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MODULI SPACES OF FLAT TORI
WITH PRESCRIBED HOLONOMY

Selim Ghazouani · Luc Pirio

Abstract. We generalise to the genus one case several results of Thurston con-
cerning moduli spaces of flat Euclidean structures with conical singularities on the
two dimensional sphere. More precisely, we study moduli spaces of flat tori with
n cone points and a prescribed holonomy ρ. In his paper ‘Flat Surfaces’ Veech
has established that under some assumptions on the cone angles, such a moduli
space F[ρ] ⊂ M1,n carries a natural geometric structure modeled on the complex
hyperbolic space CH

n−1 which is not metrically complete. Using surgeries for flat
surfaces, we prove that the metric completion F[ρ] is obtained by adjoining to F[ρ]

certain strata that are themselves moduli spaces of flat surfaces of genus 0 or 1,
obtained as degenerations of the flat tori whose moduli space is F[ρ]. We show
that the CH

n−1-structure of F[ρ] extends to a complex hyperbolic cone-manifold
structure of finite volume on F[ρ] and we compute the cone angles associated to
the different strata of codimension 1. Finally, we address the question of whether
or not the holonomy of Veech’s CH

n−1-structure on F[ρ] has a discrete image in
Aut(CH

n−1) = PU(1, n − 1). We outline a general strategy to find moduli spaces
F[ρ] whose CH

n−1-holonomy gives rise to lattices in PU(1, n − 1) and eventually we
give a finite list of F[ρ]’s whose holonomy is a complex hyperbolic arithmetic lattice.

1 Introduction

For any non-negative integers g and n such that 2g − 2 + n > 0, we denote by Mg,n

the moduli space of genus g Riemann surfaces with n marked points, viewed as a
complex orbifold (see [ACG11, Chap. XII] for instance).

�

In their paper [DM86] on the monodromy of Appell–Lauricella hypergeometric
functions, Deligne and Mostow bring to light complex hyperbolic structures on M0,n

for n ≥ 4, parametrised by a n-tuple μ = (μ1, . . . , μn) ∈]0, 1[n such that
∑n

i=1 μi = 2.
They prove that if μ verifies the arithmetic criterion

(INT) ∀i, j with i �= j : μi + μj < 1 =⇒ (
1 − μi − μj

)−1 ∈ Z ,

then the holonomy of the associated complex hyperbolic structure is a lattice in the
automorphism group

PU(1, n − 3) = Aut
(
CH

n−3
)
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of the (n − 3)-dimensional complex hyperbolic space CHn−3. The above criterion
can be refined to the following (see [Mos86]):

(ΣINT) ∀i, j with i �= j : μi + μj < 1 =⇒ (
1 − μi − μj

)−1 ∈
{

Z if μi �= μj ,
1
2Z if μi = μj .

In [Thu98], Thurston gives a geometric interpretation of these complex hyperbolic
structures in terms of flat metrics with cone type singularities on the sphere S2.
Define θ = (θ1, . . . , θn) ∈]0, 2π[n by θi = 2π(1 − μi) for i = 1, . . . , n. One can
think of M0,n as the set of flat metrics with n cone points of respective angles
θ1, . . . , θn on the sphere with area 1 (up to isometry), which we denote by M0,θ.
Parametrising such flat structures naturally endows M0,θ with a complex hyperbolic
structure (see [Thu98], [Sch] or [Par06]) which coincides with the one considered in
[DM86]. Thurston describes the metric completion of M0,θ in terms of degenerations
of flat spheres and recovers that the criterion (ΣINT) is essentially equivalent1 to
the metric completion of M0,θ being an orbifold and therefore a lattice quotient of
the complex hyperbolic space CHn−3.

In [Vee93], Veech extends to compact (oriented) surfaces of arbitrary genus sev-
eral basic results of Thurston’s approach. The starting point is a theorem of Troy-
anov [Tro86] asserting that, given g ≥ 0 and n > 0 such that 2g − 2 + n > 0, if
θ = (θi)n

i=1 ∈]0, ∞[n satisfies the following discrete Gauß-Bonnet formula
n∑

i=1

(
2π − θi

)
= 2π

(
2 − 2g

)
, (1)

then, given a genus g closed oriented surface Ng, a conformal structure on it and
n distinct points p1, . . . , pn on Ng, there exists a unique flat structure of area 1
on Ng which is compatible with the given conformal structure, singular exactly at
p1, . . . , pn and such that it is locally isometric at pi to a Euclidean cone of angle θi,
this for every i = 1, . . . , n.

Troyanov’s theorem gives a natural isomorphism between Mg,n and the set,
denoted by Mg,θ, of isomorphism classes of flat structures on Ng with n cone points
of angle data θ. The naive hope that a complex hyperbolic structure would arise
when parametrising such a moduli space is doomed to failure. Such a fact actually
happens in the genus 0 case because in that case prescribing the cone angles is equiv-
alent to prescribing the parallel transport along any closed curve on the punctured
surface. But this does not hold for a n-punctured surface Ng,n = Ng \ {pi} of higher
genus.

In [Vee93], Veech shows that the level sets of the (locally well defined) linear
holonomy map

Mg,θ −→ H1
(
Ng,n, U

)

1 ‘Essentially equivalent’ means ‘up to some particular cases’ which all have been classified (in
[Mos88]). In particular, when n ≥ 5, there is only a finite number of such particular cases.
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form a real analytic foliation of Mg,θ whose leaves are holomorphically embedded
complex manifolds of dimension 2g − 3 + n. Actually, this map is not well defined
at the orbifold points of Mg,θ. To bypass this difficulty, one has to work, as Veech
did with great care, not on this moduli space but on its orbifold universal covering.
When g = 0, this foliation is trivial and has only one leaf, which is the whole
moduli space M0,θ, on which one can put a natural geometric structure modeled on
a homogeneous space. A geometric way to do this is as follows: given a flat sphere
with n prescribed conical singularities, one can develop it into the Euclidean plane
and get a (2n−2)-gon from which the original flat sphere can be reconstructed. The
conical angles θi being prescribed, the polygons obtained this way depend only on
n − 2 complex parameters and the area form is a non-degenerate Hermitian form
in these parameters if none of the θi’s is an integer multiple of 2π. This method,
which was first introduced by Thurston in [Thu98] in the genus 0 case, extends
very naturally to the leaves of Veech’s foliation, whatever the genus is: one can
parametrise locally such a leaf by means of Euclidean (4g + 2n − 2)-gons which
depend only on 2g + n − 2 complex parameters. We call linear parametrisation such
a parametrisation.

Given two integers p, q ∈ N, let U(p, q) be the group of linear automorphisms
of Cp+q which leave invariant the standard Hermitian form hp,q of signature (p, q).
The projectivisation of the set of z ∈ Cp+q such that hp,q(z) > 0 is known as the
(indefinite when p > 1) complex hyperbolic space of type (p, q) and will be denoted
by CH

p+q−1
p . It is homogeneous under PU(p, q), cf. [Wol11, §12.2].

Let θ ∈ (R∗
+\2πZ)n be such that the Gauß-Bonnet relation (1) holds true.

Theorem ([Vee93]). There exists (pθ, qθ) ∈ N2 with pθ + qθ = 2g + n − 2 such
that the natural linear parametrisations of the leaves of Veech’s foliation together
with their area form endow them with a

(
CH

2g+n−3
pθ , PU(pθ, qθ)

)
-structure.

Moreover, in [Vee93, §14], Veech performs a lengthy explicit calculation leading
to the conclusion that the geometric structure on the leaves of the preceding theorem
is complex hyperbolic (i.e. pθ = 1) in exactly two cases:

(i) g = 0 and all the conical angles θi are in ]0, 2π[; or
(ii) g = 1 and all the angles θi are in ]0, 2π[ except one which lies in ]2π, 4π[.

As said above, the former case was treated in [Thu98] (as well as in [DM86] but
with the approach involving hypergeometric functions). In this paper we investigate
the latter case.

Let θ = (θi)n
i=1 satisfying (1) for g = 1 and n > 1 and such that condition (ii)

above holds true. For any linear holonomy ρ, we denote by F[ρ] the leaf of Veech’s
foliation on M1,θ that corresponds to (the orbit [ρ] through the action of the pure
mapping class group of) ρ. The analytic and very explicit description of Veech’s
foliation carried out in the twin paper [GP] shows that when ρ is rational (meaning
that the subgroup Im(ρ) ⊂ U is finite), F[ρ] is an algebraic suborbifold of M1,n.

In this paper we give an extrinsic geometric description of the metric completion
of such a leaf F[ρ] for the complex hyperbolic structure given by Veech’s Theorem
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above. The main theorem of the paper is a generalisation of a result of Thurston in
[Thu98].

Theorem 1. Let ρ ∈ H1(N1,n, U) be a rational linear holonomy data.

(1) The metric completion of F[ρ] has a stratified analytic structure whose strata
are finite unramified covers of lower dimensional rational leaves of Veech folia-
tions on Mg′,n′ with g′ = 0 and n′ ≤ n + 1 or with g′ = 1 and n′ ≤ n − 1; there
is a finite number of such strata.

(2) This metric completion, denoted by F[ρ] hereafter, is a complex hyperbolic cone
manifold of dimension n − 1, whose volume is finite.

(3) The cone angles around strata of complex codimension 1 of F[ρ] can be com-
puted using appropriate surgeries.

The genus 0 case invites us to wonder if some of these leaves F[ρ] are lattice quo-
tients of CHn−1. Unfortunately, the computation of the cone angles around codimen-
sion 1 strata (point (3) of the previous theorem) shows that as soon as n > 2, the
cone angle around a certain stratum of codimension 1 (formed by collisions involving
the only cone point whose angle is larger than 2π) is bigger than 2π. This prevents
any leaf F[ρ] from being a lattice quotient provided that n ≥ 3.

Nevertheless, it does not exclude the possibility that the holonomy of the complex
hyperbolic structure is a lattice in PU(1, n− 1), as both Mostow and Sauter showed
that it can happen when g = 0 (see [Mos88,Sau90]). As a nice corollary of Theorem 1,
we obtain that the holonomy of a finite number of moduli spaces F[ρ] is an arithmetic
lattice. More precisely:

Corollary. Let ρ ∈ H1(N1,n, U) be such that Z[Im(ρ)] ⊂ C is discrete. Then the
image of the complex hyperbolic holonomy of (each connected component of) F[ρ] is
an arithmetic lattice in PU(1, n − 1).

This leads us to ask the question of determining all ρ such that the complex
hyperbolic holonomy of F[ρ] is a lattice. The moduli spaces F[ρ] are not always con-
nected; consequently it is more relevant to ask the aforementioned question for the
connected components of F[ρ]. Of course, one must first determine these components,
which already seems interesting and not completely trivial.

We give in Section 11 some necessary conditions for a component of F[ρ]’s holon-
omy to be a lattice. These conditions should reduce the problem to the study of a
finite number of candidates.

Finally, we would like to draw attention on a possible interpretation of our work.
If Im(ρ) = 〈exp(2iπ/n)〉 ⊂ U, the leaf F[ρ] can be seen as a stratum of the space of
meromorphic differential forms of order n on elliptic curves.

1.1 Organisation of the Paper. Section 1 is the present Introduction.
Section 2 and Section 3 are dedicated to introducing the central objects of the

article: flat surfaces and Veech isoholonomic foliations on Mg,n respectively.
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Building on [Sch,Thu98,Vee93], we introduce in Section 4 natural parametri-
sations of the leaves of Veech’s foliations that will be used in the sequel.

Section 5 is devoted to proving technical lemmas on the geometry of flat surfaces
that are crucial for describing the metric completion of F[ρ]. According to us, some
of them, such as Lemma 5.7, are missing in [Thu98] and could help to complete some
proofs in the genus 0 case.

We describe in Section 6 several surgeries on flat surfaces which are the major
tools of the paper. They allow us to reinterpret some results of [Thu98] and to
formally understand the possible ways flat tori can geometrically degenerate. This
leads to a definition of ‘geometric convergence’ for flat surfaces distinguishing limits
by taking into account not only the isometry class of the limit metric space but
also the way to degenerate to it in F[ρ]. This definition coincides with the one of
convergence for the complex hyperbolic metric but is susceptible to be generalised
to cases when Veech’s CH

p+q−1
p -structure of F[ρ] is not Riemannian. Finally, using

these surgeries and a simple inductive process, we compute by a geometric argument
the signature of Veech’s area form, recovering Veech’s result.

Sections from 7 to 9 are devoted to analysing the geometric structure of F[ρ].
In Section 7, we describe the metric completion of F[ρ] in terms of the surgeries
introduced in Section 6, while in Section 8, we prove that the complex hyperbolic
volume of F[ρ] is finite by performing an explicit calculation using special coordinates.
We finally prove in Section 9 that the metric completion of F[ρ] has the structure of
a complex hyperbolic cone manifold, which is a refinement of the stratified structure
brought to light in Section 7.

After describing a general algorithm to determine the strata appearing in the
metric completion of F[ρ], we analyse in Section 10 the specific case of tori with
two cone points. In particular, we show how the rather abstract material developed in
this article is used to analyse the (one dimensional in that case) complex hyperbolic
structure. We prove that the F[ρ] are hyperbolic surfaces with a finite number of
cone points and we compute their angles. This section strongly echoes the article
[GP]. In particular, this analysis shows that some of them are lattice quotients of
CH1.

In Section 11, we draw a strategy to answer the following question: in the case
of tori with n ≥ 3 conical points, when is the holonomy of the (n − 1)-dimensional
complex hyperbolic structure on F[ρ] a lattice in PU(1, n − 1)? We give necessary
conditions for the answer to be positive and use them to outline a strategy to reduce
the question to a finite number of candidates. We also exhibit cases, for n = 3, 4, 5, 6,
where the holonomy group of F[ρ] is an arithmetic lattice in PU(1, n − 1).

The paper ends with two short appendices. In Appendix A, after recalling some
basic points of complex hyperbolic geometry, we introduce some special coordinates
which appear useful in our study. Finally, Appendix B is devoted to the notion
of cone manifold. We focus in particular on the case of complex hyperbolic cone
manifolds.
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1.2 Notes and References. We think it could be helpful to the reader to
mention the main other mathematical works to which the present paper is linked.

As is more than obvious from the previous lines, this text must be seen as an
attempt to generalize some results of Thurston’s seminal paper [Thu98] concerning
moduli spaces of flat spheres to the case of tori. Even if the term does not appear
formally in Thurston’s paper, we believe it is fair to say that the crucial geometric
tools used by Thurston are ‘surgeries’ for objects of this type. This is a standard
but powerful technique to study flat surfaces which has been widely used in the
more specific realm of (half-)translation surfaces, see for instance [MS91, Section 6],
[MZ08] or [EMZ03] among many other papers of this field. It is then not so surprising
that surgeries play a central role in the present paper as well.

Thurston’s article [Thu98] has been very influential. Among the papers deeply
relying on it about the theory of conical flat structures on the Riemann sphere, one
can mention [Web93], [Par06], [GLL11], [BP15] and [Pas16] where some particular
cases are considered in detail. The recent paper [McM17] deserves to be mentioned as
well: in it, the author gives a more detailed treatment of the notion of cone-manifold
than in [Thu98] and obtains a nice version of the Gauß-Bonnet theorem for complex
hyperbolic cone-manifolds that he eventually uses to compute the volumes of the
Picard/Deligne–Mostow/Thurston’s moduli spaces.

As is well known, some of the main results of [Thu98] coincide with some results
obtained previously by Deligne and Mostow in the celebrated papers [DM86] and
[Mos88] (see also their book [DM93]). In the true masterpiece [DM86], they pursue
and obtain definitive results that conclude researches on the monodromy groups
of Appell–Lauricella hypergeometric functions going back at least to Picard. Their
approach is not geometric as in [Thu98] but relies essentially on arguments of analytic
and/or cohomological nature.

In addition to [Thu98] and [DM86], the other starting point of our research is the
remarkable paper [Vee93] by Veech that concerns moduli spaces of flat surfaces with
conical singularities and seems to have been deeply influenced by the two former
articles. In it, Veech establishes basic and important results concerning flat surfaces
of arbitrary genus. One can say that the methods used by Veech are a mix of the
geometric ones of Thurston, and of the analytic ones of Deligne and Mostow.

It seems to us that this paper by Veech has not received the attention it deserved
despite the importance of the results obtained therein and the interesting problems
it suggests. Some of the reasons for this could be that [Vee93] is quite long and
technical. If most of its arguments are basically elementary, the analytic treatment
used by Veech as well as some long computations at some points hide at first sight
the geometrical beauty of its main results. Note also that the topic discussed in
[Vee93] is quite general since the linear holonomies of the flat surfaces considered
in it, if unitary, are not just ±1. It seems that the researchers interested in this
subject, Veech included, have focused on the case of (half-)translations surfaces that
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is nowadays very popular and for which a lot of deep results have been obtained
during the last twenty years.

We believe that an interesting fact highlighted by our work is that both Thur-
ston’s geometric approach and Deligne–Mostow’s hypergeometric one can be gen-
eralised to the genus 1 case. As said above, this is what is done for Thurston’s
approach in the present paper. The hypergeometric approach à la Deligne–Mostow
is developed in the dizygotic twin paper [GP]. In it, we first prove that, as in the
genus 0 case for which this is well-known, Veech’s constructions of [Vee93] can be
made completely explicit when working with elliptic curves. We then specialise to
the case of elliptic curves with two marked points and are able to describe exactly
the moduli spaces of such marked tori that are algebraic subvarieties of the moduli
space M1,2: these are the modular curves Y1(N) for N ≥ 2 and we can describe very
precisely the complex hyperbolic structure constructed by Veech which each of them
carries.

Readers are encouraged to take a look at [GP] and to compare the methods and
the results of the latter to the ones of the present text.

2 Flat Surfaces

We collect in this section some well-known notions and basic results on flat surfaces.
For some general references, see [Tro86,Vee93,Tro07].

2.1 Generalities. The Gauß-Bonnet formula ensures that the only compact
orientable surface carrying a flat metric is the torus. Nevertheless, relaxing the
requirement that the metric is flat everywhere and allowing singular points make it
possible to build flat surfaces in every genus.

2.1.1 We first define the kind of singularities that will be allowed for flat surfaces
in this paper. For any θ > 0 distinct from 2π, the Euclidean cone of angle θ,
denoted by Cθ throughout the paper, is the quotient of R+ × (R/θZ) obtained by
contracting {0} × (R/θZ) onto a point (called the apex of the cone) endowed with
the flat metric dr2 + r2dt2 in the standard coordinates (r, t) ∈ R>0 × (R/θZ) (see
Figure 1).

Figure 1: The Euclidean cone Cθ of angle θ ∈]0, 2π[ embeds in R
3.
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For any positive ε, we denote by Cθ(ε) the image of [0, ε] × (R/θZ) into Cθ and
the superscript symbol ∗ will mean that the apex has been removed.

Definition 2.1 ([Tro86]). A flat surface with conical singularities is an ori-
entable compact surface endowed with a flat Riemannian metric singular at n points
p1, . . . , pn, such that any pi has a neighbourhood isometric to a Euclidean cone.

For the sake of simplicity, we will use flat surface throughout the paper instead
of flat surface with conical singularities. A singular point p is called a cone point or
a conical point and the angle θp of the associated Euclidean cone its cone angle.
The quantity 2π − θp is called the curvature at p.

2.2 Examples. We describe below some classical examples of flat surfaces.

2.2.1 A very intuitive example of a flat structure is given by the surface of a
cube embedded in R3. The pull-back of the ambient metric defines a flat metric on
the 2-dimensional sphere away from the edges and the vertices. On the edges, away
from the vertices, the pulled-back metric can be extended in such a way that it is
still flat on each edge (this corresponds to the intuitive operation of bending the
faces around an edge). We have defined a flat metric on the 8-punctured sphere. A
neighbourhood of each vertex is isometric to a neighbourhood of a Euclidean cone
of angle 3π/2.

2.2.2 The case of the cube considered above generalises in a straightforward
manner to the boundary of any polyhedron P in the 3-dimensional Euclidean space:
the natural flat structures of the polygonal 2-faces of ∂P glue together along the
straight edges of ∂P and induce a global flat structure which is regular outside the
vertices of P and with conical singularities at these points.

2.2.3 Another way to build flat surfaces consists in gluing isometrically the
sides of only one Euclidean polygon. We will see later on in Section 4 that, in some
sense to be made precise, every flat surface can be built this way. This approach is
quite useful and will be extensively used throughout this paper.

In order to give a concrete example, we consider the case of a hexagon. One can
glue its sides in three essentially different ways (see [JV01, p.89]) to build (topologi-
cally) a torus as in Figure 2 below which respectively give after gluing the three tori
with two marked points of Figure 3.

Now assume that H is a Euclidean hexagon and choose one of the three gluing
patterns of Figure 2, say Pattern 2. We choose H such that the sides which are
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Figure 2: Gluing patterns for flat tori with two singular points.

glued together have the same length (see Figure 4). The Euclidean metric on the
hexagon can be extended to the whole torus, except at the points corresponding to
the vertices of the hexagon. These points have a punctured neighbourhood isometric
to a Euclidean cone with angle α + γ + μ for the first point and β + δ + ν for the
second one. Since H can be triangulated using four Euclidean triangles, one obtains
that α + β + γ + δ + μ + ν = 4π.

Rewriting this equality
(
2π − (α + γ + μ)

)
+
(
2π − (β + δ + ν)

)
= 0 ,

one obtains that the sum of the curvatures at the singular points vanishes, which is
exactly Gauß-Bonnet formula in this case (see §2.3.2 below).

2.2.4 A popular and very much studied example of flat surfaces is given by the
so-called (half-)translation surfaces, namely pairs (X, ω) (resp. (X, η)) where
X is a compact Riemann surface and ω (resp. η) an abelian (resp. a quadratic)
differential on it. The flat metric associated to such a pair is just |ω|2 (resp. |η|). Note
that these objects can be characterised as the flat surfaces whose linear holonomy
(cf. Section 2.4 below) is trivial (resp. has values in {±1}) hence they form a very
particular class of flat surfaces.

2.2.5 A flat cylinder C is the metric space one gets by gluing two opposite
sides of a Euclidean rectangle. It is a flat surface with two totally geodesic boundary
components. Its length is the length of the sides glued together and its width is
the length of one of its boundary component. More intrinsically, the length of C is
the distance between its two boundary components and its width is its systole (its
systole being the length of the shortest essential closed curve).

2.2.6 A saddle connection is a totally geodesic path joining two singular
points and meeting no singular points in its interior.

Figure 3: The flat tori with 2 cone points corresponding to the gluing patterns of Figure 2.



1298 S. GHAZOUANI, AND L. PIRIO GAFA

Figure 4: A flat torus with two cone points built from gluing the sides of the Euclidean
hexagon at the top.

2.3 On the geometry of flat surfaces. In the subsections below, we collect
some classical material about the geometry of flat surfaces and fix some definitions
and notations that will be used in the sequel.

2.3.1 Flat surfaces as length spaces. For a general exposition of the theory of
length spaces, we refer to [BH99] or to [Gro99] for the proofs of the results stated
in this subsection.

Let N be an arbitrary flat surface with cone type singularities. If γ : [0, 1] −→ N
is a piecewise C1-path, one defines its length as

L(γ) =
∫

[0,1]
|γ′(t)|dt .

As usual, the distance between two points x, y ∈ N is defined as

d(x, y) = inf
γ

L(γ)

where γ is taken amongst all the C1-paths such that γ(0) = x and γ(1) = y.
The following basic results will be extensively used throughout the article:
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• The map d : N × N −→ R+ is a distance on N . Whenever we refer to a
distance on the flat surface N , it will be this one.

