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METRIC INEQUALITIES WITH SCALAR CURVATURE

Misha Gromov

Abstract. We establish several inequalities for manifolds with positive scalar cur-
vature and, more generally, for the scalar curvature bounded from below. In so far
as geometry is concerned these inequalities appear as generalisations of the clas-
sical bounds on the distances between conjugates points in surfaces with positive
sectional curvatures. The techniques of our proofs is based on the Schoen–Yau de-
scent method via minimal hypersurfaces, while the overall logic of our arguments
is inspired by and closely related to the torus splitting argument in Novikov’s proof
of the topological invariance of the rational Pontryagin classes.
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1 Formulation of the Key Inequalities

Our point of departure is the following inequality for torical bands which are smooth
manifolds homeomorphic to tori times intervals.

[�
±
] Torical 2π

n -Inequality. Let V be an n-dimensional torical band, V = Tn−1
×

[−1,+1], where the boundary is

∂(V ) = ∂
−

∪ ∂
+

= ∂
−

(V ) ∪ ∂
+

(V ) = (Tn−1
× {−1}) ∪ (Tn−1

× {+1}).

Let g be a smooth Riemannian metric on V , where the scalar curvature is bounded
from below by a positive constant σ > 0,

Sc(g) ≥ σ > 0.

Then the distance between the two boundary components of V satisfies

⎡

⎢

⎢

⎢

⎢

⎣

�
±

≤ 2π

√

n − 1
σn

⎤

⎥

⎥

⎥

⎥

⎦

dist
±

= distg(∂−(V ), ∂+(V )) ≤ 2π

√

n − 1
σn

(<

2π
√

σ
) .

On Normalisation of Sc. We use the customary normalisation of the scalar curva-
ture, where the unit spheres satisfy

Sc(Sn
) = n(n − 1).

Thus, by scaling, the inequality [dist
±

≤ 2π
√

n−1
σn ] for a non specified σ > 0 reduces

to that for Sc(V ) ≥ n(n − 1), where it reads

[�
±

≤

2π

n
] dist

±

= distg(∂−(V ), ∂+(V )) ≤
2π

n

In particular,
all torical bands in the unit sphere satisfy

dist(∂
−

, ∂+) ≤
2π

n
.

This is obvious for n = 2, where [�
±

≤
2π
2 ] is sharp as well as obvious. One also

expects a two line proof of a stronger inequality for all n, but to my surprise, I was
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unable to directly prove even the corresponding inequality for principal curvatures
of (n − 1)-tori embedded to Sn , where this inequality is formulated below in terms
of focal coradii as follows.

Normal Tubes, Normal Bands and rad⊙(Y ). The normal focal radius of a smooth
submanifold Y in a Riemannian manifold X, denoted rad⊙(Y ) = rad⊙(Y ⊂ X) is
the maximal r such that the normal exponential map

exp ∶ T
⊥

(Y ) = T (X)∣Y ⊖ T (Y ) →X

is one-to-one1 on the subset of vectors ν ∈ T
⊥

(Y ), such that ∣∣ν∣∣ < r.
In other words, this is the maximal r such that the normal r-tube around Y ,

called normal r-band if codim(Y ) = 1, that is the open r-neighbourhood Ur(Y ) ⊂X
for r = rad⊙, normally projects2 to Y and fibers Ur(Y ) into r-balls of dimension
dim(X) − dim(Y ).

Examples. (a) The normal focal radii and the geodesic curvatures of sub-spheres

Sm
(ρ) = Sm

s (ρ) ⊂ Sn
= Sn

(1) ⊂ Rn+1, ρ ≤ 1,

centred at ponts s ∈ Sn are

r = rad⊙Sn(S
m
(ρ)) = arcsinρ and curvSn(Sm

(ρ)) =

√

1 − ρ2

ρ
= tan r.

(b) The Clifford torus Tn
Cl ⊂ S2n−1

⊂ (R
2
)
n, that is the product of n circles of radii

1
√

n
in the plane, satisfies:

rad⊙(Tn
Cl) = arcsin

1
√

n
.

Conjecturally, Tn
Cl has maximal rad⊙ among all n-tori smoothly embedded to

S2n−1.
Normal Radius Inequality for T

n−1
⊂ Sn. If a smooth hypersurface Y in the

unit n-sphere is homeomorphic to the (n − 1)-torus, then

[⊙ ≤

π

n
] . rad⊙(Y ) ≤

π

n
.

This inequality—this will become clear later on—is non-sharp.
Conjecturally, the sharp constant must be asymptotic for n→∞ to

const

nα
for some α > 1 .

On Sharpness of [�
±

≤
2π
n
]. This inequality agrees with the obvious one in

the 2-sphere (where the conventionally defined scalar curvature equals twice the

1 It would be more in the spirit of “focal” to require the normal exponential map to be locally
one-to-one, but this, probably, makes no difference in the present context for X = Sn.
2 This projection sends each x ∈ Ur(Y ) to the unique(!) nearest point in Y .
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sectional curvature) where the widths of the bands between concentric circles as
well as the distances between opposite sides of (all) quadrilaterals are bounded by
2π
2 = π = diam(S2

) and these inequalities become sharp for doubly punctured spheres
and for quadrilaterals which degenerate to geodesic digons joining opposite points
in S2.

And if n ≥ 2, we shall see in the next section that the extremal bands, where
dist

±

=
2π
n , also have constant scalar curvatures and their opposite sides collapse to

points, but they do not have constant sectional curvatures for n > 2 anymore.

Quadratic Decay Theorem. Let X be a complete Riemannian manifold, and let

min
B(R)

Sc(X)

denote the minimum of the scalar curvature (function) of X on the ball B(R) =
Bx0(R) ⊂X for some centre point x0 ∈X.

If X is homeomorphic to T
n−2
×R

2, then there exists a constant R0 = R0(X,x0),
such that

[≍

4π2

R2
] min

B(R)
Sc(X) ≤

4π2

(R −R0)
2

for all R ≥ R0.

Outline of the Proof. Let X0 ⊂X corresponds to the torus Tn−2
×{0} ⊂ Tn−2

×R
2

under the homeomorphism T
n−2

× R
2
↔ X and let R0 = diamX(X0). Then the

(R−R0)-neighbourhood UR−R0(X0) ⊂X is contained in the ball Bx0(R) for x0 ∈X0.
If UR−R0(X0) is homeomorphic to T

n−1
× (−1,+1), then [≍ 4π2

R2 ] follows from the
torical 2π

n -inequality and if the topology of UR−R0(X0) is more complicated, then we
apply a generalisation of the 2π

n -inequality from section 4.

On Uniformly Positive Scalar Curvature. The obvious corollary to [≍ 4π2

R2 ] is
non-existence of complete metrics with Sc ≥ σ > 0 on T

n−2
×R

2.
Notice that there are similar results for other manifolds X proven with Dirac

operators twisted with suitable “almost flat” bundles over X [GL83,HPS15].
However, for all I know, one can’t rule out metrics with uniformly positive scalar

curvature on T
n−2
×R

2 with the present day Dirac operator methods.3

Examples of Metrics on T
n−2
× R

2 with Quadratic Decay of Scalar Curvature. Let
g = dt2+ϕ(t)2dθ2, t ∈ [0,∞), θ ∈ [0,2π], be a radial (rotationally symmetric) metrics
on R

2. Then

Sc(g)(t) = −
2ϕ′′(t)

ϕ(t)
;

thus, the metrics

gfl + dt2 + t2αdθ2

on R
2
×T

n−2, where gfl are flat on T
n−2 and where 0 < α < 1, do the job.

3 Bernhard Hanke indicated to me how one can do this, see section 7.
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1.1 On Generalisations and Proofs: Admissions and and Acknowledge-
ments. Simple generalisations of everything we stated so far is proven in section 2.

Then, in the following sections, we formulate and prove further generalisations
and refinements of these. Also we indicate additional applications and articulate
several conjectures.

Our approach is based on the Schoen–Yau dimension descent argument [SY79b,
SY17] accompanied by torical symmetrization [GL83] and/or symmetrizartion by
reflection [Gro14a].

However, some of our arguments have certain limitations which are indicated
below.

1. Problem with Singularities. Applications of minimal hypersurfaces Y ⊂ X to
Sc ≥ 0 depends on the regularity of these Y which is known to hold for all Y if
n = dim(X) ≤ 7 and for generic ones for n = 8 by a Nathan Smale theorem [Sma93]
More recently, Lokhamp [Loh16] and Schoen and Yau [SY17] suggested ways of
bypassing the singularity problem.

As far as I understand, the regularity results by Schoen and Yau in [SY17], such
as theorem 4.6, suffice for the needs of the present paper and this is, probably, true
about the corresponding results by Lokhamp. But since I have not studied these
papers in depth, I can vouch for the validity of our proofs only for n ≤ 8, where the
singularity problem does not exist.

2. Doubling, Reflecting and Smoothing. Some results concerning closed Rieman-
nian manifolds X with Sc ≥ 0 generalise to manifolds X with boundary and, accord-
ingly, to bands of the form X × [−1,1].

For instance if the boundary ∂ = ∂X is mean curvature convex, i.e. if mn.curv(∂)
> 0, then X admits a full fledged theory of minimal hypersurfaces Y ⊂X with (free)
boundary ∂Y ⊂ ∂X and the Schoen–Yau descent method applies.

Alternatively, one may take the double

X̃ =X ∪∂ X

and show (see [GL80a], and section 11.4) that
the natural continuous (but not necessarily smooth, not even C1) Riemannian

metric g̃ = g&g on X̃ can be C0-approximated by smooth C∞-smooth metrics g̃ε with
no decrease of the scalar curvature of g̃. (The scalar curvature of g̃ is unambiguously
defined away from ∂, which naturally embeds as a hypersurface in X̃.)

Thus
all results for closed manifolds X, including those obtained with the Dirac oper-

ator methods, extends to manifolds with mean curvature convex boundaries.
(Analysis of extremal cases, e.g. showing that every metric g on X = T

n−1
×[0,1],

where mn.curvg(∂(X)) = 0, is Riemannian flat, needs an additional care.)
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Next, let X, be a manifold with corners, such, for instance, as the Cartesian
product of several manifolds with boundaries, such as the n-cube

◻

n
= [0,1],×⋯× [0,1]
!""""""""""""""""""""""""""""""""""""""""""""""#""""""""""""""""""""""""""""""""""""""""""""""$

n

,

or an V diffeomorphic to ◻n.
Schoen–Yau descent, probably, applies to such X, where one may encounter

complications with singularities of minimal hypersurfaces, Y ⊂ V with ∂Y ⊂ ∂X, at
the corners of X on the boundary ∂X.4

There is an alternative approach applicable to those X, which serve as funda-
mental domains of refection groups Γ acting on manifolds X̃ without boundaries.

For instance, if X is diffeomorphic to the n-cube [0,1]n, then X̃ is naturally
homeomorphic to the Euclidean space R

n acted on by the group Γ (isomorphic to
Z

n
⋊ Z

n
2 ) generated by reflections of Rn in the hyperplanes {xi = 0} and {xi = 1},

i = 1, . . . , n, in R
n.

This X̃ carries a unique path metric g̃, which is equal to the original Riemannian
metric g on X ⊂ X̃, where X is embedded to X̃ as a fundamental domain.

In general, unlike the case where X is isometric to [0,1]n, rather than only
diffeomorphic to it, the metric g̃ is non-smooth at the boundary ∂X ⊂ X̃ (as well as
at the boundaries of the Γ-translates of X). In fact, this metric is continuous (but
not, in general, C1-smooth) at the smooth points of ∂X which correspond to the
interior points in the (n − 1)-faces of [0,1]n, and it is only piecewise continuous at
the edges.

In fact the metric g̃ is Riemannian continuous if and only the dihedral angles
between the (n−1)-faces of X along the “edges” (corresponding to the (n−2)-faces
of [0,1]n equal π

2 and then g̃ is C1 (only) if the (n − 1)-faces are totally geodesic
with respect to this metric.

It follows from the Approximation/Reflection Lemma in section 4.9 in [Gro14a]
that

if the the faces of X are mean curvature convex and if the dihedral angles between
these faces along the corners in X are bounded by π

2 , then X̃ carries smooth(!) Γ-
invariant metrics g̃ε, ε → 0, which are, in some week sense converge to the original
metric g on X ⊂ X̃ and such the scalar curvatures of g̃ε are bounded from below by
Sc(g) on X ⊂ X̃.

Granted this, many (all?) properties of closed (and complete) manifolds with
Sc ≥ σ generalise to manifolds with suitable corners, e.g.

non-existence of cubical (i.e. diffeomorphic to [0,1]n) domains in Riemannian
manifolds X with Sc(X) ≥ 0 (e.g. in X = R

n), such that the (n − 1)-faces of these
domains have mn.curv > 0 and the dihedral angles between these faces are ≤ π

2 , see
[Gro14a]).

4 Possibly, an adequate regularity of minimising hypersurfaces at the corner points is known to
some people, but I could not locate such result in the literature.
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However—this was pointed out by the referee of the present paper—the way it
was written in the original version of this paper was unsatisfactory.

We discuss in section 11.8 what should be done about it.

3. Errors indicated by the Referee. The anonymous referee to this paper pointed
out inadequacy of the first version of our treatment of smoothing multiple corners
and of minimal hypersurfaces in non-compact manifolds.

2 Bounds on Widths of Over-torical and Related Riemannian
Bands

A band is a manifold V with two distinguished disjoint non-empty subsets in the
boundary ∂(V ), denoted

∂
−

= ∂
−

(V ) ⊂ ∂V and ∂
+

= ∂
+

(V ) ⊂ ∂V.

A band is called proper if ∂
±

are unions of connected components of ∂V and

∂
−

∪ ∂
+

= ∂V.

Band maps V → V are those continuous ones which respect these ±-boundaries,
∂
±

→ ∂
±

.
If V is endowed with a Riemannian metric then the width of a band is the distance

between ∂
−

and ∂
+

, that is the infimum of length of curves in V between ∂
−

and ∂
+

.
A compact proper orientable band is called over-torical if it admits a band map

to the toric band,

f ∶ V → V = Tn−1
× [−1,+1], n = dim(V ),

with non-zero degree.
Another way to put it is by saying that the relative fundamental class [V ] ∈

Hn
(V, ∂V ;Q) decomposes to the product

[V ] = h1 ⌣ ⋯ ⌣ hn−1 ⌣ hn

where hi, i = 1, . . . , n − 1, are (absolute) 1-dimensional cohomology classes, hi ∈

H1
(V ;Q), and hn ⊂ H1

(V, ∂V ;Q) is the (relative) class, of the differential of a
function V → [−1,+1] such that ∂

±

↦ ±1.
If V is non-orientable, then overtorical means that an orientable finite cover of

V is overtorical.

Torical Symmetrization. There exists a quasi-functorial symmetrizartion
“operator” from Riemannian over-torical bands to torical ones

Sym ∶ V � V

where V admits a free isometric action of the torus T
n−1 and such that

width(V ) ≥ width(V )



652 MISHA GROMOV GAFA

and

Sc(V ) > σ ⇒ Sc(V ) > σ.

Proof. This is proven in a slightly different form in [GL83] for n ≤ 7 by induction as
it is explained below.

(Earlier, such symmetrization for n = 3 was used by Fisher-Colbrie and Schoen
[FS80], while the proof for n = 8 is essentially the same as for n ≤ 7 due to Nathan’s
Smale generic regularity theorem.)

Induction Step. Let Vk be a T
k invariant Riemannian band, k = 0, . . . , n−2, which

admits a T
k-equivariant band map to the torical band

fk ∶ Vk → T
n−1
× [−1,+1]

where Tk acts on T
n−1
×[−1,+1] via the standard (coordinate) embedding T

k
⊂ Tn−1

and such that deg(fk) ≠ 0.
Let Yk ⊂ Vk be a volume minimising hypersurface which is homologous to the

fk-pullback of

T
n−2
× [−1,+1] ⊂ Tn−1

× [−1,+1]

for the torus Tk+1
⊃ T

k, where “homologous” refers to the relative group Hn−1(Vk;∂
Vk = ∂

−

∪ ∂
+

).
It is easy to see that this Yk is T

k-invariant and that the lowest eigenfunction
φ(y) of the second variation operator L on Yk,

L = −Δ +
1
2
(Sc(Yk) − Sc(Vk∣Yk) − ∣∣curvVk

(Yk)∣∣
2
),

is also T
k-invariant. (Here, Δ is the Laplacian on Yk, that is ∑i

∂2

dy2
i

and curvX(Y )

denotes the second fundamental form of Yk ⊂ Vk.)
Then we let Vk+1 = Yk×T

1 with the metric dy2
+φ2dt2, where a simple computation

shows that if the scalar curvature of Vk restricted to Yk is ≥ σ, then the scalar
curvature of Vk+1 is also bounded from below by σ.

It is also clear that Vk+1 admits a T
k+1-equivariant band map of degree = deg(fk)

to the torical band and that width(Vk+1) ≥ width(Vk).
Thus, the inductive step is completed and the existence of torical symmetrization

follows. (See [GL83] for details). ⊓⊔

Remark on Singularities. Tk-invariant minimal hypersurfaces in Vk correspond
to hypersurfaces in the quotient manifolds Vk/T

k, which are minimal with respect
to the quotient metrics with obvious conformal weights. Then theorem 4.6 in [SY17]
says, in effect, that even if some hypersurfaces Yk were singular, say for n − k ≥ 8,
the final Tn−1-symmetric Vn−1 = V are non-singular.

(Schoen and Yau formulate their theorem for closed manifolds but the needed
regularity for manifolds V with boundaries trivially reduces to that for doubles of V .)



GAFA METRIC INEQUALITIES WITH SCALAR CURVATURE 653

2π
n -Inequality for Over-Torical Bands. Overtorical bands with scalar curvatures

≥ n(n − 1)(= Sc(Sn
)) satisfy

[dist
±

≤

2π

n
] width(V ) ≤

2π

n
.

Proof. Torical symmetrization reduces the general case to that of T
n−1-invariant

metrics g, on torical bands, where

g = dt2 +∑
i

ϕi(t)
2dτ2

i , i = 2,3, . . . , n.

Then one easily computes

Sc(g)(t, τ2, . . . , τn) = −2∑
i

ϕ′′(t)

ϕi(t)
− 2∑

i<j

ϕ′i(t)

ϕi(t)

ϕ′j(t)

ϕj(t)

and shows that the the longest t-interval where this function remains defined for
Sc(g) ≥ σ > 0 is achieved with ϕ2 = ⋯ = ϕn = ϕ, where the proof follows by simple
computation on p. 401 in [GL83] which is reproduced below in the description of
optimal (maximal) torical bands with Sc ≥ σ. ⊓⊔

Proof of Propositions from Section 1. The inequality [dist
±

≤
2π
n
] implies everything

we have stated so far, where in the case of the quadratic decay theorem one needs
to observe that the domains UR−R0(X0) ⊂ X (defined following the statement of
this theorem) are, in an obvious sense, open overtorical bands to which the above
2π
n -Inequality applies.

Notice at this point that this argument automatically delivers the following
Generalisation of The Quadratic Decay Theorem. If a complete orientable Rieman-

nian n-manifold X admits a proper continuous map X → T
n−2

× R
2 of non-zero

degree, then the minima of the scalar curvature of X over concentric R-balls in X
satisfy

[≍

4π2

R2
]

∗

min
B(R)

Sc(X) ≤
4π2

(R −R0)
2

for some R0 ≥ 0 and all R ≥ R0.

Optimality of 2π
n . Every smooth manifold V = Y × [−1,1] admits a Riemannian

metric g = gε with Sc(g) ≥ n(n − 1) and the g-distance between the two boundary
components Y × {−1} and Y × {1} in V equal 2π/n − ε for a given ε > 0.

For instance, if Y = S1, then the spherical suspension V =Θ(Y ) serves this
purpose for all ε > 0.

More generally, given a Riemannian metric g0 on Y and a real function ϕ(t), let
g = dt2 +ϕ(t)2g0 be the metric on Y × [− l, l]. If g0 is flat then

�� σ = Sc(g) = −2(n − 1)
ϕ′′

ϕ
− (n − 1)(n − 2)

ϕ′2

ϕ2
,
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or

σ

n − 1
= −2(

ϕ′′

ϕ
+

ϕ′2

ϕ2
) − n

ϕ′2

ϕ2
,

that is

−2f ′ − nf2
=

σ

n − 1
for f =

ϕ′

ϕ
.

Now let σ = Sc(Sn
) = n(n − 1) and rewrite the above as

f ′

1 + f2
= (arctan f)′ =

n

2

and

f = f(t) = tan
n

2
t

which is a function defined on the 2π
n -interval (−π

n ,+π
n).

This settles the matter for flat manifolds Y and the general case follows by
rescaling general metrics in Y with a large constants. ⊓⊔

3 Toric Bands in Spheres and Lower Bounds on Lipschitz
Constants of Map X → Sn in terms of Sc(X)

Suppose, there is a toric band of width d in the unit n-sphere Sn that is a domain
V ⊂ Sn which is homeomorphic to T

n−1
×[−1,1] and such that the distance between

the two boundary components ∂
±

(V ) of V is equal to d and let f be a continuous
map of non-zero degree from an oriented Riemannian n-manifold X to Sn.

Recall that saying “degree” presupposes that f is locally constant at infinity,
i.e. constant on each boundary component of X and, if X is non-compact, on every
component of the complement to some (large) compact subset in X, and let us
additionally assume that the (finite) f -image of the so defined infinity does not
intersect V . (This is relevant only if ∂X is disconnected and/or if X is disconnected
at infinity.)

Then the pullback V = f−1(V ) ⊂ X is a Riemannian over-torical band, such
that the distance between the two parts ∂

±

(V ) of its boundary is ≥ λ−1d, and the
inequality

d = width(V ) ≤ 2π

√

n − 1
σn

(this is [dist
±

≤
2πd
n ] formulated for σ = n(n− 1) in the previous section) shows that

◯

n
Lip [Sc(X) ≥ σ] ⇒ [Lip(f) ≥

d

2π

√

σn

n − 1
] ,
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where, recall,

Lip(f) = sup
x1≠x2

distSn(f(x1), f(x2))

distX(x1, x2)
.

Notice that the 2π
n -inequality [dist

±

≤
2π
n ], that is (essentially) ◯n

Lip applied to
the identity map, shows that torical bands in Sn have widths d ≤ 2π

n .
Conjecturally, the maximal widths d for large n→∞ must be asymptotic to 1

n1+α

for some α > 0.
Round Tori and in Sn and in R

n. Let us show that this α must be ≤ 1
2 by

exhibiting embedded tori Tn−1 with bands of width ≈ 1

n
3
2

around them, where we
use the following terminology.

Over-Torical Width width
T̂

(X). This is defined for Riemannian manifolds X as
the supremum of numbers d, such that X admits an equidimensional locally isomet-
ric (not necessarily globally one-to-one) immersion from an overtorical Riemannian
band of width d.

For instance, it is obvious that

width
T̂

(S2
) = π.

More significantly, since the Clifford torus in S3 has rad⊙ = π/4, (see section 1)

width
T̂

(S3
) ≥ π/2

and consequently,
all continuous maps f from a Riemannian (possibly incomplete) 3-manifold X

with Sc(X) ≥ 6 = Sc(S3
) to S3 which are constant at infinity and have deg(f) ≠ 0,

satisfy

Lip(f) ≥
3
4
.

This improves the inequality Lip(f) ≥ 3
8π from [GL83] but falls short of the

conjectural bound Lip(f) ≥ 1.
Another natural conjecture is the equality

width
T̂

(S3
) = π/2.

Moreover, one expects that
all (possibly incomplete) 3-manifolds X with sectional curvatures ≥ 1 satisfy

width
T̂

(X) ≤ π/2.

Starting from n = 4, codimension one tori in Sn can’t be rotationally invariant
any more; we construct certain “roundish” ones with relatively large focal coradii
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r = rad⊙, i.e. with the normal exponential maps of these tori is one-to-one within
distance ≤ r from them.

We construct these tori in the unit Euclidean n-balls (rather than in the unit
spheres) by induction as follows.

