For any compact semialgebraic set A ⊂ [0, 1]d, of
dimension n and complexity at most E, there exists an integer N ≤ M(E, d, r) and
maps φ1, . . . , φN : [0, 1]n −→ [0, 1]d so that

N⋃

j=1

φj([0, 1]n) = A and ‖φj‖Cr := max
|α|≤r

‖∂αφj‖∞ ≤ 1.

A weaker version of this was first proved by Yomdin [YC04]. It was first stated as
presented here by Gromov. The first detailed proof of this version appears to have
been given by Pila and Wilkie [PW06].

3 Proof of Theorem 1.1 with λ = 1

For notational convenience we work in R
n+1 rather than R

n. As we can suppose that
the δ-tubes are contained in B(0, 2), without loss of generality we can suppose that
our semialgebraic sets S ⊂ R

n+1 are compact. We choose our coordinates so that a
large proportion (at least a fraction 1/4n) of our tubes have central line segments
that can be written as (a, 0)+t(d, 1) with t in an interval I ⊂ [−2, 2] and d ∈ [0, 1]n.
Similarly, by translation if necessary, we can also suppose that a ∈ [0, 1]n.

Recalling from the previous section that a λ× δ-tube is defined to be of the form

Ta,d(λ, δ) =
{
(x, t) ∈ R

n × [t0, t0 + λ] : |x − a − td| ≤ δ
}
, (a,d) ∈ [0, 1]2n,

our δ-tubes always contain a λ × δ-tube with λ = 1
2(n + 1)−1/2. Thus, to count

the number of δ-tubes entirely contained in S, it will suffice to prove the following
theorem. This does not yet complete the proof of Theorem 1.1, as the intersection
of S with a δ-tube need not contain a λ × δ-tube, for any λ, when the δ-tube is
not contained in S. In that case the mass can be distributed along the length of the
whole tube.
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Theorem 3.1. Let n, E ≥ 1 be integers and ε > 0. Then there is a constant
C(n, E, ε) > 0 so that, for every set T of λ×δ-tubes in R

n+1, pointing in δ-separated
directions,

#
({

T ∈ T : T ⊂ S
}) ≤ C(n, E, ε)|S|δ−n−ελ−n−1 (3.1)

whenever S is a semialgebraic set, of complexity at most E, and λ ≥ δ > 0.

Proof. We first cover the t-interval [−2, 2] with nonoverlapping intervals Ik of length
λ/2. The projection of each T ∈ T into the (n + 1)th coordinate must contain some
Ik. For each T , we choose such a k and declare that T ∈ Tk. We let Sk be the subset
of S consisting of points whose (n + 1)th coordinate is in Ik−1 ∪ Ik ∪ Ik+1. Then it
suffices to prove

#
({

T ∈ Tk : T ⊂ Sk

}) ≤ C(n, E, ε)|Sk|δ−n−ελ−n−1.

Relabelling Tk, Sk and Ik by T, S and I, for the sake of a contradiction we assume
that for all C > 0, we can find sets T of λ×δ-tubes, pointing in δ-separated directions,
and semialgebraic sets S, of complexity bounded by E, such that

#
({

T ∈ T : T ⊂ S
})

> C|S|δ−n−ελ−n−1 (3.2)

for some λ ≥ δ > 0. We can suppose that |S| ≥ λδn as otherwise S would not contain
a single tube. Note also that (3.1) clearly holds when restricted to all δ > c > 0,
by simply taking C(n, E, ε) sufficiently large. Thus the δ for which (3.2) holds must
tend to zero as C tends to infinity.

Now instead of counting the tubes of T directly, we first consider L defined by

L =
{
(a,d) ∈ [0, 1]2n : Ta,d(λ, δ/2) ⊂ S

}
,

the advantage being that we can apply Lemma 2.1 to see that L is semialgebraic.
Moreover, applying Lemma 2.2 to L, we obtain a semialgebraic section L′ consisting
of a single vector (a,d) for each d appearing in L. Letting Π denote the projection
(a,d) 	→ d, we then have

|Π(L′)| > C|S|δ−ελ−n−1.

This is because for each Ta,d(λ, δ) ∈ T there is a whole n-dimensional ball B(d, δ/2)
in Π(L′), and these balls are disjoint due to the fact that the directions of T are
δ-separated. Given that L′ can be considered to be the graph of a function that
maps from Π(L′) ⊂ [0, 1]n, we see that L′ is an n-dimensional subset of [0, 1]2n.

We apply Gromov’s algebraic lemma, Lemma 2.3, to L′ with r taken to be the
first integer larger than 4n2/ε. This breaks L′ into N pieces, with N depending only
on n, E and r. For each piece Lj , there is a map (Fj , Gj) : [0, 1]n −→ [0, 1]2n, with

(Fj , Gj)([0, 1]n) = Lj and ‖(Fj , Gj)‖Cr ≤ 1.