• For any two points x, y ∈ N , there exists a piecewise geodesic path γ from x
to y such that d(x, y) = L(γ).

• For any non-trivial free homotopy class c of closed curves on N , there exists
a closed, piecewise geodesic path ϕ whose free homotopy class is c such that
L(ϕ) = inf{γ | [γ]=c} L(γ).

• There exists a closed, piecewise geodesic path σ whose free homotopy class
is non-trivial such that L(σ) = inf{γ | [γ]�=0} L(γ).

From now on, we will use the notation N for a surface, which depending on the
context will be understood as endowed with either a topological, a flat or a conformal
structure. We will also use the notation Ng,n when we will need to specify the genus
and/or the number of cone points (resp. marked points) of the flat (resp. conformal)
structure. Finally whenever we will refer to the (co)homology groups H1(Ng,n, G)
or H1(Ng,n, G) for a given group G, Ng,n will stand for the underlying topological
surface of genus g with n punctures.

2.3.2 The Gauß-Bonnet formula. A regular Riemannian metric h on a surface
Σ enjoys the fact that its curvature function κh satisfies

∫

Σ
κhdμh = 2πχ(Σ)

where μh is the measure on Σ induced by h and χ(Σ) is the Euler characteristic of Σ.
This relation is called the Gauß-Bonnet formula and can be generalised to the case
of flat surfaces with conical singularities. One must think of the associated singular
Riemannian metric as a metric whose curvature is concentrated at its singular locus,
and therefore think of its curvature function as a linear combination of Dirac masses
at the singular points.

If N is a compact orientable flat surface with n singular points of respective cone
angles θ1, . . . , θn, the following Gauß-Bonnet formula holds true:

n∑

i=1

(2π − θi) = 2πχ(N).

We refer to [Tro86, §3] or [Vee93, §3] for proofs and more details on this matter.

2.3.3 Exponential maps. Let p be a regular point of N and denote by rp the
distance from p to the set of singularities. For r > 0, one denotes by D(r) the
Euclidean disk of radius r centered at the origin. We will say that ‘the’ exponential
map ip at p is the map (well defined and unique up to rotations)

ip : D(rp) −→ N

such that ip(0) = p and which is a local isometry. This map can be extended to the
whole Euclidean plane except for a countable union of semi-lines which correspond
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to the geodesics starting at p which cannot be extended because they meet a singular
point. The proof is elementary and left to the reader.

This definition generalises at a singular point p of N . If θ stands for the cone
angle at p, let rp be the biggest r > 0 such that the portion of cone Cθ(r) (cf. §2.1.1)
can be isometrically embedded in N at p. Then one defines the exponential map
at the cone point p as the corresponding embedding

ip : Cθ(rp) −→ N

which is unique, up to the isometries (i.e. rotations) of the cone Cθ. This map enjoys
the same properties as the exponential map at a regular point.

2.4 Affine and Linear Holonomy of a Flat Surface. If N is a flat surface,
the punctured surface N∗ = N\S (where S is the set of singular points of N) is
endowed with a (non complete) flat metric which is everywhere regular. Another
way to phrase this is to say that N\S carries a (C, Iso+(C))-structure (Iso+(C)
denotes the group of orientation preserving Euclidean isometries of C 
 R2).

With such a structure comes a holonomy representation

Hol : π1(N∗) −→ Iso+(C) , (2)

whose class for the action by conjugation of Iso+(C), is a geometric invariant of the
flat structure. The group Iso+(C) being the set of affine transformations of the form
z �→ az + b with a ∈ U and b ∈ C, it is isomorphic to the semi-direct product U � C.
The projection onto the first factor U is a group homomorphism and post-composing
hol by this projection produces a new representation

ρ : π1

(
N∗) −→ U

called the linear holonomy of the considered flat surface.
The group U being commutative, ρ factors through the abelianisation of π1(N∗)

namely the first homology group H1(N∗, Z) of the punctured surface N∗. Let n be the
cardinality of S and denote by p1, . . . , pn the n cone points of N . If θ = (θ1, . . . , θn)
is the associated angle datum (i.e. the cone angle at pk is θk for any k) and if δk is
a simple closed curve turning anticlockwise around pk, then necessarily ρ(δk) = eiθk

for k = 1, . . . , n. We denote by H1(N∗, U, θ) the set of Z-linear forms on H1(N∗, Z)
which maps δk onto eiθk for every k:

H1
(
N∗, U, θ

)
=

{

ρ ∈ Hom
(
H1

(
N∗, Z

)
, U
) ∣
∣
∣ ρ
(
δk

)
= eiθk for k = 1, . . . , n

}

.

In what follows, we will consider ρ as an element of this space. Remark that
basically, ρ is nothing else but the parallel transport of the flat Riemannian metric
on N∗ being considered.
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2.5 Isometries. We end this section with a few words about the group
Iso+(N) of direct isometries of a given compact flat surface N .

First, remark that this group is finite since it embeds into the group of biholo-
morphisms of the underlying Riemann surface which is known to be finite. Second,
the subgroup of Iso+(N) made of elements fixing a given cone point must be cyclic,
since its elements are completely determined by their differential at the fixed point
which is a rotation. It follows easily that the subgroup PIso+(N) formed by pure
direct isometries of N (here ‘pure’ means that the considered isometries fix pointwise
the set of cone points) is necessarily cyclic.

3 Veech’S Isoholonomic Foliations on Mg,n

3.1 Moduli Spaces of Flat Surfaces and Troyanov’s Theorem. Let N
be a compact oriented surface of genus g with n marked points p1, . . . , pn and θ =
(θi)n

i=1 a set of angle data satisfying the Gauß-Bonnet relation (1). Since we are only
interested in this case, and because making such an assumption will simplify the
exposition, we will always assume that

none of the angles θi is an integer multiple of 2π. (3)

We define Eg,θ as the set of flat structures on N such that the metric is singular
at pi with a cone angle θi at this point, up to the action of Diff+

0 (N, S) where
S = {p1, . . . , pn}. One can think of Eg,θ as the set of flat surfaces of genus g with
cone angles θ with a marking of its fundamental group. For more details on this
construction and the ones to come, we refer to [Vee93, Theorem 1.13].

Notice that a flat structure defines canonically a conformal structure on N . Away
from the singularities, this conformal structure is given by the regular flat structure.
At a singular point p of cone angle θp, there is an essentially unique local coordinate
z centered at p such that the flat metric is |zαpdz|2 with αp = (θp/2π)−1. By means
of z, one extends the conformal structure of the punctured surface through p. Since
this can be done for every conical singularity of N , one obtains a well-defined map

Eg,θ −→ Teichg,n , (4)

where Teichg,n denotes the usual Teichmüller space of conformal structures on a
surface of genus g with n marked points. The remarkable fact is that this map is
one-to-one. This is a consequence of Troyanov’s theorem stated below.

Theorem ([Tro86]). Every conformal structure on N is induced by a flat metric
with conical singularities of angle θi at pi for i = 1, . . . , n. Moreover, this flat metric
is unique up to normalization.

The proof (given in [Tro86]) essentially consists in solving the PDE that the
metric tensor associated to a given conformal structure must satisfy. For more details,
we refer to the original article [Tro86] which is very pleasant to read.
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Consequently, one has a one-to-one correspondance Eg,θ 
 Teichg,n allowing
these two moduli spaces to be identified. In particular, this endows Eg,θ with the
structure of a complex manifold of dimension 3g − 3 + n.

3.2 Veech’s Foliations. Since we are considering marked flat structures, the
linear holonomy map

hol = holθ : Teichg,n 
 Eg,θ −→ H1
(
Ng,n, U

)
(5)

which associates its linear holonomy morphism to a flat structure, is well defined.
Clearly, hol maps Teichg,n into H1(Ng,n, U, θ).

From hypothesis (3), it follows that the trivial character (the one sending any
holomogy class onto 1 ∈ U) does not belong to H1(Ng,n, U, θ). This case being
excluded, the following theorem holds true:

Theorem ([Vee93]). The linear holonomy map (5) is an open real-analytic submer-
sion. Moreover, for any ρ ∈ Im(hol), the level set hol−1(ρ) is a complex submanifold
of Teichg,n of complex dimension 2g − 3 + n.

This result implies in particular that the level sets Fρ = hol−1(ρ) for ρ ∈ Im(hol)
form a real-analytic foliation by complex submanifolds of Teichg,n. This foliation will
be denoted by F (θ) (or just F for short, when θ has been fixed) and will be called
the Veech foliation of Teichg,n associated to θ.

3.3 Invariance by the Pure Mapping Class Group. We now explain how
this foliation descends to Mg,n. The pure mapping class group PMCGg,n acts on
Teichg,n preserving Veech’s foliation: namely any element f ∈ PMCGg,n sends Fρ

onto Ff∗ρ. Hence the foliation F (θ) factors through the projection

Teichg,n −→ Mg,n = Teichg,n/PMCGg,n (6)

to define a singular foliation on the moduli space Mg,n. The latter is denoted by
F(θ) (or just by F when θ is fixed) and will also be called Veech’s foliation.
Strictly speaking, since PMCGg,n acts with fixed points on Teichg,n, one should
more rigorously speak of F(θ) as an ‘orbifoliation’ on Mg,n. However, because it will
not be the source of real problems, we will ignore this subtlety in the whole paper.

• We will now refer to a specific leaf F[ρ] where [ρ] is the orbit of an element
of H1(Ng,n, U, θ) under the action of PMCGg,n. Note that it is the image of
Fρ ⊂ Teichg,n by the quotient map (6).

• We say that F[ρ] is a leaf of Veech’s foliation. That is not rigorously correct,
because usually, in foliation theory, one demands that leaves be connected.
It is actually proven in [GP, §4.2.5], through some explicit analytic computa-
tions, that F[ρ] can have several distinct connected components. Nevertheless,
we will refer below to the F[ρ]’s as leaves for convenience.

• Since PMCGg,n acts on H1(Ng,n, U, θ) preserving its symplectic form, the
foliation has a transverse symplectic structure of dimension 2g.
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3.4 Geometric Structures on the Leaves. Let p and q be non-negative inte-
gers and let

hp,q : (z, w) �−→
p∑

i=1

ziwi −
p+q∑

j=p+1

zjwj

be the standard Hermitian form of signature (p, q) on V = Cp+q. Let V+ be the set
of elements z ∈ Cp+q such that hp,q(z, z) > 0 and let CH

p+q−1
p be the image of V+

in CP
p+q−1. The group of automorphisms of hp,q, namely PU(p, q), acts transitively

by biholomorphisms on CH
p+q−1
p , see [Wol11, §12.2]. Note that for p = 1, CH

q
1 is

nothing else but the usual complex hyperbolic space CHq.
Recall that we are assuming that hypothesis (3) holds true: the angle datum

θ = (θi)n
i=1 ∈]0, +∞[n is supposed to be such that θi /∈ 2πZ for any i = 1, . . . , n.

Theorem ([Vee93]). There exists a pair of integers (p, q) = (pθ, qθ) ∈ N2 with
p + q = 2g − 2 + n, such that the leaves of Veech’s foliation F (θ) on Teichg,n are

endowed with natural (CH
p+q−1
p , PU(p, q))-structures. These geometric structures

are invariant under the action of the pure mapping class group hence can be pushed-
forward on the leaves of Veech’s foliation F(θ) on Mg,n.

In [Vee93, §14], Veech gives an explicit closed formula for the signature (pθ, qθ)
as a function of θ. We explain briefly where this geometric structure comes from.
Consider ρ ∈ H1(Ng,n, U, θ) in the image of holθ and consider the associated leaf
Fρ ⊂ Teichg,n. Given a flat surface in it, one can consider its full Euclidean holon-
omy (2). Since its linear part is fixed (and equal to ρ), the meaningful geometric
information is contained in the translation part of this full holonomy, which can be
viewed as an element of the projectivisation of a certain twisted cohomology group
denoted here by H1

ρ(Ng,n, C). One can then construct a relative period map

Fρ −→ P
(
H1

ρ

(
Ng,n, C

))
. (7)

Veech (and previously Thurston in [Thu98] for flat surfaces of genus 0) proves
that the preceding map is a local biholomorphism (see [Vee93, Theorem 0.6]). More-
over, one can define a non-degenerate Hermitian form hρ on H1

ρ(Ng,n, C) (which is
actually the area of the corresponding flat surface) such that the relative period
map lands in P+(H1

ρ(Ng,n, C)), where the latter stands for the set of complex lines
in H1

ρ(Ng,n, C) on which hρ is positive. Thus the target space of (7) is nothing else
but a model of CH

p+q−1
p and any element f of the PMCGg,n induces an isomorphism

of (CH
p+q−1
p , PU(p, q))-structures

f :
(
Fρ, hρ

) −→ (
Ff∗ρ, hf∗ρ

)

(see [Vee93, Theorem 0.7]; this amounts to saying that changing the marking of a
flat surface does not change its area).
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Except for very few cases, those CH
p+q−1
p -structures are known not to be com-

plete. The term ‘complete’ has to be understood here in the sense of geometric struc-
tures, cf. [Thu97, §3.5]. For geometric structures modeled on a (possibly indefinite)
complex hyperbolic space CH

p+q−1
p , this coincides with the fact of being geodesically

complete for the associated Levi–Civita connection (see Proposition 1.2 of [Tho15]
for instance). A more geometric description of some of those structures in the fol-
lowing sections will make this fact obvious.

4 Linear Charts on the Leaves of Veech’s Foliation

In this section we present material about local parametrisations of moduli spaces of
flat surfaces. Although this material is well known, there is no standard point of view
or unified theory of these parametrisations. Depending on the context, parameters
obtained from gluing Euclidean polygons, analytic calculations, twisted cohomology
or a combination of several of these are better suited to formalize an idea or to
simply perform a computation. Nevertheless all these points of view (to be detailed)
are essentially the same. References developing various material are [Thu98, Section
3], [GP], [Sch] and [Vee93, Sections 9,10 and 11].

For the remainder of the section g, n and ρ : H1(Ng,n, Z) −→ U are fixed. We
also suppose that 2g + n − 3 > 0 in order for F[ρ] to have positive dimension.

4.1 Polygonal Models for Flat Surfaces. We describe here a geometrically
intuitive local parametrisation of Fρ. Take N a flat surface in Fρ such that N
can be recovered from gluing isometrically suitable sides of a Euclidean polygon P
with 2k sides whose vertices project to singular points. Necessarily, k = 2g − 1 + n.
We identify to C the Euclidean plane in which P lies in and associate to each side
the corresponding complex number zi, 1 ≤ i ≤ 2k (with the convention that P is
positively oriented relatively to its interior) defined by

zi = end point of the side − initial point of the side .

Assuming that (the side associated to the complex number) zi is paired with (the side
associated to) zk+i, the 2k-tuple (z1, . . . , z2k) must satisfy the following relations:

2k∑

i=1

zi = 0 and
∣
∣zi

∣
∣ =

∣
∣zk+i

∣
∣ for i = 1, . . . , k .

Note that since we require that zi be paired with zi+k, the zj ’s for j = 1, . . . , 2k
do not necessarily appear in cyclic order (see Figure 5 for instance). Each complex
number ρi = zi/zk+i ∈ U is the holonomy of a curve (which is closed in the corre-
sponding flat surface N) joining the middle of zi to the middle of zk+i and therefore
belongs to Im(ρ). One rewrites the previous equations as

2k∑

i=1

zi = 0 and zi = ρi zk+i for i = 1, . . . , k . (8)
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Figure 5: Polygonal model for a genus 2 surface with two cone points.

After eliminating zk, zk+1, . . . , z2k, one sees that z = (z1, . . . , zk−1) ∈ Ck−1 com-
pletely characterises the polygon P and therefore the associated flat surface N .

Any (k − 1)-tuple u = (u1, . . . , uk−1) close to z in Ck−1 defines a polygon Pu

whose sides satisfy the equations above. Performing the associated gluing (meaning
that one glues the side associated to ui to the one associated to ui+k = ρ−1

i ui for
i = 1, . . . , k − 1) builds another element of Fρ.

Let U ⊂ Ck−1 be a small open subset containing z such that all the 2k-gons
corresponding to elements of U are non-degenerate. One defines a map

ϕ : U −→ Fρ

by associating to each u ∈ U the renormalized flat surface associated to Pu,
that is the one of area one. Notice that ϕ is not locally injective since ϕ(λu) = ϕ(u)
for all (λ, u) ∈ C∗ × U such that λu ∈ U . That being said, ϕ induces a map
ψ : V −→ Fρ where V = PU is the image of U in P(Ck−1). It is possible to prove
that ψ is a local biholomorphism for the structure inherited as a leaf of a foliation
of Teichg,n as has been done by Veech, see [Vee93, Lemma 10.23]. Nonetheless, we
want to adopt an intrinsic point of view on the geometry of Fρ and will therefore
ignore Veech’s results.

We remark that ψ : V −→ Fρ is a local homeomorphism:

• The fact that ψ is one-to-one onto its image follows straightforwardly from the
following remark: since we are looking at marked flat structures, any isometry
preserving the marking between close surfaces in the parametrisation V must
come from an isometry of the polygons themselves being the identity on the
boundary of the polygon; and therefore be the identity.

• The fact that ψ is onto is a consequence of the fact that the polygonal model
survives small deformations.

We will actually ignore the second point and define a structure of (complex)
manifold on Fρ using ψ. Two details remain to be settled:

(1) we have been able to build ψ only if N is built out from gluing sides of a
polygon. We now need to extend this construction to the general case;
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(2) we need to prove that if two charts have overlapping images, then the transition
maps are biholomorphisms.

The first difficulty can be settled by introducing the notion of pseudo-polygon.
We follow here [Sch]. A pseudo-polygon is a flat metric on a (closed) disk whose
boundary is locally isometric to a piecewise geodesic path in C. By developing a
pseudo-polygon, we can also define it as an immersion of the closed disk into the
plane whose boundary is piecewise geodesic.

Proposition 4.1. Every flat surface N can be built out from gluing sides of a
pseudo-polygon.

The proof of this proposition is carefully done in the case g = 0 in [Sch], and in
the general case in [Vee93]. The crucial point is the existence of a totally geodesic
triangulation (see Lemma 6.23 in [Vee93] or the construction of the Delaunay decom-
position that we will detail in Section 5) for a given flat surface N). Starting from
there, one easily checks that for any graph Γ in the 1-skeleton of such a triangula-
tion such that N\Γ is simply connected, then (the metric completion for the length
metric of) the latter is a pseudo-polygon.

The main remark at this point is that the parametrisation built when N comes
from a polygonal model straightforwardly generalises to the case when N is built out
from a pseudo-polygonal model, simply by immersing (using the developing map of
the flat structure) such a pseudo-polygon in C. According to Proposition 4.1, every
surface has a pseudo-polygonal model and therefore the maps ψ built this way form
an atlas of charts for Fρ.

From now on, a local parametrisation (z1, . . . , zk−1) arising in this way will be
referred to as a polygonal parametrisation.

4.2 Area form and Linear Parametrisation. Another very important
remark at this point is that a polygonal parametrisation comes with a natural Her-
mitian form which is the signed area of the corresponding flat surface. If U is an
open subset of Ck−1 on which is defined a polygonal parametrisation ϕ of Fρ, we
denote by Aϕ,U the corresponding Hermitian form.

The proof that Aϕ,U is actually a Hermitian form in z = (z1, . . . , zk−1) goes the
following way: every immersed pseudo-polygon can be triangulated in such a way
that each side is a geodesic path joining two edges. Let T1, . . . , TL be the triangles
of the triangulation. For any l, the area of Tl is

A(Tl) =
1
2
Im (zTl

wTl
)

where zTl
and wTl

are the complex numbers associated to two consecutive sides of Tl,
oriented in such a way that they form a direct basis of C (seen as a 2-dimensional real
vector space). Both zTl

and wTl
are linear combinations of z1, . . . , z2k and therefore

of z1, . . . , zk−1 thanks to (8). For any l, the area A(Tl) is a Hermitian form in z.
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Since the area of the whole surface is given by

Aϕ,U (N) =
L∑

l=1

A(Tl) ,

it follows that Aϕ,U is indeed a Hermitian form in (z1, . . . , zk−1).
The next proposition describes the regularity of the transition maps and settles

point (2) of Section 4.1.

Proposition 4.2. Let (ϕ1, U1) and (ϕ2, U2) be two polygonal parametrisations of
Fρ such that W = ϕ1(U1) ∩ ϕ2(U2) ⊂ Fρ is non-empty, connected and sufficiently
small for the projectivisations ψi : PUi → Fρ of the ϕi’s (see above) to induce
isomorphisms between ψ−1

i (W ) and W , for i = 1, 2.
Then ψ−1

2 ◦ ψ1 : ψ−1
1

(
W
) −→ ψ−1

2

(
W
)

is the restriction of the projectivisation
of a linear map g ∈ GLk−1(C) such that g∗Aϕ1,U1 = Aϕ2,U2 .

Proof. Let P and Q be two polygonal models for a flat surface N , and immerse P
in C. Let z1, . . . , z2k be the complex numbers associated to the sides of P . Consider
now a side wi of Q, and develop it in C starting from an initial copy of P (say
P0) and gluing a copy Pi+1 of P to a side of Pi every time it is necessary to keep
track of wi. Thus one can express wi as a linear combination of the complex number
associated to the sides of P and find an expression of wi of the form

wi =
k−1∑

j=1

αi,jzj

where the αi,j are constants depending only on ρ and the combinatorics of the
side wi relatively to P . Therefore the coordinates (w1, . . . , wk−1) depend linearly
on (z1, . . . , zk−1). Swapping the roles of the two charts, one gets that the transition
map actually lies in GLk−1(C). The area only depends on the underlying surface
and therefore does not depend on the parametrisation. ��

The proposition above tells us that the polygonal charts endow Fρ with a com-
plex projective structure (and with an additional structure coming from the pre-
served area form, which will be investigated later). The previous analysis invites us
to define a more general class of parametrisations:

Definition 4.1. A local holomorphic parametrisation (z1, . . . , zk−1) of Fρ is called
a linear parametrisation if it depends linearly on a polygonal parametrisation.

This class is much more convenient than the class of polygonal parametrisation
because it is the larger class of holomorphic charts enjoying the property that the
area form is Hermitian in the associated coordinates. We will also see in Section 4.4
that it is possible to build other such linear parametrisations in a natural way which
will be extensively used throughout the article.
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4.3 Projection onto F[ρ]. We have built in this section projective charts on
Fρ ⊂ Teichg,n. If N ∈ F[ρ] is a regular point of F[ρ] i.e. if the projection

π : Fρ −→ F[ρ]

is a local homeomorphism at N , any chart at Ñ ∈ π−1(N) can be pushed forward
and gives a chart at N . The fact that N is not regular is equivalent to the fact that
PIso+(Ñ), the group of pure direct isometries of the flat surface Ñ (see §2.5), is
non-trivial. In that case any chart at Ñ gives a non-injective local parametrisation
of a neighbourhood of N in F[ρ] whose transformation group is the stabilizer of Ñ

in PMCG1,n which is isomorphic to PIso+(Ñ).

4.4 Parametrisations Coming from Topological Gluing. Here we describe
parametrisations which are generalisations of polygonal parametrisations: we are just
going to relax the condition that the sides of the polygon we are gluing be geodesic.