Given codimension one tori Y1 ⊂ Bn1
⊂ R

n1 , and Y2 ⊂ Bn2
⊂ R

n2 with focal coradii
r1 and r2, take c1, c2 > 0, such that

c2
1 + c2

2 = 1 and c1r1 = c2r2,

observe that the product of the ci-scaled Yi in R
ni is contained in the unit ball

Y
×

= c1Y1 × c2Y2 ⊂ Bn1+n2
⊂ R

n1+n2
= R

n1
×R

n2 .

and

rad⊙(Y
×

) = r
×

= c1r1 = c2r2.

Then let

Y
×+
=

1
1 + δ

(Y
×

)
+δ ⊂ Bn1+n2

be the 1
1+δ -scaled boundary of the δ-neighbourhood of Y

×

in R
n1+n2 with δ = 1

2r
×

and
observe that

rad⊙(Y
×+
) = rad⊙(Y

×

) ⋅

1
2
⋅ (

1
1 + 1

2r
×

) =

r
×

2 + r
×

.

In particular, if a torus Y = Y1 = Y2 = Y (n) ⊂ Bn has normal focal radius r = r(n),
the resulting Y (2n) = (Y × Y )

+

⊂ B2n satisfies

r(2n) = rad⊙(Y × Y )
+

=

r(n)

2
√

2 + r(n)

and the normal focal radius of

Y (2n + 1) = ((c1Y (n)) × (c2Y (n + 1)))
+

⊂ B2n+1.

satisfies a similar relation.
Then, starting from Y (2) = S1

⊂ R
2 with r(2) = 1 one obtains Y (4), Y (4),. . . ,

such that

r(4) ≥
1

2
3
2 + 1

>

1
4
=

2
4

3
2

,

r(8) >
1

8
√

2 + 1
=

1
1
28

3
2 + 1

>

1
13

,

and, in general,

r(n) ≥ cn−
3
2 ,
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where a (very) rough estimate is c > 1 for n = 2i and c > 1
3 for all n.

Eventually, since the normal bands around these tori Y (n), can be transported
from Bn to Sn by the obvious expanding map Bn

→ Sn, we conclude that

width
T̂

(Sn
) ≥ 2c ⋅ n−

3
2

which combined with ◯n
Lip implies the following.

Spherical Lipschitz Bound Theorem. If the scalar curvature of a (possibly incom-
plete) Riemannian n-manifold is bounded from below by n(n−1) = Sc(Sn

), then all
continuous maps f from X to the sphere Sn (and also to the hemisphere to Sn

+

) of
non-zero degrees5 satisfy

Lip(f) >
c

π
√

n
for the above c >

1
3
.

(This c is not optimal; but since this inequality is unlikely to be qualitatively sharp
anyway there is no point in fiddling with constants.)

Remarks. (a) If X is a complete spin6 manifold, then the sharp spherical Lipschitz
bound Lip(f) ≥ 1 is known to hold for these maps f ∶ X → Sn by the work
of Llarull [Lla98]. This is accomplished by carefully analysing the algebraic
Schroedinger–Lichnerowicz–Weitzenboeck formula for the Dirac operator on X
twisted with the spin bundle S

+

(Sn
) pulled back to X and applying the index

theorem.
In fact, this Dirac operator proof rules out smooth proper maps f ∶X → U ⊂ Sn

of non-zero degrees, which strictly decrease areas of surfaces S ⊂X (such f may
have Lip(f) >> 1) and where the complements to the (open) subsets U ⊂ Sn

are zero dimensional, or, more generally, where all connected subsets A ⊂ Sn
∖U

are trees and/or closed curves with trivial (i.e. identity) Levi-Civita monodromy
transformations around them (see section 10).

(b) It remains unknown:
● if the spin condition is essential for ruling out maps f for which area

(f(S)) < area(S),
● if the completeness condition is essential for Lip(f) ≥ 1,
● if one may allow closed curves in Sn

∖U with nontrivial Levi-Civita mon-
odromies even if X complete and spin. (See section 10 for further ques-
tions of this kind.)

(c) The above inequality Lip(f) ≥ c
π
√

n
(which applies to incomplete non-spin

manifolds) improves upon Lip(f) ≥ n
2nπ in [GL83].7

5 Here such a map X → Sn is supposed to be constant at infinity, including ∂X and to be proper
from the interior of X to that of Sn

+ .
6 In fact, it suffices to have the universal covering of X spin—we return to this later on’; here we

recall that an orientable smooth manifold X is spin if the restrictions of the tangent bundle T (X)
to all surfaces S ⊂X are trivial bundles.
7 The inequality Lip(f) ≥ c

π
√

n
with c = 1/3 gains over Lip(f) ≥ n

2nπ
only for n ≥ 6 but a more

precise evaluation of rad⊙(Y (n)) shows this gain for all n.
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This gains in significance as n →∞, where the proof for n ≥ 9 depends on the
controlled singularity results by Lohkamp and Schoen–Yau, which the present
author has not studied in detail.

(d) The above estimates of torical width of Sn and of focal radii of tori in Sn

raise a multitude of questions concerning width
T̂

(X), rad⊙(Y ⊂X) and their
generalisations for various X and Y . These will be briefly discussed in section 7.

4 4π
n
-Bound on Width and Related Inequalities for Iso-Enlargeable

Bands

Hypersphericity and Iso-Enlargeability. An oriented Riemannian manifold X is called
hyperspherical if it admits continuous maps f to Sn, n = dim(X) with arbitrarily
small Lip(f) > 0, which are constant at infinity which have non-zero degrees.

A Riemannian manifold X is called iso-enlargeable if there exists a sequence of
Riemannian manifolds X̃i of dimension n = dim(X) and of locally isometric maps
X̃i →X, such that X̃i admit continuous maps constant at infinity

fi ∶ X̃i → Sn,

such that

deg(fi) ≠ 0 and Lip(fi) → 0 for i→∞.

Examples. (a) The archetypical hyperspherical manifolds are the Euclidean
spaces R

n.
(b) Complete simply connected manifolds X with non-positive sectional curvatures

κ are also hyperspherical.
This follows from (a), since the the inverse exponential maps exp−1 ∶X → R

n
=

Tx0(X) satisfy Lip(exp−1 ≤ 1 for κ(X) ≤ 0.
(c) If a compact manifold X is fibered over an X, where κ(X) ≤ 0 and where

the fibers also admit metrics with κ ≤ 0 then the universal covering of X is
hyperspherical by an easy argument.

(d) Compact locally symmetric spaces Y that have no (local) factors isometric
to real and/or complex hyperbolic spaces are enlargeable but not overtorical,
since the homology groups H1(Y ) are finite for these Y .

Instances of such Y are compact quotients Hn
H
/Γ of quaternion hyperbolic spaces

(here the sectional curvature κ(Y ) < 0) and compact quotients
SO(n)/SL(n)/Γ , n ≥ 3 (here κ(Y ) ≤ 0).

Remark/Question. If the, locally isometric maps X̃i → X in the definition of iso-
enlargeability are required to be covering maps, which is equivalent to completeness
of X̃i in the case where X itself is complete (e.g. compact), then X is called enlarge-
able, see [GL83,Dra00,DFW03,HS06,BH09,Han11].
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It is obvious that

enlargeable⇒ iso-enlargeable,

Also one may expect that the reverse implication holds for compact manifolds,
since sequences X̃i (sub)converge in a natural way to some X̃, where the maps
X̃i → X (sub)converge to a covering map X̃ → X and where properly scaled maps
X̃i → Sn (sub)converge to Lipschitz maps f̃i ∶X → Sn.

But, in general, these f̃i are neither constant at infinity nor do they have non-zero
degree, at least not in the ordinary sense (even if f̃i ∶ X̃i →X were covering maps to
start with). Thus

enlargeability of compact iso-enlargeable manifolds remains problematic even
for compact aspherical8 manifolds X.
(Examples of enlargeable manifolds with non-hyperspherical universal coverings

exhibited in [BH09] tilts one toward accepting a possibility of iso-enlargeable but
non-enlargeable compact manifolds X.)

On the other hand, there is the following relation between iso-enlargeability and
the overtorical width width

T̂

(X) which was defined in the previous section.
If X is compact, then

[width
T̂

(X) = ∞]⇔ [X is iso-enlargeable].

In fact, the (quantitative form of the obvious) implication “⇐” has been already
established the previous section.

Now, to prove “⇒”, we observe that the maps f ∶ V → T
n−1

× [−1,1] used
in the definition of “over-torical” can be assumed Lipschitz, where, moreover, the
corresponding maps (coordinate projections) V → [−1,1] can be arranged to have
their Lipschitz constants equal to

2
width(V )

.

These f , by passing to the Z
n−1-coverings Ṽ → V , become Lipschitz maps f̃ ∶

Ṽ → R
n−1
× [−1,1]. which, by scaling ε ∶ Rn−1

→ R
n−1, turn to maps

f̃ε ∶ Ṽ → R
n−1
× [−1,1]

with Lipschitz constants arbitrarily close to 2
width(V ) and which remain proper with

degrees ≠ 0.
Finally, we compose these f̃ε with the obvious map R

n−1
×[−1,1] → Sn of degree

one and Lip = π and obtain maps

F̃ε ∶ Ṽ → Sn, where deg(F̃ ) ≠ 0 and Lip(F̃ ) ≤ 2π
width(V ) + ε′

8 A manifold is called aspherical if its universal covering is contractible.



660 MISHA GROMOV GAFA

with arbitrarily small ε′, and the implication

[width
T̂

(X) = ∞] ⇒ [X is iso-enlargeable].

is thus established.

V-Width and IE-Width. Given a class V of Riemannian bands V define
width

V

(X) of a Riemannian manifold X as we did it for width
T̂

, namely, as
the supremum of numbers d, such that X admits an equidimensional locally isometric

(not necessarily globally one-to-one) immersion from a band V ∈ V with width(V ) = d.
Here, we are concerned with the class of iso-enlargeable orientable bands V which

admits proper maps (i.e. boundary to boundary) f ∶ V → Y × [−1,1], where Y must
be compact orientable iso-enlargeable manifolds without boundaries9 and where
deg(f) ≠ 0.

Iso-enlargeable 4π
n -Inequality. The iso-enlargeable widths of n-dimensional Rie-

mannian manifolds X are bounded by the over-torical widths as follows.

width
T̂

(X) ≤ width
IE

(X) ≤ 2width
T̂

(X).

Consequently, if Sc(X) ≥ σ > 0, then

width
IE

(X) ≤ 4π

√

n − 1
σn

.

Proof. The inequality width
T̂

≤ width
IE

is obvious.
To prove width

IE

≤ 2width
T̂

let us show that iso-enlargeable bands V with width
d contain over-torical ones with width d/2.

In fact, since the above Y is iso-enlargeable, there exist locally isometric immer-
sions of (n − 1)-dimensional over-torical bands YD to Y with width(YD) ≥D for all
D > 0. Then the pullbacks10 of YD×[−1,1] under the maps f ∶ V → Y ×[−1,1] come
with natural maps

f−1(YD × [−1,1]) → [0,D] and f−1(YD × [−1,1]) → [0, d],

both with Lip ≤ 1.
Then the pull back of the circle of radius d/2 in [0,D] × [0, d] under the pair of

these maps (which may be assumed smooth and transversal to this circle) serves as
the required overtorical band of width ≥ d/2.

Finally, we recall the 2π
n -inequality for over-torical bands in section 2 and obtain

our 4π
n -inequality for iso-enlargeable bands. ⊓⊔

9 A more general definition of iso-enlargeability for bands with no reference to closed manifolds
is given in section 11.7.
10 Even if g ∶ A→ B is a non-injective map, we speak of the f -pullback of A for a map f ∶ C → B,
where f−1(A) is understood as the set of pairs {a, c}g(a)=f(c) ∈ A × C which comes with the map
f−1(A) → C, (a, c) ↦ c which has the same kind of (non)-injectivity as g ∶ A→ B.
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Improvement. The 4π
n -inequality for compact iso-enlargeable bands V can be

upgraded to width
IE

(V ) ≤ 2π
√

n−1
σn as it is explained at the end of section 11.6.11

Accordingly, the curvature decay estimate below can be improved by the factor of
2.

Iso-enlargeable [≍ 8π2

R2 ] -Decay Theorem. Let a manifold X admit a proper map
of non-zero degree to the total space X of a two dimensional vector bundle X → Y
where Y is a compact iso-enlargeable (e.g. admitting a metric with non-positive
curvature) manifold.

If the bundle X → Y is trivial then the scalar curvatures of all complete Rieman-
nian metrics g in X restricted to concentric balls B(R) = Bx0(R) ⊂X satisfy

[≍

8π2

R2
] min

B(R)
Sc(X) ≤

8π2

(R −R0)
2

for some R0 = R0(X,g, x0) and all R ≥ R0.

Proof. This follows word for word the argument for the quadratic decay theorem in
section 1 and its generalisation in section 2 with “iso-enlargeable ” for “over-torical”.

⊓⊔

What happens to nontrivial bundles X → Y ? The above argument applies to
non-trivial bundles, where the (total spaces of the) corresponding circle bundles are
iso-enlargeable, which is so, for instance by the above (c) for Y which admit metrics
with non-positive sectional curvatures.

In general, the examples in [BH09] indicate a possibility of non-enlargeable circle
bundles over enlargeable Y ; yet, it seems hard(er) to find such examples, where the
corresponding X would admit complete metrics with Sc ≥ σ > 0.

Remarks and Questions. (◻) Let V be an n-dimensional manifold with sectional
curvatures κ(V ) ≥ 1 which admits a proper map Φ ∶ V → [0, d]n given by n functions
φi(v) with Lip(φi) ≤ 1 and such that deg(Φ) ≠ 0.

Is the maximal d for these V achieved by the regular cube ◻ in the hemisphere
Sn
+

with the boundary ∂◻ ⊂ Sn−1
= ∂Sn

+

?
(△) The same question for spherical simplices △ ⊂ Sn

+

with ∂△ ⊂ Sn−1:
do these simplices have maximal distances between opposite faces among all

simplices with κ ≥ 1?

From V-manifolds to V-Enlargeable ones. [V � VE]: Given a “natu-
ral” class V of manifolds one defines an, a priori larger, class VE of V-enlargeable
manifolds X by the condition

width
V

= ∞.

Thus, for instance the class T̂ of over-torical manifolds leads to the class T̂ E ⫌ T̂
of T̂ -enlargeable manifolds, which, as we know, is equal to the class IE of iso-
enlargeable manifolds,

11 The proof in the original version of this paper was incorrect, as it was pointed out to me by the
referee.
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On the other hand, if we depart from the class IE = T̂ E , then the new class IEE
defined by width

IE

= ∞ will coincide with IE .
In the following section, following Schoen–Yau and Schick, we define class SYS ⫌

T̂ , where the corresponding class SYSE of SYS-enlargeable manifolds is strictly
greater than the class of iso-enlargeable ones.

5 Schoen–Yau–Schick Manifolds and SYS-Bands

Schoen–Yau Definition. [SY79b], [SY17]. A compact orientable n-manifold X is SYS,
if there exist n−2 integer homology classes h1, h2, . . . , hn−2 ∈H1(X), such that their
intersection consecutive

h1 ⌢ h2 ⌢ ⋯ ⌢ hn−2 ∈H2(X)

is non-spherical, i.e. it is not contained in the image of the Hurewicz homomorphism
π2(X) →H2(X), or, equivalently, it doesn’t lift to the universal covering of X.

Schick Definition. [Sch98] A homology class h ∈ Hn(K), where K = K(Π,1) is the
Eilenberg–MacLane space for an Abelian group Π, is called SY S, if its consecutive
cap-producs with some cohomology classes h1, h2, . . . , hn−2 ∈H1

(K,Z) are non-zero,

(. . . ((h ∩ h1) ∩ h2) ∩ . . . . ∩ hn−2) = h ∩ (h1 ⌣, . . . ,⌣ hn−2) ≠ 0 ∈H2(K).

(Geometrically speaking, generic 2-dimensional intersections of the n-cycles C ⊂ K
representing h with (n − 2)-codimensional pullbacks of generic points of, some, say
piecewise linear, maps K → T

n−2 are non-homologous to zero.)
Then a manifold X is SYS if the Abel classifying map X → K(Π,1) for Π =

H1(X) sends the fundamental class [X] ∈Hn(X) to a SYS class in this K(Π,1).
(Recall that, by definition, the spaces K(Π,1) have contractible universal cov-

erings and fundamental groups isomorphic to Π. The standard finite dimensional
approximations to these K are products of tori and lens spaces Li= SN

/Zli , where
the latter, observe, carry natural metrics with Sc > 0.

Abel’s X → K maps, which are unique up-to homotopy, are characterised by
inducing isomorphisms on the 1-dimensional homology groups.)

Historical Remark. In 1979 Schoen and Yau proved that SYS manifolds (defined
slightly differently in [SY79b] with incorporation of some spin manifolds) of dimen-
sions n ≤ 7 carry no metrics with Sc > 0. Then, in the recent paper [SY17], they
published the proof for all n.

Meanwhile, Schick [Sch98] has shown that no available Dirac operator methods
can rule out Sc > 0 on these manifolds.



GAFA METRIC INEQUALITIES WITH SCALAR CURVATURE 663

Examples.

●1 Overtorical manifolds are SY S.
●2 Let X be obtained by a surgery applied on a closed curve C in the n-torus as

in [Sch98].
If n ≥ 4, then X is SYS if and only if C represents a divisible homology class
in H1(T

n
).

(Such an X is over-torical if and only if C is homologous to zero.)
●3 If a compact orientable manifold X admits a map f of degree one to a SYS

manifold that X is SYS.
But if deg(f) > 1 then X is not necessarily SYS, unlike the case of the over-
torical and iso-enlargeable manifolds. For instance if the curve C in ●2 is m-
divisible, than the some m-sheeted covering of X is non-SYS.
Probably, these non-SYS coverings carry metrics with Sc > 0.

●4 Products of SYS manifolds by overtorical ones are SYS.
But products SYS ⨉ SYS and SYS ⨉ [iso-enlargeable] are, in general, not SYS.

SYS-Bands. A band V is called SY S if it admits a band map (∂
±

→ ∂
±

) of
degree ±1 to Y × [−1,1] where Y is a compact SYS manifold.12

Accordingly, define the SYS-width of width
SYS

(X) of Riemannian manifolds X
based on the class SYS as we did it for IE in the previous section.

4π
n -Inequality for SYS-Bands. All Riemannian manifolds X with Sc(X) ≥ σ > 0

satisfy

width
SYS

(X) ≤ 4π

√

n − 1
σn

.

Consequently, compact manifolds without boundaries, which have

width
SYS

(X) = ∞

admit no metrics with positive scalar curvatures.

Proof. By symmetrising a SY S-band V → Y ×[−1,1] as in the proof of the overtor-
ical 2π

n -Inequality in section 2 (now Y plays the role of the torus T
n−1 in section 2)

we arrive at V
○

n−3 with T
n−3-invariant metric with Sc ≥ σ, such that

the quotient space V 3
= V
○

n−3/T
n−3 is an orientable 3-manifold with the boundary

decomposed into two (possibly disconnected) disjoint parts say

∂V 3
= S

−

∪ S
+

,

where

distV 3(S
−

, S
+

) ≥ d

12 A more general definition of SYS for bands with no reference to closed manifolds is given in
section 11.7.
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for d equal to the distance between the two boundary components in V ,
and where the Schoen–Yau–Schick property of Y implies that

if a closed surface S ⊂ V 3 separates S
−

from S
+

, then the homomorphism

π1(S) → π1(V
3
)

has infinite image.
Therefore the d/2-equidistance surface to S

−

(or to S
+

) contains a circle C which
has infinite order in π1(V

3
) and, by the Poincaré duality, the covering Ṽ 3 of V 3

with the cyclic π1(Ṽ
3
) generated by the (homotopy class of) C contains a relative

2-cycle C̃⊥13 with non-zero intersection index with the lift C̃ of C to Ṽ 3.
Take the pull back of the cycle C̃⊥ to the corresponding covering Ṽ

○

n−3 of

V
○

n−3 = (V
○

n−3/T
n−3
) ×T

n−3,

write this pullback cycle as

C̃⊥ ×Tn−3
⊂ Ṽ
○

n−3 ,

and symmetrize the minimal cycle in the (n − 1)-homology class of C̃⊥ ×Tn−3.

Since dist(C̃, ∂Ṽ 3
) = dist(C,∂V 3

) ≥ d/2, the quotient surface of the resulting
Ṽ
○

n−2 contains a point within distance ≥ d/2 from its boundary, which implies (com-
pare p. 310 in [GL83]) that

d/2 ≤ 2π
√

(n − 1)/σn.
⊓⊔

Question. Can one replace the above 4π
√

n−1
σn by 2π

√

n−1
σn ?

6 SYS-Enlargeable Manifolds and Codimension Two Depth
Inequalities

A Riemannian manifold X is called SYS-Enlargeable if it has infinite SYS-width.
For instance, SYS manifolds and iso-enlargeable manifolds are SYS-Enlargeable.
What is more interesting is that
if an n-manifold X admits a proper Lipschitz map φ (Lipschitz means Lip(φ) <

∞) to an iso-enlargeable manifold of dimension n − 2, say φ ∶ X →X, such that the
homological pullback φ!

[x] ∈ H2(X), [x] = 1 ∈ H0(X) = Z, is non-spherical (as in
the first definition of SYS in the previous section), then X is SYS-enlargeable.

Therefore, by the above 4π
n -inequality,

If such an X is compact, then it admits no metric with Sc > 0.

13 Relative means relative to ∂Ṽ 3
+ ∂∞Ṽ 3 where ∂∞ stands for the complement of a large ball in

Ṽ 3.
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Thus, for example,
products X of SYS manifolds by compact iso-enlargeable ones (e.g. those which

admit metrics with κ(X2) ≤ 0) admit no metrics with positive scalar curvatures.
(These X, in general, are neither iso-enlargeable nor SYS.)

8π
n -Inequality for SYSE-Bands. Denote by SYSE the class of SYS-enlargeable

manifolds, say that a compact band V is SYSE if it admits a map of degree ±1 to
Y ×[−1,1], where Y is SYSE and accordingly define widthSY SE(X) for Riemannian
manifold X (see [V � VE] in section 4).

Then by arguing as in the proof of the iso-enlargeable 4π
n -inequality in section 4

we conclude that

width
SYS

(X) ≤ width
SYSE

(X) ≤ 2width
SYS

(X)

for all Riemannian manifolds X.
Consequently,
if Sc(X) ≥ σ > 0 then

width
SYSE

(X) ≤ 8π

√

n − 1
σn

.

Question. Can one improve 8π to 2π or, at least, to 4π?
Depth Inequalities. Define the depth of a homology class h in a Riemannian

manifold X with boundary as the supremum of d ≥ 0 such that h can be represented
by a cycle positioned within distance ≥ d from the boundary of X. (If X is incomplete,
we include the points obtained by completion of X in the boundary of X.)

Let Y be a closed (n − 2)-dimensional manifold and p ∶X → Y be a disc bundle,
e.g. the trivial one X = Y ×B2.

Let X be a compact n-manifold with boundary and f ∶X →X be a proper con-
tinuous map where proper, means boundary → boundary. Let h = f !

([Y ] ∈Hn−2(X)
be the homology pull-back of the homology class of the zero section Y = Y0 ⊂X.

Let X
−ε ⊂ X be the complement of the open ε-neighbourhood of Y0 in X and

observe that the boundary of X
−ε consists of two components, call them ∂

±

which
are canonically homeomorphic to the total space of the circle bundle associated to
X → Y , denoted p

○

∶ Y
○

→ Y .
Let ∂

±

= ∂
±

(X) ⊂ ∂X be the two parts of the boundary of X which are sent by
the map f ∶X →X to ∂

+

and to ∂
−

correspondingly.
Observe that

● X = Y
○

× [ε,1];
● If Y is iso-enlargeable then Y

○

is also iso-enlargeable.
● if the fibration p ∶X = Y is trivial, X = Y ×B2, and

if Y is over-toric then also Y
○

is over-toric,
if Y is SYS then Y

○

is also SYS,
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if Y is SYSE then Y
○

is also SYSE.
Now
let the fibration p ∶X → Y be trivial and let

Sc(X) ≥ n(n − 1) = Sc(Sn
).

