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NEARLY PARALLEL VORTEX FILAMENTS IN THE 3D
GINZBURG–LANDAU EQUATIONS

Andres Contreras · Robert L. Jerrard

Abstract. We introduce a framework to study the occurrence of vortex filament
concentration in 3D Ginzburg–Landau theory. We derive a functional that describes
the free-energy of a collection of nearly-parallel quantized vortex filaments in a
cylindrical 3-dimensional domain, in certain scaling limits; it is shown to arise as
the Γ-limit of a sequence of scaled Ginzburg–Landau functionals. Our main result
establishes for the first time a long believed connection between the Ginzburg–
Landau functional and the energy of nearly parallel filaments that applies to many
mathematically and physically relevant situations where clustering of filaments is
expected. In this setting it also constitutes a higher-order asymptotic expansion of
the Ginzburg–Landau energy, a refinement over the arclength functional approxi-
mation. Our description of the vorticity region significantly improves on previous
studies and enables us to rigorously distinguish a collection of multiplicity one vor-
tex filaments from an ensemble of fewer higher multiplicity ones. As an application,
we prove the existence of solutions of the Ginzburg–Landau equation that exhibit
clusters of vortex filaments whose small-scale structure is governed by the limiting
free-energy functional.

1 Introduction

Let Ω ⊆ R
3 and ε > 0 small. For u ∈ H1(Ω;C), the Ginzburg–Landau energy is

given by

Fε(u; Ω) = Fε(u) :=
∫

Ω
eε(u) , eε(u) :=

1
2

|∇u|2 +
1

4ε2
(1 − |u|2)2. (1.1)

We want to derive an effective interaction energy for n ≥ 2 vortex filaments in
the context of Ginzburg–Landau theory; this will allow us to prove the existence of
solutions of the Ginzburg–Landau equations—that is, critical points of Fε(·)—with
a particular geometric structure that we detail below.

A model setting for studying nearly parallel vortex filaments is one found in fluid
dynamics [KMD95] which we adopt. Thus, we will always consider Ω of the form

Ω := ω × (0, L), ω ⊂ R
2 bounded, open, simply connected, ∂ω smooth.

(1.2)
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Throughout this paper, we write points in Ω in the form (x, z) with x ∈ ω and
z ∈ (0, L). We always assume that 0 ∈ ω, and the configurations of interest to us
are those with n vortex lines close to the vertical {0} × (0, L).

Given u = u1 + iu2 ∈ H1(Ω;C), we define the momentum and vorticity vector
fields,1 denoted j(u) and J u respectively, by

j(u) := Im(ū ∇u), J u :=
1
2
∇ × j(u) = ∇u1 × ∇u2. (1.3)

It is known (see [MSZ04,ABO05]) that for every n ∈ N, there exist solutions (uε)
of the Ginzburg–Landau equations for which the energy and vorticity concentrate
around {0} × (0, L) in the sense that

∫
Ω

φ
eε(uε)
|log ε| dx dz → nπ

∫ L

0
φ(0, z) dz for all φ ∈ C(Ω) (1.4)

and
∫

Ω
ϕ · J uε dx dz → nπ

∫ L

0
ϕ(0, z) · ezdz for all ϕ ∈ C1

c (Ω;R3), (1.5)

where ez is the standard unit vector in the z direction. These are interpreted as
stating that the solutions (uε) exhibit 1 or more vortex filaments, carrying a total
of n quanta of vorticity, clustering near the segment {0} × (0, L).

Our results give a precise description of the way in which this clustering occurs.
In particular for 0 < ε � 1 we find solutions with the following properties:

• each solution possesses n distinct filaments, identified as curves along which
the vorticity concentrates, each of multiplicity 1 (rather than a smaller number
of filaments of higher multiplicity);

• these filaments are separated by distances of order | log ε|−1/2;
• after dilating horizontal distances by a factor of |log ε|1/2, the limiting geometry

of the vortex filaments is governed by a particular free-energy functional, see
(1.6) below.

For the solutions we find, the limiting vorticity (after rescaling in the horizontal
variables) is concentrated on n curves of the form

z ∈ (0, L) 	−→ (fi(z), z)

where the function f = (f1, . . . , fn) minimizes

G0(f) := π

∫ L

0

⎛
⎝1

2

n∑
i=1

|f ′
i |2 −

∑
i�=j

log |fi − fj |

⎞
⎠ dz (1.6)

1 The vorticity can also be defined as a 2-form, and indeed this is the perspective we will adopt
throughout most of this paper.
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in H1
(
(0, L); (R2)n

)
, subject to certain boundary conditions. The length scale of

vortex separation
hε = |log ε|−1/2 (1.7)

is critical in the sense that it gives rise to a limiting functional in which the 1
2 |f ′|2

term and the logarithmic repulsion terms roughly balance.
The solutions we find with the above properties will be obtained as minimizers

and local minimizers of the Ginzburg–Landau energy with suitable boundary con-
ditions. The description of the fine structure of the vorticity in these solutions will
be deduced from a detailed asymptotic description of the energy and vorticity of
sequences (uε) ⊂ H1(Ω;C) of functions with n vortex filaments clustering on a scale
hε around the segment {0} × (0, L). Very roughly speaking, we will prove that in
certain regimes, if (uε)ε∈(0,1] is a sequence with limiting rescaled vorticity described
by f ∈ H1((0, L); (R2)n), then

“Fε(uε) ≈ logarithmically divergent term + G0(f)′′ as ε → 0. (1.8)

See Theorem 3 below for a precise statement. Thus, the functional G0 may be seen
as an asymptotic energy associated to the family (Fε)ε∈(0,1], after renormalizing
by subtraction of the divergent term. In fact, G0(·) has already been identified as
a candidate for the asymptotic renormalized energy of a family of nearly parallel
vortex filaments in [PK08]. A related effective energy funtional is found via formal
arguments, and in a somewhat different setting, in [AR01].