Consider a (topological) triangulation T of Ng,n such that the set of vertices is
exactly the set of cone points of N . As explained in [Thu98] in genus 0 (see [Sch] for
details) and [Vee93, §10] in arbitrary genus, one can find a graph in the 1-skeleton
of T, such that its complement Q in Ng,n is simply connected. Q is a topological
disk endowed with a flat metric whose boundary corresponds to consecutive edges of
triangulation. Let F : Q −→ C be a developing map of the flat metric on Q and let
q1, . . . , q2k, q2k+1 = q1 be the vertices of the boundary ∂Q of the metric completion
Q of Q for the length metric induced by the flat structure of Q. The map F extends
continuously to Q and one sets ξi = F (qi+1) − F (qi) for i = 1, . . . , 2k. The following
proposition holds true:

Proposition 4.3. For an appropriate choice of pairwise distinct indices i1, . . . , ik−1

in {1, . . . , 2k}, the parameters (ξi1 , . . . , ξik−1) form a linear parametrisation of Fρ.

Notice that if the triangulation T used to construct them was totally geodesic
then these coordinates would form a polygonal parametrisation. The proof uses
arguments similar to those of the proof of Proposition 4.2.

5 Geometric Properties of Flat Surfaces
and Characteristic Functions

In this section we develop material and prove several technical lemmas about the
intrinsic geometry of flat surfaces which will be used in Sections 7 and 8 in order
to understand the geometry of the moduli spaces F[ρ]. Most of the work done in
this paper is about reinterpreting questions regarding the geometry of these moduli
spaces, in terms of how flat surfaces can degenerate. The material developed below
goes some way to answering these questions.

We denote by h the flat metric on a given flat surface N and by dh (or just by d
for short) the induced distance (see Section 2.3). We also denote by S ⊂ N the set
of conical points of N (for the flat structure induced by h).
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5.1 Characteristic Functions. We define four quantities associated to N :

– its systole2:

σ(N) = σ(N, h) = inf
{

Lh(γ)
∣
∣ γ simple essential closed curve

}
;

– its relative systole:

δ(N) = δ(N, h) = inf
{

Lh(γ)
∣
∣ γ joining two distinct singular points

}
;

– its diameter:

D(N) = D(N, h) = sup
x,y∈N

dh(x, y);

– its relative diameter:

s(N) = s(N, h) = sup
x∈N

dh(x, S).

(The terminology relative is inspired by the terminology used for translation surfaces,
where a relative period of an abelian form on a Riemann surface is the value of the
integral of this 1-form on a path linking two of its zeroes).

Note that these four quantities all depend linearly on a rescaling of h. Most of
the time, we will consider them under the supplementary assumption that the area
of N is 1. In this case, one gets geometric invariants attached to N .

A classical fact from Riemannian geometry (see Section 2.3) is that σ, δ, D and s
all are realised by piecewise geodesic paths, singular only at points where they cross
singular points of N .

Proposition 5.1. The following four inequalities hold true:

(1) D(N) ≥ δ(N); (2) D(N) ≥ σ(N)/2;
(3) D(N) ≥ s(N); (4) s(N) ≥ D(N)/(2n) .

Proof. The first and third inequalities are obvious. We now prove the second one.
Consider c a curve realising σ(N). Let p and q be two points on c diametrically
opposed (by this we mean that they cut c into two parts of equal length). We claim
that d(p, q) = σ(N)/2. Otherwise there would be a path of length strictly smaller
than σ(N)/2 going from p to q. This path completed with one of the parts of c going
from p to q would form an essential closed curve of length smaller than σ(N). Since
d(p, q) = σ(N)/2, we have D(N) ≥ σ(N)/2.

Finally we prove (4). Let now p and q be two points realising D(N). The point
p can be joined to a point sp ∈ S by a path of length at most s(N), and q to sq ∈ S
by a path of length at most s(N). Note that given s′ ∈ S, there exists s′′ ∈ S
distinct from s′ which can be joined to the latter by a path of length at most 2s(N).

2 There is no systole when g = 0.
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We now prove that one can join sp and sq by a path going from singular point to
singular point with leaps of length less than 2s(N). Let Γ be the graph whose set of
vertices is S and for which there is an edge between two singular points if they are
at distance less than 2s(N). We claim that Γ is connected. If not, let (Γ1, Γ2) be a
pair of two distinct connected components of Γ with d(Γ1, Γ2) minimal and pick two
singular points si ∈ Γi for i = 1, 2 such that d(s1, s2) = d(Γ1, Γ2). Since the distance
between the two considered connected components has been chosen minimal, the
(piecewise) geodesic path realising the distance between s1 and s2 cannot meet any
other singular point on the way. If its length was more than 2s(N), its middle point
would be at a distance larger than s(N) from the set of singular points which is
impossible. This means that we can build the announced path. Remark that we can
find such a path which visits each singular point only once. Such a path has length
at most (n − 1)2s(N), hence D(N) ≤ 2s(N) + (n − 1)2s(N) = 2ns(N). ��
5.2 Voronoi Decomposition and Delaunay Triangulation. We explain
briefly a well-known but important construction in the realm of flat surfaces. We
omit the proofs below and refer to [MS91] for a careful and detailed treatment.

The Voronoi decomposition of N is defined as follows:
• the 2-cells are the connected components of the set of points p ∈ N such that

d(p, S) is realised by a unique geodesic path;

• the 1-cells are the connected components of the set of points p ∈ N such that
d(p, S) is realised by exactly two distinct geodesic paths;

• the 0-cells are the connected components of the set of points p ∈ N such that
d(p, S) is realised by at least three distinct geodesic paths.

It is checked in [MS91] (see Proposition 4.1) that 0-cells are points and 1-cells are
totally geodesic paths.

The Delaunay decomposition is defined as the polygonal decomposition which
is dual to the Voronoi decomposition in the following way. One checks that Dp, the
Euclidean disk of radius d(p, S), injects at p for any p being a 0-cell of the Voronoi
decomposition. A Delaunay 2-cell is defined as the convex hull of the elements of
S belonging to ∂Dp. A 1-cell is a connected component of the boundary in N\S of
such a convex hull and a 0-cell is an element of S.

In [MS91, Lemma 4.3 and Theorem 4.4], it is checked that:
• the set of 0-cells is exactly S;
• 1-cells are saddle connections;
• for each 1-cell C1, there are two distinct 2-cells C2 and C ′

2 such that C1 �
C2 � C ′

2 is a neighbourhood of C1 in N ;
• a Delaunay 2-cell is isometric to a convex Euclidean polygon inscribed in a

circle of radius less than s(N);
• Delaunay 1-cells have length smaller than or equal to 2s(N).
From the Delaunay decomposition (which is unique and only depends on the

geometry of N) one can get a Delaunay triangulation by subdividing the 2-cells
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into triangles. Notice that a Delaunay triangulation is not necessarily a simplicial
triangulation since a triangle might not be determined by its vertices. We have now
as an immediate corollary of this construction and of Proposition 5.1:

Proposition 5.2. The length of any 1-cell of any Delaunay triangulation of N is
always smaller than 2D(N).

We also prove the following lemma:

Lemma 5.3. The interior of any path in N realising δ(N) is a 1-cell of the Delaunay
decomposition of N (hence is a 1-cell of any Delaunay triangulation of N).

Proof. Remark that if a saddle connection is such that the only paths realising the
distance of its middle point to S are the two paths connecting the middle point to
the end points, then it is a 1-cell of the Delaunay decomposition. This is a direct
consequence of the construction of the latter. We now check that such a saddle
connection γ realising δ(N) must verify the above property.

Assume that there is a second path u going from p ∈ S to the middle point of
γ whose length is less than δ(N)/2. The point p must be different from one of the
two endpoints of γ, and if concatenating the half of γ starting from this point and
u, one gets a path v of length less than δ(N) going from two distinct elements of S.
Being singular at the middle of γ, v can be shortened in order to get a path whose
length is strictly less than δ(N) which is impossible. Therefore γ must be a 1-cell of
the Delaunay decomposition. ��
5.3 Surfaces with Large Diameter. The aim of this subsection is to prove
that flat surfaces with large diameter and finite linear holonomy must necessarily
contain long flat cylinders. If one dismisses the hypothesis that the linear holonomy
is finite, one can build counterexamples by gluing cones of very small angle. This
was already known for spheres (see [Thu98]) or when the linear monodromy ranges
in {−1, 1} (see [MS91, Corollary 5.5]). The proof of Proposition 5.6 below is highly
inspired by the techniques developed in [MS91].

Elementary facts about cones. We remind the reader that Cθ stands for the
(Euclidean) cone of angle θ ∈]0, +∞[, namely the metric space obtained by gluing the
sides of a plane sector of angle θ. Its vertex is denoted by 0 and one sets C∗

θ = Cθ\{0}.
This cone with the apex removed, does not contain closed regular geodesic but,
when θ < π, it contains piecewise geodesic paths with only one angular point. More
precisely:

Proposition 5.4. If θ < π then for any point p ∈ C∗
θ :

• there exists a unique closed simple piecewise geodesic path in C∗
θ singular only

at p;
• the interior angle of the latter at the angular point is π − θ;
• the length of this piecewise geodesic path is 2 sin(θ/2) · d(0, p).
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Proof. The proof of the proposition is straightforward after noticing that such a cone
is obtained after doing the gluing pictured in Figure 6. ��
Lemma 5.5. Let N be a flat surface and γ be a piecewise geodesic path of length
L(γ) on N with one angular point which avoids conical points. Assume that in a
small neighbourhood of its angular point, γ cuts N into two angular sectors of angles
π + θ and π − θ respectively, with 0 < θ < π. Then

(1) the linear holonomy along γ is eiθ or e−iθ;

(2) there is a cone point q of N such that d(q, γ) ≤ L(γ)/
(
2 tan(θ/2)

)
.

Proof. The point is that such a geodesic γ has a neighbourhood that is isometric to
a neighbourhood of the unique (up to isometry) closed geodesic of length L(γ) of
the cone of angle θ. The only obstruction for this isometry to extend to the whole
cone is that the boundary of its definition domain meets a singular point of N (one
can use the exponential map along γ). Otherwise γ is on the cone of a cone point of
N whose associated conical angle is θ. In any case, there is a singular point of N ,
whose distance to γ is less than the distance from the geodesic of length L(γ) in Cθ

to the apex of Cθ. This distance is exactly L(γ)/(2 tan(θ/2)). ��
Proposition 5.6. Let ρ ∈ H1(N, U, θ) be such that Im(ρ) is finite. There exist
two positive constants K1(ρ) and K2(ρ) such that for every flat surface N ∈ Fρ

normalised such that its area is 1, if D(N) > K1(ρ) then N contains an embedded
flat cylinder of length at least K2(ρ)D(N).

Proof. Let N be an element of Fρ. Let p ∈ N be a point maximizing the distance
s to the set of singularities, i.e. such that s = s(N) = d(p, S) where S ⊂ N stands
for the set of cone points of N . Throughout the proof, we will mainly work with
s = s(N) which, as a function, is of same order as D(N) according to the last two
points of Proposition 5.1.

Let rp be the injectivity radius at p. Then rp < 1/
√

π since the area of N is one.
If s > rp then D(rp), the closed Euclidean disk of radius rp, can be immersed in N
at p (since s is realised at p). There are two distinct points a and b on the boundary

Figure 6: The simple closed piecewise geodesic path with one angular point at p on Cθ (in
green).
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of D(rp) which project onto the same point in N and the immersion i : D(rp) −→ N
is injective on D(rp), by definition of rp. Therefore the chord joining a and b maps
to a piecewise closed geodesic γ path in N , with one angular point at i(a) = i(b).

We claim that if s is large enough, then the linear holonomy along γ must be
trivial. This is a corollary of Lemma 5.5. More precisely, if Im(ρ) =

〈
e2iπ/m

〉
and

s > rp(1 + tan(π/m)−1), γ cuts N at i(a) into two angular sectors both of angles
π. Hence γ is a closed regular geodesic which belongs to a flat cylinder C and the
holonomy along γ is 1. Moreover, a and b must be diametrically opposed and γ must
have length 2rp. Otherwise one side of the cylinder C would be covered by D(rp).
But then rp would not be the injectivity radius at p. The closed geodesic γ contains p

and the cylinder C containing γ has length at least 2
√

s2 − r2
p, because any cylinder

on a flat surface can be extended until its boundary meets a singular point.
If one assumes that s = s(N) ≥ 2/

√
π ≥ 2rp, then the cylinder we have found

has length at least s(N)
√

3 hence at least D(N)
√

3/(2n) according to Proposition
5.1. Recall that to ensure that the linear holonomy along γ is trivial and therefore
that γ is a closed geodesic belonging to a cylinder, we had to assume s(N) >
rp

(
1 + tan(π/m)−1

)
. Since rp ≤ 1√

π
, the statement of the lemma follows if one

takes K1(ρ) = 2n√
π

max
{
2,
(
1 + tan(π/m)−1

)}
and K2(ρ) =

√
3/(2n). ��

5.4 Collisions. An important issue to describe the metric completion of the
moduli spaces F[ρ] is to characterize geometrically what happens when two singular
points collide, i.e. when δ(N) goes to zero. We prove below two results describing
situations when such a collision cannot occur, at least without the diameter going
to infinity.

Lemma 5.7. Let θ1 and θ2 be two positive angles such that θ1 + θ2 < 2π. There
exists a constant K(θ1, θ2) > 0 such that if Σ is any flat sphere with n conical
singularities satisfying the three following conditions:

• all the cone points p1, . . . , pn of Σ have positive curvature;
• the cone angles of Σ at p1 and p2 are θ1 and θ2 respectively;
• the area of Σ is 1;

then the following holds true: d(p1, p2) ≥ K
(
θ1, θ2

)
.

This lemma tells us that two too positively curved singular points cannot collide.
We would like to draw attention to the fact that, in the authors’ opinion, this lemma
(and in particular, its proof!) is missing in [Thu98].

Proof. The idea of the proof is to compare this situation to the case of the sphere
Σ0 with three cone points, of respective angles θ1, θ2 and 2π −θ1 −θ2. Such a sphere
is unique up to dilatation of the flat metric and is built by gluing two isometric
triangles of angles θ1/2, θ2/2 and (2π − θ1 − θ2)/2.

Let p0
1, p0

2 and p0
3 be the cone points on Σ0 of respective angles θ1, θ2 and 2π −

θ1 − θ2. Normalise Σ0 so that the length of the unique geodesic l0 from p0
1 to p0

2 has
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the same length as the one from p1 to p2 on Σ, denoted by l. Remark that Σ0 is the
disjoint union of geodesic paths going from p0

3 to points of l0.
A neighbourhood of l0 in Σ0 is isometric to a neighbourhood of l in Σ. We extend

such an isometric identification using the remark above, developing the geodesics of
the decomposition. The only obstruction to do so appears if such a geodesic meets
a singular point, which can only happen for a finite number of such geodesics. We
denote by A the finite union of those parts of geodesics on which the isometry cannot
be extended.

We have thus defined a local isometry

i : Σ0\A −→ Σ .

Since all the singular points of Σ have positive curvature, the closure of i(Σ0)
must also be open and since i is a local isometry, one gets

area
(
Σ0
) ≥ area(Σ) = 1.

The uniform bound on the area of Σ0 gives a uniform bound on d(p0
1, p

0
2) which

equals d(p1, p2) by construction. ��

Lemma 5.8. Let M be a flat torus with two cone points p1 and p2. There exists a
pseudo-hexagon P such that M is isometric to P/ ∼ where ∼ is one of the three
gluing patterns of Figure 2.

Proof. Let Γ be a connected graph in the 1-skeleton of the Delaunay decomposition
of M such that M\Γ is connected and simply connected. Γ has exactly for vertices
the two cone points of M . By a Euler characteristic argument, its number of edges
e must satisfy 2 − e + 1 = χ(M) = 0 and therefore e = 3.

One easily checks that the only connected graphs with two vertices and three
edges that one can draw on a torus are the three graphs represented on Figure 3.
Then cutting along Γ gives the expected pseudo-polygonal model for M . ��

Proposition 5.9. Let (M�)�∈N be a sequence of flat tori with two cone points
belonging to a leaf F[ρ] with Im(ρ) finite. Assume that for all � ∈ N, M� has area 1.
If lim�→+∞ δ(M�) = 0 then D(M�) → +∞ as � goes to infinity.

Proof. Suppose that (M�)�∈N and ρ are as in the statement and assume that D(M�)
does not go to infinity although δ(M�) tends to zero when � → +∞. Then, up
to extracting an appropriate subsequence, we can assume that the D(M�)’s are
bounded. For any �, consider the Delaunay decomposition of M� and take in its
1-skeleton a graph Γ� such that

• Γ� contains a curve realising δ(M�), as guaranteed by Lemma 5.3;
• the set of vertices of Γ� is equal to the set of singular points of M�;
• Q� = M�\Γ� is simply connected.
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According to Lemma 5.8, for any � ∈ N, the metric completion Q� of Q� is a
pseudo-hexagon (i.e. a pseudo-polygon with six sides) whose lengths of the sides are
uniformly bounded (according to Proposition 5.2) and the gluing pattern to recover
M� is one of the three patterns of Figure 2.

Again up to extracting a subsequence, we can assume that for any � ∈ N:

(1) M� can be obtained from Q� by using the same gluing pattern;
(2) the sides glued together always form the same angle;
(3) the length of each side converges.

(To assume (2), one has to use that ρ has finite image. The fact that one can assume
that (3) holds true as well follows from Proposition 5.2.)

Since the lengths of two sides go to zero (the ones which are identified by the glu-
ing with the curve realising δ(M�) in M�), the sequence of pseudo-hexagons (Q�)�∈N

converges to a quadrilateral whose opposite sides have the same length and there-
fore are parallel. Since Im(ρ) is finite, this implies that the corresponding sides in
∂Q� = Q�\Q� were parallel for all � sufficiently large. This forces the gluing pattern
to be Pattern 1 or 2 of Figure 2. But a hexagon glued according to one of these
patterns and having two parallel pairs of sides glued together must be a regular
torus with no singular point (this is an easy exercise left to the reader). This would
force F[ρ] to contain regular tori, which is impossible since we have supposed that
its elements have exactly two singular points. Therefore the sequence of diameters
(D(M�))n∈N must go to infinity as � does. ��
5.5 Closed Curves Realising the Systole. As well as collisions, the ways in
which simple closed curves can collapse are also very important to characterise.

Lemma 5.10. Let N be a flat torus with n ≥ 2 cone points and suppose that p1 is
the only cone point which has negative curvature. The systole σ(N) is realised by a
simple closed piecewise geodesic which meets the set of cone-points only once at p1.
Moreover, the only point at which it might not be smooth is p1.

Proof. Consider the set of non homotopically trivial closed curves. Classical Rie-
mannian geometry (see Section 2.3) ensures there exists a minimiser of the length
functional on this set and that it is piecewise geodesic.

We claim that such a minimiser is simple. Otherwise it could be decomposed
into two closed curves of strictly shorter length with at least one of these two being
essential.

A minimiser cannot pass through a point of positive curvature because otherwise
one can deform it in order that it avoids the cone point and that its length is
shorter. Therefore the only cone point it might pass through is p1, and one can
always make sure that there is a minimising path passing through p1: otherwise the
path is actually totally geodesic and a neighbourhood of this path is a flat cylinder
which can be extended until meeting a cone point which must be p1. Any boundary
component of this extended flat cylinder would be a required path. ��
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A path realising σ(N) cuts the surface at p1 in two angle sectors, whose angle
must be bigger than π (otherwise one can shorten the path by passing on the side
where the angle is smaller than π). Two possibilities can occur:

(1) one of the angle equals π; in this case such a path bounds a flat cylinder;
(2) both angles are strictly bigger than π.

For our purpose, it is important to distinguish these two situations.
In the case we are mostly interested in (when g = 1 and θ = (θi)n

i=1 is such that
only the point of cone angle θ1 carries negative curvature), they actually correspond
to two geometric aspects of F[ρ]: flat tori verifying (1) are in a cusp while those
verifying (2) are close to a stratum corresponding to the Devil’s surgery S3, see
Section 6.3. The proposition below proves that, in the very specific case when g = 1
and ρ is rational, if the diameter remains bounded and the systole goes to zero, we
are in situation (2).

Proposition 5.11. Assume that g = 1, θ = (θi)n
i=1 is such that only θ1 is bigger

than 2π and ρ ∈ H1(N, U, θ) has finite image. For all K > 0, there exists a constant
ε(K) > 0 such that for N ∈ F[ρ] normalised such that its area equals 1 the following
holds true. If D(N) ≤ K and σ(N) ≤ ε(K), then any curve c realising the systole
and passing through p1 the point of negative curvature of N cuts p1 into two angular
sectors whose angles both are strictly larger than π.

Proof. We argue by contradiction. Assume that there exist a constant K and a
sequence (Nm)m∈N of flat tori such that for all m ∈ N, one has:

• Nm ∈ F[ρ] and its area is equal to 1;
• σ(Nm) ≤ 1

m ;
• Nm contains a cylinder Cm of width σ(Nm) (i.e. we are in situation (1)

described above);
• D(Nm) ≤ K.

For all m ∈ N, Nm\Cm is a sphere whose boundary is the union of two piecewise
geodesic closed curves of the same length σ(Nm) touching at the only point where
they both are singular, namely p1(m) the cone point of negative curvature of Nm.
One can cut at the point where the two boundary circles touch, and glue together
the two geodesic parts of the new boundary circles (which have the same length)
to get a flat sphere Sm. Since the cone angle θ1 at p1(m) is supposed to belong
to ]2π, 4π[, the resulting sphere has only positively curved cone points. The angles
θ′
1(m) and θ′

2(m) at the two ‘new’ cone points of Sm created by the previous cutting
and pasting operation, must satisfy θ′

1(m) + θ′
2(m) + π + π = θ1. Since θ1 is strictly

smaller than 4π, we get:

θ′
1(m) + θ′

2(m) < 2π .

For k = 1, 2, the cone angle θ′
k(m) must be such that eiθ′

k(m) ∈ Im(ρ) because
eiθ′

k(m) is the linear holonomy of a curve in the free homotopy class of the curve
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realising the systole. Therefore these two angles can take only a finite number of
values. So, up to extracting a subsequence, one can assume that these two cone
angles are independent of m. The fact that the sequence of diameters (D(Mm))m∈N

is bounded by K implies that the length of Cm is bounded by 2K. Therefore the area
of Sm, which is larger than 1−2σ(Nm)K, is bigger than 1/2 provided that m is large
enough. Hence θ′

1(m) + θ′
2(m) < 2π and the distance between the associated cone

points, which equals σ(Nm) by construction, goes to zero. This contradicts Lemma
5.7 and proves the proposition. ��

6 Surgeries

A surgery is a procedure through which a new flat surface with conical singularities
is produced from another one by means of geometrical gluing and pasting relying on
elementary Euclidean geometry. This notion naturally appears when studying mod-
uli spaces of flat surfaces (implicitly in [Thu98] but also more explicitly in [KZ03]).
In the previous section, we have studied different ways for flat surfaces to degenerate,
namely sequences of surfaces containing very large embedded flat cylinders, essential
curves which collapse or cone points colliding. In the present section, we introduce
several surgeries which are to be seen as the inverse processes of the aforementioned
degenerations.

We will distinguish five distinct types of surgeries:

• the first one, denoted by S1, was known and implicitly considered by
Thurston in [Thu98]. It consists in blowing up a singular point of positive
curvature into two singular points of positive curvature;

• the second surgery, denoted by S2, is a straightforward generalisation of
the first one, which allows to blow up points of negative curvature. We will
therefore refer to both S1 and S2 as Thurston’s surgeries;

• it seems to us that the third surgery S3 is new. We call it Devil’s surgery. It
consists in creating a handle by removing the neighbourhoods of two singular
points and gluing their boundaries together;

• the fourth surgery S4 consists in blowing up a regular point into three sin-
gular points. We call it the Kite surgery;

• the last surgery S5 consists in creating a handle by adding a long flat cylin-
der to any flat surface having two isometric totally geodesic boundary com-
ponents.