Observe that the band-width kπ
n -inequalities, (for k = 2,4,8 see sections 2, 4, 5)

imply the following bounds on the depths of h ∈Hn−2(X) by the argument that we
have already used several times, e.g. in the proofs of the quadratic decay inequality
in section 1.
[T̂ ]

○

If Y is over-torical, i.e. if it admits a map to the torus Tn−2 with degree ≠ 0,
then

depth(h) ≤
2π

n
.

This is the only case where our inequality is (known to be) sharp,
[IE]

○

If Y is iso-enlargeable, e.g. if it admits a metric with non-positive sectional
curvature, then

depth(h) ≤
4π

n
.14

(Here the fibration p need not be trivial.)
[SYS]

○

If Y is SYS and if the map f ∶X →X has deg(f) = ±1, then

depth(h) ≤
4π

n
.

(The simplest example of a non-overtoric SYS manifold Y for n − 2 ≥ 4 is obtained
from the (n−2)-torus by attaching a 2-handle based on a k-multiple of closed curve
in this torus where k ≠ ±1. In this case one only need deg(f) to be non-divisible by
k.)
[SYSE]

○

If Y is SYSE and if the map f ∶X →X has deg(f) = ±1, then

depth(h) ≤
8π

n
.

(Recall, this was stated earlier, here as everywhere in this paper the above in-
equalities are established unconditionally for n ≤ 8, while the case n ≥ 9 relies on
the recent partial regularity results by Lohkamp and by Schoen and Yau which the
present author has not studied in detail.)

On nontrivial bundles p ∶ X → Y . Here, similarly to where we addressed this
issue in section 4, one may drop the triviality of p assumption, if, for instance, Y
admits a metric with κ ≤ 0.

No reasonable assumption of this kind, however, seems in view for SYS and SYSE
manifolds.

In fact, circle bundles over many SYS manifolds, say on those obtained by surgery
on closed curves in T

n (see ●2 in section 5) are very likely to carry metrics with Sc > 0
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and so the above inequality can’t hold with any constant for non-trivial fibrations
p ∶X → Y .

On Complete Manifolds and Dirac Operators. The inequality depth(h) < ∞ im-
plies that the interiors of the manifolds X in [IE]

○

and [SYSE]
○

admit no complete metrics g with Sc(g) ≥ σ > 0.
(The inequality depth(h) < ∞ in the remaining cases follow from these two.)
Strangely enough, even if X is spin, this was proven by the Dirac operator meth-

ods for enlargeable and related manifolds Y [GL83,HPS15] only under additional
geometric assumptions on X in spirit of “bounded geometry”.

(To be honest, I am not 100% certain this is the case for [HPS15]. The main
result is stated in this paper for closed manifolds and I have not followed the proofs
in sufficient details to understand what is actually proven there for complete non-
compact manifolds.15)

Question. Do all products manifolds Y ×R2, and, more generally, the total spaces of
all R2-bundles admit complete metrics g with Sc(g) ≥ 0?

Do, for example, such metrics g exist for compact manifolds Y which admit
metrics with strictly negative sectional curvatures?

If there are no such g among rotationally symmetric warped product metrics,16

then, probably, no complete metric g on Y × R
2 has Sc(g) ≥ 0, where the best

candidates of this kind of manifolds with no complete metrics on them with Sc ≥ 0
are non-trivial R2-bundles over surfaces of genera ≥ 2.

7 External Curvature, Focal Radius and Depth in Codimension> 2

Observe that by Gauss theorema egregium the scalar curvature of hypersurfaces
Y ⊂ Sn, n ≥ 2, with principal curvatures ci = ci(y), y ∈ Y , i = 1, . . . , n − 1, satisfies

Sc(Y ) = Sc(Sn−1
) + (∑

i

ci)

2

−∑

i

c2
i ≥ (n − 1)(n − 2) −∑

i

c2
i .

It follows that if an (n − 1)-dimensional manifold manifold Y admits no metric
with Sc > 0, that the suprema of the principal curvatures of all smooth immersions
from Y to the unit sphere Sn satisfy

sup
i,y
∣ci(y)∣ ≥

√

n − 2

This is significantly weaker then the π
n -inequality for the normal radius of Tn−1

⊂

Sn, which implies that supi,y ci(y) ≥
(1+εn)n

π . But it applies to such manifolds, for
instance, as certain exotic spheres Y of dimensions 8m + 1 and 8m + 2 which carry

15 Bernhard Hanke told me that the results from [HPS2015] apply to complete manifolds by the
C∗-arguments in Roe’s partitioned index theorem and in [HS 2007].
16 Figuring this out does not seem hard, but I have not tried doing this.
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no metrics with Sc > 0 by a theorem of Hitchin [Hit74], yet are immersible (but not
embeddable!)17 to Sn by Smale-Hirsch theorem.

Besides, this sup ci inequality obviously generalises to Y in Sn of all codimensions
k where it reads

sup
i,j,y

∣ci,j(y)∣ ≥

√

n − k − 1
k

, i = 1, . . . , n − 1, j = 1, . . . , k, y ∈ Y,

for all Y which admit no metric with Sc > 0.
Then, obviously, the same holds true for Riemannian manifolds X ⊃ Y with

sectional curvatures κ ≥ 1.
More interestingly, a similar inequality holds for immersions to unit Euclidean

balls B(1) ⊂ Rn Namely,
if an (n − k) dimensional Y admits no metric with Sc > 0, then the principal

curvatures of all smooth immersions Y → B(1) ⊂ Rn are bounded from below by

sup
i,j,y

∣cij(y)∣ ≥
1

const

√

n − k − 1
k

for some universal positive constant const ≤ 100.

Proof. The Euclidean case reduces to the spherical one, since the standard projective
map R

n
⊃ B(1) → Sn distorts curvatures of the curves in B(1) by a bounded amount.

(Compare Lemma (C′) in 3.2.3 in [Gro86]). ⊓⊔

Remark. This sup ci,j-inequality also holds in the balls in the hyperbolic spaces
with sectional curvature κ = −1.

Also, the following weaker form of this inequality holds for the unit balls in all
n-dimensional Riemannian manifolds X with −1 ≤ κ(X) ≤ 1.

sup
i,j,y

∣cij(y)∣ ≥
1

const

√

n − k − 1
k

− const′.

In fact—this is obvious by today’s standards—the exponential maps exp ∶ Tx(X)
⊂ B(1) →X in these X can be approximated by maps with controlled distortion of
curvatures of the curves in B(1).

Discussion. There is a huge gap between the above lower bounds on the curvatures
of submanifolds in Sn (and/or in B(1) ⊂ R

n) and the observed curvatures in the
available examples Y ⊂ Sn.

Probably, certain homogeneous submanifolds Y ⊂ Sn, such as

17 According to textbooks’ terminology, a smooth map A → B is an immersion if it is locally
one-to-one and the inverse map is smooth, while embeddings are immersions which are globally
one-to-one and, if Y is non-compact, are additionally required to be homeomorphisms from Y to
their (possibly, non-closed in B) images.
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● real and complex projective spaces Veronese represented by symmetric/Hermitian
forms of rank one,

● Grassmannians Plücker embedded to exterior powers of linear spaces,
● the same Grassmannians represented by projectors in spaces of operators,

give a fair idea of embeddings with economical cij .
For instance, the curvature of the obvious embedding of the product of spheres

Y = Sn1
× Sn2

×⋯× Snk
⊂ Sn1+n2+...+nj+j−1

= ∂B(1) ⊂ Rn1+n2+...+nj+j

has max cij =
√

k and it is plausible (?) that
no embedding/immersion of this Y to Sn may have a (significantly) smaller

curvatures cij .
Notice that above local bound max cij ≳

√

n/k is non-vacuous only if all spheres
are one dimensional, while the only known improvement of this bound is the inequal-
ity max cij ≳ n which was established in the previous section only for codimensions 1
and 2 and only for SYSE-manifolds Y (e.g. for Y which admits metrics with κ ≤ 0.)

This, for instance, leaves the following questions open.

(a) Does the torus

S1
× S1

×⋯× S1

!"""""""""""""""""""""""""""""""""""""""""""""#"""""""""""""""""""""""""""""""""""""""""""""$

n−3

embed to Sn with the principal curvature cij ≤ 100/n?
(b) Does the product

S1
× S1

×⋯× S1

!"""""""""""""""""""""""""""""""""""""""""""""#"""""""""""""""""""""""""""""""""""""""""""""$

n−3

× S2

embed to Sn with the principal curvature ci ≤ 10?

In fact, we are more interested in depth of homology and cohomology classes in
Riemannian manifolds V rather than in their curvatures, where,

by definition, depth(h) ≥ d for an h ∈ H∗(V ) if the restriction of h to the subset
V
−d ⊂ V of the points within distance ≥ d from the boundary of V (including the

infinity for non-compact V , as in the previous section) does not vanish.
Problem. Bound “complexity” of an h in terms of d = depth(h).
For instance, let the sectional curvature of V be bounded from below by κ(V ) ≥ 1

and let h be induced by a continuous map from the fundamental cohomology class
of a product of spheres,

h = f∗[Y ] for f ∶ V → Y = Sn1
× Sn2

×⋯× Snk .

Does the depth of h necessarily tend to zero for k →∞?
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8 Symmetrization of Riemannian Manifolds with Point-wise
Control of the Scalar Curvature

Step 1 in Symmetrization by Reflections. Let X be a compact Riemannian manifold,
with a (possibly empty) boundary, and let (Y0, ∂Y0) ⊂ (X,∂X) be a cooriented
hypersurface which is strictly locally volume minimising, i.e. all sufficiently close to
Y hypersurfaces (Y, ∂Y ) ⊂ (X,∂X) different from Y0 satisfy

voln−1(Y ) > voln−1(Y0).

Let U ⊂ X be a (small) neighbourhood of Y0 in X which is divided by Y0 into
two “halves”, denoted U

±

⊂ U , and let Y
±ε ⊂ U

±

be hypersurfaces homologous to Y0

in U
±

which minimise the functionals

Y ↦ voln−1(Y ) − ε ⋅ voln(U±ε)

where

U
±ε = U(Y

±ε) ⊂ U
±

denote the regions bounded by Y
±ε and Y0.

By the basic regularity theorems of Simons-Federer-Almgren-Allard these Y
±ε do

exist for small ε ≥ 0 and they are smooth away from closed subsets of Hausdorff
codimension ≥ 7.

Moreover, if n = dim(X) = 8, then, according to [Sma93],18 these Y
±

(ε) every-
where smooth for an open dense set of ε > 0 [Sma93].19

The mean curvatures of all these Y
±ε at the regular points satisfies

mean.curv(Y
±ε) = ε

and the dihedral angles between the tangent spaces to Y
±ε and those to ∂X at all

regular points of Y
±ε on the boundary ∂Y

±ε are ≤ π
2 . (If the boundary ∂X ⊂ X is

totally geodesic then Y
±ε is normal to ∂X.)

On non-strictly minimal Y0. If Y0 is non-strictly volume minimising, then there
are hypersurfaces in X with the same volume as Y0, which lie ε-close to Y0 for all
small ε. These do not intersect Y0 and each of them lies on one side of Y0, where it
plays the role of Y

−ε or of Y
+ε.

Alternatively, one may slightly perturb the metric in X, such that Y0 = Y0,ε

becomes strictly minimising. Then this ε, which goes through the following stages
of symmetrisation, is sent to 0 at the end of the symmetrization process.

Let

U
[−ε,ε] = U

−ε ∪U
+ε

18 What we need is not formulated in [Sma93] but the argument from [Sma93] does apply.
19 I am not certain this is formulated in [Sma93].
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and let Ũ
[−ε,ε] be obtained by reflecting U

[−ε,ε] in the two parts Y
±ε of the (relative)

boundary of U
[−ε,ε] in X (i.e. with the exclusion of U

[−ε,ε] ∩ ∂X), denoted

∂
±

U
[−ε,ε] = Y

−ε ∪ Y
+ε.

In other words, Ũ
[−ε,ε] is a space, which is acted upon by the semidirect product

group Γ = Z ⋊Z2, such that

● Ũ
[−ε,ε]/Γ = U

[−ε,ε],

● there is an embedding E ∶ U
[−ε,ε] ↪ Ũ

[−ε,ε] which is inverse to the quotient
map Q ∶ Ũ

[−ε,ε] → U
[−ε,ε],

Q ○E = Id ∶ U
[−ε,ε] → U

[−ε,ε],

● the group Γ is generated by two involutions (reflections) of Ũ
[−ε,ε], one of

them fixing E(Y
−ε) ⊂ E(∂

±

U
[−ε,ε]) and the other one E(Y

+ε) ⊂ E(∂
±

U
[−ε,ε]).

Thus, the action of our Γ = Γε on Ũ
[−ε,ε] mimics the action of the same group on

the line (∞,∞), which is generated by the transformations

t↦ ±ε − t

and where Ũ
[−ε,ε] admits a Γ-equivariant map to (∞,∞), such that the pullback of

[−ε, ε] ⊂ (−∞,∞) is equal to E(U
[−ε,ε]) ⊂ Ũ

[−ε,ε].
In particular, the action of the group Z = 2εZ ⊂ Γ on Ũ

[−ε,ε] is free and the
quotient space is equal to the double of U

[−ε,ε],

Ũ
[−ε,ε]/2εZ = U

[−ε,ε] ⋃

∂±U[−ε,ε]

U
[−ε,ε],

where the boundary of this double is the double of the region U
[−ε,ε]∩∂X across the

boundary of this region in ∂X,

∂
⎛

⎝

U
[−ε,ε] ⋃

∂±U[−ε,ε]

U
[−ε,ε]

⎞

⎠

= (U
[−ε,ε] ∩ ∂X)⋃

∂′
(U
[−ε,ε] ∩ ∂X)

for

∂′ = ∂ (U
[−ε,ε] ∩ ∂X) = ∂

±

U
[−ε,ε] ∩ ∂X.

The Riemannian metric on U
[−ε,ε] ⊂X, that is the restriction of the metric of X

to U
[−ε,ε] ⊂ X, naturally induces a Γε-invariant path metric in Ũ

[−ε,ε], call it g̃ε; if
the hypersurfaces Y

±ε ⊂X are non-singular, e.g. if n = dim(X) ≤ 7, then this metric
is C0-Riemannian.
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And if, moreover, the minimal hypersurface X0 ⊂X is non-singular, e.g. for n ≤ 7,
then the spaces (Ũ

[−ε,ε], g̃ε) Hausdorff converge to a smooth Riemannian manifold,
which we denote

(Ũ
R→

0, g̃
R→

0) = lim
ε→0
(Ũ
[−ε,ε], g̃ε),

which is isometrically acted upon by the group R ⋊ Z2 = limε→0 Γε for the above
Γε ⊂ R ⋊Z2, where the action of R ⊂ R ⋊Z2 is free.

In fact, Ũ
R→

0 = Y0 ×R and

g̃
R→

0 = dy2
+ φ̃(y)2dt2

where φ̃ is a smooth function on Y0, which, probably,20 is equal to φ from section 2,
which was defined there via the second differential (variation) of the function Y ↦

voln−1(Y ).
In general, the spaces (Ũ

[−ε,ε], g̃ε) Hausdorff converge away from the Γε-orbits
of the δ-neighbourhoods of the singularity of E(Y0) ⊂ Ũ

[−ε,ε], where δ = δε → 0 for
ε→ 0.

Then (Ũ
R→

0, g̃
R→

0) stands for the metric completion of the resulting (smooth Rie-

mannian) limit space for ε, δ → 0.

Question. Does R act freely on Ũ
R→

0 in the case where the minimal hypersurface
Y0 ⊂X has singularities?

Consecutive Torical Symmetrization of (n −m)-Overtorical Manifolds. A compact
oriented n-dimensional Riemannian manifold X with (possibly empty) boundary
is called (n − m)-overtorical, if it comes along with a continuous map f ∶ X →

T
n−m, such that the “homological pullback” of a point θ0 ∈ T

n−m, denoted f∗[θ0] ∈

Hm(X,∂X), doesn’t vanish.
(To clarify, recall that if fo is a smooth map homotopic to f , then the pullbacks

f−1o (θ) ⊂ X of generic θ ∈ Tn−m are smooth oriented submanifolds of dimensions m
which are homologous to f∗[θ0], i.e. [f−1o (θ)] = f∗[θ0].

Alternatively, f∗[θ0] can be defined as the Poincare dual of the image of the
fundamental cohomology class [Tn−m

]
∗

∈ Hn−m
(T

n−m;Z) under the cohomology
homomorphism f∗ ∶Hn−m

(T
n−m;Z) →Hn−m

(X;Z).
For instance, T

n−m
× B is (n − m)-overtorical for all compact m-dimensional

manifolds B, possibly with a boundary.)
If X is (n −m)-overtorical and if Y0 ⊂ X represents the homology class in Hn−1

(X,∂X) corresponding to the (homological) f -pullback of a codimension 1 torus in
T

n−m, then the manifold X(ε) = Ũ
[−ε,ε]/2εZ is also (n−m)-overtorical for all sufficiently

small ε > 0.

20 This is, of course, easy to check but we do not need it here. In any case, we prefer the Haussdorf
limit definition of g̃

	→

0, since it is less demanding on the regularities of X and Y0.
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In fact, this has nothing to do with minimality of Y0. It is, obviously, true for
all hypersurfaces Y0 ⊂ X in suitable homology classes in Hn−1(X,∂X) and their
small neighbourhoods U

[±ε] ⊂ X say with smooth boundaries or even with singular
boundaries, provided the singular loci have codimensions ≥ 2.

Now let us iterate

X ↦X(ε1) ↦X(ε1, ε2) =X(ε1)(ε2) ↦X(ε1, ε2, . . . , εi) ↦ . . . ,

where each step

X(ε1, ε2, . . . , εi) ↦X(ε1, ε2, . . . , εi, εi+1)

depends on the choice of a codimension 1 subtorus in the corresponding torus Tn−m,
where each minimal

Y0i
⊂X(ε1, . . . , εi) and the corresponding Y

±εi
⊂X(ε1, . . . , εi)

are taken in the non-singular loci of X(ε1, . . . , εi) modulo their complements (which
have positive codimensions.

It should be noted that the (n −m)-tori serving X(ε1, . . . , εi) and X(ε1, . . . , εj)

with j ≠ i are not canonically isomorphic. However, it make sense of taking a generic
infinite sequence of these subtori, and then to send all εi → 0.

Let us incorporate the relevant properties of the resulting limit space, call it X̃
∞

,
in the following.

Definition of Rn−m ⋊O(n −m)-Symmetrization. Given an (n −m)-overtorical
manifold X, call an oriented manifold X̃sm with (possibly empty) boundary an
R

n−m
⋊O(n −m)-symmetrization of X if it satisfies the following nine conditions.

●1 X̃sm is isometrically acted upon by R
n−m

⋊O(m), that is the isometry group
of Rn−m, such that the orbits of this action are equal to the R

n−m-orbits.
●2 The action of Rn−m on X̃sm is free.
●3 The quotient map X̃sm → X̃sm/R

n−m admits an inverse, say E
∞

∶ X̃sm/R
n−m

→

X̃sm, where the image

E
∞

(X̃sm/R
n−m

) ⊂ X̃sm

is normal to the R
n−m-orbits in X̃sm.

●4 there exists a continuous map

ϕ̃
∞

∶ X̃sm →X,

with the following properties.
●5 The map ϕ̃

∞

is R
n−m

⋊O(n −m)-invariant.
●6 The corresponding map ϕ

∞

from the quotient manifold X̃sm/R
n−m to X,

ϕ
∞

= ϕ̃
∞

/R
n−m

∶ X̃sm/R
n−m

→X,

sends the fundamental homology class

[X̃sm/R
n−m

] ∈Hm
(X̃sm/R

n−m, ∂X̃sm/R
n−m

) to f∗[θ0] ∈Hm
(X,∂X).
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●7 The map ϕ̃
∞

is 1-Lipschitz.
●8 The map ϕ̃

∞

is scalar curvature non-increasing,

Sc(X)(ϕ̃
∞

(x̃)) ≤ Sc(X̃sm)(x̃), x̃ ∈ X̃sm,

●9 The map ϕ̃
∞

sends ∂X̃sm → ∂X and it is mean curvature non-increasing,

mn.curv(∂X)(ϕ̃
∞

(x̃)) ≤mn.curv(∂̃Xsm)(x̃), x̃ ∈ ∂̃X
∞

.

In short, ●6 -●9 say that symmetrization X ↦ X̃
∞

must be
the topology and distance in X non-increasing

and, at the same time,
the scalar and mean curvatures non-decreasing.

Symmetrization Theorem. Every (n −m)-overtorical manifold X of dimension
n ≤ 7 admits an R

n−m
⋊O(n −m)-symmetrization.

Proof. If n ≤ 7, then there is no serious problem with singularities, and the above
limit space X̃

∞

satisfies the above conditions ●1 - ●9.
In fact, even though the natural metrics on X(ε1, . . . , εi) are only piecewise

smooth, the limit space X̃sm of the Z
n−m-covers of X(ε1, . . . , εi) for εi → 0, i =

1,2, . . ., is a smooth Riemannian manifold with boundary.
Then everything becomes fairly obvious, except for ●8 and ●9.
To prove these what we use is that, at every symmetrization step X ↦ X(ε),

the Riemannian metric on X(ε), which is, a priori, only continuous and which may
have a corner at the boundary, can be

C∞-smoothed with an arbitrarily small decrease of the scalar curvature of X as
well as of the mean curvature of ∂X.
This is explained in section 11.2.

Then the proof follows by semicontinuity of the scalar curvature and mean cur-
vatures (the latter is essentially obvious) under C0-limits of Riemannian metrics,
see [Gro14a] and [Bam16]. ⊓⊔

About n > 7. It is not impossible that the Symmetrization Theorem remains
valid for all n but X̃

∞

can be used for this purpose only for m ≤ 6.
For instance, suppose X is homeomorphic to T

1
× S7. If our minimizing hyper-

surface Y ⊂ X in the homology class of S7
⊂ X has a singularity, then, clearly, the

space X̃
∞

is also singular because X̃
∞

/R
1
= Y .

On the other hand if X is homeomorphic to, say, Tn−m
×Sm for m ≤ 6, then X̃

∞

and X̃
∞

/R
n−m can be, a priori, non-singular.

This makes the Symmetrization Theorem plausible for all n and m ≤ 6.
And the techniques (results?) from [SY17], probably, yield the symmetrization

theorem for all n and m ≤ 2.

Almost Symmetrization. This means that the conditions ●8 and ●9 need to be satisfied
up to an arbitrarily small error ε > 0:

Sc(X)(ϕ̃
∞

(x̃)) ≤ Sc(X̃sm)(x̃) + ε
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and

mn.curv(∂X)(ϕ̃
∞

(x̃)) ≤mn.curv(∂̃X
∞

)(x̃) + ε

Now, since by [Sma93] minimal hypersurface in generic 8-manifolds are non-
singular, the argument used for n ≤ 7, implies the following.

Almost Symmetrization Theorem for n = 8. All (n −m)-overtorical manifods of
dimension n ≤ 8 admit almost R

n−m
⋊O(n −m)-symmetrizations.

9 Application of Symmetrization to Manifolds with Positive and
with Negative Scalar Curvatures

Let V be a Riemannian band and let Z0 ⊂ V be a closed hypersurface which separates
∂
−

V from ∂
+

V and, thus, divides V into two halves V
±

⊃ ∂
±

(V ). Let

● the mean curvatures of ∂
±

V are bounded from below by some constants M
±

;
● the scalar curvature of V is bounded by a given function σ = σ(d) of the

signed distance d = d(v) from v to Z0, that is

Sc(V )(v) ≥ σ(dist
±

(v,Z0)),

where

dist
±

(v,Z0) = dist(v,Z0) for v ∈ V
+

and dist
±

(v,Z0) = −dist(v,Z0) for v ∈ V
−

.