By the pigeonhole principle, there is a choice of j for which

|Gj([0, 1]n)| = |Π(Lj)| > C|S|δ−ελ−n−1.
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Moreover, we can find a ball B ⊂ [0, 1]n, centered at x0 and of diameter δ
ε

2n , so that

|Gj(B)| > C|S|δ−ε/2λ−n−1. (3.3)

We use this large set of directions to find a lower bound on |S| that will yield the
contradiction.

First we replace (Fj , Gj) by (F, G), the (r −1)th degree Taylor approximation of
(Fj , Gj) at x0. By the estimates on the Cr norm of (Fj , Gj), given by the Gromov
algebraic lemma, we have

|(Fj , Gj)(x) − (F, G)(x)| ≤ |x − x0|r.
As we chose r > 4n2/ε, for x in our small ball B centered at x0, this yields

|(Fj , Gj)(x) − (F, G)(x)| ≤ 1
4δ

2n. (3.4)

We see that continuous G maps B into the δ2n-neighborhood of Gj(B), and in partic-
ular the boundary of B maps into the δ2n-neighborhood of the boundary of Gj(B).
By (3.3), recalling that |S| ≥ λδn, we can conclude that

|G(B)| > C|S|λ−n−1 (3.5)

whenever C is sufficiently large so that δ2n is sufficiently small. If there are points
x ∈ B for which the determinant of the Jacobian matrix DG(x) is zero, they are
mapped to a null set, by Sard’s theorem. Thus we can remove them without affecting
the validity of (3.5).

Now, by (3.4) and the fact that the tubes are contained in S, we have (F (x) +
tG(x), t) ∈ S for all t ∈ I and x ∈ B. Thus we can estimate

|S| ≥
∫

I
|(F + tG)(B)| dt.

In order to contradict (3.5), we would like to bound this below by λn+1|G(B)|. Using
the change of variables formula, this will follow from estimates for the Jacobian
determinants, however for fixed t, it is not necessarily the case that F + tG is one-
to-one. For this reason, we prepared a substitute, namely that F +tG is a polynomial
in n variables of degree r − 1. By restricting ourselves to Bt ⊂ B, defined to be the
points x ∈ B where (DF + tDG)(x) is invertible, the values of F + tG are isolated,
even after complexifying F and G. Thus, by Bézout’s theorem, we see that F + tG
maps at most (r − 1)n points of Bt to the same place. Partitioning Bt into sets Uk

on which F + tG is one-to-one, by the change of variables formula, we obtain

|(F + tG)(Bt)| ≥ 1
(r − 1)n

∑

k

|(F + tG)(Uk)|

=
1

(r − 1)n

∑

k

∫

Uk

|(DF + tDG)(x)| dx,
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where |(DF + tDG)(x)| denotes the absolute value of the determinant. Summing up
and integrating in t, this yields

|S| ≥ 1
(r − 1)n

∫

I

∫

Bt

|(DF + tDG)(x)| dxdt. (3.6)

Note that there may be values of t ∈ I for which Bt is the empty set, however we
will see that this cannot happen too often.

It remains to bound |(DF + tDG)(x)| from below in terms of |DG(x)|. In order
to do this, we first note that

|(DF + tDG)(x)| = |Px(t)|,

where Px(t) is a polynomial of degree n. Fixing x for the moment, we write

Px(t) = |DG(x)|(t − r1)(t − r2) . . . (t − rn),

where r1, . . . rn may be complex numbers that depend on x. We observe that for
most of the t ∈ I, we have the estimate

|t − rj | ≥ |I|
4n

, j = 1, . . . , n.

Eliminating the exceptional intervals where this is not true, we find a subset Ix ⊂ I
with |Ix| > 1

2 |I|, so that

|Px(t)| ≥
( |I|

4n

)n|DG(x)|, t ∈ Ix.

Plugging this into (3.6) and applying Fubini’s theorem, we conclude that

|S| ≥ 1
(r − 1)n

( |I|
4n

)n
∫

B

∫

Ix

|DG(x)| dtdx ≥ 1
(r − 1)n

( |I|
4n

)n |I|
2

|G(B)|.

Now, using our supposition (3.5) and simplifying, recalling that |I| = λ, we obtain

1 ≥ 1
(r − 1)n

( 1
4n

)n 1
2
C.