Surgeries S1, S2 and S4 could have been seen as the same in a more general
presentation but we find it more convenient to differentiate them for our purpose. At
the end of this Section, we compute the signature of the area form in the case we are
interested in by using surgeries and we give a definition of the notion of geometric
convergence which will be central in the description of the metric completion of F[ρ]

carried on in Section 7.
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6.1 Thurston’s Surgery S1 for a Cone Angle Smaller Than 2π. Let N
be a flat surface of genus g with cone angles θ = (θ1, . . . , θn) at p1, . . . , pn ∈ N . Let
F[ρ] be the leaf of Veech’s foliation to which N belongs. Suppose that θ1 < 2π and
let θ′

1 and θ′′
1 be two angles smaller than 2π such that

2π − θ1 =
(
2π − θ′

1

)
+
(
2π − θ′′

1

)
. (9)

In this subsection, we describe a surgery building out flat surfaces of genus g
with n + 1 singular points of cone angle θ′ = (θ′

1, θ
′′
1 , θ2, . . . , θn) from N (note that

because we have assumed (9), the new angle datum θ′ still satisfies Gauß-Bonnet
formula (1)). The surgery is local on N , in the sense that it is performed on a small
neighbourhood of p1 without modifying the rest of the surface.

Choose a point p in a small neighbourhood C of p1 isomorphic to the portion
of cone Cθ1(ε) for a certain ε > 0 (see §2.1). As θ′

1 is bigger than θ1, there are
exactly two distinct segments of the same length issuing from p which meet at their
endpoints and form an interior angle equal to 2π − θ′

1 at p (see Figure 7).
The surgery works the following way: delete the bigon on C which corresponds

to the quadrilateral B in grey on Figure 7. Its sides are two geodesics which have
the same length and the same endpoints p′

1 and p′′
1. Removing the bigon and gluing

these two segments together, one gets a new flat surface N ′ having two cone points
of angle θ′

1 and θ′′
1 at p′

1 and p′′
1 respectively.

Recall that F[ρ] is the leaf of Veech’s foliation to which N belongs. There exists a
neighbourhood U of N in F[ρ] and ε > 0 sufficiently small so that for all flat surfaces
in U , the previous surgery can be performed for all p in a disc of radius ε centered
at p1, the cone point of angle θ1. Remark that the class [ρ′] such that N ′ ∈ F[ρ′] does
not depend on the choice of N in U .

This allows us to define a map

S1 : C∗
θ1

(ε) × U −→ F[ρ′] (10)
(
p, N

) �−→ N ′ ,

where C∗
θ1

(ε) is Cθ1(ε) minus its apex (see Section 2). This definition requires an
identification of Cθ1(ε) with a neighborhood of the cone point of angle θ1 in each flat
surface element of U . We do this by choosing a geodesic path c joining p1 and p2.
This path survives in a neighbourhood of N in U . We decide that Cθ1(ε) is embedded
in an element of U in such a way that it always meets the previous geodesic path in
the same locus - this latter requirement defining unambiguously such an embedding.
Let z0 ∈ C be a (germ of) linear parametrisation of C∗

θ1
(ε) such that z0 ∈ R+ if

and only if the corresponding point p belongs to the aforementioned geodesic path
joining p1 to p2.

There is a little ambiguity for the choice of the path c whenever some elements
of U have non-trivial isometries; in that case the identification of C∗

θ1
(ε) on elements

of U cannot be made continuous. We choose to ignore this difficulty for a moment
and then we will address it in Remark 6.2 below.
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Figure 7: Thurston’s surgery S1 consists in (1) cutting the surface along the dashed blue
segment; then (2) removing the grey piece of the surface and gluing the two red segments
together.

Proposition 6.1. We use the notations introduced just above.

(1) If (z1, . . . , zm) is a linear parametrisation of Uthen (z0, z1, . . . , zm) is a linear
parametrisation of the image U ′ ⊂ F[ρ′] of the map (10).

(2) The map S1 is a local biholomorphism.
(3) If all elements of U have no non-trivial isometry then S1 is one-to-one.

Proof. Consider a topological polygonal model of N ∈ U which is such that c is an
edge of this polygon. This model can be extended to a model of N ′ by adding a
point on the side representing the class of c, see Figure 8.

Let (z1, . . . , zm) be a linear parametrisation of U such that the geodesic path
C from p1 to p2 develops on z1, and let z0 be the complex number onto which
the geodesic path from p1 to p (which is going to become p′

1 after the surgery)
develops. Let N ′ be a flat surface obtained after applying a S1 surgery to N . Let
(w0, . . . , wm) be a linear parametrisation of a neighbourhood of N ′ in F[ρ′] associated
to the extended polygonal model of N such that w0 represents the shortest geodesic
path from p′

1 to p′′
1 on N ′ and w1 represents a path joining p′

1 to p2, w2 a path joining
p′′
1 to p3 (note that p3 and w2 do not appear explicitly on Figures 8 and 9).

According to Figure 9, which is a superposition of the developing maps of N and
N ′ near the point p1, where the parametrisations w and z correspond respectively

C

p2p2

p1

p1

p1

Figure 8: The surface N before surgery S1 on the left and the surface N ′ obtained after
surgery on the right.
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Figure 9: A superposition of the parametrisations w and z before and after surgery, near
p1.

to before (the surface N) and after (the surface N ′) proceeding to the surgery, the
following relations hold true

w0 = ρ0z0, w1 = z1 + z0 and w2 = z2 + ρ1z0 ,

where ρ0 and ρ1 are constants (which can be made explicit by means of elementary
geometry of Euclidean triangles) depending only on θ1, θ

′
1 and θ′′

1 . All the other wi’s
can be expressed in a similar fashion. Furthermore, if wi represents a path involving
end points different from p′

1 and p′′
1, it is equal to one of the zj ’s.

Therefore (z0, z1, . . . , zm) is a linear parametrisation of a neighbourhood of N ′

in F[ρ′]. This implies directly the two first points of the proposition, in particular
the fact that S1 is a local biholomorphism. It remains to prove the injectivity of S1

under the additional hypothesis that all the elements of U have a trivial isometry
group. The length of the shortest path from p′

1 to p′′
1 (which equals |z0| provided

that the latter is small enough in the area 1 normalisation) is a geometric invariant.
The surface N from which N ′ is obtained from also is a geometric invariant. Assume
that there exist two points p and p′ on C∗

θ1
(ε) such that the resulting surfaces from

the surgery at p and p′ are the same. This would imply that the initial surface has
an isometry fixing p1 and sending p to p′. The (pure) isometry group of a surface
being finite, S1 is a local biholomorphism which is one-to-one if all the elements of
U are all isometry free. ��
Remark 6.2. (1) It is worth giving a more abstract and intrinsic description of the
surgery introduced above. Let U ⊂ F[ρ] as above and assume that none of its elements
admits a nontrivial isometry. Then there exists a ‘universal flat curve νU : TU → U
over U ’: it is a map such that the fiber over a flat surface N viewed as a point
of U is N itself, but this time viewed as a 2-dimensional flat surface with conical
singularities. This family of surfaces comes with n sections pi : U → TU which are
such that pi(N) is the i-th cone point of N for every i = 1, . . . , n. One denotes by
Pi the image of pi for every i and by T ∗

U = TU\ ∪n
i=1 Pi the ‘n-punctured universal

flat curve over U .’
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Within this formalism, one can verify that Thurston’s surgery S1 admits an
intrinsic definition as the (germ of) map (T ∗

U , P1) → F[ρ′] which, for any p ∈ T ∗
U

sufficiently close to P1 associates the flat surface N ′ obtained by performing the
surgery described by Figure 7 above on the surface N = νU (p) with respect to p
and the cone point p1(N). Clearly, obtaining the more explicit definition (10) just
amounts to trivializing TU → U along P1.

(2) The interest of the preceding, more conceptual, approach is that it points out
the main issue when some of the elements of U admit nontrivial isometries and how
to deal with it. Indeed, in this case, there is no universal curve over U but one will
exist over a non-trivial orbifold cover Ũ of U and working with the latter, one can
define Thurston’s surgery the same way than above.

For instance and more concretely, if N0 ∈ U is such that PIso+(N0) is non-trivial,
then it is necessarily cyclic of finite order, say m, according to §2.5. In this case there
exists Ũ → U an orbifold cover of order m of U , whose deck transformation group is
isomorphic to the isometry group of N0, on which the identification of C∗

θ1
(ε) with

some neighborhoods of the corresponding cone points in flat surfaces belonging to
U can be made in a continuous way.

Therefore the surgery still defines a map

S1 : C∗
θ1

(ε) × Ũ −→ F[ρ′]
(
p, N

) �−→ N ′

which is equivariant under the action of the isometry group of N0.

6.2 Thurston’s Surgery S2 for a Cone Angle Greater Than 2π. Assume
now that θ1 > 2π. Let θ′

1 > 2π and θ′′
1 < 2π be such that

2π − θ1 =
(
2π − θ′

1

)
+
(
2π − θ′′

1

)
.

Let V1 be a neighbourhood of p1 isometric to a portion of cone Cθ1(ε) for a certain
ε > 0. Define η = θ1 − 2π and let p be a point of V1. If p is close enough to the
singular point p1 there is a unique 4-gon P in V1 having the following properties (see
Figure 10):

• p and p1 are opposite vertices of P and the external angles of the latter at
these two points are θ′′

1 and η respectively;
• the external angles at the two other vertices of P both are θ′

1/2;
• the sides of P meeting at p (resp. at p1) have the same length.
We build a new flat surface N ′ in the following way: we remove the interior of

P and glue together the sides meeting at p1 and p. We obtain a flat surface with a
singularity of angle θ′′

1 and another singularity of angle θ′
1. As when θ1 < 2π, the class

[ρ′] such that N ′ ∈ F[ρ′] does not depend on the choice of N . For a neighbourhood
U in F[ρ], this allows us to define a map

S2 : C∗
θ1

(ε) × U −→ F[ρ′]
(
p, N

) �−→ N ′ .
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Figure 10: Thurston’s surgery S2.

As in the case when θ1 < 2π, the map S2 is a local biholomorphism on its
image, and for any linear parametrisation (z1, . . . , zm) of U , (z0, z1, . . . , zm) is a
linear parametrisation of the image of S2, where z0 is the complex number on which
the segment [p1, p] develops. The proof is exactly the same as in the θ1 < 2π case
and is left to the reader. A similar remark to Remark 6.2 also holds true for S2 as
well.

The following remark will play a crucial role in the proof of Proposition 7.7 which
is one of the main results of the paper.

Remark 6.3. If l is the length of the segment between the points of angle θ′
1 and

θ′′
1 and L the length between p1 and the point of angle θ′

1 (after surgery), then

L =
sin
(

θ′′
1
2

)

sin
(

θ′
1+θ′′

1
2

) l . (11)

Conversely, given a flat surface N with two conical points p′
1 and p′′

1 of angles
θ′
1 > 2π and θ′′

1 < 2π which are linked by a saddle connection c of length l, one can
wonder when it is possible to reverse Thurston’s surgery S2. The only obstruction to
doing so is that c can be extended on the side of p′

1 (the point of negative curvature)
on a distance equal to the right-hand side of (11), while cutting θ′

1 in half. The proof
of this claim is elementary and left to the reader.

6.3 Devil’s Surgery S3. Let θ′
1, θ

′′
1 , θ2, . . . , θn be the respective cone angles

at the cone points p′
1, p

′′
1, p2, . . . , pn of a flat surface N . We make the simplifying

assumption that θ′
1 and θ′′

1 are (strictly) less than π, but we will see later on that
the surgery we are going to describe can still be performed for θ′

1 and θ′′
1 less than

2π.
Let C ′

1 and C ′′
1 be two neighbourhoods of p′

1 and p′′
1, isometric to Cθ′

1
(ε) and

Cθ′′
1
(ε) respectively, with ε > 0 sufficiently small. Consider two points q′ and q′′ in

C ′
1 and C ′′

1 respectively such that the unique closed geodesic paths c′ and c′′ in C ′
1
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and C ′′
1 respectively, singular only at q′ and q′′ have the same length. Removing the

‘upper parts’ of the two cones C ′
1 and C ′′

1 by cutting along c′ and c′′ respectively,
one can glue c′ and c′′ isometrically in such a way that q′ and q′′ are glued together.
One gets a flat surface N̂ of genus g + 1 with n cone points of angle θ1, θ2, . . . , θn

with θ1 = 2π + θ′
1 + θ′′

1 (see Figure 11).
Let β be a simple curve in N , avoiding its conical points, joining two regular

points of c′ and c′′ respectively which are glued together by the identification con-
sidered above. Denote by β̂ the simple loop in the regular part of N̂ obtained from

Figure 11: Devil’s surgery from a flat sphere to a flat torus.



1324 S. GHAZOUANI, AND L. PIRIO GAFA

β by this gluing. We want to perform the surgery in such a way that the linear
holonomy of the resulting flat surface does not change when q′ and q′′ move on the
portions of cones C ′

1 and C ′′
1 respectively and equals a certain (class under the action

of the pure mapping class group of) ρ̂. It is equivalent to the fact that the holonomy
along β̂ does not vary, because the holonomy of the resulting flat surface N̂ is totally
determined by the holonomy of the original flat surface N and the holonomy along
β̂.

When q′ moves on the circle it belongs to (namely, the set of points on C ′
1 whose

distance to the apex p′
1 is precisely d(p′

1, q
′)), (a lift to R = Ũ of) the linear holonomy

along β̂ increases exactly by the angle that q′ makes relatively to its initial position.
Hence if we want to keep the linear holonomy along β̂ constant, we have to move q′′

by the same angle as q′.
This allows us to build a map:

S̃3 : C̃∗
θ′
1
(ε) × U −→ F[ρ̂]
(
p, N

) �−→ N̂

where U is an open subset of F[ρ], the moduli space to which the original surface
belongs.

Proposition 6.4. Suppose that every element of U has no non-trivial isometry.
Then S̃3 is a covering map onto its image. If θ′

1 and θ′′
1 are not commensurable (i.e.

if θ′
1/θ′′

1 /∈ Q) then it is a biholomorphism onto its image.
However, if θ′

1/θ′′
1 = k/l for some coprime positive integers k and l, then the deck

group is the group generated by the rotation of angle lθ′
1 = kθ′′

1 . In particular S̃3

factors through

S3 : C∗
lθ′

1
(ε) × U −→ F[ρ̂]
(
p, N

) �−→ N̂

which is a biholomorphism onto its image.

Proof. The fact that S̃3 is a local biholomorphism just relies on the fact that one
can get a linear parametrisation of F[ρ̂] by adding the parameter z0 to any linear
parametrisation of U , with z0 a linear parametrisation of C∗

lθ′
1
(ε).

The key fact is that two surfaces resulting from the surgery under consideration
are isometric if and only if the two points q′ and q′′ are the same because we have
supposed that the elements of U do not have non-trivial isometries (see the proof
of Proposition 6.1). When q′ varies in the universal covering of C∗

θ′
1
(ε), the point q′′

eventually comes back to its initial position if and only if the two cone angles θ′
1 and

θ′′
1 are rationally related: the lack of injectivity appears when q′ and q′′ come back

for the first time to their initial position as q′ turns around p′
1 and q′′ follows, which

happens if and only if an equation of the form lθ′
1 = kθ′′

1 (for some non-trivial pair
of coprime integers (k, l)) is satisfied. In this case, l is the exact number of times q′′

turns around p′′
1 while q′ turns k times around p′

1. ��
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T

Figure 12: The modified cone of angle θ > π.

When θ′
1 (resp. θ′′

1) is greater than π, we cannot cut the cone of angle θ′
1 (resp.

θ′′
1) in the way it has been done previously. We let the reader verify that one only

has to replace the truncated cone of angle θ′
1 at p′

1 (resp. of angle θ′′
1 at p′′

1) by the
metric space obtained by gluing the sides a and b on Figure 12. This metric space
is the cone of angle θ′

1 (resp. θ′′
1) to which one has added the triangle T appearing

in grey on Figure 12 with the aforementioned identifications.
Regarding the lack of injectivity of the map S̃3 (or S3) when some elements of

U have non-trivial isometries, one can make a statement similar to Remark 6.2 to
address the question.

Remark 6.5. In contrast with Thurston’s surgery, there might be essentially dif-
ferent ways to perform Devil’s surgery when Im(ρ′) is finite. What we mean by that
is the following (where we continue to use the notations introduced above): given
a base surface N , a target moduli space F[ρ̂] in which one lands when performing
Devil’s surgery on N relatively to two cone points p′

1 and p′′
1 on it, different ini-

tial choices of pairs (q′, q′′) might yield surgery maps S3 whose image are pairwise
distinct open subsets of F[ρ̂], a fact which might be a bit surprising at first glance.

This curiosity comes from the fact that the surfaces obtained via Devil’s surgery
which belong to the same F[ρ̂] are exactly the ones corresponding to admissible pairs
(q′, q′′) ∈ Cθ′

1
(ε)×Cθ′′

1
(ε) such that ρ̂(β̂) ∈ Im(ρ). The solutions to this equation is a

subsurface of Cθ′
1
(ε)×Cθ′′

1
(ε) which might have more than one connected component.

These connected components are the different ways to perform Devil’s surgery and
yield different open subsets in F[ρ̂]. We carry an explicit analysis of this phenomenon
in the paragraph ‘Cone points’ of §10.5 which, even if it concerns only a particular
case, should allow the reader to understand in full generality the ‘curiosity’ we are
talking about here.

6.4 The Kite Surgery S4. Fix θ1 ∈]2π, 4π[ and θ2, θ3 ∈]0, 2π[ such that
(
2π − θ1

)
+
(
2π − θ2

)
+
(
2π − θ3

)
= 0.
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We describe in this section a local surgery building from a regular flat torus a new
one with three conical points of respective angles θ1, θ2 and θ3.

Let T be a regular flat torus (i.e. without singular points for the flat metric),
and p2 a point on T . If p3 is a point close enough to p2, there exists a unique kite
contained in T with opposite vertices p2 and p3 and such that the external angle at
these points are θ2 and θ3 respectively. The external angles at the two other vertices
of the kite are necessarily equal to the half of θ1, see Figure 13.

The kite surgery consists in removing the kite (in grey on the above picture)
and gluing the adjacent sides in order to get three singular points of respective
angles θ1, θ2 and θ3. Since the flat torus T is determined by a lattice in C, i.e. by
two R-linearly independent complex numbers z1, z2 such that T = C/(Zz1 + Zz2),
one can perform the kite surgery on T by placing p2 at 0 and p3 at z0 for any given
z0 sufficiently small.

Up to renormalisation, we can assume that z1 = 1 and z2 = τ ∈ H. Let T ′

be the resulting torus (more precisely the class of tori up to renormalisation by an
element of C). Let F[ρ′] be the leaf to which this surgery sends T ′. Because z0 and
−z0 are equivalent under the action of the hyperelliptic involution, the kite surgery
performed at these two parameters gives isometric surfaces. As in the previous cases,
one can build a map

S4 : C∗
π(ε) × H −→ F[ρ′](

z0, τ
) �−→ T ′.

which is a local biholomorphism onto its image, except at points having exceptional
symmetries where it is an orbifold covering onto its image. The proof is similar to
the proof of Proposition 6.1, one just has to take a suitable topological model for T
that makes (z0, z1, z2) a linear parametrisation of F[ρ′].

Figure 13: Performing the kite surgery.
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6.5 The Surgery S5: Building Flat Surfaces with a Euclidean Cylinder.
In this section we do not make any assumptions on the cone angles θ1, . . . , θn. We
explain a simple surgery (to which we shall refer as S5) building flat surfaces of
genus g +1 and with n−1 cone points having an arbitrarily long Euclidean cylinder
out of an initial flat surface N of genus g and with n cone points, the new cone point
being of angle larger than 2π.

Let γ be a geodesic path joining p1 and p2, the two conical points of N of respec-
tive angles θ1 and θ2. Cut along γ to get a flat surface with one boundary component
and then glue p1 and p2 together. The resulting surface has a boundary consisting of
two simple closed geodesics touching at one point where they are singular. Then we
glue a flat cylinder along these two boundary components to get a new flat surface
N ′ of genus g + 1 with an embedded cylinder (see Figure 14). Note that the cone
angle of N ′ at its new singular point (namely the one obtained after having identified
p1 and p2) is easily seen to be θ1 + θ2 + 2π.

There are two real parameters for the aforementioned gluing of the flat cylinder:
the length of the latter and a twisting parameter (starting from one given way to
glue a given cylinder, one can compose the gluing function at one of its extremities
by a rotation, the angle of this rotation being the twisting parameter). Both can be
encoded by a single complex number z0 whose imaginary part is positive, such that
the cylinder we glue identifies with the one of base 1 and height z0. This makes sense
because there always exists a normalization of N such that the geodesic joining p1

and p2 in the initial surface develops onto the segment [0, 1].
If U is a neighbourhood of the initial surface in F[ρ], we can build a natural map

S5 : A × U −→ F[ρ′]

(z0, N) �−→ N ′ ,

where A stands for the infinite cylinder H/(z ∼ z + 1).
The surgery S5 associates to N and z0 the surface obtained after gluing the flat

cylinder of height the parameter z0 to (the good normalisation of) N .

Proposition 6.6. The surgery S5 is a local biholomorphism onto its image.

Proof. Let (z1, . . . , zm) be a linear parametrisation of U such that z1 parametrises
the geodesic segment along which the surgery is performed. Then one verifies that
(z0z1, z1, . . . , zm) is a linear parametrisation of the image of S5. Indeed, one needs
to rescale the cylinder of base and height (1, z0) to (z1, z1z0) so it fits the segment
parametrised by z1 onto which it is glued. The rest of the proof works in the same
way as in Proposition 6.1. ��
6.6 Calculation of the Signature of the Area form in Particular Cases.
A corollary of the description of these surgeries is an easy inductive computation of
the signature of Veech’s form in the specific cases we are interested in. In order to
perform this computation, we will need the following definition:
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Figure 14: The surgery S5 performed on a flat sphere with four cone points: (1) we cut
along the geodesic segment between two of them; (2) we identify the two corresponding
points on the boundary; (3) then we glue a flat cylinder in order to obtain a flat tori with
three cone points.

Definition 6.1. A unitary character ρ̃ ∈ H1(M, U) is a reduction of ρ ∈ H1(N, U)
if there exists an injective diffeomorphism i : M −→ N such that ρ̃ = i∗ρ.

In particular, the linear holonomy of the base surface of one the surgeries we have
described is a reduction of the linear holonomy of the surface obtained by one of
these surgeries. We have the following:

Proposition 6.7. (1) Suppose that g = 0, n ≥ 3 and that 0 < θi < 2π for all
i = 1, . . . , n. Then Veech’s area form has signature (1, n − 3).

(2) Suppose that g = 1, n ≥ 2, 2π < θ1 < 4π and that 0 < θi < 2π for all i such
that 1 < i ≤ n. Then Veech’s area form has signature (1, n − 1).