Since R
n−1
⋊O(n − 1)-symmetric metrics on R

n−1
× [−l, l] cane be written as

ĝ = ϕ̂2gEu + dt2

where gEu is the flat Euclidean metric on R
n−1 and where the scalar curvature of ĝ,

which depends only on t ∈ [−l, l], satisfies

�� Sc(ĝ) = −2(n − 1)
ϕ̂′′

ϕ̂
− (n − 1)(n − 2)

(ϕ̂′)2

ϕ̂2
,

the net effect of Rn−1
⋊O(n−1)-symmetrization of V can be stated in concrete terms

as follows.
Symmetrization of Bands. If the above band V is Rn−1

⋊O(n−1)-symmetrisable,
then there exists a smooth function ϕ̂(t) = ϕ̂σ(t), on the segment [−l,+l] such that

±l ≥ dist(Z,∂
±

V ),

ϕ̂′(−l)

ϕ̂(l)
≤

−M
−

n − 1
,

ϕ̂′(l)

ϕ̂(l)
≥

M
+

n − 1

and

−2(n − 1)
ϕ̂′′(t)

ϕ̂
− (n − 1)(n − 2)

ϕ̂′(t)2

ϕ̂(t)2
≥ σ(t),
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that is

�̂�l − 2f ′(t) − nf(t)2 ≥
σ(t)

n − 1
for f(t) =

ϕ̂′(t)

ϕ̂(t)
and all t ∈ [−l, l].

Symmetrization Corollary for Sc ≥ 0. Let V be an isoenlargeable band and
Z0 ⊂ V be a hypersurface which separates ∂

−

(V ) from ∂
+

(V ). Let Sc(V ) ≥ 0 and let

Sc(V ) ≥ σ0 > 0 on the δ0-neighbourhood of Z0.

Then
the distance from Z to the boundary ∂V is bounded by a constant which depends

only on the dimension of V , on σ0 > 0 and on δ0 > 0,

dist(Z,∂V ) ≤ C = Cn(σ0, δ0).

Moreover, this remains true
if the inequality Sc(V ) ≥ 0 is replaced by Sc(V ) ≥ −ε for a small positive ε ≤

εn(σ0, δ0) > 0.

Proof. If σ(t) ≥ σ0 for t ∈ [−δ0, δ0] ⊂ [−l, l] and σ(t) ≥ −ε for all t ∈ [−l, l], where
ε << δ0, σ0, then the inequality �̂�l implies that

l ≤ C = Cn(σ0, δ0)

and the proof follows. ⊓⊔

Notice that no condition mean.curv(∂
±

(V ) ≥M
±

has been used at this point.

Sub-corollary for Complete Manifolds with Sc ≥ 0. Open isoenlargeable
bands carry no complete metrics with scalar curvatures Sc > 0.

Moreover,
complete metrics with Sc ≥ 0 on such bands are Riemannian flat.

In fact, a deformation theorem by Kazdan and Warner together with the Cheeger-
Gromoll splitting theorem imply that if such a band admits no complete metric with
Sc > 0 then every complete metric with Sc ≥ 0 is flat.

Representative Example. If a compact manifold Z admits a metric with neg-
ative sectional curvature, then there is no complete metrics with Sc ≥ 0 on the
connected sums

X = (Z ×R)#iPi

for compact manifolds Pi.
(A similar result is proven in 6.12 and 6.13 of [GL83] for spin manifolds X.)
Symmetrization Corollary for Sc ≥ σ < 0. To get a perspective look at the

following
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Model Example. Let V
[−l,l] be the band of width 2l between concentric horo-

spheres in the hyperbolic space Hn of constant curvature −1, which is the product

V
[−l,l] = R

n−1
× [−l, l] ⊂ Rn−1

× (−∞+∞) =Hn,

where the hyperbolic metric in these coordinates is ghyp = e2tgEu + dt2.
The scalar curvature of ghyp in these coordinates, in agreement with ��, is −n(n−

1), while the mean curvatures of the boundaries ∂
±

V
[−l,l] = R

n−1
× {±l} are

mean.curv(∂
±

V
[−l,l]) = ±(n − 1).

Such a band becomes compact if divided by the action of Zn−1
⊂ R

n−1 for

R
n−1
× [a, b]/Zn−1

= T
n−1
× [a, b].

Now,
let V be a compact Riemannian overtorical band, where the scalar curvature and

the mean curvatures of the boundaries satisfy

Sc(V ) ≥ −n(n − 1),
mean.curv(∂

−

(V )) ≥ −(n − 1),
mean.curv(∂

+

(V )) ≥ (n − 1).

then, in fact,

Sc(V ) = −n(n − 1),
mean, curv(∂

−

(V )) = −(n − 1),
mean.curv(∂

+

(V )) = (n − 1).

Proof. If either of the above three inequalities is strict (i.e. “>”) at some point,
then, by slightly conformally perturbing the metric of V (see section 11.2), one can
make all three strict at all points.

This, by symmetrization, would result in a function f̂ = ϕ′

ϕ on some segment
[−l, l], l > 0, such that

f(−l) < 1, f(l) > 1

and

2f ′ < −n(f2
− 1)

which is, obviously, impossible. QED. ⊓⊔
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Sub-corollary: Weak Rigidity of Hn
/Z

n−1. Let X = Hn
/Z

n−1, where Hn is
the hyperbolic space with the sectional curvature κ(ghyp) = −1, and the group Z

n−1

discretely and isometrically acts on Hn by parabolic transformations, i.e. preserving
a horosphere in Hn.21

If a Riemannian metric on X, which coincides with the hyperbolic one (descended
from Hn to X) outside a compact subset in X, satisfies

Sc(g) ≥ Sc(Hn
) = −n(n − 1)

then

Sc(g) = −n(n − 1)

everywhere on X.
Soap Bubbles and Rigidity of Bands. A sharper version of the above sub-

corollary, namely the implication

[�
−1] Sc(g) ≥ −n(n − 1) ⇒ κ(g) = −1

follows from the existence of stable minimal bubbles in X, which are closed hyper-
surfaces Y which separate the two ends in X and which minimise the functional

Y ↦ voln−1(Y ) − (n − 1)vol(X
≺Y ),

where X
≺Y ⊂X is the part of X which is bounded by Y and which has vol < ∞.

Proof. The relation [�
−1] for n ≤ 8 follows from �[M] below by taking M = n − 1.

�[M]. Let a compact Riemannian band V admit a function M = M(v) such
that

M
∣∂−V ≤ −mean.curv(∂

−

V ) and M
∣∂+V ≥mean.curv(∂

+

V )

and
n

n − 1
M2

− 2∣∣dM ∣∣ + Sc(V ) ≥ 0.

⊓⊔

If n = dim(V ) ≤ 8, then either
there is a closed hypersurface Y

○

⊂ V , which separates ∂
−

V from ∂
+

V and which
admits a metric with Sc > 0,

or
V decomposes into the (warped) product, V = Y × [−l, l] with the metric

ϕ(t)2gY + dt2,

where the Riemannian metric gY on Y has zero Ricci curvature.

21 If n ≥ 3 then all discrete isometric actions of Zn−1 on Hn are parabolic.
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This is shown for n ≤ 7 in section 55
6 in [Gro96]) and the case n = 8 can be taken

care of with a help of ideas from [Sma93].
But it seems that the regularisation techniques of [Loh16] and/or of [SY17] do

not apply, at least not directly, to this case and the validity of the above statement
for n ≥ 9 remains quite problematic.

On the other hand [�
−1], where the implied Y

○

is the n−1 torus, must follow from
these techniques which are, in principle, applicable whenever torical symmetrization
works.

On Min-Oo Rigidity Theorem. By adapting an idea of Witten to a “hyperboli-
cally modified” Dirac operator, [Min89] proved a version of the positive mass theorem
for Hn. In particular he has shown the following.

[MRT] If a complete spin manifold X is isometric to Hn outside a compact
subset and if Sc(X) ≥ −n(n − 1) then X is isometric to Hn.

Since compact perturbations of Hn can be periodically extended by discrete
actions of isometry groups Γ on Hn, e.g. for the above parabolic Z

n,
[MRT] follows from [�

−1].
Thus, [MRT] remains valid without assuming X is spin (but with some reser-

vations for n ≥ 9).
Moreover, this is shown in [ACG07], that [MRT] combined with an argument

from [Loh99] implies the positive mass theorem for Hn and the spin condition can
be disposed of in the context of the full Min-Oo(-Wang Chruściel–Herzlich) theorem
(unconditionally for n ≤ 8).

Proving Rigidity by Symmetrization. The rigidity of bands V in the sym-
metrization context says that the universal coverings of

the extremal bands, where our 2π
n -inequality becomes an equality, must be Rn−1

⋊

O(n − 1)-invariant.
We shall indicate below the proof of this for n ≤ 7, where the dimension n = 8

needs a little effort, and where the regularisation as developed in [Loh16] and in
[SY17] for n ≥ 9 may need an additional refinement to yield rigidity.

Now, assuming minimal varieties are non-singular, we observe that
the symmetrization process strictly enlarges the scalar curvature of V , unless the

minimal hypersurfaces Y ⊂ V used for this process are totally geodesic.
In fact, by the second variation formula in the form given to it in [SY79a], the

corresponding operator L from section 2 is strictly positive, which implies increase of
the scalar curvature under symmetrization. And this also work for symmetrization
by reflection in section 2 if one replaces the smoothing of edges argument by an
appeal to the corresponding operator L.

Thus, one represent all our homology classes in Hn−1(V, ∂V ) by totally geodesic
submanifolds. This strongly restricts the geometry of V but does not, at least not
obviously, imply the required R

n−1
⋊O(n − 1)-symmetry of V .

However, by applying the same argument to the soap bubbles Y
±ε ⊂X which lie

close to minimal Y and minimise the functional Y → voln−1(Y ) − ε ⋅ volnU
±ε as in
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section 8 one sees that no minimal Y can be locally strictly minimising in either of
the two halves it divides V into.

This shows, that minimal Y in all homology classes, besides being totally geodesic,
are “freely movable” in V , namely, they serve as fibers of a fibrations of V over the
circle.

Then the required R
n−1
⋊O(n − 1)-symmetry of V easily follows.22

10 Comparison with Results Obtained with Twisted Dirac
Operators

Besides the method of of minimal hypersurfaces, a non-trivial information on geom-
etry (and topology) of Riemannian manifolds X with Sc(X) ≥ σ, σ ∈ (−∞,∞), can
be obtained by confronting

I: Atiyah-Singer type index theorems for Dirac operators which yield non-zero
harmonic spinors on X
with

II: the twisted Schroedinger–Lichnerowicz–Weitzenboeck formula for manifolds with
lower bounds on their scalar curvatures which rules out, or significantly re-
stricts, such spinors.

Comparison of (partly overlapping) results obtainable with minimal hypersur-
faces and with Dirac operators exposes limitations of both methods and exhibits
wide gaps in our understanding of scalar curvatures; this begs for a new approach.

Let us briefly demonstrate this on a few simple examples.23.
(1) Spin, Spinor Bundles and Dirac Operators. Since the fundamental group of

the special (i.e. orientation preserving) orthogonal group SO(n) for n ≥ 3 is Z/2Z,
there are exactly two different orientable bundles of rank n ≥ 3 over closed connected
surfaces. The trivial bundle is, by definition, spin and the non-trivial one is non-spin.

An orientable manifold X is called spin if the restrictions of the tangent bundle
T (X) to all surfaces S ⊂X are spin (i.e trivial).24

For instance, all orientable hypersurfaces Xn
⊂ R

n+1 are spin, all 3-manifolds are
spin and

simply connected n-manifolds with trivial second homotopy groups are spin.
The simplest non-spin manifolds are the complex projective spaces CPn of even

complex dimensions n and connected sums of other manifolds with these CPn.
The spinor bundle of a Riemannian spin manifold X of dimension n, denoted

S(X), is a unitary vector bundle of vector bundle of rank 2n with a unitary

22 Since I have not written this down in detail, I might have missed some hidden difficulty in this
apparently quite innocuous argument.
23 See [Ros07,BER17,Gro17] for more elaborated techniques and examples
24 “Spin” makes sense also for non-orientable bundles and manifolds but we do not need them at
this point.
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connection associated to the Levi-Civita connection in T (X). If n is even, the bundle
S(X) splits, S = S+ ⊕ S

−.
The Dirac operator is a canonically defined first order differential operator D

represented as a certain “natural” linear combination of covariant derivatives which
act on S(X). (See [BHMM15] for definitions, basic results and geometric applications
of the Dirac operator.)

When n is even the Dirac operator splits:
D = D+ ⊕ D−, where the operators D+ and D− are mutually adjoint for D+ ∶

C∞(S+) → C∞(S−) and D− ∶ C∞(S−) → C∞(S+) and where ind(D) = dim(kerD+)−
dim(kerD−). The solutions of D(s) = 0 are called harmonic spinors on X.

Twisted Dirac operator. Given a complex vector bundle L = (L,∇) with a linear
connection, one naturally defines

D±
⊗L ∶ C

∞

(S
±

⊗L) → C∞(S∓ ⊗L),

where the sections of S± ⊗L in the kernel of D
⊗L =D−

⊗L ⊕D+
⊗L are called L-twisted

harmonic spinors.
(2) Chern character and Todd Genus. The Chern character of a complex vector

bundle L over X is a certain polynomial in the Chern classes ci ∈ H i
(X;Z) of L in

the rational cohomology H∗(X;Q) starting from c0 = rank(L),

ch(L) = c0 + c1 +
1
2
(c2

1 + c2) +
1
6
c3
1 + c1c2 + 3c3 +⋯+

1
i!
(ci

1 +⋯+ kici) +⋯

where, observe, all ki ≠ 0. The basic properties of ch (which essentially define it) are
additivity and multiplicativity:

ch(L1 ⊕L2) = ch(L1) + ch(L2) and ch(L1 ⊗L2) = ch(L1) ⌣ ch(L2).

The Â-genus is another polynomial, now in the Pontryagin classes pi = pi(T (X))
∈H∗(X;Q),

Â(X) = 1 −
1
24

p1 +
1

5760
(−4p2 + 7p2

1) +
1

967680
(−16p3 + 44p2p1 − 31p3

1) +⋯

where again the coefficients at pi ∈H4i
(X;Z) are non-zero.

(3) Topological Index I. Let X̂ be an oriented Riemannian spin Γ-manifold,
which means X̂ is acted upon by a group Γ and let let L̂1 = (L̂1,∇1) and L̂2 =

(L̂2,∇2) be complex vector bundles with unitary connections such that Γ acts on
L̂1 and on L̂2 by fiber-wise unitary (linear isometric) connection preserving trans-
formations compatible with the action of Γ on X̂, such that the following conditions
are satisfied.

(i) The action of Γ on X̂ is proper, isometric and orientation preserving, where
“proper” means that there are at most finitely many γ ∈ Γ, such that for all
compact subsets K ⊂ X̂ the intersections K∩γ(K) are empty for all but finitely
many γ ∈ Γ.
preserves the connections in these bundles.
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(ii) There exists a unitary connection preserving Γ-equivariant isomorphism be-
tween the bundles L̂1 and L̂2 at infinity, that is on the complement to a Γ-
invariant subset V ⊂ X̂ such that V /Γ is compact.

Let

I = I(X̂, L̂1 ⊖ L̂2) = (Â ⌣ (ch(L̂1) − ch(L̂2))[X̂/Γ]

be defined by representing Â, ch(L̂1) and ch(L̂2) by the Chern-Weil differential
forms on X̂, call them α,λ1, λ2 ∈ ⋀

∗

(X̂) which, clearly, are Γ-invariant and where
λ1 − λ2 vanishes outside V .

Since the form ι = α ∧ (λ1 − λ2) vanishes outside V , since it is Γ-invariant and
since the action of Γ on X̂ is proper, ι descends to a form ι on the quotient space
X̂/Γ, which vanishes outside a compact subset25 and defines the cohomology class
(Â ⌣ (ch(L̂1) − ch(L̂2)) of X̂/Γ with compact supports,

[ι] = (Â ⌣ (ch(L̂1) − ch(L̂2)) ∈Hn
comp(X̂/Γ;R).

Then the index I = ι[X̂/Γ] can be defined as the integral

∫

X̂/Γ
ι =
∫

Δ
ι

for a fundamental domain Δ ⊂ X̂.
(4) Atiyah’s L2-Index Theorem. Let the following conditions be satisfied.

(a) The manifold X̂ is complete.
(b) The connections in L̂1 and in L̂2 are unitarizable. This means these bundles ad-

mit unitary structures, i.e. fiberwise Hermitian scalar products ⟨. . .⟩, preserved
by the parallel transport in these connections.

(c) The above unitary structures, (which are unique up to scaling) are Γ-invariant.
(d) The operators D2

⊗L̂1
and D2

⊗L̂2
are uniformly positive at infinity/Γ, where a

differential operator D on sections s = s(x̂) of a unitary bundle on a manifold
X̂ with a Γ action is called uniformly positive at infinity/Γ, if

∫

X̂
⟨D(s(x̂)), s(x̂)⟩x̂dx̂ ≥ c ⋅

∫

X̂
∣∣s(x̂)∣∣2

for a constant c > 0 and all sections s with compact supports outside a certain
subset V ⊂ X̂ such that V /Γ is compact.

If the topological index I = I = I(X̂, L̂1 ⊖ L̂2) does not vanish, then there exists
either an L̂1- or L̂2-twisted harmonic square integrable spinor on X̂.

In fact,

25 We do not assume the action of Γ on X̂ to be free and the space X̂/Γ may be singular but our
forms are defined on it anyway.
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the von-Neumann dimensions of the kernels K̂±1,2 of the operators D±
⊗L̂1,2

satisfy

dimΓ(K̂
+

1 ) − dimΓ(K̂
−

1 ) − dimΓ(K̂
+

2 ) + dimΓ(K̂
−

2 ) = I(X̂, L̂1 ⊖ L̂2).

About the Proof. The equality

dimΓ(kerD+
⊗L̂
) − dimΓ(kerD−

⊗L̂2
) = I(X̂, L̂)

in the case of compact X̂/Γ is proven in [Ati76].
(If X̂/Γ is compact only a single bundle L̂ = L̂1 is needed, since one may take the

trivial bundle of rank zero for L̂2; then the conditions (a) and (d) are irrelevant.)
The case of non-compact manifolds with no Γ-actions is treated in [GL83].
The compatibility of the two arguments was pointed out in [Gro86], where one

finds further references.

Suggestion. It would be interesting to remove or to relax some of the conditions
in the formulation of the index theorem.

s̃pin-Example. Let X̂ be the universal covering X̃ of a manifold X. If X is
spin then the spin bundle S(X) and the Dirac operator in it are defined and lift
Γ-equivariantly to X̂ = X̃ for the Galois action of Γ = π1(X) on X̃.

But if X is non-spin, yet X̃ is spin, then the group which acts on S(X̃) is the
semidirect product Z2 ⋊ Γ where Z2 acts by the ±1-involution on spinors which
corresponds to the Galois involutive transformation on the double covering of the
principal bundle associated to the tangent bundle T (X̃).

Thus,
Atiyah’s L2-index theorem applies to the Galois coverings X̂ of non-spin mani-

folds X whenever these X̂ are spin.
(5) Twisted Schroedinger–Lichnerowicz–Weitzenboeck Formula. This formula

relates the squares of L-twisted Dirac operators with the rough Laplacians ∇∗∇ in
the bundles L = (L,∇) on X with unitary connections, where, recall, the operators
∇
∗

∇ acts on sections of L; they are (non-strictly) positive

∫
∇

∗

∇ =
∫
∣∣∇∣∣

2;

thus their kernels consist of ∇-parallel sections of L and rank(ker(∇∗∇) ≤ rank(L).
Here is the formula.

D2
⊗l = ∇

∗

∇+

1
4
Sc(x) ⋅ Id +R,

where R is a linear self adjoint endomorphism (zero order operator) of S×L defined
by the operator valued curvature form R of L coupled by the Clifford multiplication
in S as follows.

R(s⊗ l) =
1
2

∑

1≤i<j≤n

eiejs⊗R(ei ∧ ej)(l),
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where Id ∶ S×L is the identity operator, where ei ∈ Tx(X) ⊂ T (X) is an orthonormal
frame at the point x ∈ X, where the above formula applies and where s ∈ Sx and
l ∈ Lx.

Since the Clifford multiplication operators ei ∶ s↦ eis are unitary,

∣∣R(s⊗ l)l∣ ≤
n(n − 1)

4
∣∣R∣∣ ⋅ ∣∣s∣∣ ⋅ ∣∣l∣∣

where ∣∣R∣∣ is the supremum of the norms of the curvature operator over all unit
bivectors in the tangent spaces Tx(X).

It follows then the norm of the operator R is bounded by

∣∣R∣∣ ≤ constn∣∣R∣∣

for

constn =
n(n − 1)

4

√

rank(S) = n(n − 1)2n−2.

(6) Let X̂ be a Γ-manifold with Γ-invariant bundles L̂1,2, such that the assump-
tions (a), (b) and (c) in the above Atiyah’s L2-index theorem are satisfied.

Let, moreover, the norms of the curvature operators R1 and R2 of the (unitary)
connections in L̂1 and L̂2 be bounded by

Sc(X̂)(x̂) ≥ ε + 4constn ⋅max(∣∣R1∣∣x̂, ∣∣R2∣∣x̂)

for the above constn = n(n− 1)2n−2, some ε > 0 and all x̂ ∈ X̂∖V for a subset V ⊂ X̂
with compact quotient V /Γ.

Then the above (4) and (5) yield the following.

Theorem. If the topological index

I = I(X̂, L̂1 ⊖ L̂2) = Â ⌣ (ch(L̂1) − ch(L̂2))[X/Γ]

doesn’t vanish, then there exists a point x̂ ∈ X̂, where

Sc(X̂)(x̂) ≤ 4constn ⋅max(∣∣R1∣∣x̂, ∣∣R2∣∣x̂).

(7) Area Enlargeable Manifolds. Recall that an n-dimensional Riemannian mani-
fold X is called area enlargeable if it admits a sequence of orientable coverings X̃i →X
and of smooth maps fi ∶ X̃i → Sn which are

●1 constant at infinity,
●2 have non-zero degree,
●3 contract the areas of the surfaces Σ ⊂ X̃i by

area(fi(Σ)) ≤ αiarea(Σ) for αi →
i→∞

0
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Observe that area enlargeability is a weaker condition than enlargeability, where
instead of ●3 one requires Lip(fi) → 0 (see section 4), and that area enlargeability,
similarly to enlargeability, is a homotopy invariant of compact manifolds X.

Let us show of that area enlargeability is incompatible with Sc > 0.
[◻] Complete area enlargeable manifolds X the universal coverings of which are

spin can’t have Sc(X) ≥ ε > 0.

Proof. Let’s first assume that n = 2m and let L be a complex vector bundle of some
rank N over Sn with non-zero Chern class cm ∈Hn

(Sn
).

Let X be the universal covering X̃ acted upon by Γ = π1(X), let L1 be the trivial
bundle X ×C

N and let Li be induced from L by the composed map

X = X̃ → X̃i→
fi

Sn.

It is easy to see that non-vanishing of cm implies non-vanishing of the topological
index I and that the curvature of Li tends to zero for i→∞

Therefore, the above (6) applies to (X,L1, Li) for a sufficiently large i and yields
the proof for even n, while the case of n = 2m−1 reduces to n = 2m by taking X×S1.
26

⊓⊔

(8) Llarull’s Rigidity Theorem. The above, as it is shown in [Lla98] can be
rendered sharp by taking the positive (or negative) spin bundle S

+

(Sn
) for L.

The Chern character of S+(Sn
) for n = 2m is equal to the fundamental cohomol-

ogy class [Sn
] ∈Hn

(Sn
) and the norm of the Levi-Civita connection in this bundle

equals 1
2—all this is more or less obvious.

What is less obvious (see [Lla98], [Min02]) is that the lowest eigenvalue of the
operator R on S ⊗ S

+ on Sn is equal −n(n−1)
4 , which, by(6) (and a trifle of linear

algebra) implies the following

◯ Let X be a Riemannian manifold, such that
● X is complete,
● Sc(X)(x) ≥ ε > 0 for all x outside a compact subset in X.
● the universal covering X̃ of X is spin.