The C appearing here is a constant multiple, depending only on n, E and ε, of the
constant appearing in (3.2), which we take sufficiently large to obtain the desired
contradiction. ��
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4 Proof of Theorem 1.1 with λ ≥ δ

The main difficulty in extending to the general case λ ≥ δ, is that the condition
|T ∩ S| ≥ λ|T | is not semialgebraic. However, Theorem 3.1 implies the following
δ-discretized version in which Sδ denotes the δ-neighborhood of S in R

n+1.

Theorem 4.1. Let n, E ≥ 1 be integers and ε > 0. Then there is a constant
C(n, E, ε) > 0 so that, for every set T of δ-tubes in R

n+1, pointing in δ-separated
directions,

#
({

T ∈ T : |T ∩ S| ≥ λ|T |}) ≤ C(n, E, ε)|Sδ|δ−n−ελ−n−1

whenever S is a semialgebraic set, of complexity at most E, and λ ≥ δ > 0.

Proof. Observe that if |T ∩S| ≥ λ|T |, then there is a unit line segment � ⊂ T whose
direction is that of T and for which |�∩S| ≥ λ, where |�∩S| denotes one-dimensional
Lebesgue measure. Now � ∩ S breaks into at most C(E) connected components by
Bézout’s theorem. Thus, � ∩ S contains a line segment of length C(E)−1λ, and so
Tδ ∩ Sδ contains a C(E)−1λ × δ tube in the direction of T . Now we apply Theorem
3.1, with S replaced by Sδ, to complete the proof. ��

This would be enough to prove the full theorem if we could bound |Sδ| in terms
of |S|. Unfortunately, we do not not always have the appropriate bounds, so first we
prove the same result for Sη for any η ≥ δ2n.

Theorem 4.2. Let n, E ≥ 1 be integers and ε > 0. Then there is a constant
C(n, E, ε) > 0 so that, for every set T of δ-tubes in R

n+1, pointing in δ-separated
directions,

#
({

T ∈ T : |T ∩ S| ≥ λ|T |}) ≤ C(n, E, ε)|Sη|δ−n−ελ−n−1.

whenever S is a semialgebraic set, of complexity at most E, and λ ≥ δ ≥ η ≥ δ2n > 0.

Proof. We replace T by Tη, a set of η-tubes pointing in η-separated directions. Taking
no more than (δ/η)n many η-tubes V ⊂ T , all intersecting in some ball of radius η,
we can position them so that they capture a good proportion of the mass of T ∩ S;

cnλδn ≤
∑

V ⊂T

|V ∩ S|. (4.1)

Writing Tλ = {T ∈ T : |T ∩ S| ≥ λ|T |} and partitioning into subsets Vk of thin
tubes V that satisfy

2−kλ|V | ≤ |V ∩ S| < 2−k+1λ|V |, (4.2)

there must be a set Vk with large cardinality compared to Tλ. Then we apply The-
orem 4.1 to this Vk, with δ replaced by η and λ replaced by 2−kλ, giving

#Vk ≤ C(n, E, ε)|Sη|η−n−ελ−n−12k(n+1). (4.3)
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It is straightforward to find the subset Vk with large cardinality compared to Tλ.
We use the upper bound in (4.2), to see that

∑

V ∈Vk

|V ∩ S| <
∑

T∈Tλ

∑

V ⊂T

2−k+1λ|V | ≤ 2−k+1λδn#Tλ, (4.4)

where the second inequality is because there are less than (δ/η)n thin tubes in each
fat tube. On the other hand, by summing (4.1), we have

cnλδn#Tλ ≤
∑

k≥log2 λ−1

∑

V ∈Vk

|V ∩ S|. (4.5)

Comparing (4.4) and (4.5), we see that the summands with large k contribute little
and so, by the pigeonhole principal, (4.5) must continue to hold for a single Vk,
with k ≤ C(n), losing only a factor of log2 λ−1. Using the upper bound of (4.2) and
recalling that λ ≥ δ, this yields

#Tλ ≤ C(n) log2 δ−1#Vk2−k+1ηnδ−n,

which can be combined with (4.3) to complete the proof. ��

We are finally in a position to complete the proof of the full theorem.

Proof of Theorem 1.1. We can suppose that |S| ≥ λδn, because otherwise there are
no tubes T with |T ∩S| ≥ λ|T |. Given that |Sη| ≤ |S|+ |Sη\S|, after applying Theo-
rem 4.2, it would suffice to bound the measure of the η-neighborhood of the boundary
of S. By the Milnor–Thom theorem, this is contained in the η-neighborhood of at
most C(n, E) hypersurfaces of degree at most E; see for example [HRR90, Theorem
9]. Thus, we can apply Wongkew’s lemma [Won93] to obtain

|Sη\S| ≤ C(n, E)η.

Taking η = δn+1 ≤ |S|, as we may, completes the proof. ��
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