Proof. The proof goes by induction in both cases. We explain only (2) since the
proof of (1) is basically the same but simpler and roughly sketched in [Thu98].
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We suppose that g = 1, n ≥ 3 and ρ ∈ H1(N, U, θ). Let ρ′ be the reduction (see
Section 7) associated to a collision between two points of angles θi and θj . Such a
collision can actually happen if and only if (2π − θi) + (2π − θj) < 2π, and two
such points always exist since there is initially only one conical point of negative
curvature which is also smaller than 4π, provided that n ≥ 3. Therefore the leaf
associated to ρ′ is not empty and one can perform Thurston’s surgery on elements
of F[ρ′] to get elements of the n-dimensional leaf F[ρ]. Let (z0, z1, . . . , zn−1) be a
linear parametrisation of F[ρ] such that (z1, . . . , zn−1) is a linear parametrisation
of F[ρ′] and z0 is such that (z0, z1, . . . , zn−1) represents the element that one gets
after performing Thurston’s surgery with parameter z0 on the surface represented
by (z1, . . . , zn−1). If A is the area form for the parametrisation (z0, z1, . . . , zn−1) and
A′ the one for (z1, . . . , zn−1), then one has

A(z0, . . . , zn−1) = A′(z1, . . . , zn−1) − μ|z0|2

for a certain positive constant μ which depends only on the value of the angle of
the cone point on which the surgery is performed. Indeed, μ|z0|2 is the area of the
portion of cone removed when proceeding to the surgery which is an isosceles triangle
with fixed centre angle and whose base has length linearly depending on |z0|. The
induction hypothesis ensures that A′ has signature (1, n − 2) and therefore A has
signature (1, n − 1).

The case n = 2 remains to be handled. With a similar argument, but using Devil’s
surgery instead of Thurston’s one, we find that in that case the signature is (1, 1).
One starts with a flat sphere with three cone points. The set of such flat spheres
can be parametrised by a complex number z1 such that the area of the associated
sphere is |z1|2 (and recovering that up to projectivising, there is only one such flat
sphere). Devil’s surgery consists in removing two portions of cones in a sphere. If z0

is the parameter of the surgery, the area of the resulting torus will be of the form

|z1|2 − μ|z0|2

for a certain μ > 0. This completes the proof of the proposition. ��

6.7 Cone Angle Around a Codimension 1 Stratum. As we will see in
detail later, the surgery maps Si (for i = 1, . . . , 4) describe the cone-manifold struc-
ture of the metric completion of F[ρ] close to a codimension 1 stratum, when Veech’s
area form endows F[ρ] with a complex hyperbolic structure. In particular, they allow
the computation of the associated cone-manifold angles.

(1) In case of both Thurston’s surgeries S1 of S2, the cone-manifold angle around
the codimension 1 stratum is the angle of the Euclidean cone angle on which
the surgery is performed.

(2) In the case of Devil’s surgery, when both angles are rational multiples of 2π,
say 2πm′/M and 2πm′′/M , the cone-manifold angle is 2πlcm(m′, m′′)/M .
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(3) In the case of the Kite surgery S4, the cone angle always equals π since the
parameter space for the surgery is the neighbourhood of a regular point of
angle 2π on which the hyperelliptic involution acts.

6.8 Geometric Convergence. We end this section dedicated to surgeries by
a paragraph on a notion of geometric convergence for flat surfaces. Whether two
Riemannian manifolds (in a moduli space) are close or not depends on an a priori
definition.

Definition 6.2. Let N ′ be a flat surface of area 1 obtained from a surgery S on a
surface N . The width of this surgery at N is:

• the distance between the two new cone points in N ′ if S ∈ {S1 , S2};
• the length of the short essential curve created on N ′ if S = S3;
• the distance between p2 and p3 in N ′ (see §6.4 for the notations) if S = S4.

The width of a surgery is a positive parameter whose square depends linearly on
the Euclidean area of the removed part of the initial surface on which one performs
the surgery. When g and θ are such that F[ρ] has a complex hyperbolic structure,
this width has a geometric interpretation in terms of the distance to the strata of
the metric completion which will be made explicit in the next section (see Lemma
7.9).

Definition 6.3 (Geometric convergence). A sequence of flat surfaces (M�)�∈N ∈
(F[ρ])N is said to be geometrically converging either if it converges in F[ρ] or if
there exist

• a flat surface M∞ belonging to a leaf F[ρ′] for a reduction ρ′ of ρ;
• a small neighbourhood U of M∞ in F[ρ′] on which a surgery map S = Si

(for some i = 1, 2, 3, 4) is well defined;
• (ε�)�∈N a sequence of positive numbers going to 0;
• a truncated sequence (M ′

�)�>>1 of flat surfaces elements of U which converge
to M∞ in U ⊂ F[ρ′],

such that Mn is obtained after a surgery S of width ε� on M ′
� for � >> 1.

We say that the sequence (M�)�∈N geometrically converges to the pair
(M∞,S ), or just to M∞ if (M�)�∈N converges in F[ρ].

The true interest of this definition is that it will allow us to make the difference
between two sequences of surfaces in F[ρ] whose limits are isometric metric spaces
but lying at different places in (the metric completion of) F[ρ].

7 The Metric Completion

In this section, N stands for a surface of genus g = 0 with n+3 marked points or of
genus 1 with n + 1 marked points (we write the number of marked points this way
in order that F[ρ] be of complex dimension n in these two cases).

We also make the assumption that
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• if g = 0, then all the cone angles θ1, . . . , θn+3 belong to ]0, 2π[;
• if g = 1 then θ1 ∈]2π, 4π[ and all the other cone angles θi are in ]0, 2π[.

Therefore, for any ρ ∈ H1(N, U, θ) in the image of the linear holonomy map (5), the
leaf F[ρ] of Veech’s foliation in the corresponding moduli space of marked curves is
endowed with a complex hyperbolic structure of dimension n (see [Thu98] for the
case g = 0 and Proposition 6.7 or [Vee93] for the case g = 1).

In the present section, we are interested in the structure of the metric completion
of F[ρ] endowed with this complex hyperbolic structure. Therefore every mention of
a geometric property of F[ρ] will now be relative to this structure.

Our goal here is to prove the following theorem:

Theorem 7.1. Let X be the metric completion of F[ρ]. If Im(ρ) is finite then:

(1) X has a stratified structure X = X0 � X1 � . . . � Xn with X0 = F[ρ];
(2) the topological closure of Xi in X is Xi � Xi+1 � . . . � Xn;
(3) for i = 0, . . . , n, Xi is a smooth complex hyperbolic manifold of complex dimen-

sion n − i which carries a natural CHn−i-structure;
(4) each Xi is a finite union of finite covers of F[ρ̃] for some reductions ρ̃ of ρ.

From now on, we assume that Im(ρ) is finite.

7.1 Strata. In Section 6, we have introduced various surgeries, describing dif-
ferent ways flat surfaces can degenerate and how to parametrise these surgeries. The
degenerate flat surfaces we see appearing in these ways belong to the metric com-
pletion of X0 = F[ρ]. More precisely, they appear in copies of (finite coverings of) Fρ̃

of complex dimension n−1 where ρ̃ is a reduction of ρ in the sense of Definition 6.1.
We define inductively the strata X1, . . . , Xn appearing in the description of X.

The first stratum X1 is the set of pairs surface/surgery (N,S ) such that there
exists a sequence of elements of X0 = F[ρ] geometrically converging (in the sense of
Definition 6.3) to a pair (N,S ) not already in X0.

Lemma 7.2. The stratum X1 is a union of (finite covers of) F[ρ̃]s for some reductions
ρ̃ of ρ and such that the complex dimension of F[ρ̃] is n − 1.

Proof. The holonomy ρ̃ of the limit of a sequence geometrically converging is a
reduction of ρ. Since Im(ρ) is finite, there are only finitely many such reductions
and therefore only finitely F[ρ̃] to which such a limit can belong.

Now let F[ρ̃] be such that one of its elements (N0,S0) appears as the limit of a
geometrically converging sequence. We claim that Z, the connected component of
X1 to which (N0,S0) belongs, is a finite cover of a connected component of F[ρ̃].
One can define a local homeomorphism from a neighbourhood of (N0,S0) in Z to
the component of F[ρ̃] containing N0 associating to any pair (N,S0) ∈ Z sufficiently
close to (N0,S0) the associated flat surface N . This map is a covering map which is
finite since the fiber over a point is included in the set of different ways to perform
the corresponding surgery (see Remark 6.5), which is finite. This fiber is actually
trivial for surgeries different from Devil’s surgery.
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More precisely let ρ̃, be such that one element N0 of F[ρ̃] appears as the limit of
a geometrically converging sequence along a surgery S . The set of elements of X1

whose associated flat surface belongs to F[ρ̃] is exactly the covering map over F[ρ̃]

whose fiber over a point is the number of ways to perform the surgery S at this
point. ��

The next step is to prove that the disjoint union X0 �X1 embeds into the metric
completion of X0 = F[ρ]. This is a direct consequence of the following proposition:

Proposition 7.3. If (M�)�∈N ∈ (F[ρ])N converges geometrically, then it is a Cauchy
sequence for the metric induced by the complex hyperbolic structure on F[ρ].

Proof. The statement is clear if (M�)�∈N converges in F[ρ] so we assume that it is
not the case. We consider a linear parametrisation (z0, z1, . . . , zn) such that

• z0 is the surgery parameter (i.e. the small segment linking the two new cone
points after Thurston’s surgery, or the small closed broken geodesic segment
appearing after a Devil’s surgery which is such that the width of the surgery
is |z0| in a normalisation of area 1, etc.); and

• (z1, . . . , zn) is a linear parametrisation of the leaf to which the surface on
which the surgery is done belongs.

For any � ∈ N, let z(�) = (zi(�))n
i=0 stand for the coordinates of M� in the

considered linear parametrisation, normalised so that the corresponding area of M�

is 1. From the very definition of metric convergence, we have that (z0(�))�∈N goes to
0 and ((zi(�))n

i=1)�∈N converges in Cn since the associated sequence of flat surfaces
in the corresponding stratum converges. It follows that z(�) converges in Cn+1 as �
tends to infinity.

On the other hand, the normalisation of the areas of the M�’s ensures that the
z(�)’s stay away from the boundary of the model of the complex hyperbolic space
associated with the considered linear parametrisation (z0, . . . , zn). The proposition
follows. ��

Thanks to the preceding result, one has a map:

i1 : X0 � X1 −→ F[ρ].

Proposition 7.4. The map i1 defined just above is injective.

Proof. Clearly, the restriction of i1 to X0 = F[ρ] is the identity. Since i1(X1)∩F[ρ] = ∅,
it suffices to show that i1|X1 is injective to get the proposition.

Let (A1,S1) and (A2,S2) be two distinct points in X1. The surgery maps

Si : C∗
θ1

(εi) × Ui −→ F[ρ]

(z0, N) �−→ N ′ ,

defined in Section 6, where Ui is a neighbourhood of Ai for i = 1, 2, extend conti-
nously to Si : Cθ1(εi) × Ui −→ F[ρ] which are homeomorphisms onto their images



GAFA MODULI SPACES OF FLAT TORI WITH PRESCRIBED HOLONOMY 1333

and whose respective images are neighbourhoods of i1(A1) and i1(A2) in X. If Ui

and εi are chosen small enough, the images of S1 and S2 do not overlap which
implies that i(A1) and i(A2) are separated and therefore different. ��

The distance induced on X1 by this embedding is nothing else but the one induced
by its natural complex hyperbolic structure: a neighbourhood of X1 in X = F[ρ] can
be described by a finite number of linear parametrisations of the form (z0, . . . , zn)
in which X1 corresponds to the locus {z0 = 0}.

Remark 7.5. We would like to stress that in the preceding assertion, one has to
be aware that (z0, . . . , zn) does not induce a local system of coordinates on a neigh-
bourhood in X of a small open subset of X1. Actually, what must be understood is
that the equation z0 = 0 cuts out something (a piece of X1 as it happens) in the
boundary of the definition domain of the chart induced by the linear parametrisation
(z0, . . . , zn). We will not dwell again on this subtlety in what follows but will only
make reference to the present remark.

The definition of X2 is slightly more subtle because it is possible that two essen-
tially different geometrically converging sequences in X1 converge to the same point
in F[ρ]: consider for instance a case when g = 1 and n = 3. We can distinguish
two types of components in X1: the ones which are moduli spaces of tori with two
cone points, and those which are Thurston–Deligne–Mostow’s moduli spaces of flat
spheres with four cone points. Both can degenerate on flat spheres with three cone
points. It can happen that these a priori different limits are identified in F[ρ]. One
must think of such points as parts of the intersection locus of the closures of two
connected components of X1 on which two different surgeries can be performed, each
leading to a different component of X1.

In order to define correctly X2, we proceed in two steps: we first define in an anal-
ogous way Y2, that one shall think to be roughly the set of pairs flat surface/surgery
(M,S ) such that there exists a sequence in X1 geometrically converging to (M,S ).
However, the fact that we are dealing with finite covers of leaves prevents us from
giving such a straightforward definition. Bypassing this difficulty is rather easy: X1

is a finite union of finite covers of some leaves F[ρ̃], for some reductions ρ̃ of ρ. Such
a finite cover Z0 can be partially metrically completed by adjoining a codimension 1
stratum Z1 (possibly with several connected components) in order that the covering
map π : Z0 −→ F[ρ̃] extends to a map

π̃ : Z0 � Z1 −→ F[ρ̃] � X ′
1

which is a covering map, possibly ramified along X ′
1, where X ′

1 is analogous to
X1 associated to F[ρ̃] and such that π̃−1(X ′

1) = Z1: X ′
1 is a finite union of some

unramified finite covers of some leaves F[ρ̃′] for some reduction ρ̃′ of ρ̃. Then one
defines Y2 as the (finite) union of all such Z1’s associated to all the finite covers
appearing in X1 and is itself a finite union of finite covers of some leaves F[ρ̂] for
some reduction ρ̂ of ρ (a reduction of a reduction of ρ is again a reduction of ρ as it
follows immediately from Definition 6.1).
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Defined this way, X1 � Y2 maps into the metric completion of X1 as a com-
plex hyperbolic manifold with each of its connected components endowed with the
induced complex hyperbolic distance. But note that this construction does not take
into account how close these connected components can be in F[ρ].

As we did for X1, we define a map:

i2 : X1 � Y2 −→ F[ρ] (12)

whose restriction to X1 coincides with the one of i1. The main difference between
the maps i1 and i2 is that the latter is not injective: some components of Y2 are
identified. We define X2 as the image of Y2 under that map or equivalently, Y2 with
the aforementioned components identified. The crucial point is that X0 has a distance
only defined on each of its connected components by the complex hyperbolic metric,
while the distance on X1 takes into account the way in which X1 is embedded in X.

The following property allows to identify the irreducible components of X2 with
some unramified coverings of some reductions of F[ρ].

Proposition 7.6. If A and B are distinct points of Y2 such that i2(A) = i2(B) then

(1) the flat surfaces associated to A and B are isometric;
(2) there exists ρ̂, a reduction of ρ, and a connected component Z of F[ρ̂] such

that the images by i2 of the components of Y2 containing A and B are both
equal to the same finite cover of Z.

Proof. Let NA and NB be the two flat surfaces associated to A and B respectively.
Assume that NA and NB are not isometric. Consider two sequences in X1 geo-

metrically converging to A and B respectively. They can be approximated by two
Cauchy sequences in F[ρ] converging to the same point in F[ρ]. But their associated
flat surfaces converge towards two different metric spaces, which is impossible. This
proves (1).

Let Z be the component of F[ρ̃] to which N = NA = NB belongs. We first
remark that there are neighbourhoods of A and B in Y2 which are identified under
i2: there are two surgeries SA and SB on N which produce images under i2 of
neighbourhoods of A and B in Y2. This identification can be extended to a cover of
Z. This cover must be finite since it is covered by a component of Y2 which is finite
according to Lemma 7.2. ��

From the map (12) and by the very definition of X2, one deduces an injective
map j2 : X1 � X2 → F[ρ]. Since the restrictions of i1 and j2 to X1 coincide, one can
consider their fiber product over X1 in order to get an injective map:

X0 � X1 � X2 −→ F[ρ].

Inductively, one defines Yj+1 from Xj in exactly the same way we defined Y2 from
X1. Then one defines Xj+1 by identifying some components of Yj+1 using the natural
map ij+1 : Xj � Yj+1 −→ F[ρ]. Note at this point that the analog of Proposition 7.6
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for Yj+1 holds true, the proof being completely similar. Since a reduction ρ̂ of a
reduction ρ̃ of ρ is still a reduction of ρ, we get that Xi is a complex hyperbolic
manifold of dimension n − i whose connected components are some coverings of
some leaves F[ρ̃] for some reduction ρ̃ of ρ.

Putting all pieces together we get that

• X0 � X1 � · · · � Xn embeds into the metric completion X of X0 = F[ρ];
• ∀i, Xi is a finite union of finite covers of Fρ̃ for some reductions ρ̃ of ρ;
• ∀i, the distance of X induces on Xi its natural structure of complex hyperbolic

manifold of dimension dim(X0) − i.

7.2 Proof of the Surjectivity.

Proposition 7.7. Assume that Im(ρ) is finite. Then the embedding

X0 � X1 � . . . � Xn −→ X = F[ρ]

is onto.

This proposition says in substance that the metric space obtained by adding to
F[ρ] the degenerate surfaces that ones sees when reversing the surgeries studied in
Section 6 is complete. Before giving the proof, we have to state two technical lemmas
relating the complex hyperbolic geometry of F[ρ] to the geometry of the underlying
flat surfaces parametrized by this leaf.

Lemma 7.8. If Im(ρ) is finite then the two following assertions hold true for any
sequence (M�)�∈N of flat surfaces in F[ρ] normalised so that their area is 1:

(1) if (M�)�∈N is a Cauchy sequence then
(
D(M�)

)
�∈N

is bounded;

(2) if
(
D(M�)

)
�∈N

is bounded then (M�)�∈N is a Cauchy sequence (up to passing
to a subsequence).

Proof. We postpone the proof of (1) to Section 8 in which we provide a description
of the parts of F[ρ] on which the diameter function D is large.

The proof of (2) consists in remarking that using the Delaunay decomposition of
M�, we can assume that, up to passing to a subsequence:

• all the M�’s are recovered by gluing the sides of a pseudo-polygon through
the same gluing pattern;

• the side glued together always form the same angle (that this can be assumed
follows from the fact that Im(ρ) is finite by assumption);

• the lengths of each side converge (since the lengths of the edges of the Delau-
nay triangulation are smaller than 2D(M�) by Proposition 5.2).

In the chart defined by the gluing pattern, the coordinates of the M�’s form a
Cauchy sequence. Then using the fact that their areas all have been assumed to be
1, one can argue in the same way as at the end of the proof of Proposition 7.3 and
get that (M�)�∈N is a Cauchy sequence for the metric on F[ρ] induced by the complex
hyperbolic structure it carries. ��
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Lemma 7.9. There exists a positive constant K = K[ρ] such that if M ∈ X0 = F[ρ]

(which is supposed to be normalised such that its area equals 1) is obtained from a
surgery S of width ε from an element of X1 then

d(M, X1) ≤ K ε ,

where d denotes the extension of the complex hyperbolic distance on X0 to X.

Proof. Let (z0, z1, . . . , zn) be a linear parametrisation compatible with the surgery
S (see Section 6) which is such that

• the parameter z0 is the surgery parameter, in particular |z0| = ε is the width
of the surgery;

• (z1, . . . , zn) is a linear parametrisation of U ⊂ X1;
• in the coordinates z0, . . . , zn, the area form A writes down

A(z0, z1, . . . , zn) = A′(z1, . . . , zn) − μ|z0|2

where
– μ = μS is a positive real constant depending on the surgery S (it is the

constant such that μ|z0|2 is the area of the part of the surface removed
while processing the surgery);

– A′ is the area form on U expressed in the coordinates z1, . . . , zn.
(Note that since the image of ρ is assumed to be finite, the set of such μS ’s
is finite and thus μS is uniformly bounded from above).

One can compute the complex hyperbolic distance between two points in the
complex hyperbolic space using formulas involving A (see [Gol99,p.77] for instance).
If a : Cn+1×Cn+1 −→ C stands for the polarisation of A, namely the Hermitian form
such that A(X) = a(X, X) for every X ∈ Cn+1, the complex hyperbolic distance
d(X, Y ) between two points [X], [Y ] ∈ CHn ⊂ CP

n satisfies

cosh2

(
d(X, Y )

2

)

=
a(X, Y )a(Y, X)
a(X, X)a(Y, Y )

.

If X = (x0, X
′) ∈ Cn+1 and Y = (y0, Y

′) ∈ Cn+1 with X ′ = (x1, . . . , xn) and
Y ′ = (y1, . . . , yn) in Cn, the formula for a(X, Y ) is

a(X, Y ) = a′(X ′, Y ′)− μx0y0

where a′ stands for the polarisation of A′.
We want to estimate α = d

(
(z0, z1, . . . , zn), (0, z1, . . . , zn)

)
. Since M is supposed

to have area 1, it follows from the discussion above that we have

cosh2
(
α/2

)
=

(
1 + μ ε2

)2

1 · (1 + μ ε2)
= 1 + μ ε2 .
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Since for all a > 0, one has 1 + a2/2 ≤ cosh(a), it comes

1 +
α2

8
≤
√

1 + μ ε2 ≤ 1 +
μ

2
ε2

from which we deduce that α ≤ 2
√

με. Since μ is bounded from above by a constant
only depending on the image of ρ, the proposition is proved. ��

We end this section with the proof of Proposition 7.7. We still suppose that
Im(ρ) is finite, which is the crucial hypothesis on which everything done in this
paper relies on. We just say a word on the general strategy. In order to show that
any Cauchy sequence accumulates to one point in a stratum, we first prove that,
since the diameter along a Cauchy sequence is bounded, if such a Cauchy sequence
does not converge in F[ρ], it implies that it degenerates in the sense that either its
systole or its relative systole goes to zero. If the latter occurs, we show that such a
surface having a sufficiently short systole or relative systole is obtained from one of
the four surgeries described in Section 6 and therefore is very close to X1. Then we
conclude with an inductive argument.
Proof of Proposition 7.7. Let M• = (M�)�∈N be a Cauchy sequence in X0 = F[ρ]

for the complex hyperbolic metric. For the remainder of the proof, we set

D� = D
(
M�

)
, σ� = σ

(
M�

)
and δ� = δ

(
M�

)

for any � ∈ N. We aim at proving that M• converges in F[ρ] to a point belonging to
the image of the embedding X0 � . . . � Xn −→ F[ρ].

The proof goes by induction on dim(X0). Recall that the following inequalities
hold true for any � (see Proposition 5.1):

δ� ≤ D� and σ� ≤ 2D� .

We distinguish three cases:
(1). Both the two sequences (δ�)�∈N and (σ�)�∈N do not converge to zero.
According to Lemma 7.8, the sequence of diameters (D�)�∈N is bounded. The Delau-
nay decomposition provides polygonal models of M� such that the length of each
side is bounded (see Proposition 5.2). One can extract a subsequence such that all
polygonal models have the same gluing pattern, and therefore, since Im(ρ) is finite,
extract a subsequence whose polygonal model converges towards a non degenerate
pseudo-polygon whose associated surface in X0 = F[ρ] is the limit of the Cauchy
sequence M•.

(2). The sequence (δ�)�∈N converges to zero while (σ�)�∈N does not.
In that case, one proves that (d(M�, X1))�∈N converges to zero. First remark that
necessarily dim(X0) ≥ 2 in that case. Indeed, according to Proposition 5.9, if
dim(X0) = 1 we have that δ� converging to zero implies that D� goes to infinity
which would contradict Lemma 7.8. For every �, consider two singular points p�, q�

of M� of respective cone angles θ� and θ′
�, such that d(p�, q�) = δ�. Three subcases

(2.i), (2.ii) and (2.iii) are to be distinguished in this situation:
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(2.i). both curvatures (2π−θ�) and (2π−θ′
�) are positive (i.e. p� and q� carry positive

curvature). In that case one can always reverse Thurston’s surgery S1, with
width of order δ� (see Section 6.1).