Let a continuous map f ∶X → Sn satisfy the following conditions.

(∗
/∞

) f is constant at infinity (i.e. constant outside a compact subset in X);
(∗deg) f has non-zero degree;
(∗C1) f is C1-smooth;
(∗ar) The map f (non-strictly) decreases integrals of the scalar curvature of X

over all smooth surfaces Σ ⊂ X. (Since Sn has constant scalar curvature
n(n − 1) this amounts to the inequality

∫

S
Sc(X)(σ)dσ ≥ n(n − 1)area(f(Σ).)

26 “Area enlargeable” appears as “Λ2-enlargeable” in [GL83], where the coverings Ṽi are assumed
spin.
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Then
The map f is a homothety: there exists a constant λ > 0, such that

distSn(f(x1), f(x1)) = λ ⋅ distX(x1, x1) for all x1, x2 ∈X.

About the Proof. Here, the Dirac operator on X is twisted with the bundles
L = L1, which is induced by f ∶ X → Sn from S

+

(Sn
), and where one takes the

trivial bundle of the same rank as L for L2.
In this case, the formula for R ∶ S⊗L→ S⊗L from the above (5), that is

R(s⊗ l) =
1
2

∑

1≤i<j≤n

eiejs⊗R(ei ∧ ej)(l),

written in the frames of vectors ei ∈ Tx, which simultaneously diagonalize the Rie-
mannian metric of X and the metric induced by f from Sn effectively describes
the action of R on the corresponding (Clifford) basis in S(X)⊗ f !

(S
+

(Sn
), which is

{ei1
ei2

. . . ein
⊗ej1

ej2 . . . ejn
}. Then a straightforward computation in [Lla98] (and/or

a more conceptual argument in [Min02]) shows that the spectrum of R is bounded
from below by −n(n−1)

4 and the above (6) applies.
The above settles the case of even n.
If n is odd one uses area contracting maps X × S1

(R) → Sn+1 for large R where
the correspondingR is still bounded by by 1

4(n(n+1) = 1
4Sc(Sn

) because the natural
splitting of metric in X × S1

→ Sn+1 (see [Lla98]).
Alternatively, one can construct (non-split) metrics gε for on X ×S1

→ Sn+1, for
all ε > 0, with Sc(gε) ≥ (n+1)(n+2)−ε = Sc(Sn+1

)−ε, such that area non-increasing
maps X → Sn suspend to area non-increasing maps (X × S1, gε) → Sn+1.

Generalisation. It is shown in [GS02] that the above remain valid for Sn if the
standard metric g on Sn is replaced by g′ with positive curvature operator. This,
shows, in particular, that Llarull’s theorem is stable under small perturbations of the
spherical metric g0.

(9) Discussion. There are two drawbacks of the above results compared to what
can be done with minimal hypersurfaces.

I. Spin. In the original paper [Lla98] the manifold X was assumed spin, which we
have relaxed to requiring the universal covering of X to be spin. Yet, we still can’t
prove, ◯ or even ◻ for all complete manifolds.

II. Completeness. Neither ◯ or ◻ hold true as they stand for incomplete manifolds
and it is unclear what their correct reformulations should be.

And even if the area decreasing condition for maps f ∶ X → Sn is strengthened
to to Lip(f) ≤ 1, one can’t get any bound on Sc(X) with Dirac operator methods
for incomplete X, while minimal hypersurface do allow such bounds (see section 3).

On the other hand, the Dirac operator results also have two advantages over
those achieved with minimal hypersurfaces.
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[i] Area Versus Length. Application of minimal hypersurfaces depends on distance
rather than area estimates of metrics involved.

[ii] Non-Abelian Symmetries. Dirac operator effectively accommodates symmetries of
underlying (model) manifolds.

For instance, one can not prove with minimal hypersurfaces that no metric g ≥ g0

on Sn, where g0 is the standard metric with the sectional curvature 1, can have
Sc(g) ≥ n(n − 1) = Sc(g0).27

Specific Problem. Let Z ⊂ Sn be a closed subset of codimension k ≥ 2, let X be an
orientable n-dimensional Riemannian manifold and let

f ∶X → Sn
∖Z

be a smooth proper map of non-zero degree which is distance decreasing or, more
generally, area decreasing.

When and how can one bound the scalar curvature of X?

Example. If Z is a piecewise smooth one-dimensional subset (graph) with trivial
Levi-Civita holonomies along all it cycles, e.g. a disjoint union of trees, and if X
complete, then—compare with remark (a) in section 3,

inf
x∈X

Sc(X)(x) < n(n − 1) = Sc(Sn
).

Proof. Let ε ∶ Sn
→ Sn be an arbitrarily small perturbation of the identity map

which sends a small neighbourhood of Z to Z. Then the bundle L on X which is
induced from S

+

(Sn
) by the composed map ε ○ f ∶ X → Sn is trivial at infinity and

the above proof of ◯ applies.
More generally, the same argument applies to closed subsets Z ⊂ Sn admit se-

quences of maps

εi ∶ S
n
→ Sn

such that

● the maps εi send small neighbourhoods of Z in Sn to subsets Zi ⊂ Sn as
above, namely i.e. piecewise smooth with trivial holonomies over all cycles in
Zi;

● the maps εi converge, for i→∞, to the identity map in the C1-topology. ⊓⊔

Questions.

(a) Can one more effectively describe these Z e.g. those of the topological dimen-
sion zero?

(b) Does the above inequality infx Sc(X)(x) < n(n−1) hold true for smooth closed
curves Z ⊂ Sn, n ≥ 3, with non-trivial holonomy?.

27 Such a proof may be possible for n = 3 with suitable boundary conditions for minimizing surfaces.
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(c) Does Sn minus a point admit a incomplete metric g ≥ g0 with Sc(g) > n(n−1) =
Sc(g0) (where g0 is the spherical metric)?

Let us generalise the class of overtorical manifolds X, where non-zero multiples
of the fundamental cohomology classes, denoted [X]○ ∈ Hn

(X;Z), decompose into
products of one dimensional classes,

k[X]○ = h1 ⌣ . . . ⌣ hn, hi ∈H1
(X;Z),

as follows.
(10) Oversymplectic Manifolds. A compact orientable n-dimensional manifold X

is oversymplectic if a multiple of the fundamental cohomology class of X, decomposes
into product of one and two dimensional classes,

k ⋅ [X]○ = h1 ⌣ . . . ⌣ hm,

and such an X is called [↑̃0]-oversymplectic, if
the classes hi vanish in the cohomology of the universal covering X̃
under the natural homomorphism H∗(X) →H∗(X̃).
Notice that [↑̃0] is automatic for 1-dimensional classes.
Also note that if n = 2m, then, by grouping 1-dimensional hi into pairs, one can

make all hi ∈ H2
(X;Z), i = 1, . . . ,m, and if n = 2m + 1 all but one among hi can be

brought to H2
(X;Z).

Moreover, the a priori different 2-dimensional classes hi, can be replaced by a
single one, namely by a generic linear combination h of hi, since ⌣i hi = k′ ⋅ h⌣m.

It follows that X of dimension n = 2m is oversymplectic if and only if it admits a
map of non-zero degree to the complex projective space CPm, where the condition
[↑̃0] says in effect that the pull back of the symplectic (Kähler) 2-form on CPm to
the universal covering X̃ of X is exact.

And if n = 2m + 1 is odd, there is such a map X × S1
→ CPm+1.

Observe that [↑̃0]-oversymplecticity, similarly to overtoricity and to
iso-enlrageability of manifolds X is inherited by X ′ which admit maps X ′ → X
of non-zero degrees and also by the products X ′ =X ×T

k.
Still, [↑̃0]-oversymplicity seems significantly different from iso-enlargeability, and,

probably, there are many examples of [↑̃0]- [↑̃0]-oversymplectic manifolds, even among
projective algebraic ones, which are not (iso)enlargeable.

The reason we brought forth this oversymplecticity is the following proposition.
(⋆↑̃0) If X is [↑̃0]-oversymplectic, then it admits no metric with Sc > 0, provided

the universal covering X̃ is spin.28

(This, as it was mentioned earlier, implies that the only possibility for Sc(X) ≥ 0
is X being flat.

Also recall that vanishing of the second homotopy group π2(X) implies that X̃
is spin and observe that π2(X) = 0 also implies [↑̃0].)

28 X̃ is spin if and only if the restrictions of the tangent bundle T (X) to all 2-spheres in X are
trivial; if n ≥ 5 this is the same as triviality of the normal bundles of embedded 2-spheres in X.
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Proof of (⋆). Let n = 2m and l̃ be the lift of the canonical line bundle of CPm

to X̃. Because of [↑̃0], this bundle is trivial there are the p-th order roots
p
√

l̃ for all
p = 1,2, . . ., which are represented by the p-sheeted coverings of the total space of
the circle bundles associated to l̃.

And albeit the Galois’ actions of the fundamental group Γ = π1(X) on X̃ and on

l̃ does not extend to
p
√

l̃, the semidirect product Zp ⋊ Γ does act on
p
√

l̃.

Since X̃ is spin, the twisted Dirac operator D
⊗

p
√

l̃
, i.e. D with coefficients in

p
√

l̃,
is defined and the corresponding space of harmonic L2-spinors is acted upon by the
group Zp ×Z2 ⋊ Γ.

Then an elementary computation shows that the topological index D
⊗

p√

l does
not vanish for infinitely many p and then, by the Atiyah L2-index theorem, D

⊗

p
√

l̃
-

harmonic L2-spinors exist for arbitrarily large p.
But since the curvatures of the bundles

p
√

l̃ tend to 0 for p→∞, uniform positivity
of the scalar curvature of X̃ would not allow such spinors for large p according to
the twisted Schroedinger- Lichnerowicz-Weitzenboeck vanishing theorem. QED.

11 Continuation of Discussion. On the surface of things, (⋆↑̃0) generalizes
Schoen–Yau theorem on non-existence of metrics with Sc > 0 on overtorical mani-
folds, but. . .

(1) Here again there is an annoying spin condition in the statement of (⋆↑̃0), which,
for all we know must be unnecessary.

(2) More seriously, we can say preciously little about incomplete manifolds.

For instance,
one can’t bound with the present day techniques the width of product bands (Y ×

[ − 1,1], g) with metrics g which have Sc(g) ≥ σ > 0 for [↑̃0]-oversymplectic manifolds
Y .

(The same can be said about all other non-SYSE-manifolds Y which are known
not to to admit metrics with Sc > 0).

Because of this,
one is unable to rule out complete metrics with Sc > 0 on Y ×R and complete
metrics with Sc ≥ σ > 0 on X ×R

2 for [↑̃0]-oversymplectic manifolds Y .
What is not hard to show, however, is the following
(⋆
×R) Products X = Y ×R carry no complete metrics g with Sc(g) ≥ σ > 0 for all

[↑̃0]-oversymplectic manifolds Y the universal coverings of which are spin.
Sketch of the Proof. Since X = (X,g) is complete and two-ended, it admits a

proper 1-Lipschitz function onto R, which we call it φ ∶X → R.
Let X ′ =X ×R and let

Φε = (ε ⋅ φ, ε ⋅ φ′) ∶X ′ → R
2

where φ′ ∶X ′ =X ×R→ R is the coordinate projection.
Let l′ε be the Φε-pullback of l0 to X ′ and let l○ε be the formal difference between

l′ε and the trivial complex line bundle with the trivial connection.
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Let l0 be a complex line bundle over R
2 with a unitary connection, which is

isomorphic to the trivial bundle outside a compact subset in R
2 and such that the

curvature ω0 of l0 is ω0 = p0(t1, t2)dt1 ∧ dt2 for a non vanishing function p0 ≥ 0.
Let dim(Y ) = 2m, let l be the line bundle over X ′ induced by the composed map

X ′ → Y → CPm from the canonical line bundle and let

l○ε = l ⊗ l○ε.

Pass to the universal covering X̃ and observe as earlier, that Atiyah’s L2-index

theorem, applied to the Dirac operator twisted with p

√

l̃○ε and combined with
Schroedinger- Lichnerowicz-Weitzenboeck vanishing theorem for small ε << σ and
for p→∞, rules out Sc ≥ σ > 0 for complete metrics on X. QED

Generalisation to Non-Compact X. The above (⋆) generalises to complete [↑̃0]-
oversymplectic manifolds X, where the fundamental class of X in the cohomology
with compact supports, denoted Hn

(X, [∞]),29 decomposes into 1- and 2-classes
also with compact supports and where these classes must vanish in the cohomology
H1,2

(X̃,̃[∞]).
For instance, if X of dimension 2m admits a proper map of non-zero degree to

a complement of a subset Z ⊂ CPm, this condition is satisfied if H1(Z) = 0 and the
symplectic form of CPm vanishes on Z.

12 Min-Oo - Goette - Semmelmann Rigidity Theorem. A (very) special case of
this theorem (2.10 in [GS01]) reads as follows.

Let X b a compact orientable Riemannian manifold of dimension 2m and let
f ∶ X → CPm be a C1-smooth area non-increasing spin map of non-zero degree
where f is called spin if the restriction of the tangent bundle T (X) to Σ ⊂ X is
trivial if an only the restriction T (CPn

)
∣f(Σ) is trivial for all surfaces Σ ⊂X.

For instance, if m is odd and X is spin then all maps X → CPn are spin.
⍟ If

Sc(X)(x) ≥ Sc(CPm
)(f(x)) for all x ∈X,

then f is an isometry.

About the Proof. The R-term in the Schroedinger–Lichnerowicz–Weitzenboeck for-
mula (5)) for D twisted with line bundles l shows (see [Hit74]) that that if the
curvature form ω of an l (where the cohomology class of 2πω equals the Chern class
c1(l)) on a Riemannian manifold of dimension 2m diagonalises as

∑

i=1,...,m

λie2i−1 ∧ e2i

for an orthonormal frame e1, e2, . . . , e2m, then

∣∣R∣∣ ≤ 4∑
i

λi.

29 This [∞] stands for the complement to a (large) non-specified compact subset in X.
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If l equals the (anti)canonical bundle l0 = ⋀
m T (CPm

) then, its curvature form
for the Levi- Civita connection of the Fubini Studi metric g0 has

λ1 = λ2 = . . . = λm =m + 1

and g0 =m(m + 1).
On the other hand, an easy homological computation shows that the topological

index I(D, l0) does not vanish on CPm and since deg(f) ≠ 0 it doesn’t vanish on X
either. This shows that f can’t be strictly area decreasing, while the equality case
needs an additional argument (see [GS01]).

The above applies, strictly speaking, to odd m, where CPm is spin, and if m is
even, one twists D with the virtual square root of l0 (see [Hit74,Min88,GS01]).

(13) (Interpolating between (⋆↑̃0) with (⍟). Unlike the (obvious) implication
◯⇒ ◻ the (sharp) theorem (⍟) by no means implies (rough) (⋆↑̃0).

But an obvious combination of the proofs of these theorems brings the two to-
gether as follows.

Let X be a complete oriented Riemannian 2m-manifold and f ∶X → CPm
∖Z be

a proper C1-smooth area non-increasing map of non-zero degree, where Z ⊂ CPm a
smooth submanifold on which the symplectic form of CPm vanishes and which has
H1(Z) = 0.

Let the composed map X̃ →X → CPm
∖Z ⊂ CPm from the universal covering of

X to CPm, call it f̃ ∶ X̃ → CPm, be spin.
(⍟↑̃1

p) If the f̃-pullback of the generator c ∈ H2
(CPm

);Z), that is f̃∗(c) ∈

H2
(X̃;Z), is divisible by a positive integer p, then

inf
x

Sc(X)(x) <
1
p
Sc(CPm

),

unless X is compact, Z is empty, p = 1 and f is an isometry.
One can only wonder if there is anything of this kind that may come from minimal

hypersurfaces.
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(a) Smoothing hypersurfaces with no decrease of their mean curvatures.
(b) Smoothing Riemannian metrics with with no decrease of their scalar curva-

tures.

In the case (a) the principal step of smoothing consists of “rounding corners” of
piecewise smooth hypersurfaces which makes our hypersurfaces C1-smooth.
In the case (b) one C1-smoothes continuous piecewise smooth Riemannian metrics
by similarly “rounding them by bending” along their singular loci.
Both rounding constructions, however simple, depend on specific geometric proper-
ties of the mean curvature and the scalar curvature correspondingly.
Then, in both cases, the final step of smoothing C1 � C∞ follows by homotopy
extension construction for solutions of general differential inequalities which is ex-
plained in section 11.1 below.
Next, we

(c) elucidate some properties of on minimal hypersurfaces in open manifolds needed
for the width inequalities.
Finally, as it was suggested by the referee, we

(d) summarise topological obstruction for Sc > 0 on closed manifolds which follow
from our inequalities

and
(e) highlight several conjectures mentioned in the main body of the article.

11.1 Universal Constructions of Smoothing and Bending. A. Linear Smooth-
ing Operators. The most common kind of smoothing in linear analysis is achieved
by applying convolution-like operators to objects you want to smooth.
For instance, let X be a Riemannian manifold and Y ⊂X be a compact C1-smooth
cooriented hypersurface. Let U ⊃ Y be a small C∞-split neighbourhood of Y , say

U = Y × (−δ, δ),

where Y is represented by a graph of C1-smooth function f(y) and let Yε, ε > 0 be
the graphs of the the ε-smoothed functions fε(y), for

f(y) ↦ fε(y) = ∫
Y

Kε(y, y′)f(y′)dy′.

Then, for the usual Kε,

Yε →
C1

Y for ε→ 0

and, since the mean curvature of Y is linearly expressible in terms of the second
derivatives of f , the mean curvatures of Yε satisfy almost the same bounds as those
of Y , whenever the latter are defined.
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For instance, if Y is piecewise C2, or more generally if the above (C1-smooth) func-
tion f is C1,1, i.e. df is Lipschitz, and if

mn.curv(Y )(y) ≥ φ(y)

for a continuous function φ on U ⊃ Y and almost all y ∈ Y , then

mn.curv(Yε)(yε) ≥ φ(yε) + o(1), ε→ 0,

for all yε ∈ Yε. (A slightly different format of this smoothing is suggested on pp. 939
and 949 in section 3.4 and 5.7 in [Gro14b].)
Similarly, C1,1-smooth Riemannian metrics g on a manifold X can be
C1-approximated by C∞-smooth gε such that if Sc(g)(x) ≥ φ(x), then

Sc(gε) ≥ φ(x) + o(1),

because the operator g ↦ Sc(g) is linear in the second derivatives of g.

B. Smoothing by Local Bending. Smoothing a function f on V , where for instance,
the second derivatives jump across a double sided hypersurface Σ ⊂ V , can be
achieved by deforming, we call it bending, f on one side of V , say to the “left”
of Σ, such that the derivatives on the left side become equal to the derivatives on
the right other side of σ at all points v ⊂ Σ.
Linearity of the differential inequality we want to keep preserved by such bending,
e.g. of mn.curv > φ or Sc > φ, is not indispensable. What is essential for C1 � C∞

smoothing is the connectivity rather than convexity of the subsets in the sets of values
of derivatives of functions and/or of metrics defined by the required inequalities.
Let us formulate the relevant general bending property of solutions of such inequal-
ities in terms of “cut-offs of deformations”, where “connectivity”, is hidden the
concept of “deformation/homotopy”.
Let Z → V be a smooth fibration and let Z[r] be that space of the r-jets of germs
of Cr-smooth sections f ∶ V → Z.
Let Jr

f ∶ V → Z[r] denote the r-th jet of f and recall that by the definition of jets,
Jr

f1
(v) = Jr

f2
(v) if and only the values of the sections f1 and f2 as well as of all their

partial derivative of orders 1,2,. . . r, in some local coordinates, are equal at v.
In fact, this property defines jets as as well as the spaces Z[r].
Let Σ ⊂ V be a piecewise smooth subset,30 let U ⊃ Σ be a neighbourhood of Σ in V
and let R ⊂ Z[r] be an open subset.
☀ Cut-off Homotopy Lemma.31 Let ft ∶ V → Z, t ∈ [0,1], be a Cr-continuous
family of smooth sections, such that

(i) Jr
ft
(V ) ⊂ R for all t ∈ [0,1]

and
(ii) Jr−1

ft
(v) is constant in t for all v ∈ Σ.

30 Probably, what follows holds true for all closed subsets Σ ⊂ V .
31 This is a reformulation of the weak flexibility lemma given as an exercise on p. 111 in [Gro86].
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Then there exists a smaller neighbourhood Ū ⊂ U of Σ and another Cr-continuous
family of smooth sections f̄t ∶ V → Z, such that, similarly to ft,

Jr
f̄t
(V ) ⊂ R for all t ∈ [0,1]

and
f̄t is equal to ft on Ū

while at the same time
f̄t is constant in t outside U ,

i.e. f̄t(v) = f0(v) for all t and all v ∈ V ∖U .
Moreover, if ft was constant in the neighbourhood of a closed subset V0 ⊂ V then f̄t

can be taken constant in t on V0.

Remark. The general case of the lemma easily reduces to that where V is compact
and Σ is a smooth submanifold of codimension one.

Warning and Perturbative Generalisation. The conclusion of ☀ by no means holds
true in general without assumption (ii). However,

“constant” in (ii) can be replaced by “almost constant” as follows.
☀
′ Let ft,θ t, θ ∈ [0,1] be a two parameter Cr-continuous family of sections V → Z

where ft,0 satisfies (ii). Then there exists an ε0 > 0. such that the conclusion of ☀
holds for ft,θ0 for all θ0 ≤ ε0.
This follows from ☀ and from what is called microflexibility of differential inequal-
ities defined by open subsets in the jet spaces, which is, of course, fully trivial.
(More interestingly, there are classes of flexible maps, e.g. smooth immersions V n

→

R
n+1, which are defined with certain R, where extension of homotopies ft (called

regular homotopies for immersions) is possible for all ft. But the proofs of this in
interesting cases don’t, unlike ☀ and ☀′, reduce to generalities but depend on
specific constructions adapted to specific properties of particular R. See [Gro86]
and references therein.)
1-D -Example. Let V = [0,∞) and Z = [0,∞) ×R → [0,∞) be the trivial fibration.
Then sections of Z correspond to real functions f(v), v ≥ 0,

Z[r] = [0,∞) ×Rr+1

and the r-jets are maps

Jr−1
f = (f,

df

dv
, . . . ,

drf

dvr
) ∶ [0,∞) → R

r+1.

⋆ Given continuous functions a0(v), . . . , ar(v), b0(v) > a0(v), . . . , br(v) > ar(v), a
number δ > 0 and a real function f(v), v ≥ 0, such that

ai(v) <
dif(v)

dvi
< bi(v) for i = 0, . . . , r and all v ≥ 0,
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there exists a function f̄(x), which also satisfies these inequalities,

ai(v) <
dif̄(v)

dvi
< bi(v) for i = 0, . . . , r and all v ≥ 0,

and such that
dr f̄(0)

dvr = cr and f̄(v) = f(v) for v ≥ δ,
where cr is a given number in the interval ar(0) < cr < br(0).
The essential and essentially obvious case of this example is where r = 1, a0 = a1 = 0
and b0 = b1 = ∞. When this is understood, all of ☀ becomes obvious as well.32

��Mean Curvature Example. Let Y ⊂ X be a piecewise smooth C1-hypersurface,
where the singular locus is a smooth hypersurface Σ ⊂ Y (i.e. dim(Σ) = dim(Y )−1),
where the two smooth parts, say V1 and V2 of Y meet. This Y can be obviously C∞-
smoothed along Σ by deforming V1 and V2 near Σ such that they would C∞-match
at Σ = V1 ∩ V2 and with almost no decrease of their mean curvatures.33

Then ☀—here r = 2—allows an extension of these deformations/homotopies to all
of Y = V1 ∪V2, such that the resulting smoothed hypersurface, say Ȳ = Ȳε, for given
positive continuous function ε = ε(x) > 0 on X, satisfies.

● The C1-distance between Ȳε and Y is ≤ ε.
● Ȳε coincides with V outside the ε-neighbourhood of Σ.
● The mean curvatures of Ȳε satisfy the same, up to ε, inequalities as the mean

curvatures of Y .