In the next two subcases (2.ii) and (2.iii), only one of the two curvatures (2π−θ�) or
(2π − θ′

�), say the former, is assumed to be negative: one has θ� > 2π while θ′
� < 2π.

Note that in this case (2π − θ�) + (2π − θ′
�) is negative since there is at least one

other cone point which must have positive curvature.

(2.ii). In this subcase, we assume that there is ‘enough room to reverse Thurston’s
surgery S2’, i.e. one can extend the geodesic line from q� to p� after the
point of negative curvature on a distance of

sin
(

θ′
�

2

)

sin
(

θ�+θ′
�

2

) · δ� (13)

so that the extended line cuts the cone angle at p� into two equal angles
(see Remark 6.3). If this is possible, one can cut along the extended line
and fill with an appropriate Euclidean kite, and therefore reverse Thurston’s
surgery S2 with small width of order δ�.

(2.iii). We now prove that if the two subcases (2.i) and (2.ii) do not occur, we are in
a situation where the kite surgery S4 can be reversed. If we cannot extend
the geodesic line from q� to p�, it must be either because it meets another
cone point or that the line self-intersects. The latter case cannot happen
if � is large enough otherwise the systole would be smaller than (13). The
fact that the line self-intersecting gives rise to a non-essential curve is not
totally obvious. Actually this very curve could turn around a singular point
r� of cone angle smaller than π. But since there can be only one such point3

whose cone angle is smaller than π, we can play the same game with r� and
p� being sure that this situation will not occur. Since θ� and θ′

� range in a
finite set, that would imply that σ� goes to zero. So the extended line meets
a singular point r�. One can try to reverse Thurston’s surgery with p� and
r�. If [p�, q�] is long enough we are brought back to the previous case. In the
case when it is not long enough, we are going to prove that

(
2π − θ�

)
+
(
2π − θ′

�

)
+
(
2π − θ′′

�

)
= 0 .

In that case dim(X0) = 2 and one can reverse the kite surgery with very
small width.
More precisely, let l� = δ� be the length of the geodesic segment from q� to
p� and l′� be the length of the one from r� to p� (see Figure 15).

3 Indeed, since we have supposed that the cone point of negative curvature has cone angle < 4π,
there cannot be two cone points of angles < π, for otherwise the total curvature would exceed 0
and violate the Gauß-Bonnet equality.
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l l
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p

r

Figure 15: Geometric picture in subcase (2.iii).

As a consequence of Lemma 7.10, we have the following trichotomy:
(1) if

l′� >
sin
(

θ′
�

2

)

sin
(

θ�+θ′
�

2

) l�,

then perform the surgery S2 on the pair of points p�, q�;
(2) if

l� >
sin
(

θ′′
�

2

)

sin
(

θ�+θ′′
�

2

) l′�,

then perform the surgery S2 on the pair of points p�, r�;
(3) if

l′� ≤
sin
(

θ′
�

2

)

sin
(

θ�+θ′
�

2

) l� and l� ≤
sin
(

θ′′
�

2

)

sin
(

θ�+θ′′
�

2

) l′�,

then perform the kite surgery on the points p�, q� and r�.

(3). The sequence (σ�)�∈N converges to zero.
This case is the easiest. Since (D�)�∈N is bounded and σ� → 0 as � goes to infinity,
Proposition 5.11 applies for � large enough. This implies that a Devil’s surgery S3

of small width can be reversed.
We have proven so far that either (M�)�∈N converges to a point in X0 or that for �

large enough M� can be recovered from a point of X1 by a surgery of width going to
zero as � goes to infinity. In that latter case, Proposition 7.9 ensures that d(M�, X1)
converges to zero. Applying the induction hypothesis to a sequence (M ′

�)�∈N of flat
surfaces M ′

� ∈ X1 which are such that d(M ′
�, M�) ≤ d(M�, X1) ≤ 1/� for any � >> 1,

one gets that the limit of the sequence (M�)�∈N in F[ρ] belongs to X0�X1�. . .�Xn ⊂
F[ρ].

The proof of Proposition 7.7 is over. ��
Lemma 7.10. Let T be a flat torus and p1, p2 and p3 three distinct singular points
on it, of respective cone angles θ1, θ2 and θ3. Assume that p1 is the only point of
negative curvature among all the cone points of T and that p2, p1 and p3 sit, in
this order, on a geodesic line broken at p1, cutting the cone angle θ1 into two equal
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angles. Denote by l the length of the part of the line from p1 to p2, and l′ the length
of the part of the line from p1 to p3. Assume also that

l′ ≤ sin
(

θ2
2

)

sin
(

θ1+θ2
2

) l and l ≤ sin
(

θ3
2

)

sin
(

θ1+θ3
2

) l′. (14)

Then the four following assertions hold true:

(1) (2π − θ1) + (2π − θ2) + (2π − θ3) = 0;
(2) T has no other cone point than p1, p2 and p3;
(3) both inequalities in (14) actually are equalities;
(4) T can be recovered by a kite surgery from a regular flat torus.

Proof. The two inequalities of (14) together yield

sin
(

θ1 + θ2

2

)

sin
(

θ1 + θ3

2

)

≤ sin
(

θ2

2

)

sin
(

θ3

2

)

or equivalently cos
(
θ1 + θ2+θ3

2

)− cos
(

θ2+θ3
2

) ≥ 0 which in its turn is equivalent to

sin
(

θ1 + θ2 + θ3

2

)

sin
(

θ1

2

)

≤ 0. (15)

On the one hand, we have −2π < (2π − θ1) + (2π − θ2) + (2π − θ3) ≤ 0 because
of the Gauß-Bonnet formula. This implies that 4π > (θ1 + θ2 + θ3)/2 ≥ 3π and
therefore that sin((θ1 + θ2 + θ3)/2) ≤ 0, with equality if and only if θ1, θ2 and θ3

sum up to 6π. But on the other hand, 2π < θ1 < 4π according to our hypothesis
hence π < θ1/2 < 2π and sin(θ1/2) < 0. Inequality (15) forces sin((θ1 + θ2 + θ3)/2)
to vanish. Therefore θ1 + θ2 + θ3 = 6π or equivalently

(
2π − θ1

)
+
(
2π − θ2

)
+
(
2π − θ3

)
= 0 .

This implies in particular that

sin
(

θ2
2

)

sin
(

θ1+θ2
2

) =

(
sin
(

θ3
2

)

sin
(

θ1+θ3
2

)

)−1

and therefore one obtains that the inequalities in (14) actually are equalities.
Note that the lengths of two consecutive sides of a kite of external angles

θ1/2, θ2, θ3 satisfy the above equalities and therefore one can cut along the afore-
mentioned geodesic line and fill with the appropriate kite to reverse the kite
surgery. ��



GAFA MODULI SPACES OF FLAT TORI WITH PRESCRIBED HOLONOMY 1341

8 Finiteness of the Volume of F[ρ]

In this section, we continue to use the notations of the preceding one: F[ρ] stands for
a n-dimensional moduli space of flat surfaces of genus 0 or 1.

Below, we prove that the volume of F[ρ] is finite under the hypothesis that ρ has
finite image. Without the latter assumption (that we shall assume to hold true for
the remainder of the section), it is possible to prove that the volume of F[ρ] must
be infinite. We will only be interested in the genus 1 case, the genus 0 case having
already been dealt with by Thurston in [Thu98].

Proposition 5.6 essentially tells us that the lack of compactness of the metric
completion of F[ρ] is characterised by the property of having large embedded flat
cylinders. Surfaces satisfying this property can be recovered by performing a surgery
on a flat sphere along a distinguished geodesic segment between two conical points,
see Section 6.5.

8.1 Cylindrical Coordinates. Let T0 ∈ F[ρ] be a torus containing a flat
embedded systolic cylinder. It is built up from a flat sphere S0 on which the surgery
S5 described in Section 6 has been performed along a geodesic segment between
two conical points of S0. Let ρ̃ be such that S0 ∈ F[ρ̃] and let (z0, . . . , zn−1) be a
local linear parametrisation of F[ρ̃] at S0 such that z0 represents the geodesic path
along which the surgery is performed, and let zn be the complex number such that
the inserted cylinder has sides z0, zn. Then (z0, . . . , zn) is a linear parametrisation
of F[ρ]. We call any such parametrisation a cylindrical parametrisation whose
existence is guaranteed by Proposition 4.3.

Let A be the area form of the flat tori in F[ρ] close to T0 expressed in the coor-
dinates z0, . . . , zn and denote by B the area form of the associated flat spheres in
F[ρ̃], expressed in the coordinates z0, . . . , zn−1.

The (signed) area of the aforementioned embedded flat cylinder is Im(znz0) there-
fore the two area forms A and B are linked by the following relation:

A
(
z0, . . . , zn

)
= B

(
z0, . . . , zn−1

)
+ Im

(
znz0

)
.

Normalising with z0 = 1, we get a genuine parametrisation of F[ρ] (resp. F[ρ̃])
(z1, . . . zn) (resp. (z1, . . . zn−1)) and the preceding relation becomes

A
(
1, z1, . . . , zn

)
= B

(
1, z1, . . . , zn−1

)
+ Im

(
zn

)
.

8.2 Finiteness of the Volume. The strategy to estimate the complex hyper-
bolic volume of F[ρ] is to restrict ourselves to parts of F[ρ] where the diameter is large
(i.e. where corresponding flat tori have large embedded flat cylinders, see Proposition
5.6) and use the cylindrical coordinates defined above to perform some quasi-explicit
estimations.

In what follows, all the flat cylinders which we will consider will be assumed to
be ‘maximal’ in the sense that none of them is a proper subcylinder of an embedded
flat cylinder of the same width but of strictly higher length.
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For every positive ε, one sets

Aε =
{

T ∈ F[ρ]

∣
∣ σ(T ) = ε and T contains a flat cylinder of width ε

}

and Bε =
{

T ∈ F[ρ]

∣
∣ σ(T ) ≤ ε and T contains a flat cylinder of width σ(T )

}
.

As is often implicitly assumed in a large part of the paper, the points of F[ρ] are
flat surfaces which are supposed to be normalised in order that their area is 1. In
particular we assume this hypothesis in the definitions above.

Both Aε and Bε are closed subsets of F[ρ]. Moreover, from Section 6.5, it comes
that when non-empty, Aε is a smooth real-analytic hypersurface in F[ρ].

For a given ε > 0, the elements of Aε can be modified by thickening of a length t
the embedded flat cylinder of width ε (by thickening, we mean replacing the cylinder
of length l by a cylinder of length l + t). When renormalising in order for the area
to be 1, the width of the cylinder becomes smaller than ε. This defines a map

Aε × R≥0 −→ Bε , (16)

which is a local diffeomorphism (see Section 6.5). The fact that this map is well-
defined relies on the uniqueness of the maximal cylinder of width ε = σ(T ) (the
‘systolic cylinder’) in any T ∈ Aε for ε small enough. This fact follows easily from
Lemma 8.4 which is proved in Subsection 8.3. Note that from this Lemma, it also
can be deduced that Aε is precisely the boundary of Bε.

Proposition 8.1. For any ε sufficiently small, the map Aε × R≥0 −→ Bε is onto.

Proof. First remark that it is sufficient to prove the proposition for a fixed ε0 > 0,
because the statement will then hold true for every smaller ε.

Second, since Bε is the disjoint union of the Aη’s for η ∈]0, ε], the proposition
follows from the fact that, for every t > 0, the image of Aε × {t} by (16) is the
whole hypersurface Aε/

√
1+εt, as soon as ε is taken sufficiently small. This technical

assertion is proved in Subsection 8.4 below. ��
For the remainder of this section, we fix ε such that (16) is surjective. Now remark

that the closure of F[ρ]\Bε in F[ρ] is compact. Indeed, a sequence in F[ρ]\Bε must
have bounded diameter according to Proposition 5.6. But then, up to passing to a
subsequence, it is a Cauchy sequence by Lemma 7.8 and therefore converges in F[ρ].
Since Aε = ∂Bε, its closure in F[ρ] must be compact as well.

We are now able to prove the

Proposition 8.2. The volume of Bε is finite.

Proof. Since the closure of Aε in F[ρ] is compact, Aε can be recovered by a finite
union of simply-connected open sets (Ui)i∈I such that for each i ∈ I:

(1) the diameter of Ui for the complex hyperbolic metric is finite;
(2) there are cylindrical coordinates defined on Ui.
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More precisely, each element in Ui can be recovered from surgery S5 on a sphere
of a certain leaf F[ρ̃] along a geodesic joining two singular points and we have a linear
parametrisation (z0, . . . , zn) of Ui such that

• z0 parametrises the geodesic along which the surgery is performed;
• (z0, zn) parametrises the added cylinder;
• (z0, . . . , zn−1) is a linear parametrisation of F[ρ̃].

The area form therefore writes down the following way

A
(
z0, . . . , zn

)
= B

(
z0, . . . , zn−1

)
+ Im

(
znz0

)
. (17)

Normalising with z0 = 1, we get a parametrisation of F[ρ] (resp. of F[ρ̃]) by (z1, . . . zn)
(resp. by (z1, . . . zn−1)) and the preceding relation becomes

A
(
1, z1, . . . , zn

)
= B

(
1, z1, . . . , zn−1

)
+ Im

(
zn

)
.

In this chart the local diffeomorphism Aε × R≥0 −→ Bε is given by

(
(z1, . . . , zn, θ), t

) �−→ (
z1, . . . , zn−1, zn + it + θ

)
.

where θ is the twist parameter of the cylinder of width ε in Aε (see Figure 16 below).
At this point, we would like to stress that (z1, . . . , zn, θ) is not a system of coordinates
on Aε, but the latter written in these coordinates is a real-analytic submanifold of
codimension 2.

In view of (17), (z1, . . . , zn−1, zn + it + θ
)

is a system of pseudo-horospherical
coordinates on Bε (see Appendix A where this notion is introduced and discussed).
Since the diameter of each Ui is finite, the image of Bi = (Aε ∩ Ui) × R≥0 by the
preceding map is included into a domain UKi,λi

introduced in Appendix A, for some
Ki, λi > 0. It follows (from Lemma A.3) that the complex hyperbolic volume vol(Bi)
of Bi is finite for any i ∈ I. There are only a finite number of Ui’s covering Aε and
since ε has be taken such that the map (16) is onto, one gets

vol
(
Bε

) ≤
∑

i∈I

vol(Bi) ,

which implies that the complex hyperbolic volume of Bε is finite. ��

As mentioned above, the finiteness of the volume of F[ρ] follows from the preceding
proposition, hence we have proved the following theorem:

Theorem 8.3. Assume g = 1 and θ is such that 2π < θ1 < 4π and θi < 2π for i ≥ 2.
If ρ has finite image, then the volume of F[ρ] for its complex hyperbolic structure is
finite.
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Figure 16: Parametrisation of the extension of the cylinder.

8.3 A Uniqueness Result for Cylinders of Small Width. We now prove
the following lemma which implies the result announced in Subsection 8.2 (namely,
for ε sufficiently small, the unicity of the systolic cylinder in any element of Aε):

Lemma 8.4. There exists ερ > 0 (depending only on ρ) such that for any positive
ε < ερ and any flat torus T ∈ F[ρ], the following holds true: if T belongs to Bε, i.e.
if T contains an embedded flat cylinder of width σ(T ) ≤ ε, then the latter is unique
among the flat cylinders embedded in T of width strictly less than ερ.

Proof. Since Im(ρ) is finite, the number of genus 0 moduli spaces M0,θ′ that can be
obtained from elements of F[ρ] by reversing the surgery S5 is finite. Consequently,
the minimum κ of the set of positive constants K(θ′

1, θ
′
2) given by Lemma 5.7 for

the corresponding angle data θ′ (of course each time with respect to the two cone
points involved in the surgery), is positive as well.

Let T ∈ F[ρ] be an element of Bε, for a fixed ε > 0 supposed to be strictly less
than κ. By definition of Bε, T contains a flat cylinder C1 of width ε1 = σ(T ) with
ε1 ≤ ε. To prove the lemma (with ερ = κ), we argue by contradiction by assuming
that T contains another flat cylinder C2, of width ε2 < κ.
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First assume that the interiors of these two cylinders intersect. Then there exists
a boundary component ∂2 of C2 which intersects C1. Since ∂2 is totally geodesic, it
must enter C1 through one of its boundary components and exit by the other. But
∂2 has length ε2 so C1 has length at most ε2. On the other hand, since the width of
C1 coincides with the systole of T , it follows from Lemma 5.10 that C1 is a ‘systolic
cylinder’. In particular, it is a flat embedded cylinder as in Figure 14 with respect
to which the surgery S5 can be reversed. But removing C1 from T and inverting
the surgery S5 would give a flat sphere with a short geodesic between two of its
cone points. After renormalization of the area, this sphere and this geodesic together
would contradict Lemma 5.7 since ε2 < κ (the computational details are left to the
reader). This shows that C1 and C2 have disjoint interiors.

Let c1 (resp. c2) be a closed geodesic of length ε1 (resp. ε2) contained in the
interior of C1 (resp. of C2). Cutting T along c1 and c2 gives us two connected com-
ponents Σ and Σ′, each of them being a flat sphere with a boundary formed by two
disjoint totally geodesic circles (in other terms: both Σ and Σ′ are cylinders too).
Note that since C1 and C2 are of maximal length, any component of their boundary
contains a conical point from which it follows that both Σ and Σ′ contain conical
points. Now assume that the unique cone point of negative curvature of T belongs
to Σ′. Then Σ contains only cone points of positive curvature. But this is impossible
since, according to Gauß-Bonnet formula (applied to the flat surface with geodesic
boundary Σ), the total curvature of Σ is equal to 2π · χ(Σ) = 0. The lemma follows
from this contradiction. ��
8.4 A Technical Lemma. We fix ε > 0. For any positive η < ε, it is easily seen
that the preimage of Aη ⊂ Bε by (16) is Aε × {tη} with tη = (ε2 − η2)/(εη2) > 0.

Lemma 8.5. For ε sufficiently small, any map Aε × {tη} → Aη is surjective.

Proof. We claim that the statement of the lemma holds true for any ε < κ, where
κ stands for the positive constant introduced in the first paragraph of the proof
of Lemma 8.4. Indeed, if it were not the case, there would exist T ∈ Aη for some
η < ε, which was not in the image of Aε × {tη} → Aη. For such a T , one verifies
that the length of the systolic flat cylinder of T (of width η) is necessarily less than
or equal to ηtη/ε. Then removing this cylinder from T and inverting the surgery S5

would give a flat sphere with a short geodesic between two of its cone points. After
renormalization of the area, this sphere and this geodesic together would contradict
Lemma 5.7 since ε < κ (the computational details are left to the reader). ��
8.5 Proof of Lemma 7.8. We finally explain how the above description of the
parts of F[ρ] consisting of tori with long embedded cylinders gives a proof of the
first point of Lemma 7.8, namely that the diameters of the elements of any Cauchy
sequence in F[ρ] are uniformly bounded.

Consider a path γ : [0, 1] −→ Bε. We have the following estimate

L(γ) ≥
∣
∣
∣ log

(
c
(
γ(1)

))− log
(
c
(
γ(0)

))∣∣
∣.
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where c(T ) is the length of the cylinder of width at most ε (with T ∈ Bε). This is a
direct consequence of Lemma A.3 of Appendix A.

Assume that we have a Cauchy sequence whose diameter goes to infinity. We
can assume that all its elements belong to a subset Bε of F[ρ] considered above (this
follows from Proposition 5.6). Applying the above estimate to paths linking elements
of the sequence leads to a contradiction.

9 The Metric Completion is a Cone-Manifold

In this section, we prove a theorem describing the structure of the metric completion
of F[ρ]. We refer to Appendix B for further precisions and references on the notion
of cone-manifold.

We turn back to the notations used before the two preceding sections : we are
dealing with flat surfaces of genus g = 0, 1 with n cone points. More precisely, we
assume that either

• g = 0 and θi ∈]0, 2π[ for all i = 1, . . . , n; or
• g = 1, θ1 ∈]2π, 4π[ and θi ∈]0, 2π[ for i = 2, . . . , n,

so that Veech’s geometric structure on F[ρ] is complex hyperbolic.

Theorem 9.1. Let ρ ∈ H1(N, U, θ) be such that Im(ρ) is finite. The metric com-
pletion of F[ρ] is a complex hyperbolic cone-manifold.

The proof goes by induction on m = dim(F[ρ]). Assume that it has been proven
that the theorem holds true for all F[ρ] carrying a complex hyperbolic structure such
that dim(F[ρ]) ≤ m−1. The case g = 0 has been dealt with by Thurston in [Thu98].
The base case of the induction is when m = 0 that is F[ρ] is a point in which case
the theorem holds. Note that m = 0 can only happen if g = 0 and n = 3.

Consider ρ ∈ H1(N, U, θ) such that dim(F[ρ]) = m. We have proven in Section 7
(see Theorem 7.1) that X = F[ρ] is a disjoint union of X0, . . . , Xm such that

• X0 = F[ρ];
• Xi is a complex hyperbolic manifold of dimension m − i;
• the metric completion of Xi in X is Xi � Xi+1 � . . . � Xm.

We prove by induction on i that any point in Xi has a neighbourhood in X
isometric to a complex hyperbolic cone-manifold. Let p be a point of Xi. It has a
neighbourhood Up in Xi which is isometric to an open subset of CH

m−i. Following
Thurston in [Thu98], we define an ‘orthogonal projection’ π : Vp −→ Up from a
neighbourhood Vp of p in X onto Up the following way: we have seen in Section 7
that there exists a neighbourhood Vp of p in X such that for any q ∈ Vp there exists a
unique r ∈ Up such that q can be recovered from r by performing a finite number of
the four surgeries S1,S2,S3 and S4 described in Section 6, and one has π(q) = r.

Thurston calls this map ’orthogonal projection’ because, in a sense which is made
precise in Appendix B, the fibers of π are orthogonal to its image Up.
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Lemma 9.2. Let p, Up, Vp and π be defined as above.

(1) For all r ∈ Up, V (r) = π−1(r)\{r} is foliated by geodesics ending at r.
(2) For all r ∈ Up, the intersection V (r) ∩ (X0 � . . . � Xi−1) is a totally geodesic

sub-cone-manifold of X0 � . . . � Xi−1.
(3) For all r ∈ Up, V (r) is orthogonal to Up.

Proof. We fix r ∈ Up and consider an element q of V (r) = π−1(r). By using an
appropriate topological polygonation (cf. Proposition 4.3), one can find a linear
parametrisation (z1, . . . , zm) at q such that

• if (ξ0, . . . , ξm−i, . . . , ξm) are the coordinates of q in this parametrisation, then
π(q) has coordinates (ξ0, . . . , ξm−i, 0, . . . , 0);

• the area form A in the zi’s can be written out

A(z0, . . . , zm) = A1(z0, . . . , zm−i) − A2(zm−i+1, . . . , zm) (18)

where A1 has signature (1, m − i) and A2 is positive-definite (A2 is the total
area removed by the successive surgeries).

• in the local coordinates z1, . . . , zm, the stratum Xj for j > i is cut out by the
equations zm−(j+1) = zm−j+2 = · · · = zm = 0 (there is a subtlety here about
the precise location of the locus cut out by these equations with respect to
the domain of definition of the linear parametrisation we consider. We let the
reader state a remark analogous to Remark 7.5 for the case under scrutiny).