In particular, if mn.curv(Y )(y) ≥ φ(y) for a continous function φ on X ⊃ Y , then
mn.curv(Ȳε)(ȳ) ≥ φ(ȳ) + ε(ȳ).
Similarly one can smooth more general piecewise smooth C1-hypersurfaces and also
piecewise smooth C1-Riemannian metrics with negligible decrease of their scalar
curvatures.

11.2 ε-Redistribution of Curvature. In smoothing and bending construc-
tions it is easier deal with with strict inequalities, such as Sc > 0, rather than with
non strict ones, such as Sc ≥ 0
Below are two simple (and, probably, known) propositions which allows one to relax
“partially strict” inequalities.
Redistribution of the Mean Curvature. Let X be a C∞-smooth Riemannian n-
manifold and V ⊂ X a domain with cosimplicial corners, i.e. each point at the
boundary of V admits a neighbourhood in V which is diffeomorphic to a neighbour-
hood in the positive “octant” R

n
+

⊂ R
n.

Let ∂i ⊂ ∂ = ∂V denote the (n − 1)-faces of V and ∂ij be the (n − 2)-faces which we
call edges. Let φi and ψij be smooth functions on X, such that

32 This “obvious” presupposes familiarity with the basic geometry of the jet spaces.
33 This deformation at a point σ ∈ Σ = V1 ∩ V2 does not C2-significantly move a neighbourhood
U1 ⊂ V1 of σ ∈ V1, unless mn.curv(V1)(σ) <mn.curv(V2)(σ) and the same applies to V2.
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(i) the mean curvatures of the (n − 1)-faces of V satisfy

mn.curv(∂i)(x) ≥ φi(x),

for all ∂i and all x ∈ ∂i;
(ii) the dihedral angles between the (n − 1)-faces ∂i, ∂j ⊂ ∂V , satisfy

∠v(∂i, ∂j) ≤ ψij(x)

for all (non-empty) edges ∂ij = ∂i ∩ ∂j and all x ∈ ∂ij .

(⋆
>
) If V is compact and the boundary ∂V of V is connected, then

either

mn.curv(∂i)(x) = φi(x) and ∠x(∂i, ∂j) = ψij(x)

for all points x ∈ ∂V (where these equalities make sense),
or there exists an arbitrarily small C∞-perturbation V ′ of V (by a C∞-diffeomor-
phism close to the identity), such that

mn.curv(∂′i)(x) > φi(x) and ∠x(∂
′

i, ∂
′

j) < ψij(x)

for all ∂′i ⊂ ∂V ′ and ∂′ij = ∂′i ∩ ∂′j and all x ∈ ∂′i and x ∈ ∂′ij correspondingly.

Sketches of Three Different Proofs. (1) Fredholm+Unique Continuation. To get the
idea, let Y = ∂V be smooth and let φ0(x) be a smooth function on X which ex-
tends the function y ↦ mn.curv(∂V )(y) from Y = ∂V to X. Let U0 ⊂ X be a
neighbourhood of a point y0 ∈ Y .
If a smooth function φ′0 is sufficiently C∞-close to φ0, then there exists
(⋆
=
) a C∞-perturbation Y ′ of the hypersurface Y = ∂V , such that

mn.curv(Y ′)(x) = φ′0(x)

for all x ∈ Y ′∖U0.

This follows by the implicit function theorem for the operator Y
M

↦ mn.curv(Y ),
since

●1 the linearisation L = L
M,Y ofM at Y , being Fredholm, has finite codimensional

image;
●2 the adjoint operator of L (which happens to be equal to L) has the unique

continuation property for connected34 hypersurfaces Y .

This (⋆
=
) also holds for certain domains where the boundary ∂V is non-smooth.

For instance if V has no corners, i.e. if there is no triple intersections of faces,
∂ijk = ∂i ∩ ∂j ∩ ∂k, then a version of (⋆

=
), which is significantly stronger than (⋆

>
),

follows by by perturbing the faces ∂i one by one.

34 This property (obviously) fails to be true if ∂V is disconnected and (⋆) doesn’t have to hold
anymore.
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But if the linearized boundary value problem loses regularity at the corners (this,
probably, doesn’t happen if all dihedral angles ∠(∂i, ∂j) are 90○), then it becomes
unclear if (⋆

=
) remains true.

However, (⋆
>
) is taken care of by the following.

Local Mnc-Lemma.35 Let Y be a smooth hypersurface in a Riemannian manifold
X of dimension n.
Then there exists a continuous function ε = εX,Y (y) > 0, on Y , which is also contin-
uous with respect to the C∞-topology in the space of hypersurfaces Y ⊂X with the
following property.
Let Sy(ε) = Sn−2

y (ε) ⊂ Y be the ε-sphere around a point y ∈ Y for some positive ε ≤ ε
and let δ > 0 be a positive number.
Then there exists a diffeomorphism φ ∶ Y →X, such that
[⋆δ] φ is δ-close to the identity diffeomorphism id ∶ Y → Y ⊂X in the C2-topology;
[⋆ε] the diffeomorphism φ is equal to the identity outside a narrow band around the
sphere Sy(ε),

φ(y) = y,
unless

v ∈ By(ε)∖(Sy(ε) ∪By(ε
′

)), where ε′ = ε (1 − 1
1010n ),

and where By(ε) is the ball bounded by Sy(ε);
[⋆
>

] the diffeomorphism φ strictly increases the mean curvature of Y in the interior
of By(ε) close to Sy(ε), namely at all points

v ∈ By(ε)∖(Sy(ε) ∪By(ε
′′

)) for ε′′ = ε (1 − 1
2010n ).

The proof of the lemma is accomplished by applying the initial stage of bending the
hypersurface V ∖By(ε

′′

)) near its boundary, which is described in the next section
and where the existence of the initial bending we need here is fully obvious.

(2) Spread of Positivity. The above lemma allows an extension of the strict inequality
mn.curv(Y )(y) > ψ(y) from (controllably small) balls of radii ε′ in hypersurfaces
Y ⊂X to larger balls of radii

ε = ε′ (1 −
1

1010n
)

−1

and, consequently, from arbitrary open subsets U ′ ⊂ Y to larger U ⊂ Y , without
moving the complements Y ∖U .

Localization Corollary. The local lemma allows perturbations Y ′ required by (⋆
>
)

to be localised in a given domain U ⊂ Y , which, in turn, yields (⋆
>
) for non-compact

Y .

35 Albeit 100% elementary, this lemma heavily relies on the specifically Riemannian/Pythagorean
nature of our problem.
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(3) � Variational Proof of (⋆
>
). One can also construct a perturbation of ∂ = ∂V

with a required control over mn.curv(∂), say in the smooth (no edges) case, by
minimizing the functional

V ↦ voln−1(∂V ) −
∫

V
ϕ′(x)dx

for a suitably chosen function ϕ′(x).
To see what such a ϕ′(x) should be, let μ(x) be a smooth extension of the mean
curvature function from ∂ to X and let δ(x) be the signed distance function to ∂,
i.e. δ(x) = dist(x, ∂) for x ∈ V and δ(x) = −dist(x, ∂) for x ∈X∖V .
Observe that the original V locally strictly and stably minimizes the functional

V ↦ voln−1(∂V ) −
∫

V
ϕ(x)dx for ϕ(x) = λδ(x) − μ(x)

where λ = λ(X,∂) is a sufficiently large constant, namely λ >> sup∂(curv2
(∂)∣∣ +

supX ∣Ricci(X)∣, see section 10.2 in [Gro12].
Thus, the functional V ↦ voln−1(∂V ) −

∫V φ′(x) has a unique local minimum V ′

whenever ϕ′ is sufficiently close to the above ϕ, and where, observe,

mn.curv(∂V ′)(x) = ϕ′(x) for all x ∈ ∂V ′.

Then it is not hard to arrange such a ϕ′ that would make the mean curvature of V
increase outside U0 (compare section 11.9).

Redistribution of the Scalar Curvature. Let, besides the above functions φi and ψij

on X, we are given a continuous function σ(x) such that the scalar curvature of the
Riemannian metric g in X satisfies

Sc(g)(x) ≥ σ(x) for all x ∈X.

If V is connected (non-compact is allowed) then
either

Sc(g)(x) = σ(x) for all x ∈ V , mn.curv(∂i)(x) = φi(x), and ∠x(∂i, ∂j) = ψij(x),

where the latter two equalities hold for all points x ∈ ∂V , where they make sense,
Moreover,
one can keep g′ = g on a given closed subset in X on which Sc(g)(x) > σ(x).
Sketches of two Proofs. [1] If V is compact with smooth boundary, the (linearization
of the) operator f ↦ Sc(f2g), f > 0 is Fredholm with the unique continuation
property and the above argument via linearization applies.
[2] The initial stage of what is called “intrinsic bending” in section 11.5 yields the
following simple proposition that fully accomplishes our purpose. (As in the mean
curvature case, the existence of initial intrinsic bending is obvious.)
Local Sc-Lemma. Let X = (X,g) be a smooth n-dimensional Riemannian man-
ifold. Then there exists a continuous function ε = εg(x) > 0 on X, which is also



GAFA METRIC INEQUALITIES WITH SCALAR CURVATURE 699

continuous with respect to the C∞-topology in the space of Riemannian metrics g
on X, with the following property.
Let Sx(ε) = Sn−1

x (ε) ⊂X be the ε-sphere around a point x ∈X for some positive ε ≤ ε
and let δ > 0 be a positive number.
Then there exists a smooth Riemannian metric, g′ on X, such that

[⋆δ ] the metric g′ is δ-close to g in the C3-topology;
[⋆ε ] the metric g′ is equal to g in a narrow band around the sphere Sx(ε),

g′(x) = g(x),
unless

x ∈ Bx(ε)∖(Sx(ε) ∪Bx(ε
′

)), where ε′ = ε (1 − 1
1010n ),

and where Bx(ε) is the ball bounded by Sx(ε);
[⋆
>

] the scalar curvature of g′ is strictly greater then that of g in the interior of
Bv(ε) close to Sx(ε), namely at all points

v ∈ Bx(ε)∖(Sx(ε) ∪Bx(ε
′′

)) for ε′′ = ε (1 − 1
2010n ).

11.3 Rounding and Smoothing Hypersurfaces with no Decrease of their
Mean Curvatures. Let X = Xn be a C∞-smooth Riemannian manifold of di-
mension n e.g. X = R

n, and let Y = Y n−1
⊂ X be a cooriented hypersurface which

is
Y is locally C∞-diffeomorphic to a convex polyhedral hypersurface in R

n.
In other words, Y is piecewise C∞-smooth with all dihedral angles between the
tangent spaces of the smooth regions Yi ⊂ Y at their meeting points in the singular
locus of Y being strictly less than π.

∠ij = ∠(Ty(Yi), Ty(Yj)) < π.

For instance, the boundaries Y of finite intersections of domains Ui ⊂X with smooth
boundaries which all intersect transversally are of this kind.
Let us agree that the mean curvatures of cooriented hypersurfaces are evaluated
with the outward looking normal vectors, where this sign convention makes mean
curvatures of boundaries of convex domain positive.

[ε⇆ε]-Rounding.

Move Y inward equidistantly by ε and then by the same ε outward. If Y is a compact
closed hypersurface and ε > 0 is sufficiently small, then the resulting hypersurface,
call it Y ± ε], is

C1-smooth and piecewise C∞-smooth.
To see this clearly, let Y

−ε] be the inward ε-equidistant hypersurface to Y , which, in
the case Y = ∂U , is equal to the boundary of the ε-neighbourhood of the complement
X∖U .
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Observe that if ε is small, than
Y
−ε] has the same corner pattern as Y .

Now the piecewise structure of Y ±ε], that is the outward ε-equidistant to Y
−ε], can be

seen with the normal (nearest point) projection Y
±ε] → Y

−ε], call it p
−ε] ∶ Y ±ε] → Y

−ε],
where each y ∈ Y

±ε] is sent by p
−ε to the unique (ε is small!) nearest point in Y

−ε]:
the smooth pieces of Y

±ε] are the p
−ε]-pullbacks of the ((k − 1)-codimensional)

“faces” Y n−k
−ε] ⊂ Y

−ε], k = 1,2, . . . , n.
For instance, if Y is the boundary of the intersection of smooth domains with
transversally meeting boundaries, then
these faces correspond to meeting points of k-tuples of such boundaries.
Observe that the subset Y n−1

±ε] = p−1
−ε] (Y

n−1
−ε] ) ⊂ Y

±ε] satisfies

Y n−1
−ε] = Y ∩ Y

±ε]

and that it is also equal to the set of points y ∈ Y , such that dist(y, sing(Y
−ε]) > ε,

where sing(Y
−ε]) is the set of points where Y is non-smooth, i.e. union of what we

call the edges or (n − 2)-faces of Y
−ε].

Also observe that that the mean curvatures of the C2-smooth pieces Y n−k
±ε] = p−1

−ε]

(Y n−k
−ε] ) of Y n−k

±ε] for k ≥ 2 are large positive,

mn.curv (Y n−k
±ε] ) =

k − 1
ε
+O(1) for k ≥ 2 and ε→ 0.

Thus, the normal (nearest point) projection p
±ε] ∶ Y → Y

±ε], which is defined for
small ε ≥ 0, is mean curvature non-decreasing,

mn.curv (Y
±ε]) (p±ε](y)) ≥mn.curv(Y )(y)

for all y ∈ Y and small ε > 0.

From C1 to C∞. According to ☀ from section 11.1, the C1-hypersurfaces Y
±ε]

can be C1-approximated by C∞-smooth ones, call them Y ′
±ε], such that

∗ Y ′
±ε] coincide with Y

±ε] outside the ε′-neighbourhood of the singular locus of
Y
±ε] (where C∞-pieces of Y

±ε] meet) where 0 < ε′ << ε can be taken arbitrarily
small.

∗ The normal (nearest point) projection p′
±ε] ∶ Y → Y ′

±ε] is defined for small ε and
it moves Y inward.

∗ The mean curvature is almost non decreasing under this projection,

mn.curv (Y ′
±ε]) (p

′

±ε](y)) ≥mn.curv(Y )(y) +O(ε′).

Finally, one can, if one wishes, C∞-approximate Y ′
±ε] by Y ′′, where mean curva-

tures ≥ than those at (suitably) corresponding points of the original Y and where,
moreover, (⋆

>

) from the previous section allows one to achieve a strict inequality
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mn.curv(Y ′′) > mn.curv(Y ), unless (a connected component of) Y was smooth to
start with.
For instance, if the mean curvature of Y were ≥ 0 at the regular points of Y then
one can obtain a smooth approximation Y ′′ of Y also with mn.curv ≥ 0.
In fact, with a little care, (arguing as in compare 11.6) one can arrange our C∞-
smooth Y ′

±ε] itself, such that

mn.curv (Y ′
±ε]) (p

′

±ε](y)) ≥mn.curv(Y )(y),

but this is not essential for the present paper.

Smoothing non-compact Y . If Y is a non-compact hypersurface, then instead
of small constant ε one takes a small and fast decaying function ε = ε(y) > 0.
A direct construction of satisfactory Y

±ε] with variable ε, however trivial, is cum-
bersome. A better approach is via a local version of [ε⇆ε]-rounding by bending
procedure described below.

Bending Hypersurfaces Near their Boundaries and Localisation of
Smoothing. Smoothing the edge, where two smooth hypersurfaces Y1 and Y2

in X meet, can be achieved by inward bending of one of them say of Y1 near its
boundary ∂Y1 = Y1 ∩ Y2, such that

● the bending doesn’t decrease the mean curvature of Y1,
● the bending increases the dihedral angle from the original ∠(Y1, Y2) < π to

∠(Y1ε, Y2) = π,
where ε > 0, which can be chosen arbitrarily small, signifies that

● the bent hypersurface Y1ε coincides with Y1 within distance ≥ ε from ∂Y1

and
● Y1ε is everywhere ε-close to Y1.

The technical advantage of such a bending is that it is easily localisable: you need
to bend Y1 only at the points you want to.
Namely, let Y1, Y2 ⊂X be smooth cooriented hypersurfaces meeting at their common
boundaries, ∂Y1 = ∂Y2 = Y1∩Y2, denote this intersection Y12, and let α ∶ Y12 → [0,2π]
be a smooth function, bounded from below by the dihedral angles between Y1 and
Y2 at all points in Y12,

α(y) ≥ ∠y(Y1, Y2), y ∈ Y12.

Then, for all ε > 0, there exists a smooth embedding φ = φε ∶ Y1 → X with the
following properties.

●1 mn.curv(φ(Y1), y) ≥mn.curv(Y1, y) for all y ∈ Y1;
●2 φ(y) = y for all y ∈ Y12;
●3 ∠y(φ(Y1), Y2) = α(y) for all y ∈ Y12;
●4 the map φ is ε-close to the original embedding Y1 ↪X (in the C0-topology);
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●5 the map φ coincides with the embedding Y1 ↪ X at the points y ∈ Y1 within
distance ≥ ε from the the subset Y ′12 ⊂ Y12 ⊂ Y1, where α(y′) > ∠y′(Y1, Y2).

●6 The intersection of the image φ(Y1) ⊂X with Y2 is equal to Y12.

About the Proof. This easily accomplished by an isotopy of Y1 which, moreover,
moves the equidistant hypersurfaces Y12,ε ⊂ Y1 (of dimensions n− 2) by at most ε in
the C∞ topology.

Remarks. (a) The condition ●5 can be sharpened as follows.
●
⋆

5 the (open) subset Yφ≠ ⊂ Y1 of the points y ∈ Y1, where φ(y) ≠ y, lies ε-close
to Y12 and the closure of Yφ,≠ intersects the (closed) subset Y

=∠

⊂ Y12 , where
α(y) = ∠y(Y1, Y2), only at the boundary of Y

=∠

in Y12.
Achieving this, which is unneeded for our applications anyway, requires a little
bit of extra effort.

(b) If one doesn’t insist on ●6, then one can bend/rotate Y1 by an arbitrary “angle”
in the interval [∠(Y1, Y2),∞) in the spirit of the Frizzing Lemma in [LM84].

11.4 Rounding Edges of Riemannian Doubles with no Decrease of their
Scalar Curvatures. Let V = (V, g) be a smooth Riemannian n-manifold with
boundary and let W = V ⋃∂V V be the double of V . This W carries a natural
continuous Riemannian metric, call it g̃ = g&g, which equals g on both V -halves of
W .
Let the boundary ∂V has positive mean curvature and let us explain following
[GL80a] how
g̃ can be C0-approximated by smooth metrics with their scalar curvatures bounded
from below by Sc(g).

[ε⇆ε]
�-Rounding. Let V

−ε ⊂ V be the complement of the ε-neighbourhood of
∂V ⊂ V
and

let Wε ⊂ V ×R be the boundary of the ε-neighbourhood of
V
−ε = V

−ε × {0} ⊂ V ×R.
This Wε consists of two ε-equidistant copies of Vε and of a semicircular part W� =
∂Vε × S1

+

(ε), that is a half of the boundary of the ε-neighbourhood of ∂Vε ⊂ V ×R,
as depicted in figure 8 on p. 227 in [GL80a]).
If V is compact and ε → 0, then the principal curvatures λ1, . . . , λn of W� are
evaluated in terms of the principal curvatures μ1, . . . , μn−1 of the boundary ∂V ⊂ V as
follows.36

λi = (μi +O(ε)) ⋅ cos θ + o(ε) for i = 1, . . . , n − 1 and λn = ε−1 +O(1),

where −π
2 ≤ θ ≤ π

2 denotes the angular parameter of the (right) semicircle S1
+

(ε).37

36 We correct here a minor error from [GL80a].
37 In fact, λn = ε−1 + o(1), but this is unneeded for our present purpose.
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Then the scalar curvature of W�, which is expressed by the Gauss theorema egregium
satisfies

Sc(W�)(v, θ) = Sc(V )(v) + (2ε−1mn(v) +O(1)) ⋅ cos θ + o(1),

where mn(v) =mn.curv(∂V )(v), where v ∈ ∂V and −π
2 ≤ θ ≤ π

2 .
Now we bring into play the inequality

mn.curv(∂(V ) > 0

and see that the scalar curvature of W� is bounded from below by that of V up to
an error → 0. And since the part of the hypersurface Wε, which is parallel to V has
the same scalar curvature as V , the scalar curvature of Wε is everywhere bounded
from below, up to an error → 0, by that of V .

From C1 to C∞. The submanifold Wε ⊂ V ×R has the same type of regularity
as Y

±ε] from the previous section, namely, it is C1 and piecewise C∞, and, similarly
to Y

±ε], it can be C∞-smoothed by applying ☀ from section 11.1 with a negligible
decrease of the scalar curvature, where, moreover, this smoothing can be performed
equivariantly for the obvious involution of W = V ⋃∂V V. (And as in the case of Y

±ε],
one can, with a little care, do all this with no decrease of the scalar curvature at
all.38

Non-Compact Manifolds, C0-Approximation and C∞-Smoothing.
Similarly to how that was done in the previous section, one extends the above to
non-compact manifolds V with a use of small positive functions ε(v), v ∈ ∂V instead
of constant ε.
Besides controlling scalar curvature of Wε, we want the metric on Wε to be C0-
close to g̃ on W for the former brought to the latter by a suitable diffeomorphism
Wε →W .
Firstly, such a diffeomorphism is constructed from W� to the επ

2 -neighbourhood
U ⊂Wof ∂V ⊂W with a use of normal decompositions of W� and U as ∂V ×[− επ

2 , επ
2 ]

and then it is extended to all of Wε.

11.5 “Intrinsic Bending” of Riemannian Manifolds along the Boundaries
with no Decrease of their Scalar Curvatures. The rounding construction
from [GL80a], which we presented in the previous section, was described in the
normal coordinates in [Alm85] and, a more general form of it appears in [Mia02], in
[BMN10] and in [MS12].39

38 In fact, the required smoothing can be easily done directly in this case, as it is indicated in
[GL80a], where, in truth—this was pointed out by the referee—it is only claimed that inf Sc(W ) ≥
1
2

inf Sc(V ) and removing “ 1
2
” from this inequality without an appeal to 11.1☀ requires a bit of

attention.
39 It was pointed out by the referee of the present paper that the smoothing proposition 3.1 in
[Mia02], due to an extra term in there, doesn’t imply the corresponding edge smoothing results
from [GL80a] and in [Alm85], and, in the report on the corrected version of this paper, the referee
pointed out that what we call “bending” is proven in [BMN10].
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Let us present a construction of “bending” (Theorem 5 from [BMN 2010]) following
[Gro14a].
↺ε-Family. Let h be a smooth Riemannian metric on a manifold Y , let Aold,Anew

be smooth quadratic differential forms (i.e. symmetric 2-tensors) on Y and let

hε(t) = h + tAnew +
t2

2ε
(Aold −Anew), 0 ≤ t ≤ ε. (++)

Then clearly,

hε(0) = h (∗0)

while

dhε(0)
dt

= Anew and
dhε(ε)

dt
= Aold. (∗1)

Assume at this point that Y is compact. Then
∗2 the metrics hε(t) C∞-converge to h for ε→ 0, where this convergence is uniform
in t ∈ [0, ε]. In fact,

hε(t) = h + o(ε),

which means that the Cr-distances from hε(t) to h satisfy

∣∣hε(t) − h∣∣Cr = o(ε) for all r = 0,1,2, . . . .

In particular, the deformation h � hε(t) is almost circular in t for small ε,

hε(ε) → h for ε→ 0.

Also,

d2hε(t)

dt2
=

1
ε
(Aold −Anew) for all (y, t) ∈ Y × [0, ε]. (∗3)

Now, let us incorporate the family hε(t) into family of Riemannian metrics

gε = hε(t) + dt2

on the manifold Y × [0, ε].
Then, clearly,
[i] the second fundamental forms of the two boundary parts Y ×{0} and Y ×{ε} in
the manifold Y ×[0, ε] with the metric gε are equal to Anew and Aold correspondingly,
where these forms are evaluated on the (same unit) vector field d

dt .
Furthermore, the scalar curvature of this metric satisfies,

Sc(gε)(y, t) =
1
ε
trace(Aold −Anew) +O(1). ([ii])
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Indeed, the Ricci curvature Ricciε of gε at the field d
dt is expressed in terms of

Aε(t) =
dhε(t)

dt by Hermann Weyl’s formula

Ricciε (
d

dt
,

d

dt
) = trace(

d

dt
Aε(t)

∗

) + (Aε(t)
∗

)

2

where A∗ε(t) denote the (selfadjoint shape) operators associated to the quadratic
forms Aε(t) via the metrics hε(t) on Y .
Therefore, in view of ∗2 and ∗3,

Ricciε (
d

dt
,

d

dt
) = trace

1
ε
trace(Aold −Anew) +O(1)

and [ii] follows by the Gauss theorema egregium for the hypersurfaces Y ×{t} in the
manifold Y × [0, ε] with the metric gε.