The image of [0, 1] � t −→ (ξ0, . . . , ξm−i, tξm−i−1, . . . , tξm) ∈ Cm+1 projects onto
a geodesic path in Vp joining q to r = π(q) (see Lemma A.1.(2)). Remark that
this geodesic does not depend on the choice of the zi’s: it is the one pointing in the
direction of r hence it is intrinsic (because there is a unique geodesic segment linking
to distinct points in a complex hyperbolic space). The collection of those geodesics
for all q ∈ V (r) gives the announced foliation of V (r). Taking Vp small enough, one
can ensure that the foliation is globally well defined by using for instance a finite
number of linear parametrisations whose pairwise intersections are 1-connected. The
first point of the lemma is proved.

A neighbourhood of q in V (r) ∩ X0 consists of the submanifold parametrised by
z′
1, . . . , z

′
m such that z′

1 = ξ1, . . . , z
′
m−i = ξm−i and therefore projects onto a totally

geodesic subspace CH
i (we use the fact that a complex affine submanifold of the

complex hyperbolic space is totally geodesic).
Finally, the splitting (18) of A gives us that V (r) and Up are orthogonal. ��
We continue to use the notations of the previous lemma.

Proposition 9.3. With the same notations as before, V (r) is a CHi-cone-manifold
with r as its unique cone point.

Proof. Define

B(ε) =
{
q ∈ V (r) | ∃ a geodesic of length ≤ ε joining q to r

}

and S(ε) = ∂B(ε) =
{
q ∈ V (r) | ∃ a geodesic of length ε joining q to r

}
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For ε small enough, S(ε) does not meet Xj for j ≥ i then it lives in

X\(∪j≥iXj) = X0 � X1 � . . . � Xi−1

which is a complex hyperbolic cone-manifold according to the induction hypothesis.
In particular S(ε) is locally a totally geodesic sub-cone-manifold intersected with

a piece of a complex hyperbolic sphere whose center belongs to V (r). It is therefore,
according to Lemma B.3, a (S2i−1, U(i))-cone-manifold. According to the previous
lemma, B(ε) is a cone over this cone-manifold and the proposition is proved. ��
Proposition 9.4. For any r ∈ Up, there exists a neighbourhood of r in X which is
a complex hyperbolic cone-manifold.

Proof. There exists an ε > 0 such that for all r ∈ U , the ball of radius ε at r in Vr

is an embedded cone. There is a neighbourhood of U in X which has the product
structure U × B(ε) satisfying the hypothesis of Proposition B.5. Hence U × B(ε) is
a complex hyperbolic cone-manifold and this proves the proposition. ��

The induction process can be carried on which proves that X = F[ρ] is a complete
complex hyperbolic cone-manifold.

10 Listing the F[ρ]’s and Their Codimension 1 Strata

We have given so far a rather abstract analysis of the geometric structure of a leaf
F[ρ] when Im(ρ) is finite. We now give a list of all such F[ρ] associated to a rational
angle datum θ when g = 1. Let Gθ ⊂ U be the subgroup generated by eiθ1 , . . . , eiθn

and ωρ a root of unity such that Im(ρ) = 〈ωρ〉.
Let M be the smallest positive integer such that Gθ = 〈ωM

ρ 〉.
10.1 Listing the F[ρ]’s Associated to θ. The starting point of our description
is the following lemma:

Lemma 10.1. Consider ρ and ρ′ two elements of H1(N, U, θ) such that:

(1) Im(ρ) = Im(ρ′);
(2) Im(ρ)

(
and therefore Im(ρ′)

)
is finite.

Then ρ and ρ′ are equivalent under the action of the pure mapping class group.

Proof. Let ρ ∈ H1(N, U, θ) be such that Im(ρ) is finite, equals to 〈exp(2iπ/q)〉 for
some positive integer q.

We consider two simple closed curves a, b avoiding the marked points of N which
form a symplectic basis of the homology of the unmarked torus N , and c1, . . . , cn

curves that circle the marked points, chosen in such a way that ρk = ρ(ck) = exp(iθk)
for k = 1, . . . , n. Up to the action of an element of the pure mapping class group,
we can replace a and b by aαbβ and aγbδ with [α β

γ δ] ∈ SL2(Z). We can this way
arrange that ρa = ρ(a) = 1 with ρb = ρ(b) such that Im(ρ) =

〈
Gθ , ρb

〉
. From this
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equality and thanks to our assumption, there exist integers ν1, . . . , νn and ν �= 0
such that (ρb)ν · ρν1

1 · · · ρνn
n = e2iπ/q hence generates Im(ρ). Then replacing a and

b by abν−1 and abνcν1
1 · cνn

n respectively, one can assume that Im(ρ) = 〈ρb〉 with
ρb = e2iπ/q. Then ρa = (ρb)μ for a certain integer p. Then considering abq−p instead
of a, one eventually obtains that the element of H1(N, U, θ) uniquely characterized
by assignating the values 1 and e2iπ/q to a and b respectively, is a representative
of the orbit of the initial character ρ under the action of the pure mapping class
group. As an immediate consequence of the preceding fact, we get that the class of
an element ρ ∈ H1(N, U, θ) under the action of the pure mapping class group only
depends on its image, if the latter is finite. This gives the lemma. ��

A leaf F[ρ] is therefore only determined by its associated angle data θ and the
smallest integer M ≥ 1 which is such that Gθ is generated by ωM

ρ . From now on, we
refer to such a leaf/moduli space as Fθ(M). We are now going to give a description
of its codimension 1 strata.

We distinguish three types of such strata:

• the P -strata which are obtained from Devil’s surgery. Here ‘P’ stands for
pinching ;

• the C-strata which are obtained from a Thurston’s type surgery. Here ‘C’
stands for colliding ;

• the K-strata which are obtained from a kite surgery. Here ‘K’ stands for
kite.

(Note that since a K-stratum appears when three cone points collide together, it
can be considered as a particular kind of C-stratum).

At this point we must mention an aspect of the description that we have so
far ignored: we have been using throughout the article the terminology ‘leaf ’ in a
non-standard way. While in foliation theory, a leaf is automatically supposed to be
connected, the definition we use allows Fθ(M) not to be. Such a non connectedness
phenomena can indeed happen when N has genus 1 as the explicit description of
the case g = 1, n = 2 carried on in [GP] reveals (see [GP,§4.2.5] for an explicit
example). The determination of the connected components in the general case is
an open problem that seems interesting to the authors for the reasons explained in
Section 11.

In what follows, we fix a leaf F[ρ] with Im(ρ) finite and we explain below sev-
eral algorithms to determine the strata of complex codimension 1 appearing in the
completion F[ρ].

10.2 Finding the P -Strata. Let m be the positive integer such that Gθ is the
subgroup of U generated by e

2iπ

m . With these notations, one has

Im
(
ρ
)

=
〈
e

2iπ

mM

〉
.
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Since θ1 > 2π there exists p such that

θ1 = 2π
(
1 +

p

m

)
.

A P -stratum of codimension 1 is a (finite cover of a) moduli space of flat spheres
whose angles datum is (θ′

1, θ
′′
1 , θ2, . . . , θn) with θ′

1 and θ′′
1 such that

(1) θ′
1 + θ′′

1 = θ1 − 2π;
(2) both eiθ′

1 and eiθ′′
1 belong to Im(ρ) =

〈
e

2iπ

mM

〉
.

This condition is sufficient for such a (finite cover of a) moduli space of flat
spheres to appear as a stratum of the metric completion of F[ρ]. There is therefore
a P -stratum for each way of decomposing the integer pM as a sum of two positive
integers, this number being

⌊pM
2

⌋
.

The stratum associated to a decomposition

pM = r′ + r′′ (D)

with r′, r′′ > 0 is a finite cover of the moduli space of flat spheres whose angles
datum is

(
e

2iπr′
mM , e

2iπr′′
mM , θ2, . . . , θn

)
.

According to Section 6.7, the cone angle around the stratum associated to the
decomposition (D) is 2π · lcm(r′, r′′)/(mM).

10.3 Finding the C-Strata. A C-stratum of codimension 1 is a moduli space
of flat tori with n − 1 cone points corresponding to the collision of two cone points
pk and pl of respective angles θk and θl. The new angle datum θ′ = (θ′

i)
n−1
i=1 is such

that θk and θl have been replaced by θk + θl − 2π, the other θi’s staying unchanged.
A holonomy character ρ′ ∈ H1(N, U, θ′) is such that a finite cover of F[ρ′] is a

stratum of F[ρ] if and only if Im(ρ) is generated by Im(ρ′), eiθk and eiθl (see Subsection
6.1). We describe now the positive integers M ′ which are such that Fθ′(M ′) appears
as a C-stratum of the metric completion of F[ρ] = Fθ(M).

Let m′ be the positive integer such that Gθ′ is generated by e
2iπ

m′ . Remark that m′

divides m. We are trying to find the integers M ′ such that e
2iπ

m′M′ and e
2iπ

m generate
Im(ρ) = 〈e 2iπ

mM 〉. This is equivalent to find the integers M ′ such that lcm
(
m, m′M ′) =

mM . Since m′|m, this is equivalent to determine the positive integers M ′ verifying

lcm
(
M ′,

m

m′
)

= M
m

m′ .

The list of solutions to the preceding relation viewed as an equation in M ′,
provides the list of leaves Fθ′(M ′), associated to the collision between pk and pl

which appear as C-strata of F[ρ]. For any such C-strata, it comes from Section 6.7
that the conifold angle around it is θ′ = θk − θl − 2π.

Remark that, as in the genus 0 case considered by Thurston, the complex hyper-
bolic conifold angle θ′ coincides with the new cone angle of the flat surfaces whose
isomorphism classes belong to the considered stratum.
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10.4 Finding the K-Strata. A K-stratum appears in codimension 1 in the
metric completion of a leaf F[ρ] if and only if n = 3 and Gθ = Im(ρ). In this case,
the conifold angle around such a stratum is π according to the third point of Section
6.7.
10.5 The 1-Dimensional Case. We now consider the case when n = 2. We
assume θ = (θ1, θ2) ∈ 2πQ2 with θ1 + θ2 = 4π. A leaf Fθ(M) is a 1-dimensional
complex hyperbolic manifold or equivalently, a real hyperbolic surface.

According to Theorem 9.1, the metric completion of Fθ(M) is a hyperbolic surface
of finite volume, with a finite number of cone points and a finite number of cusps.
We give in this section a refinement of the description of the P -strata appearing
in Fθ(M) (there is actually no C-stratum in the metric completion of Fθ(M) when
n = 2 according to Proposition 5.9) and give a list of the cusps by geometric means.
We finally give explicit details in the case when θ = (3π, π).

A leaf Fθ(M) when n = 2 shall be thought of as a generalisation of the modular
surface H/PSL(2, Z) which is the moduli space of regular flat tori. Veech’s hyperbolic
structure matches its standard one. It is not very surprising that the analytical
analysis carried on in [GP] shows that the connected components of Fθ(M) are
conformally equivalent to modular curves of the form Y1(N) = H/Γ1(N) for certain
integers N ≥ 2, see [GP,§4.2.4] for more details.

Cone points. Strata of Fθ(M) correspond to flat spheres S with 3 cone points
whose associated angle datum (θ′

1, θ
′′
1 , θ2) is such that θ′

1 + θ′′
1 = θ1 − 2π. Listing

such flat spheres has been done in the preceding section. We also saw that P -strata
are finite covers of moduli spaces of flat spheres, in this specific case such a finite
cover is a union of points. There are as many copies of S appearing in the metric
completion Fθ(M) as ways of performing Devil’s surgery on S.

Let T ∈ Fθ(M) be a torus built by Devil’s surgery on S. Let β̂ be a simple
curve on T avoiding the singular points that intersects the systole only once (see
Section 6.3 for more details and pictures). We remark that ρ(β̂) has to be such that
〈
eiθ′

1 , eiθ′′
1 , eiθ2 , ρ(β̂)

〉
= Im(ρ).4

With the notation of the previous section, if

θ′
1 =

2πr′

mM
and θ′′

1 =
2πr′′

mM
,

then there are exactly gcd(r′, r′′) different ways to perform Devil’s surgery in
such a way that that the holonomy along β̂ belongs to Im(ρ). Amongst these
ways, only ϕ

(
gcd(r′, r′′, mM)

)
(where ϕ is Euler’s totient function) are such that

〈eiθ′
1 , eiθ′′

1 , eiθ2〉 = Im(ρ) and this number is the exact number of times that S appears
in the metric completion of Fθ(M) = F[ρ].

We now explain how to perform this counting. As explained in Subsection 6.3
(to which we refer for the notations used below), the parameters for Devil’s surgery

4 Note that here and in what follows, the unitary holonomy character ρ corresponds to the one
which was denoted by ρ̂ in §6.3.
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are pairs of points (q′, q′′) on two circles (respectively identified with) R/θ′
1Z and

R/θ′′
1Z, around the two singular points of the flat sphere involved in the surgery

and a positive parameter r equal to the radius of the aforementioned circle (up to
constants depending on θ′

1 and θ′′
1). These points q′ and q′′ are the points which are

going to be identified together to create a new point of negative curvature. Remark
that all such parameters do not give rise to surfaces necessarily belonging to F[ρ]: for
this to happen, q′ and q′′ have to move along R/θ′

1Z and R/θ′′
1Z by the same amount.

This way the holonomy along β̂ (of the flat structure of the surfaces obtained after
surgery) remains constant. The number of ways of performing Devil’s surgery is the
number of connected components of the space of such parameters (q′, q′′) giving rise
to flat surfaces belonging to the same leaf F[ρ]. Remark that any point q′ in R/θ′

1Z

belongs to a pair (q′, q′′) for which the associated surface belongs to such a chosen
connected component of parameters (if this set is non-empty in the first place). In
order to count the number of ways to invert Devil’s surgery, it suffices then to count,
given a point q′ ∈ R/θ′

1Z, the number of points q′′ ∈ R/θ′′
1Z such that the couple

(q′, q′′) gives rise to an element of F[ρ] and distinguish those belonging to different
components of parameters.

Chose any point q′′
0 such that (q′, q′′

0) gives rise to an element of Fθ(M). Denote by
β̂(q′, q′′) the curve β̂ 5 on the torus associated to the pair (q′, q′′). Up to multiplication
by a power of eiθ′′

1 , we have

ρ
(
β̂(q′, q′′

0 + ϑ)
)

= ρ
(
β̂(q′, q′′

0)
) · eiϑ

for any ϑ ∈ R/θ′′
1Z (the addition referring to the standard group law of R/θ′′

1Z).
We find this way that a pair (q′, q′′) gives rise to a surface such that ρ(β̂) ∈ 〈e 2iπ

mM 〉
(such a pair of parameters is said to be admissible) if and only if q′′ − q′′

0 ∈ 2iπ
mM Z

which gives exactly r′′ possibilities for a point q′′ to pair with q′ and giving rise to
an element of F[ρ] (recall that θ′′

1 = 2πr′′

mM ). Amongst these possibilities, are in the
same components of the set of admissible parameters those differing by a multiple
of r′ modulo r′′. This gives at most gcd(r′, r′′) different components of admissible
parameters (see Remark 6.5).

The last thing that we have to do to make sure that the parameters we are
considering truly correspond to elements of Fθ(M) = F[ρ] is to ensure that

〈
eiθ′

1 , eiθ′′
1 , eiθ2 , ρ(β̂)

〉
=
〈
e

2iπ

mM

〉
.

If β is such that ρ(β̂) = e
2ikπ

mM′ for a certain positive integer k, then
〈
eiθ′

1 , eiθ′′
1 , eiθ2 , ρ

(
β̂
)〉

=
〈
e

2iπ gcd(r′,r,k,mM)
mM

〉

5 ‘The’ curve β̂ is a priori not well-defined. One can make an arbitrary choice for (q′, q′′
0 ) and then

define β̂ for every nearby parameter using the Gauss–Manin connection. The initial choice does not
really matter because the computation of its holonomy would give results well determined up to
multiplication by an element of

〈
eiθ′

1 , eiθ′′
1
〉
.
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which leads to ϕ
(
gcd(r′, r, k, mM)

)
essentially different ways to perform the surgery.

Finally, the CH1-cone angle around such a point is 2πlcm(r′, r′′)/(mM) (it is a direct
application of the description of Section 6.3).

Cusps. According to Subsection 6.5, the cusps of Fθ(M) are in one-to-one corre-
spondence with pairs (S, γ) where

(1) S is a flat sphere with three cone points of angles θ′
1, θ′′

1 and θ2, such that
θ′
1 + θ′′

1 = θ1 − 2π and Im(ρ) =
〈
eiθ′

1 , eiθ′′
1 , eiθ2

〉
;

(2) γ is a regular geodesic in S between the cone point of angle θ′
1 and the one of

angle θ′′
1 .

Such a geodesic always exists and is unique, we therefore simply have to count
the number of flat spheres with three cone points such that Im(ρ) =

〈
eiθ′

1 , eiθ′′
1 , eiθ2

〉
.

This reduces to counting the number of pairs of positive integers (r′, r′′) such that
r′ + r′′ = pM and gcd(r′, r′′) = 1.

10.6 An Example: θ = (3π, π). We are now going to compute the number
of conical points and cusps of Fθ(M) in the special case when θ = (3π, π). In this
case p = 1 and m = 2.

• Each CH1-cone point of Fθ(M) = F(3π,π)(M) corresponds to a partition
r + s = M with r, s > 0. To such a partition are associated ϕ

(
gcd(r, s) =

gcd(r, M)
)

cone points, all of the same cone angle 2πlcm(r, M − r)/M .
A particular case is when M = 2M ′ is even. In this case the partition
M = M ′ + M ′ only gives rise to half of the cone points predicted by the
above paragraph, namely 1

2ϕ(M ′). Indeed the underlying sphere on which
the surgery is performed has angles (π, π/2, π/2) and has a symmetry of
order two. This symmetry permutes the different inversions of the surgery,
except for the case M = 4 where there is only ϕ(2) = 1 way to perform
the surgery and in this particular case it only halves the cone angle at the
underlying CH1-cone point.

• In particular the number of cone points is

1
2

2M−1∑

r=1

ϕ
(
gcd(r, M)

)
+

1
2
ϕ(M)

for M > 4 and is 2 when M = 3, 4.
• There are as many cusps as proper partitions M = r + s such that r > 0 and

M are coprime. Thus the number of cusps is exactly

1
2
ϕ(M)

for M ≥ 3 and is equal to 1 for M = 2.
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The number of cusps and cone points put together gives us the number of punc-
tures of F(3π,π)(M) which is equal to

1
2

M∑

r=1

ϕ
(
gcd(r, M)

)
(19)

for M > 4, to 2 for M = 2 and to 3 for M = 3, 4. When M > 4, a reordering of the
sum (19) gives us that the total number of punctures of F(3π,π)(M) is actually

1
2

∑

d|M
ϕ(d)ϕ

(
M/d

)
.

This number is equal to the number of cusps of the modular curve Y1(M) =
H/Γ1(M) (see [DS05]). This is not a coincidence: it is proved in [GP, §4.2.5.3] that
the conformal type of F(3π,π)(M) is actually the same as the one of Y1(M).

11 Holonomy of the CH
n−1-Structure: Discreteness

11.1 Previous Results in the Genus 0 Case. Thurston proves in [Thu98]
(recovering by geometric methods results of Deligne and Mostow from [DM86]) that
when g = 0 and n ≥ 4, if the angle datum θ = (θ1, . . . , θn) ∈]0, 2π[n verifies

∀i, j = 1, . . . , i �= j, 2π < θi + θj =⇒ θi + θj − 2π divides 2π , (INT)

then the metric completion of Fθ 
 M0,n (the unique leaf of Veech’s foliation in this
case) is a connected complex hyperbolic orbifold of finite volume and therefore a
quotient CH

n−3/Γθ where Γθ is a lattice in PU(1, n − 3). This lattice Γθ is exactly
the image of holonomy morphism

hol : π1

(
M0,n

) −→ PU(1, n − 3)

of the (CH
n−3, PU(1, n − 3))-structure of Fθ. Sometimes it happens that the image

Γθ = hol(π1(Fθ)) of the holonomy is a lattice in PU(1, n − 3) even if the metric
completion of Fθ is not an orbifold. The combined works of Picard, LeVavasseur,
Terada, Deligne–Mostow, Mostow, Thurston and Sauter (see [LV93,Ter73,Thu98,
DM86,Mos88,Sau90]) lead to the following results:

(1) there exist 94 angles data θ for which Fθ is an orbifold, and therefore Γθ =
hol(π1(Fθ)) is a lattice;

(2) this builds lattices in PU(1, N) for all N = n − 3 = 1, . . . , 9, some of them
being non-arithmetic for N = 1, 2 and 3 (these have been for a long time the
only known examples of non-arithmetic complex hyperbolic lattices until the
recent work of Deraux, Parker and Paupert [DPP15]);

(3) if N ≥ 3, Γθ is a lattice if and only if θ verifies (ΣINT), apart from one
exception (we recall that (ΣINT) is the refinement of (INT) stated in the
Introduction above; see also [Mos86, §1] or [Thu98, Theorem 0.2]);

(4) when N = 2, there exist 9 angles data failing (ΣINT) for which Γθ =
hol(π1(Fθ)) is a lattice.
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11.2 Genus 1 and n = 3. We now address the following question, which must
seem natural at this point:

Question. Let T be a torus with three marked points, and θ an admissible rational
angle datum. Does there exist ρ ∈ H1(T, U, θ) such that hol(π1(F[ρ])) is a lattice in
PU(1, 2)?

As we have seen in Section 10, such a leaf F[ρ] is only determined by θ and an
integer M . We denote such a leaf by Fθ(M). The first difficulty to address is the
question of the connectedness of the leaves F[ρ]: Fθ(M) may have several connected
components (see Subsection 3.3 for a short discussion of this matter) and it is possible
that the holonomy of one of these is a lattice and that it is not the case for the others.

The following lemma, whose proof in the genus 0 case can be found in [Mos88],
outlines a strategy to search for connected components of Fθ(M) whose holonomy
is a lattice:

Lemma 11.1. Let F be a connected component of Fθ(M) whose complex hyper-
bolic holonomy is a lattice in PU(1, 2). Then the complex hyperbolic holonomy of
every codimension 1 stratum is a lattice in PU(1, 1).

This lemma provides necessary conditions on such a connected component F to
have discrete holonomy in PU(1, 2), conditions which hold true in several cases. To
find candidates whose holonomy is a lattice in PU(1, 2), an optimistic strategy goes
as follows:

(1) identify the different connected components of Fθ(M);
(2) verify if the criterion given by Lemma 11.1 is verified, using the list of Deligne–

Mostow and Thurston for genus 0 type codimension 1 strata or the strategy
suggested in the next paragraph for genus 1 codimension 1 strata;

(3) amongst the isolated candidates, compute the complex hyperbolic holonomy
and verify that it is discrete.

(We call ‘genus g strata’ a strata whose elements are flat surfaces of genus g).
The last step seems to be the most difficult to achieve so far, since the methods

used in the genus 0 case (see for example [Par06]) tends to become algorithmically
too complicated in our case and strongly rely on the knowledge of simple generators
of the fundamental group of M0,n (a finite family of distinguished Dehn twists).

11.3 Some Cases when the Holonomy is an Arithmetic Lattice. We
remark that for a certain number of connected components F of leaves of Veech’s
foliation, the holonomy is an arithmetic lattice in PU(1, 2).

This follows from the following lemma:

Lemma 11.2. Let F be a connected component of a leaf F[ρ]. Then, up to a suitable
conjugation, the coefficients of the matrices of hol(π1(F)) lie in Z[Im(ρ)].