Bending Lemma. Let X = (X,g) be a smooth (possibly non-compact) Riemannian
manifold with boundary Y = ∂X and let Aold denote the second fundamental form
of Y with respect to the inward normal field. (Notice that the boundaries of convex
domains have positive definite second forms for such fields.) Let Anew be another
smooth quadratic form on Y .
If

trace(Anew) < trace(Aold)

then there exits a family of C∞-smooth metrics gε = gnew,ε, ε > 0, on X, such that

[I] The restrictions of the Riemannian metrics gε to Y = ∂X ⊂X are equal to such
restrictions of g for all ε > 0.

[II] The second fundamental forms of Y ∈ X with respect to gnew,ε = gε, are equal
to Anew for all ε > 0.

[III] The scalar curvatures of gε are bounded from below by those of g,

Sc(gε) ≥ Sc(g).

[IV] The metrics gε C0-converge to g for ε→ 0.
[V] The metrics gε are equal to g within distance ≥ ε from Y .

Proof. Let ε << ε be a (very small) positive number, such that the the
ε-neighbourhood Uε of Y normally splits,

Uε = Y × [0, ε],

where, by the definition of “normally”, the hypersurfaces Y × {t} are t-equidistant
to Y = Y × {0} ∈X.
Let us replace the metric g in Uε by the above gε.
Observe that the Riemannian form gε on the hypersurface Y ×{ε} as well as second
fundamental form of Y × {ε} with respect to gε are ε-close to the g-related forms.
Therefore, according to ☀′ from section 11.1 applied to sections of the bundle of
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quadratic forms on the tangents to submanifolds Y ×{t} ∈X, the form gε extends to
all of X with the required properties except [III]; this can be guaranteed by☀′ only
up to an arbitrarily small error. Yet, this error can be taken care of by redistribution
of the scalar curvature from section 11.2.
(If our “redistribution” is obtained with a use of the Fredholm + unique continuation
properties of the operator f ↦ Sc(f2g), then V needs to be compact and also the
condition [V] suffer. But none of this happens if we rely on the Local Sc-Lemma.40)

⊓⊔

Half Way [ε⇆ε]�-Rounding and Making Doubles with Sc ≥ σ. If X = ∂X has
strictly positive mean curvature, then the above applies to Anew = 0 and allows
a “bending” (of the Riemannian metric in) X near the boundary Y = ∂X, which
makes Y totally geodesic and such that
the scalar curvature of Xbent = (X,gnew) is bounded from below by the scalar curva-
ture of the original metric g.
Then the metric gnew&gnew on the double (X,gnew)∪Y (X,gnew) is C1-smooth and,
by ☀, it can be C∞-smoothed keeping its scalar curvature bounded from below by
Sc(gnew) which itself is bounded from below by S(g) according to the above Bending
Lemma.
VIloc Localisation of Bending. Let the form Anew be equal to Aold on a (now
possibly non-empty) compact subset Y0 ⊂ Y = ∂X and the inequality trace(Anew) <

trace(Aold) holds in the complement Y ∖Y0.
If X is connected and the complement Y ∖Y0 is non-empty, then there exists a family
g⋆ε , which satisfies the above [I]-[IV] and where [V] is strengthened to the following
[V
⋆

] The metrics gε are equal to g within distance ≥ ε from Y ∖Y0.

About the Proof. Construction of g⋆ε , which satisfies this condition (parallel to the
condition ●5 in 11.3 for bending hypersurfaces with controlled mean curvatures) is
achieved by an obvious smooth cut off of the above gε, where the arising error term
in Sc(g⋆ε ) can be compensated due to the 1

ε -contribution in the positivity of the
scalar curvature.

11.6 Minimal Hypersurfaces in Non-compact Manifolds. Let us return
to M -bubbles from section 9: these are closed cooriented hypersurfaces in Rieman-
nian manifolds, say Ymin ⊂X, which locally minimise the functional

Y ↦ voln−1(Y ) − ∫
U−

M(x)dx,

where M is a function defined in a neighbourhood of U
∗

⊃ Ymin and where U
−

⊂ U
is the interior part of U

∗

.
Unconditionally, the existence of such a Ymin, possibly a singular one if n = dim(X) ≥
8, is ensured only for closed manifolds X.

40 There is no circularity here, since Local Sc-Lemma, albeit being a special case of the Bending
Lemma, admits an independent (and obvious) proof.
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And if X is a compact manifold with boundary, then the existence of Ymin follows
from a suitable bound on the mean curvature of the boundary as in section 9,

M
∣∂−X ≤ −mean.curv(∂

−

X) and M
∣∂+X ≥mean.curv(∂

+

X)

where ∂
±

are the parts of the boundary of X positioned in the interior/exterior
region of X with respect to Ymin. (This makes sense since the decomposition ∂X =

∂
−

X ∪ ∂
−

X depends only on the homology class of Ymin.)
Now we look for this kind of condition for non-compact manifolds, where our moti-
vations are twofold:

(A) Finding geometric conditions on X, such that a given hypersurface Y ⊂ X would
admit a metric with positive scalar curvature.

(B) Finding least demanding constraints on a perturbation gε of a Riemannian metric
g on X, such that a hypersurface Y ⊂X would admit an ε-close to it hypersurface
with the mean curvature with respect to gε being close to mn.curvg(Y ).

An obvious (over-optimistic?) conjecture in the direction of (A) is as follows.
(A ?) Let X be a complete Riemannian manifold of dimension ≥ 6 and let M(x) be a
continuous function on X, such that

n

n − 1
M(x)2 − 2∣∣dM(x)∣∣ + Sc(X)(x) ≥ 0.

Then every closed cooriented hypersurface Y0 ⊂ X, for which the inclusion homomor-
phism between the fundamental groups

π1(Y0) → π1(X)

is injective, admits a a metric with Sc > 0.
(This generalises Conjecture 1.24 in [Ros07] for X = Y0×S1 and M = 0 and a similar
conjecture—I recall seeing it in a paper by Rosenberg and/or Stolz—for complete
X homeomorphic to Y0 ×R.)

Motivating Example. Let let X be a complete two-ended Riemannian manifold and
let Y0 be a smooth closed hypersurface, such that the following four conditions are
satisfied.
[ � ] Y0 is connected and it separates the two ends of X. Thus, both components
of the complement X∖Y0 are infinite and both are one-ended. For instance, X is
homeomorphic to Y0 ×R.
(We agree that the only “infinities of” X∖Y0 which count are parts of the “infinity
of” X.)
[○=○]H1 The inclusion homology homomorphism H1(Y0) → H1(X) is an isomor-
phism. (If the inclusion homomorphism between the fundamental groups π1(Y0) →

π1(X) is injective then the covering of X with the fundamental group equal to the
image π1(Y0) ⊂ π1(X) has this property.)
[○ ↪ ○]π1 The inclusion homomorphism between the fundamental groups π1(Y0) →

π1(X) is injective.
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(This implies [○=○]H1 for the covering of X with fundamental group equal the
image π1(Y0) ⊂ π1(X), but the roles played by H1 and π1 in the arguments below
are different.)
[vol = ∞] Both connected components of the complement X∖Y0, call them X

±

⊂X,
have infinite volumes.
[spin] Manifold X is spin.
[⊙λ,ρ] There exist constants λ, ρ > 0, such that all balls in X of radii r ≤ ρ are
λ-Lipschitz contractible in X (but not necessarily within themselves), i.e. there exist
λ-Lipschitz maps

φ = φx,r ∶ Bx(r) × [0, r] →X, x ∈X, r ∈ [0, ρ],

where the maps φ(. . . ,0) are the original imbeddings Bx(r) ⊂ X and such that the
maps φ(. . . , r) ∶ Bx(r) →X are constant.
(Coverings of closed manifolds, obviously, satisfy this condition.)
[●] If the scalar curvature of X is everywhere bounded from below by σ

−

∈ (−∞,+∞)
and Sc(X)(x) ≥ σ

+

> 0 in the ε-neighbourhood of Y0 ⊂X, such that

[σ
+

>> ∣σ
−

∣] σ
+

≥

2
ε

√

∣σ
−

∣(n − 1)
n

.

Then Y0 admits a metric with Sc > 0, provided 6 ≤ dim(X) ≤ 8.

Prior to explaining the proof, a few remarks are in order. (∗) The spin condition
can be significantly relaxed and, possibly, fully removed. (We shall explain this in
the course of the proof of [●].)

(∗) The condition [⊙λ,ρ] implies [vol = ∞] as we shall see in the course of the proof
of [●]; however, the two play opposite roles in the proof of [●]. But in any case,
we would rather get rid of [⊙λ,ρ] altogether.

(∗) The main function of the inequality dim(X) ≥ 6 is to rule out 4-manifolds Y0,
where there are topological obstructions to the existence of metrics with Sc > 0
which have no counterparts for other dimensions, see [Ros07] and references
therein.

(∗) The inequality dim(X) ≤ 8 is, most likely, unnecessary—it is due to our inabil-
ity to handle singularities of minimal hypersurfaces in manifolds of dimensions
≥ 9.

Proof of [●]. Step 1. The inequality [σ
+

>> ∣σ
−

∣] implies that there exists a function
M(x), which vanishes on Y0 which is positive on one of the components of X∖Y0,
say on X

+

and negative on X
−

, which is constant 2ε-far from Y0 and such that

n

n − 1
M(x)2 − 2∣∣dM(x)∣∣ + Sc(X)(x) > 0

at all points x ∈X.
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Step 2. Since vol(X
±

) = ∞, the integrals of M over both components X
±

of X∖Y0 are
±infinite. Therefore, there exists a compact connected subset V0 ⊂X, which contains
Y0 and such that

∫

V0∩X±
∣M(x)∣dx > voln−1(Y0).

Consequently, every closed hypersurface Y ′ in the complement X∖V0, which is ho-
mologous to Y0 satisfies

voln−1(Y
′

) −
∫

X′

+
∖∞+

M(x)dx ≥ voln−1(Y0) − ∫
X+∖∞+

M(x)dx + μ0,

where

● ∞
+

denotes a unspecified subset in X
+

, which has a sufficiently large compact
complement; in particular, ∞

+

doesn’t intersect V0,
● X ′

+

⊂X is the (infinite) connected component of X∖Y ′ which contains ∞
+

.
● μ0 = μ0(V0) is a positive constant.

Since the difference

∫

X′

+
∖∞+

M(x)dx −
∫

X+∖∞+
M(x)dx

does not depend on the choice of ∞
+

⊂X
+

, the above inequality is unambiguous.

It follows that
Ymin can’t escape from V0:

all closed hypersurfaces Y ′ ⊂ X, which are homologous to Y0 and which almost (up
to μ0) minimize the functional

Y ′ ↦ voln−1(Y
′

) −
∫

X′

+

M(x)dx =def voln−1(Y
′

) −
∫

X′

+
∖∞+

M(x)dx

intersect V0.
And since these Y ′, because of the above [ � ] Y0 and [○=○]H1 , are connected, the
minimization process for this functional converges (in the sense of the geometric mea-
sure theory) to a minimum, call it Ymin ⊂X: this is a possibly infinite hypersurface
in X of finite volume, where this Ymin doesn’t fully escape V0. Namely

● Ymin is proper, i.e. it is a closed as a subset in X, but it may be non-compact
(hence, unbounded for complete X);

● voln−1(Ymin) ≤ vol(Y0) < ∞

● The hypersurface Ymin has non-empty intersection with V0.
(Notice that completeness of X is non-essential at this point.)
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Step 3. Let us bring forth the above local Lipschitz contractibility condition [⊙λ,ρ],
invoke the cone/filling inequality 3.4.C from [Gro83]. This shows that [⊙λ,ρ] implies
the following filling inequalities [⊙n−1

n−2] and [⊙n
n−1].

[⊙
n−1
n−2] All (n − 2)-cycles β in all ρ-balls, β = βn−2 ⊂ Bx(ρ) ⊂X, n = dim(X), bound

(n − 1)-chains α ⊂X, such that

voln−1(α) ≤ c ⋅ voln−2(β)
n−1
n−2 ,

for some constant c = c(n,λ, ρ).
[⊙

n
n−1] All subdomains U ⊂ Bx(ρ) satisfy

voln(U) ≤ c′ ⋅ voln−1(∂U)
n

n−1 ,

for some c′ = c′(n,λ, ρ).
Then these inequalities easily yield the following lower bound on the volume of the
balls in the minimizer Ymin ⊂X,

voln−1(Ymin ∩Bx(ρ)) ≥ ν = ν(n, c, c′) = ν(n,λ, ρ) > 0

for all x ∈ Ymin.41

Since Ymin is connected, the above volume bound voln−1(Ymin) ≤ vol(Y0) implies a
bound on its diameter,

diam(Ymin) ≤ R =
2ρ ⋅ voln−1(Y0)

ν
< ∞.

Then, by combining this inequality with the above intersection property for our
minimizer, Ymin ∩ V0 ≠ ∅, we conclude that

Ymin ⊂X is trapped
42

in the R-neighbourhood of V0.

And since X is complete, Ymin is compact.

Step 4. By the classical regularity theorem(s) of Simons-Federer-Almgren-Allard
this Ymin is a smooth hypersurface for dim(X) ≤ 7; if n = 8, then the regularity is
achieved by a small perturbation of the Riemannian metric in X.43

Then, the inequality n
n−1M(x)2−2∣∣dM(x)∣∣+Sc(X)(x) > 0, implies that the induced

metric in Ỹmin is conformal to a metric with Sc > 0 by the M -version of the Schoen–
Yau argument (see §55

6 in [Gro96]).

Step 5. If Ymin is smooth and dim(Ymin) ≥ 5 then the kernel of the inclusion homo-
morphism

π1(Ymin) → π1(X) = π1(Y )

41 This is explained in [Gro83], where the corresponding inequalities are formulated for the func-
tional Y ↦ voln−1(Y ) and where X ⊃ Y is often required to be compact. But all (relevant) arguments
from [Gro83] apply in the present case.
42 This means “contained”.
43 The argument from [Sma93] easily generalises to our Ymin.
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can be “killed” by 2-dimensional surgery that results in another hypersurface, say
Y ⊂X, which is also homologous to Y0 and which admits a metric with Sc ≥ 0.
If, moreover, the inclusion homomorphism π1(Y0) → π1(X) is an isomorphism, and
X is spin, then Y is spin-bordant to Y0 in the classifying space of π1(Y0) and the
existence of metric with Sc > 0 on Y0, follows from the theorem 1.5 in [Sto01].
(Possibly—I am not certain—this theorem also covers the non-spin case.)
Finally, since the homomorphism π1(Y0) → π1(X) is injective according to [○ ↪
○]π1 , all of the above applies to the covering space X̃ → X with the fundamental
group π1(X̃) − π)Y0). QED.

Discussion. The above argument can be generalised, refined and made effective,
which would result in specific inequalities for the “relative size” of pairs (X,M(x)),
where Sc(X)(x) is suitably bounded from below in terms of M(x) and where certain
hypersurfaces Y0 ⊂X admit no metrics with Sc > 0.
However, it remains unclear if the condition [⊙λ,ρ], or anything of this kind, is truly
necessary.
In fact, we do know that no such condition is needed for the bounds on the width
of overtorical and similar band-shaped manifolds to which our symmetrization with
point-wise control of the scalar curvature applies (see sections 7 and 8).
Also, even the present form of [●] remains problematic for manifolds X with dim
(X) ≥ 9.

11.7 Bounds on Widths of Non-Compact Riemannian Bands. The band
inequalities in sections 2, 4, 5 generalise to certain non-compact complete bands.

Case I. Let V be a proper (see section 2) band with compact boundaries

∂V = ∂
−

∪ ∂
+

The concepts of “overtorical”, “isoenlargeable”, and “SYS” make sense for these V ,
where the instances of such non-compact bands are, topologically, obtained from
compact ones by removing isolated points from their interiors.
proper bands V with compact boundaries which have Sc(V ) ≥ σ > 0 satisfy the same
width bound as their compact counterparts in sections 2, 4, 5.

Proof. Let V ′ ⊂ V be a compact manifold obtained by cutting of the infinity of V far
away from ∂V . Thus V ′ has an extra set of components, call their union ∂′, where
one can make make the distance dist(∂(V ), ∂′) as large as one wants.
Thus we arrange such a V ′, where the the ρ-neighbourhood U ′ρ ⊂ V ′ of ∂′ ⊂ V ′ for a
large ρ does not disturb the essential topology of V :

[⋆ρ] the subset U ′ρ ⊂ V ′ does not intersect ∂ = ∂V and, moreover, V ′∖U ′ρ is in the

same topological largeness class as V , namely overtorical, “isoenlargeable or SYS
correspondingly.
Clearly, this property is inherited by minimal hypersurfaces constructed in the suit-
able homology classes as in sections 2, 4, 5, where the final stage of the symmetriza-
tion goes through if ρ is sufficiently large.
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For instance, ρ ≥ 4π
√

σ
is sufficient for this purpose but this bound doesn’t seem sharp.

QED ⊓⊔

Case II. Let V be a proper complete orientable n-dimensional band, such that V
admits a proper 1-Lipschitz map ψ ∶ V → R

n−1, such that the restriction of ψ to ∂
−

(and hence, on ∂
+

) has degree d ≠ 0.
If the scalar curvature of V is bounded from below by Sc(V ) ≥ σ > 0, then the width
of V is bounded as follows.

width(V ) = dist(∂
−

, ∂
+

) ≤ 2π

√

n − 1
σn

.

Proof. Let Sn−3
(R) ⊂ R

n−1 be a very large codimension 2 sphere say of radius
≥ 100n−1 and let

Σ = ∂V ∩ ψ−1(Sn−3
(R)) ⊂ V,

where one may assume if one wishes—this is not truly necessary—that the map ψ
is transversal to the sphere Sn−3

(R).
This Σ, which has codimension 2 in V , is meant to serve as the boundary condition
for a minimizing hypersurface, Y , namely, the boundary of Y must be contained in
Σ and the relative homology class of Y in Hn−1(V,Σ) must be equal to the homology
pullback of the (n − 1)-ball bounded by this sphere.
To avoid unnecessary non-compactness problems,44 we cut off V and thus Y , by
taking a large V ′ ⊂ V which contains ψ−1(Sn−3

(R)), say the ψ-pullback of the R′-
neighbourhood U = U(R,R′) ⊂ Rn−1 of the sphere Sn−3

(R) ⊂ Rn−1 for R′ ≥ 100R.
This Y serves as the first step of the inductive symmetrization, except that unlike the
original V it is compact and has extra part of the boundary, namely, the ψ-pullback
of the boundary of U .
Thus, in order to have a proper inductive scheme , one should drop the completeness
assumption on V , and require instead that
V admits a proper 1-Lipschitz map to the Rn-ball in R

n−1 for a sufficiently large
Rn, say for Rn ≥ 1000n, such that the restriction of ψ to ∂

−

has degree ≠ 0.
At this point, we invite the reader to fill in the details in the above argument. ⊓⊔

Corollary. Sharp Bound on Widths of Iso-Enlargeable Bands.
Compact Iso-enlargeable bands V (e.g., those homeomorphic to V0 × [−1,1] where
V0 admits a metric with non-positive curvature) with their scalar curvatures ≥ σ
satisfy the 2π

n -Inequality.

width(V ) ≤ 2π

√

n − 1
σn

.

44 There is no such problem if V has locally bounded geometry, e.g. if it is a covering space of a
compact band, then the minimizing Y is compact since locally bounded geometry implies uniform
local Lipschitz contractibility ([⊙λ,ρ] from the previous section.
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Proof. It follows from the definition of iso-enlargeability of V that there exist Rie-
mannian bands VR for all R > 0, such that

●1 there exist locally isometric band maps VR → V ,
●2 there exist proper 1-Lipschitz maps from VR to the R-balls in R

n−1, such that
the restrictions of ψ to ∂

±

have (equal) degrees ≠ 0.
Thus, the above applies and the proof follows. ⊓⊔

Remark. Minimal hypersurfaces with mixed boundary conditions in our argument
are similar to those in §12 in [GL83], where, in fact, a non-sharp version of the above
inequality is proven.

On the Definition of Iso-enlargeability. These ●1 and ●2 can be taken for the definition
of iso-enlargeability of bands as it was mentioned in footnote 9 in section 4.

11.8 Stable Enlargeability and Stable Bounds on the Scalar Curvature.
Let X be an orientable Riemannian manifold of dimension n and P an orientable

pseudomanifold of dimension N .
Let us consider three different cases indexed by i = 0,1,2, each associated with a
map

f = fi ∶X × P → B ⊂ Rn+N−i, i = 0,1,2,

where B is an open unit ball, and where f is a smooth proper, such that
the restrictions of f to the the submanifolds Xp =X×{p} ⊂ P , p ∈ P , are λ-Lipschitz
for some constant λ > 0 and

●0 if i = 0, then the map f has non-zero degree;
●1 if i = 1, then the cap product of the pullback of the fundamental cohomology

class of B with compact support with the fundamental class of X × P ,

f∗[B]n+N−1 ∩ [X × P ]N+n ∈H1(X × P ),

does not vanish when taken with Q-coefficients, i.e. under the homomorphism
H1(X × P ) →H1(X × P );

●2 if i = 2 then the cap product class45

f∗[B]n+N−2 ∩ [X × P ]N+n ∈H2(X × P )

is aspherical, i.e. it is not contained in the image of the the Hurewicz homo-
morphism, or, equivalently, it does not lift to the universal covering of X × P .

Then the infimum of the scalar curvature of X is bounded by

κX = inf
x∈X

Sc(X)(x) ≤ ελ−2

where ε > 0 depends only on n and N .

45 Geometrically, this class is represented by (possibly singular) surfaces in X × P , which are the
f -pullbacks of generic points b ∈ B.
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Proof. First, let P be a manifold and let us endow it with a very (arbitrarily) large
metric which has scalar curvature ≥ −δ for a given arbitrarily small δ > 0. This makes
Sc(X × P ) ≥ κ − δ and, at the same time, the Lipschitz constant of f as close to λ
as you wish.
Then, the proof follows either by arguing as in the proof of the spherical Lipschitz
bound theorem in section 3 with a torical band in B and a use of width inequalities
for compact bands or doing it more directly with open bands as in the previous
section. (This directly applies to i = 0,2 and the case i = 1 trivially reduces to i = 0.)
In general, if P is a pseudomanifold, we take a similarly large metric in P , where
Sc ≥ −δ on all N -faces Q of P . Then, clearly, there exist ⊓⊔

(*) a face Q,
(**) a (large) open subset X ′ ⊂X,
(***) a (small) open subball B′ = B′Q,X′ ⊂ B around some point b ∈ B,

such that the above applies to the restriction f ′ of the map f to some the subproduct
X ′ ×Q′ ⊂ f−1(B′) ∩ (X ′ ×Q) for some open subset Q′ ⊂ Q

f ′ ∶X ′ ×Q′ → B′.