This lemma is an easy consequence of the fact that the matrices of the transitions
maps of an atlas of linear parametrisations coming from topological polygonations
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Table 1 Data θ and M such that Im(ρ) = 〈exp(2iπ/m)〉 with m ∈ {3, 4, 6} (n stands for
the number of cone points and coincides with the dimension of the leaf Fθ(M) plus one)

n m θ/2π =
(
m θi/2π

)n
i=1

m M label

3
(
5 , 2 , 2

)
3 1 a

(
6 , 3 , 3

)
4 1 b

(
8 , 5 , 5

)
6 1 c

3
(
7 , 3 , 2

)
4 1 d

(
9 , 5 , 4

)
6 1 e

(
10 , 5 , 3

)
6 1 f

(
11 , 5 , 2

)
6 1 g

(
11 , 4 , 3

)
6 1 h

(
5 , 2 , 2

)
3 2 i

4
(
7 , 3 , 3 , 3

)
4 1 j

(
9 , 5 , 5 , 5

)
6 1 k

(
10 , 5 , 5 , 4

)
6 1 l

(
11 , 5 , 4 , 4

)
6 1 m

5
(
10 , 5 , 5 , 5 , 5

)
6 1 n

(
11 , 5 , 5 , 5 , 4

)
6 1 o

6
(
11 , 5 , 5 , 5 , 5 , 5

)
6 1 p

must have coefficients in Z[Im(ρ)] (see Section 4 and the proof of Proposition 4.2).
In particular if Z[Im(ρ)] is discrete in C, then for any connected component F of
F[ρ], the image of its holonomy is discrete in PU(1, 2).

The developing map F̃ → CH
2 of such a F factors through a local isometry F →

CH
2/hol(π1(F)). Since F has finite volume (cf. Section 8), hol(π1(F)) is necessarily

a lattice which must be arithmetic since it belongs to PU(1, 2)∩SL3(Z[Im(ρ)]). This
situation actually happens: if Im(ρ) = 〈exp(2iπ/m)〉 for m = 3, 4 or 6 then Z[Im(ρ)]
is discrete. Note that the argument does apply to higher dimensions as well.

By straightforward computations, these cases can be completely determined:

Proposition 11.3. (1) The data θ and M such that Im(ρ) = 〈exp(2iπ/m)〉 with
m ∈ {3, 4, 6} are exactly those given in Table 1.

(2) For any such θ and M , the (image of the) complex hyperbolic holonomy of
any connected component of Fθ(M) is an arithmetic lattice.

We think it is relevant to make the following remarks regarding Table 1:
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Table 2 Coincidences with some Picard/Deligne-Mostow lattices

� θ(�) μ(�) label in [DM86, p. 86]

a
(
10π
3 , 4π

3 , 4π
3

) (
1
6 , 1

3 , 1
2 , 1

2 , 1
2

)
6

b
(
3π , 3π

2 , 3π
2

) (
1
4 , 1

4 , 1
2 , 1

2 , 1
2

)
2

c
(
8π
3 , 5π

3 , 5π
3

) (
1
3 , 1

6 , 1
2 , 1

2 , 1
2

)
6

Remark 11.4. (1) Using the same approach as the one considered in [GP,§4.3.1],
it is not difficult to establish that Fθ(M) is connected for any one of the
elements (θ, M) of Table 1.

(2) From the preceding remark, it follows that to any label � among the sixteen
of Table 1 corresponds precisely one arithmetic complex hyperbolic lattice
in PU(1, n − 1), which will be denoted by Γ�.

(3) The lattices Γ� associated to the first three labels a, b and c were previously
known. Indeed, for such a label, the associated angle datum θ(�) = (θi(�))3i=1

is such that θ2(�) = θ3(�). From this and because M = 1, one deduces that
the flat structure of a flat tori T whose class belongs to Fθ(�)(1) is invari-
ant by the elliptic involution i � T . Consequently, the flat structure of
T comes from a flat structure on T/i 
 P1 with five cone points. It fol-
lows that there exists a (possibly orbifold) covering Fθ(�)(1) → M0,θ̃(�) with

θ̃(�) =
(
θ1(�)/2, θ2(�), π, π, π

)
(see [GP,§4.2.5] for more details).

This eventually gives us that Γ� coincides with a Picard/Deligne–Mostow lat-
tice Γμ(�) associated to a 5-tuple μ(�) (we use here the notations of [DM86]
and [Mos88]) which depends only on �, see Table 2. Note that it shows that
Γa and Γc coincide (up to conjugacy).

(4) Excluding the cases associated to the labels a, b and c, one gets thirteen a
priori new arithmetic complex hyperbolic lattices. It would be interesting to
know more about them. To achieve this goal, the following approach, albeit
computational, could be fruitful: for any label � ∈ {a, b, . . . , p}, using the
results of [GP,§4.2.4], it is possible to give an explicit basis of the fundamental
group of the corresponding leaf F� = Fθ(�)(M(�)). Then, combining the results
of [GP,§4.4] with the monodromy formulae of [Man08,§6], it should be possible
to construct an explicit version h� : π1(F�) → PU(1, n − 1) of the holonomy
map which would allow to study Γ� = Im(h�) quite concretely.

11.4 Holonomy in the 1-Dimensional Case. Subsection 10.5 is the first step
towards a geometric description of the moduli spaces F[ρ] when g = 1 and n = 2. A
comprehensive description of this case is carried on in the paper [GP].

The following Proposition, which is just a suitable reformulation of Poincaré’s
theorem on fundamental domains of Fuchsian groups, gives an easily verifiable
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sufficient criterion for a (connected component of a) leaf F to have discrete holonomy
in PU(1, 1).

Proposition 11.5. The metric completion F of F is a lattice quotient of CH
1 if

and only if all the cone angles at points of F\F are integer parts of 2π.

This Proposition combined with the analysis carried on in [GP] allows us to find
several such F which are lattice quotients (cf. [GP, §6.1] for more details).

Appendix A. Complex Hyperbolic Geometry

A.1 Complex Hyperbolic Space. On the complex vector space Cn+1 of
dimension n + 1, we consider the Hermitian form 〈·, ·〉 of signature (1, n) defined
by

〈z, w〉 = z0w0 −
n∑

i=1

ziwi

for z = (z0, . . . , zn) and w = (w0, . . . , wn) in Cn+1.
All the definitions to come do not depend on the choice of the Hermitian metric

of signature (1, n) since two such forms are linearly conjugate. Recall that CP
n is

the set of complex lines in Cn+1. We define CHn, the complex hyperbolic space
of dimension n, as the subset of CP

n formed by the lines in Cn+1 on which 〈·, ·〉
is positive:

CH
n =

{
[z] ∈ CP

n
∣
∣ z ∈ C

n+1, 〈z, z〉 > 0
}

.

We denote by PU(1, n) the set of linear automorphisms of Cn+1 which preserve
〈·, ·〉. It acts projectively on CHn and satisfies the following properties:

• its action on CHn is transitive;

• PU(1, n) is exactly the group Aut(CHn) of biholomorphisms of CHn;

• there exists a Riemannian metric on CHn (unique up to rescaling), for which
PU(1, n) is exactly the set of holomorphic isometries. This metric is called
the complex hyperbolic metric;

• this metric has sectional curvature comprised between −1
4 and −1. Its holo-

morphic sectional curvature is constant.

The stabiliser of a point in CHn (which is exactly the stabiliser of a positive
line in PU(1, n)) is conjugate to U(n) ⊂ PU(1, n), which is the maximal compact
subgroup of PU(1, n). The complex hyperbolic space CHn is therefore isometric to
the rank one (Hermitian) symmetric space PU(1, n)/U(n). It is the non-compact
dual of CPn.

The distance for the complex hyperbolic metric can be explicitly computed by
means of the initial Hermitian form:
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Lemma A.1. Let [z] and [w] be two points in CHn ⊂ CP
n with z, w ∈ Cn+1.

(1) The complex hyperbolic distance α between [z] and [w] satisfies

cosh2
(α

2

)
=

〈z, w〉 · 〈w, z〉
〈z, z〉 · 〈w, w〉 .

(2) The geodesic curve linking [z] to [w] in CHn is the projectivisation of the
linear segment [z, w] = {z + tw |t ∈ [0, 1] } linking z to w in Cn+1.

(For some proofs, see [Gol99, §3.3.5])

A.2 Coordinates.

A.2.1 The Ball Model. In order to have coordinates on CHn, one can take affine
coordinates of CP

n. Since z0 �= 0 if [z] = [z0 : · · · : zn] belongs to CHn, the latter is
contained in the affine chart {z0 �= 0} of CPn.

In the z0 = 1 normalisation, it comes that z1, . . . , zn provide a global system of
holomorphic coordinates which identify CHn with the complex n-ball:

{
(
zi

)n
i=1

∈ C
n
∣
∣

n∑

i=1

∣
∣zi

∣
∣2 < 1

}

.

In this model of the complex hyperbolic space, the hyperbolic metric identifies
with the Bergman metric of the complex n-ball.

Although we do not use it in the present text, the complex ball is a very classical
model for CHn which is worth being mentioned. We will not say anything more
about it but one can find a comprehensive presentation in [Gol99].

A.2.2 Pseudo-Horospherical Coordinates. More important for our purpose is a
special kind of affine coordinates on CHn which are very close, in spirit, to the
horospherical coordinates introduced by Goldman and Parker in [GP92].

Let ξ = (ξ0, . . . , ξn) be a system of linear coordinates on Cn+1 such that the
expression of the Hermitian form 〈·, ·〉 in these can be written out

〈ξ, ξ〉 =
i

2

(
ξnξ0 − ξ0ξn

)
+ a

(
ξ̂, ξ̂
)

for a Hermitian form a of signature (1, n − 1) and where ξ̂ stands for (ξ0, . . . , ξn−1).

Lemma A.2. If ξ = (ξi)n
i=0 is such that 〈ξ, ξ〉 > 0 then ξ0 �= 0.

Proof. One verifies that, up to a linear change of coordinates letting ξ0 invariant,
one can assume that 〈ξ, ξ〉 = i

2(ξnξ0 − ξ0ξn) +
∑n−1

j=0 εjξjξj for some εj belonging
to {−1, 0, 1}. By assumption, a(ξ̂, ξ̂) =

∑n−1
j=0 εjξjξj has signature (1, n − 1) hence

exactly one of the εj ’s is equal to 1, all the others being equal to -1.
If ε0 = −1, then i

2(ξnξ0 − ξ0ξn)− ξ0ξ0 has signature (1, 1). Since
∑n−1

j=1 εjξjξj has
signature (1, n − 2) (because εj = 1 for some j ≥ 1), this would imply that 〈·, ·〉 has
signature (2, n − 1), a contradiction. ��
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From the preceding lemma, it follows that the complex hyperbolic space admits a
model contained in the affine chart {ξ0 �= 0} of CPn. Then, under the normalization
ξ0 = 1, the ξk’s for k = 1, . . . , n provide global affine coordinates on this model
which will be called pseudo-horospherical coordinates.

In such coordinates, the associated quadratic form is given by 〈ξ, ξ〉 = Im(ξn) +
a(ξ̂, ξ̂) with ξ̂ = (1, ξ1, . . . , ξn−1) and consequently, this model of the complex hyper-
bolic space CHn consists in the set of ξ = (ξ̂, ξn) ∈ Cn such that

Im
(
ξn

)
> −a

(
ξ̂, ξ̂
)
.

In the standard (homogeneous) coordinates z = (z0, z1, . . . , zn) on Cn+1, the
formula for the complex hyperbolic metric is the following

g = − 4
〈z, z〉2

∣
∣
∣
∣
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

∣
∣
∣
∣ .

A straightforward calculation gives the following formula for the expression of
this metric in pseudo-horospherical coordinates:

g = − 4
〈ξ, ξ〉2

(
〈ξ, ξ〉 · a

(
dξ̂, dξ̂

)− a
(
ξ̂, dξ̂

) · a
(
dξ̂, ξ̂

)− Im
(
dξn · a

(
ξ̂, dξ̂

))− ∣∣dξn

∣
∣2
)

.

Introducing u = 〈ξ, ξ〉 and s = Re(ξn), we therefore have ξn = s + i(u − a(ξ̂, ξ̂)).
In the coordinates system (s, u, ξ1, . . . , ξn−1) on the pseudo-horospherical model of
CHn we are considering, the metric tensor g writes down

g =
4
u2

(
du2

4
+
(ds

2
+ Im(ω)

)2
+ Re(ω)2 − u · Ω

)

(20)

where ω = a(ξ̂, dξ̂) and Ω = a(dξ̂, dξ̂).
We now introduce the family of open sets in CHn:

UK,λ =
{[

1, ξ1, . . . , ξn

] ∈ CH
n
∣
∣
∣
∣
∣ξ1

∣
∣, . . . ,

∣
∣ξn−1

∣
∣,
∣
∣Re(ξn)

∣
∣ < K and Im

(
ξn

)
> λ

}

with K, λ > 0.

Lemma A.3. Let K and λ be arbitrary positive constants.

(1) The complex hyperbolic volume of UK,λ is finite.
(2) If γ : [0, 1] −→ UK,λ is a path such that γ(t) = (ξ1(t), . . . , ξn(t)) for any

t ∈ [0, 1], then its length L(γ) for the complex hyperbolic metric satisfies

L(γ) ≥
∣
∣
∣ log

(
ξn(1)

)− log
(
ξn(0)

)∣∣
∣ .
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Proof. In the coordinates system (s, u, ξ1, . . . , ξn−1) on UK,λ, the complex hyperbolic
volume element writes down

√
det(g) dsdudξ1dξ1 · · · · · dξn−1dξn−1.

Since both ω and Ω depend continuously on ξ1, . . . , ξn−1, one gets that

√
det(g) =

f
(
ξ1, . . . , ξn−1

)

u2n+2

for some positive and continuous function f which thereby is bounded on UK,λ.
The finiteness of the volume of UK,λ follows directly from evaluating the associated
integral.

The second point of the lemma follows directly from the fact that g ≥ u−2du2

on UK,λ. To see this, one has to prove that Ω is negative. But if Ω was not, since
du2/4 + (ds/2 + Im(ω))2 + Re(ω)2 does not depend on u, one would deduce from
(20) that g would not be positive for large values of u, a contradiction. ��

Appendix B. Cone-Manifolds

B.1 Generalities. This section strongly builds on [McM17], in particular the
use of joints for describing spherical cone-manifolds.

Let X be a complete homogeneous Riemannian manifold and let G be its isometry
group (or more generally a subgroup of its isometry group). We develop material on
cone-manifolds in this specific case. For any point p ∈ X, one denotes by Xp the set
of geodesic rays emanating from it and Gp = StabG(p) stands for its stabiliser.

A (X, G)-cone-manifold is a geometric object built inductively as follows:
• if X is 1-dimensional, a (X, G)-cone-manifold is just a (X, G)-manifold;
• otherwise, a (X, G)-cone-manifold is a topological space such that any point

in it has a neighbourhood isomorphic to a cone over a (Xp, Gp)-cone-manifold.

One remarks that Xp is just the unit sphere at p in X and therefore Gp can
naturally be seen as a subgroup of O(n) where n is the dimension of X.

A simple example of a non trivial cone-manifold is a Euclidean cone. If X = R2

and G = Iso(R2), Xp = S1 and Gp = O(2). A (Xp, Gp)-manifold is nothing else but
a circle of length θ and a cone over it is a cone of angle θ. Finally, remark that any
(X, G)-manifold is also a (X, G)-cone-manifold in a natural way.

B.2 Cones are Cone-Manifolds. Let X be a connected Riemannian manifold
such that G is the component of the identity of its isometry group. Let X ′ be a totally
geodesic submanifold of codimension 2 in X such that StabG(X ′) is S1 = R/Z, i.e.
it acts by rotation of angle θ around X ′ for any θ ∈ S1.

We explain the general construction of the cone of angle θ over X ′. The metric
completion Y of the universal covering of X\X ′ is an infinite cyclic cover of X
branched along X ′. There is a group R of isometries lifting the action of S1 by
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rotation to Y and if θ ∈]0, +∞[, one defines Xθ the cone of angle θ over X ′ as
the quotient of Y by the action of the ‘rotation’ of angle θ on Y . The image in Xθ

of the preimage of X ′ in Y is called the singular locus of the cone.

Proposition B.1. Xθ is a (X, G)-cone-manifold.

Proof. The proof goes by induction on the dimension of X. Away from its singular
locus, Xθ is a (X, G)-manifold hence the proposition is clear here.

Let p be a point of the singular locus. The set W of points of Xθ that can be
joined to p by a geodesic path of length 1 happens to be a cone of angle θ for a sphere
S of radius 1 at a point q ∈ X ′ with isometry group StabG(q). A neighbourhood of p
in Xθ is then the cone over W . We want to show that W is actually a (S, StabG(q))-
cone-manifold. This will be done by showing that W is actually a cone of angle θ
and applying the induction hypothesis.

The intersection S′ = X ′ ∩S is a totally geodesic submanifold of S for the metric
induced by X and S1 ⊂ StabG(X ′) ⊂ StabG(q). The universal cover of S\S′ embeds
in the one of X\X ′ and therefore the metric completion of the universal cover of
S\S′ embeds in the metric completion Y of the universal cover of X\X ′. W is then
the quotient of the metric completion of the universal cover of S\S′ by the rotation
of angle θ. Hence W is a (S, StabG(q))-cone and since dim(S) = dim(X) − 1, is a
(S, StabG(q))-cone-manifold. ��
B.3 Joints. We now restrict to the case when X = CH

n and G = PU(1, n).
The unit sphere at a point p in X is S2n−1 = ∂(Bn) where Bn is the unit ball at p
and its isometry group is U(n) ⊂ G. For every k in {1, . . . , n}, we can carry on the
construction detailed below.

The joint A ∗ B of two topological spaces A and B is the space you get by
adjoining to every pair of points (a, b) ∈ A × B a segment [a, b]. This operation can
be made geometrical if A and B are spherical manifolds. One remarks that S2(n+k)−1

is the joint of S2n−1 ∗ S2k−1 where S2n−1 and S2k−1 are embedded in S2(n+k)−1 in
a essentially unique way such that every points x ∈ S2n−1 and y ∈ S2k−1 are joined
by a unique geodesic path of length π

2 . This makes it very clear how one can endow
the joint of X a (S2n−1, U(n))-manifold and Y a (S2k−1, U(k))-manifold with the
structure of a (S2(n+k)−1, U(n + k))-manifold. A good reference that deals with this
construction is [BH99, Chapter I.5, p.63].

This property of naturality extends in some way to cone-manifolds.

Lemma B.2. Let M be a (S2k−1, U(k))-cone-manifold. Then the joint S2(n−k)−1∗M
has a natural structure of (S2n−1, U(n))-cone-manifold.

Proof. The proof goes by double induction on n and i = (n−k). To be more precise,
we assume that the lemma is true for all (n′, k′) such that either n′ < n or n′ = n
and k < k′. Take p ∈ S2(n−k)−1 ∗ M . We distinguish two cases:

(1) p does not belong to S2(n−k)−1. In that case p belongs to an arc ]x, y] with
x ∈ S2(n−k)−1 and y ∈ M . Denote by Mi the union of the strata of codimen-
sion i of M . If i = 0, i.e. if y is a regular point in M , then p is a regular point of
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S2(n−k)−1 ∗M . For i ≥ 1, S2(n−k)−1 ∗Mi is a (S2n−3, U(n−1))-cone-manifold
by the induction hypothesis. In that case p has a neighbourhood which is a
cone over the joint S2(k+i)−1∗V (y) where V (y) is a (S2(n−k−i)−1, U(n−k−i))-
cone-manifold over which a neighbourhood of y in Mi is a cone.

(2) p belongs to S2(n−k)−1. In that case a neighbourhood of p in S2(n−k)−1∗M
is a cone over the joint S2(n−k−1)−1 ∗ M and the induction hypothesis allows
to conclude. ��

B.4 Strata. A CH
n-cone-manifold X has a stratified structure X0�X1�· · ·�Xn

where Xk is a CH
n−k-manifold whose metric completion is Xk�· · ·�Xn. Every point

p ∈ X has a neighbourhood which is the cone over the joint S2(n−i)−1 ∗ X(p) where
X(p) is a (S2i−1, U(i))-cone-manifold. Xk is defined as the set of points for which
the biggest integer i for which a neighbourhood of p has the latter structure is equal
to k.

B.5 Totally Geodesic Subcone-Manifolds. We assume here that X is a
Riemannian manifold which is either CH

n or Sk and G is either PU(1, n) or a
subgroup of O(k). Xp is the unit sphere at a point p ∈ X and Gp = StabG({p}). If
X is a (X, G)-cone-manifold, a totally geodesic sub-cone-manifold Y of X is a subset
of X such that the intersection of Y with each stratum of X is a totally geodesic
submanifold of the stratum.

Lemma B.3. Let p be a point of X and Y be a totally geodesic submanifold of X
such that p ∈ Y . Then Xp ∩ Y is a totally geodesic submanifold of Xp.

Proof. This is a consequence of the fact that in all the cases we are considering there
exists a subgroup G′

p of Gp such that Stab(G′
p) = Y . ��

Proposition B.4. A totally geodesic subcone-manifold Y of a Riemannian cone-
manifold M endowed with the natural metric structure coming from its embedding
is also a cone-manifold.

Proof. The proof goes by induction on dim(Y ). Take q in Y . This point has a neigh-
bourhood in M which is a cone over a (Xp, Gp)-manifold X ′, where Xp is the unit
sphere at a point p ∈ X and Gp = StabG({p}). According to Lemma B.3, X ′ ∩ Y is
also a totally geodesic cone manifold of dimension dim(Y )−1. The induction hypoth-
esis ensures that X ′ ∩Y is also a cone-manifold and therefore p has a neighbourhood
which is a cone over a cone-manifold. ��
B.6 Higher Dimensional Complex Hyperbolic Cones. We now give local
models for some specific complex hyperbolic cone-manifolds. In particular we gener-
alise the notion of cone previously defined in the particular case of complex hyper-
bolic geometry. Let X be a complete complex hyperbolic cone-manifold of dimension
k and let p a point being on a stratum of codimension k. We denote by X0 the set
of regular points, which is open in X. Consider the trivial product CH

n ×X0. There
is a unique complex hyperbolic structure on CH

n × X0 such that
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• each fiber {∗} × X0 is locally totally geodesic;
• any fiber {∗} × X0 intersects CH

n × {p} orthogonally.
The metric completion of CH

n × X0 is then CH
n × X. Now is the good moment

to explain the notion of orthogonality in a (CHn, PU(1, n))-cone-manifold. Let Y
and Z be two totally geodesic sub-cone-manifolds of X, a (CHn, PU(1, n))-cone-
manifold. Assume that Y and Z intersect only at a point p. We say that they
intersect orthogonally if every pair of regular points p ∈ Y and q ∈ Z is contained
in an open set U of X such that

• U is isometric to an open subset of CHn;
• Y ∩ U and Z ∩ U are respectively identified with open subsets of copies of

CH
i and CH

j in CHn which intersect orthogonally.

Proposition B.5. CH
n×X seen as the metric completion of CH

n×X0 is a complex
hyperbolic cone-manifold.

Proof. Let q be a point in X which has maximal codimension. There is a neighbour-
hood of q in X which is a cone over a (S2k−1, U(k))-cone-manifold X ′. Accord-
ing to Lemma B.2, the spherical joint X ′ ∗ S2n−1 has a natural structure of
(S2(n+k)−1, U(n + k))-cone-manifold, of which a neighbourhood of q in CH

n × X
is a cone over. ��
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