Complaint. One can’t help but to be annoyed by the the dimension being brought
up by incorporating purely topological parameters P into the geometry of X × P ,
only to be immediately brought down by constructing a decreasing chain of minimal
hypersurfaces.46

11.9 Mean Curvature Stability of Polyhedral Domains. Let Y be a closed
smooth cooriented hypersurface in a Riemannian manifold X = (X,g) and let gε be
a family of smooth Riemannian metrics on X which C0-converge to g for ε→ 0. It is
shown in section 10.2 of [Gro12] that such small perturbations gε can be accompanied
by small perturbations of Y which only slightly change the mean curvature of Y .
Namely we have the following perturbation stability property
[�ε]. there exists a family of diffeomorphisms ψε ∶X →X, ε > 0, such that

(1) the diffeomorphisms ψε, ε→ 0, converge to the identity map id ∶X →X in the
C0-topology;

(2) the (n − 1)-volumes of the hypersurfaces Yε = ψε(Y ) ⊂ X with respect to gε

converge to voln−1(Y ) for g;
(3) the gε-mean curvatures of Yε converge to mn.curvg(Y ). For instance, if mn.curv

(Y ) > c for some number c ∈ (−∞,+∞), then the hypersurfaces Yε satisfy the
same inequality for all sufficiently small ε > 0.

46 If X is complete and the universal covering X̃ of X is spin, then the bound infx∈X Sc(X)(x) ≤
ελ−2 for i = 0,1 (but not for i = 2) follows by applying a suitable index theorem for the P -family of
Dirac operators on X̃, keeping the P -parameters at their proper place.
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The essential steps in the proof of this can be seen as ε-miniaturised versions of the
first three steps in the proof of [●] in section 11.6, which now take place in a small
tubular neighbourhood U ⊃ Y .
Stepε 1+2. Take a suitable function Mε(x) in U for which Y strictly minimizes the
functional

Y ↦ voln−1(Y ) − ∫
U+

Mε(x)dx,

where U
+

⊂ U is the part of U positioned inward of Y , such that the correspond-
ing minimizer Yε of this functional for gε. (Such an M on Y must be equal to
mn.curv(Y ))

can’t fully escape from the ε-neighbourhood Uε ⊂ U of Y .

Stepε 3. Observe that the filling inequalities [⊙n−1
n−2] and [⊙n

n−1] are stable under
small perturbations gε of g and conclude that

Yε is trapped in Uε.

(This ε may be slightly larger than the above one.)
Then the smoothness of Yε (n ≥ 8 included) follows from Almgren’s optimal isoperi-
metric inequality (see [Alm86]), which also allows a construction of diffeomorphisms
ψε ∶X →X which send Y → Yε (see [Gro12] for details).
Warning. The hypersurfaces Yε do not, in general, C1-converge to Y and, conceiv-
ably, there are examples (I have not scrutinised the literature), where there are no
diffeomorphisms ψε having the norms of their differentials (and/or of their inverses)
bounded by 1 + ε.
On the other hand, one can control some Hölder norm of ψε according to Reifenberg’s
topological disk theorem.
Also Reifenberg’s flatness condition implies relative versions of the filling inequalities
[⊙

n−1
n−2] and [⊙n

n−1] from the previous section that is useful for smoothing “intrinsic
edges and corners” in manifolds with Sc ≥ σ. (see the next section and [Gro14a]).

Localization of [�ε]. [�loc
ε ]. If the metrics gε are equal to g on a neighbourhood

U0 ⊂X of compact subset X0 ⊂X then the above diffeomorphisms ψε can be taken
equal to the identity map on another (smaller) neighbourhood Uε ⊃X0.
About the Proof. This is achieved with suitable functions Mε defined on the com-
plement of X∖Uε. And here, as on other localization occasions, we leave the actual
proof to the reader, since the corresponding localised properties are only marginally
used in the present paper.

Stability Relative to ∂X. In this paper, we need a relative version of [�ε], and
also of [�loc

ε ], where X is a manifold with boundary and our hypersurface Y ⊂X has
∂Y ⊂ ∂X.
The above argument applies (almost) word for word to such Y , where, additionally,
one has to keep track of the dihedral angles between (the tangent spaces of) Y and
∂X along ∂Y ⊂ ∂X.
For instance,
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if these angles on the inward side of Y satisfy ∠in(Y, ∂X) < π
2 , then also ∠in(Yε, ∂X)

<
π
2 .

This together with Bending Lemma (section 11.5) combined with ε-redistribution
of curvature (section 11.2) yield the following.�ε-Flattening Corollary. Let X be a Riemannian manifold with smooth bound-
ary and let Y ⊂ X me a compact smooth cooriented hypersurface, where ∂Y ⊂ ∂X
and such that mn.curv(Y ) > 0 and the inward (with respect to the coorientation of
Y ) dihedral angles between Y and ∂X are everywhere ≤ π

2 .
Then there exists a family of smooth Riemannian metrics gε, ε > 0, on X, such that

●1 the hypersurface Y is totally geodesic in X with respect to gε for all ε > 0;
●2 mn.curvgε

(∂X) ≥mn.curvg(∂X) and the inward dihedral angles with respect
to gε between Y and ∂X are everywhere ≤ π

2 for all ε > 0;
●3 the scalar curvatures of gε are bounded from below at all points x ∈ X by

Sc(g)(x);
●4 the metrics gε are equal to g outside the ε-neighbourhood (with respect to g)

of the union Y ∪ ∂X;
●5 the quadratic forms gε − g are positive semidefinite for all ε > 0.

●? On Convergence gε → g. Ideally, one would like to have C0-convergence
gε → g for ε → 0 but all we are able to show is that only the negative part of the
difference gε − g tends to zero, which, by small perturbations of gε, allows one to
make gε − g positive semidefinite.
To see where the problem resides, let us return to a closed smooth cooriented hy-
persurface Y in a Riemannian manifold X = (X,g) at the beginning of this section,
and a family of smooth Riemannian metrics let gε on X which C0-converge to g for
ε→ 0.
Assume, for simplicity’s sake, that mn.curv(Y ) = 0 and let Yε be the perturbations
of Y which have mn.curv(Yε) → 0 and which themselves uniformly converge to Y .
We do know that these Yε are diffeomorphic to Y but we do not expect their Rie-
mannin metrics hε = g

∣Yε
induced from gε to converge to h = g

∣Y . All we can say is
that the g-normal projections Yε → Y , besides being homotopic to diffeomorphisms,
are (1 + o(1))-Lipschitz. This eventually transforms to the above ●5.
And albeit our construction of gε can’t deliver the C0-convergence gε → g, probably,
one can show that the distance functions distgε

on X × X uniformly converge to
distg for ε→ 0.

On stability of piecewise smooth hypersurfaces.

Here, as everywhere in this paper, “piecewise smooth” hypersurfaces Y in X are, by
definition, locally diffeomorphic to polyhedral hypersurfaces in R

n, n = dim(X).
If X comes with a Riemannian metric g, these Y , if they are cooriented, are charac-
terised by the mean curvatures of their n − 1-faces and the dihedral angles between
these faces.
Apparently, as indicated (without proof) in section 4.8 in [Gro14a] these Y satisfy
a piecewise-smooth version of the above [�ε].
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This means that,
given an ε-family of smooth Riemannian metrics on X, which C0-converge to a
metric g as in [�ε],

gε →
ε→0

g,

there exists a family of piecewise smooth homeomorphisms ψε ∶X →X, ε > 0, such
that

● ψε are smooth on the (n − 1)-faces of Y away from the (n − 3)-faces,
● ψε converge to the identity map id ∶X →X in the C0-topology;
● the (n − 1)-volumes of the hypersurfaces Yε = ψε(Y ) ⊂ X with respect to gε

converge to voln−1(Y ) for g;
● the gε-mean curvatures of the faces of Yε converge to mn.curvg of the corre-

sponding faces of Y ;
● the gε-dihedral angles between the faces of Yε converge to the g-dihedral

angles between the corresponding faces of Yε.

The relative version of this in manifolds X with corners (i.e. with piecewise smooth
boundaries), which also seems to follow by the available techniques47, would auto-
matically yield smoothing of metrics on manifolds obtained by reflections of man-
ifolds with corners with no decrease of their scalar curvatures (see section 4.8 in
[Gro14a]).
On the other hand, one can prove the existence of such smoothings in the essential
cases by some roundabout argument as we shall explain in the next section.48

11.10 Flattening of Faces and Regularisation of Reflections.
◻-Flattening Lemma. Let X = (X,g) be a Riemannian manifold with corners,
where all faces of the boundary ∂X have positive mean curvatures and where the
dihedral angles between the pairs of (n − 1)-faces in ∂X, wherever they meet, are
≤

π
2 .

Then there exists a family of smooth metrics gδ, δ > 0, such that

(1) the faces of ∂X are totally geodesic with respect to gδ for all δ > 0;
(2) all dihedral angles in ∂X with respect to gδ are π

2 for all δ > 0;
(3) the scalar curvatures of gδ are bounded from below at all x ∈X by Sc(g)(x);
(4) the metrics gδ coincide with g outside the δ-neighbourhood of the boundary

∂X;
(5) the differences gδ − g are positive semidefinite for all δ > 0.

47 The local version of this must be also true
48 An unpleasant technical difficulty in the proof of the mean curvature stability in the piecewise
smooth case, which one has to (?) go around, is the absence (?) of C1 regularity theorem for minimal
Y ⊂X at the singular boundary points of X.
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This is a special case of the Approximation/Reflection Lemma in section 4.9 in
[Gro14a] where this is proven not only for g itself, but for metrics gε which C0-
converge to g.49

Granted that, one can reflect X around the faces (see 2 in section 11.1) smoothly the
metric in the resulting manifold X̃ by using Cut-off Homotopy Lemma (☀ in 11.1)
and applying a corresponding inequality for manifolds (bands) without corners.
Thus, for instance, one shows in [Gro14a] that
Riemannian manifolds X with Sc(X) > 0 can’t contain mean curvature convex (e.g.
convex) cubical domains Q, where all dihedral angles, are non-obtuse.
Below is another Example.
Sub-Rectangular 2π

n -Inequality. Let X be a Riemannian n-manifold, let Q ⊂ X be
a domain diffeomorphic to the n-cube [−1,+1]n and let Q±i ⊂ ∂Q ⊂ Q, i = 1, . . . , n,
denote the pairs of opposite codimension 1 faces in Q which correspond to such pairs
in the cube.
Let

(i) the faces Q±i for i = 1, . . . , n − 1, are mean curvature convex, i.e.

mn.curv(Q±i ) ≥ 0,

(ii) the dihedral angles ∠
±i,±j = ∠(Q

±

i ,Q±j ) between these faces are non-obtuse at
all points in the (n − 2)-“edges” where these faces meet,

∠
±i,±j ≤ π/2, for all i, j = 1, . . . , n − 1, i ≠ j,

(iii) the scalar curvature of X satisfies Sc(X) > n(n − 1).

Then the distance between the two remaining opposite faces satisfy

[◻
±

<
2π
n
] dist

±

= distX(Q
+

n,Q−n) <
2π

n
.

Proof. Reflect Q, but now only only in the faces Q±i with i < n. Thus we construct
a torical band with Sc > σ and apply [⊚ 2π

√
σ
] to this band. ⊓⊔

Flattening and Gluing with Sc > 0. The proof of the Approximation/
Reflection Lemma in [Gro14a] proceeds by induction on the number of faces with
application of Reifenberg’s flatness property of minimal varieties at each step of
induction.

But if the boundary of X consists of only two (possibly disconnected) (n − 1)-
faces then the ◻-Flattening Lemma follows from the �ε-Flattening Corollary from
the previous section.

49 This lemma is formulated in [Gro14a] only for Sc(g) > 0 and without formulating the above
(4) and (5). However the proof of this lemma indicated in [Gro14a] automatically deliver these
properties.
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Indeed if Y ⊂X is a totally geodesic hypersurface normal to ∂X, then the intrinsic
bending delivered by the proof of the Bending Lemma from section 11.5 does not
disturb Y and we have both Y and ∂X totally geodesic as well as mutually normal.
This also applies if the set of (n − 1)-faces one can be divided into two subsets of
mutually disjoint ones, i.e. if the incidence graph I between the faces is bipartite.
And assuming no three (n − 1)-faces meet, I can be artificially made bipartite by
subdividing the faces.
This is done by creating “new narrow” (n − 1)-faces positioned close to the (n − 2)-
faces on one side of them. ( The (n−2) faces are assumed two-sided , i.e. coorientable
in ∂X.)
Observe that the the dihedral angles between the “new” (n− 1)-faces and the “old”
ones are equal to π, which, however, leads to no problem due to the possible local-
ization of bending (section 11.5 ) and of [�ε] (section 11.7).
Now let us explain how one can get rid of “higher order corners” in X by paying
the price of a change of their topologies. In fact this “price” limits the application
of such gluing to dim(X) = 3
Given an n-dimensional cosimplicial manifold X with corners, e.g. diffeomorphic to
the n-cube [0,1]n, one may double it over the set of its (preliminarily cut off) highest
order corners, where the maximal numbers, say m, of the (n − 1)-faces in ∂X meet.
For instance, if X = [0,1]n then m = n where these highest corners are the ordinary
vertices in [0,1]n.
The resulting double, call it X[1] has a natural corner structure where the highest
corners have order m[1] =m−1. Thus we can continue unless we arrive at X[m] with
smooth boundary (see section 1.1 in [Gro14a]).
Geometrically, if X is the ordinary cube [0,1]n ⊂ Rn, (almost but not quite exactly)
this can be achieved by cutting the faces of this cube of dimensions ≤ n − 2 by
hyperplanes and then by reflecting the resulting polyhedron around its (new as well
as old) (n − 1)-faces.
Now we want to stop at X[m], for m ≤ n − 2, such that the only singularities are
(n − 2)-dimensional faces/“edges”, where pairs of (n − 1)-faces meet.
Gluing/Surgery Lemma. Let g be a Riemannian metric on X, for which all faces
have mn.curvg > 0 and all dihedral angles are ≤ α ≤ π.
Then X[m≤n−2] admits a smooth metric g[m], where the faces also have mn.curvg[m] >

0 and and all dihedral angles are ≤ α, and such that the scalar curvature of g[m] is
bounded from below (in a natural sense) by that of g.
For instance, if Sc(g) > 0, then also Sc(g[m]) > 0.

Sketch of the Proof. Let first X be diffeomorphic to the 3-cube [0,1]3. By consec-
utively applying the Cut-off Homotopy Lemma at a vertex p ∈ [0,1]3 to the three
2-faces at p, one can “infinitesimally straighten” these faces at p, i.e. make them
geodesic at p, while keeping mn.curv ≥ 0.
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If there are two 3-manifolds, X and X ′ with such vertices, one can arrange the
connected sum

(X,p)#(X,p′)

by “gluing” them with an arbitrarily small decrease of their scalar curvatures by the
same construction as it is done for the ordinary connected sum in [GL80b], where
one can preliminarily enlarge the scalar curvature of the two at the points p and p′

by means of the Cut-off Homotopy Lemma (as it is done on p. 111 in [Gro86] in a
similar context.)
Then the required double of our cubical X is achieved by “infinitesimally straight-
ening” the faces at all eight vertices in X and then taking the double with a “glueing
metric” at all vertices.
The above applies to 0-faces (vertices) p of all X for all n = dim(X). In general, if
P is an m-face for 0 < m ≤ n − 2, one “infinitesimally straighten” the (n − 1)-faces
normally to P , where a face P+ ⊃ P is regarded infinitesimally straight normally
to P if the second fundamental form of P ⊂ X vanishes on the tangent subspaces
Tx ⊂ Tx(P

+

) normal to P ⊂ P+ at all points x ∈ P , where, observe, rank(Tx) =

dim(P+) − dim(P ) ≥ 2.

Clarifying Topological Remark. To see what makes the difference between dimensions
n = 3 and n ≥ 4, let V be an n-dimensional manifold X minus an open tubular
neighbourhood of a closed submanifold Y .
If X carries a metric with Sc > 0 and codim(Y ) ≥ 3, then the double W = V ∪∂V V
also carries such metric.
Now, if X is overtorical and the submanifold Y can be homotoped to a single point
in X, e.g. Y is a finite union of points in X, then W is also overtorical.
But if, for instance, X = T

n and Y is the union of n disjoint circles which generate
H1(X), then W is not overtorical. In fact, the corresponding W in this case does
carry a metric with positive scalar curvature.

11.11 Non-existence Results and Conjectures. Following a suggestion by
the referee, we briefly overview in this section a few constrains, some of which proved
in the main body of this article and some conjectural, on the topology of manifolds
which carry metrics with Sc > 0.50

Say that a closed oriented manifold X is SYS (Schoen–Yau–Schick) over a cohomol-
ogy class h in a topological space K, where

h ∈Hn−2
(K;Z), n = dim(X),

if there is a continuous map A ∶X →K, such that the 2-dimensional homology class
in X which is the Poincaré dual of the cohomology pullback A∗(h) ∈Hn−2

(X;Z) of
h,

A⊥(h) = PD(A∗(h)) ∈H2(X),

50 Unsolved problems on Sc > 0 are collected in [Gro17].
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is non-spherical, i.e. it is not contained in the image of the Hurewicz homomorphism
π2(X) →H2(X).
For example, “SYS over the fundamental cohomology class of the torus Tn−2” is the
same as “SYS” defined in section 5.
Let us generalise the Schoen–Yau theorem ([SY79b] for n ≤ 7 and [SY17] for all n)
on non-existence of metrics with positive scalar curvatures on SYS-manifolds and
(some case of) theorem 13.8 in [GL83] as follows.

SYSE-Non-existence Theorem. Let K be a manifold which admits a complete
metric with non-positive sectional curvature and let X be a closed manifold X which
is SYS over an integer cohomology class h ∈ Hn−2

(K) which does not vanish in
h ∈Hn−2

(K;Q).
Then X admits no metric with positive scalar curvature.

Proof. Start with the case where K is compact oriented of dimension n−2 = dim(X)−
2 and h ∈Hn−2

(K;Z) is the fundamental class of K. Let K̃ be the universal covering
of K and X̃ be the covering of X induced by the above map A ∶X →K.
Since K̃ has non-positive curvature, it admits proper λ-Lipschitz maps Fλ to the
unit ball B = Bn−2

(1) ⊂ R
n−2 of degree 1 for all λ > 0 and then, when λ → 0, the

proof follows from the stable SYSE-bound on the scalar curvature from section 6
applied to the composed maps

X̃
Ã
→ K̃ → B

in the role of f = fλ and X =X × {p}, where {p} a single point space for P .
Now let us turn to the case of a complete orientable K of dimension m ≥ n − 2 and
let h ∈Hn−2

(K;Z). Assume K is parallelizable, otherwise, pass to the total space of
the normal (for an embedding K → R

M ) vector bundle T ⊥(K) → K, which (by an
easy argument) also carries a metric with non-positive sectional curvatures.
In this case, there exists continuous proper maps Fλ ∶ K̃ ×K → B = Bm

(1), ε > 0,
which are λ-Lipschitz (diffeomorphisms) on all “slices ” K̃×k, k ∈K: these maps are
constructed as above with the use of inverse exponential maps in K̃ at the points
over k ∈ K, where the tangent spaces Tk(K) are identified with a single R

m with a
use of a frame in T (K) as it is done in section 13 in [GL83]).
Let P ⊂ K be a subpseudomanifold of codimension n − 2, which represents the
Poincare dual of h (which is a homology class with, a priori, infinite support) and
let fε ∶ X̃×P → B be the maps obtained by composing Ã ∶ X̃ → K̃ and the restriction
of Fλ to X̃ × P,

f = fλ(x̃, p) = Fλ(Ã(x̃), p).

Clearly, this map f ∶X ×P → B, satisfies the assumptions on f in section 11.6, and
stable SYSE-bound on the scalar curvature from 11.6 applies. QED. ⊓⊔

Conjecture A. If a closed manifold X is SYS over a non-torsion cohomology class h
in an aspherical space K, then X admits no metrics with Sc > 0.
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This conjecture may be unrealistically strong but the special case of this, where
K admits a complete (possibly singular) metric with non-positive curvature
seems within reach.
Recall (see section 10) that a closed oriented manifold X is called
[↑̃0]-oversymplectic if
● a multiple of the fundamental cohomology class of X decomposes into product of
one and two dimensional classes,

k ⋅ [X]○ = h1 ⌣ . . . ⌣ hm,

and
● X the classes hi vanish in the cohomology of the universal covering X̃.
Also recall (see section 10) that [↑̃0]-oversymplectic manifolds, the universal covers
of which are spin, carry no metrics with Sc > 0.
Probably, the spin condition is redundant; moreover, one may merge this with the
above A as follows.
Conjecture B. Products of manifolds X as in the above A by [↑̃0]-oversymplectic
ones admit no metrics with Sc > 0.

11.12 A Few Geometric Problems and Conjectures. Conjecture C.

If a closed manifold V0 of dimension n − 1 ≥ 5, admits no metric with Sc > 0 then
Riemannian bands V diffeomorphic to V0 × [−1,1] which have Sc(V ) ≥ σ > 0, satisfy
the sharp width inequality,

width(V ) ≤ 2π

√

n − 1
σn

.

Conjecture D. Let g0 stands for the standard Riemannian metric on the unit
sphere Sn with the sectional curvature 1.
If a RIemannian metric g on Sn minus a point satisfies

g ≥ g0 and Sc(g) ≥ Sc(g0) = n(n − 1),

then g0 = g.
(If g is complete, this follows, by the relative index theorem for the Dirac operator,
see [Lla98] and (8) in section 10)
Conjecture D’. Let X be closed n-manifold, such that X minus a point admits
no complete metric with Sc > 0.
Let V be obtained by removing a small open n-ball from X, i.e. V =X∖Bx0(ε), and
let g be a metric on V with Sc(g) ≥ σ > 0. If the ρ-neighbourhood with respect to g
of the boundary sphere Sn−1

= ∂V = ∂Bx0(ε) is homeomorphic to Sn−1
× [0,1], then

ρ ≤
20
√

σ
.
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(If X is a SY S-manifold, then metrics g with Sc(g) ≥ σ on V do satisfy this in-
equality as it follows by Schoen–Yau’s kind of argument adapted to manifolds with
boundaries as in section 11.6.
On the other hand, the conjecture must be vacuous for simply connected manifolds
X, since X∖{x0} for such an X contracts to an (n − 2)-subpolyhedron in X∖{x0},
which, most probably, implies that X∖{x0} admits a complete metric with Sc > 0.)
Conjecture E. Let V be a Riemannian manifold homeomorphic to T

2
× [−1.1] with

sectional curvature everywhere ≥ 1. Then (this was already mentioned in section 3)

width(V ) = dist(∂
−

(V ), ∂
+

(V )) ≤ π/2,

(The simplest unsettled case is where V is a domain in S3 or, more generally if it
admits an isometric embedding or immersion into S3.
Below is a far reaching generalisation of the spherical case of E.
Conjecture E

+∞

. Let Y ⊂ SN , N = n,n+1, . . . ,∞, be a submanifold homeomorphic
to the product of n closed manifolds of dimensions ≥ 1, e.g. homeomorphic to the N -
torus and let U ⊃ Y be a neighbourhood of Y in SN which admits a retraction to Y .
Then

dist(Y, ∂U) ≤ arcsin
1
√

n
.

But, in reality, one has no estimate for this distance even for high codimensional
tori in spheres, which suggests the following conjecture opposite to E

∞

.

Conjecture −E. Every compact smooth manifold Y n of dimension n admits a smooth
embedding to the sphere S2n such that all principal curvatures of the image satisfy

curv(Y n
⊂ S2n

) ≤ const < ∞,

say for const = 1000.
It is hard to believe in the validity of either E

+∞

or -E, but something in between
may be true, e.g. the following.
Conjecture ETn. The minimal constant β, such that the n-torus admits an smooth
immersion to Sn+1 with principal curvatures ≤ β is asymptotic, for n→∞, to

const ⋅ nβ for some β > 1 .

Problem F. Let U ⊂ RN and V ⊂ Rn, n ≤ N , be open subsets, e.g. balls BN
(r) and

Bn
(R), R ≥ r. Evaluate the minimal β = β(U,V ) > 0, such that V admits a smooth

locally expanding immersion/embedding51 to U with the principal curvatures ≤ β.

In Conclusion. The above A - F are only tips of the iceberg of what we don’t know
about the scalar curvature and nearabouts.
(An outline of this “iceberg” is given in [Gro17].)

51 A a smooth map f ∶ V → U is locally expanding if the differential Df ∶ T (V ) → T (U) doesn’t
decrease the norms of the tangent vectors, ∣∣Df(τ)∣∣ ≥ ∣∣τ ∣∣ for all τ ∈ T (V ).
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