The divergent term in (1.8) is related to the arclength (with multiplicity) of the
limiting vorticity. This reflects the well-known connection between the Ginzburg–
Landau energy and the arclength of limiting vortex filaments. Numerous specific
results of this sort are known, including for example [Riv96,San01,LR01,BBO01,
JS02,BBM04,ABO05]. In this context, the term π

2

∫ L
0

∑n
i=1 |f ′

i |2dz in G0(·) may be
seen as the linearization of arclength, the leading-order asymptotic energy.

In 2D, an asymptotic expansion of the energy, in the spirit of (1.8), was first
carried out in the seminal work of Bethuel, Brezis and Hélein [BBH94] and later
extended to several other two-dimensional contexts (see for example [SS07]). The
term −π

∫ L
0

∑
i�=j log |fi −fj |dz in G0(·) in essence arises from a fundamental object,

the 2D “renormalized energy”, introduced in [BBH94].
Until now, higher dimensional counterparts of the results of Bethuel et al [BBH94]

with a comparable degree of precision have been very elusive. The corresponding 3D
results—the rigorous version of (1.8), stated in Theorem 3—are the main contribu-
tion of this paper. However, since they require considerable notation to state, we
first describe our existence theorems in more detail.

1.1 Solutions of the Ginzburg–Landau equations with vortex clustering.
We will study minimizers and local minimizers of the Ginzburg–Landau energy
Fε(· ; Ω), for Ω = ω × (0, L) as described in (1.2), with Dirichlet data on ω × {0, L}
and natural boundary conditions on ∂ω × (0, L); see (1.13) below for the precise
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formulation. The Dirichlet conditions may be understood to require that n vortex
filaments enter and leave Ω at certain points within a distance at most O(hε) from
the ends of the segment {0} × (0, L).

More precisely, we will consider boundary data wz
ε , for z ∈ {0, L}, of the form

wz
ε(x) =

n∏
j=1

[
exp (iβ(x, pε,j(z))) ζε(x − pε,j(z))

]
(1.9)

where

• β(·, ·) is defined so that wz
ε

|wz
ε | is exactly the canonical harmonic map of Bethuel et

al (see [BBH94], section I.3) with singularities (pε,j(z))n
j=1 and natural bound-

ary conditions on ∂ω; see (5.10) for the details;
• ζε has the form ζε(x) = ρε(|x|)x1+ix2

|x| , and ρε : [0, ∞) → [0, 1] satisfies

ρε(0) = 0, 0 ≤ ρ′
ε ≤ C/ε, ρε(s) ≥ (1 − Cε/s)+ ; (1.10)

• (pε,j(z)) are sequences in ω such that

qε,j(z) := h−1
ε pε,j(z) −→ q0

j (z) as ε → 0, for some q0
j (z), j = 1, . . . , n.

(1.11)

Note that we do not assume that the points (pε,j(z)) are distinct. For example,
pε,j(z) = 0 for all j and for z = 0, L is allowed by our assumptions.

In considering minimizers, we will assume that Ω = ω × (0, L) satisfies

L < 2 dist(0, ∂ω). (1.12)

This condition is close to necessary; see Remark 1 below.
Throughout this paper we write B(r, x) or Br(x) to denote the open ball in R

2

of radius r and center x, and B(r) := B(r, 0).
We present our first result relating minimizers of Fε to those of the reduced

functional G0. The W−1,1, norm, which appears in the statement, is defined in (1.22)
below.

Theorem 1. Assume that Ω = ω × (0, L) satisfies (1.12), and that (uε) minimizes
Fε(·; Ω) in the space

Aε := {u ∈ H1(Ω;C) : u(x, 0) = w0
ε(x), u(x, L) = wL

ε (x)} (1.13)

for a sequence of boundary data {w0
ε , w

L
ε }ε∈(0,1] ⊂ H1(ω;C) as described in (1.9)–

(1.11).
Then setting vε(x, z) = uε(hεx, z), the vorticities {J vε}ε∈(0,1] are precompact in

W−1,1(B(R)×(0, L)) for every R > 0, and any limit J∗ of a convergent subsequence,
as ε → 0, is a vector-valued measure of the form

∫
ϕ·dJ∗ = π

n∑
i=1

∫ L

0
ϕ(γ∗

i (z))·γ∗
i

′(z) dz for ϕ ∈ Cc(R2×(0, L);R3). (1.14)
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Here γ∗
i (z) = (f∗

i (z), z), and f∗ = (f∗
1 , . . . , f∗

n) ∈ H1((0, L);R2) minimizes G0(·) in

A0 :=

{
f ∈ H1((0, L); (R2)n) :

∑
i

δfi(z) =
∑

i

δq0
i (z) for z ∈ {0, L}

}
(1.15)

for q0
i (z) appearing in (1.11).

After we present Theorem 2 about local minimizers, we discuss both results
in the context of 3D Ginzburg–Landau theory and on the study of concentration
phenomena in elliptic PDE’s at large.

Remark 1. Given any x̄ ∈ ∂Ω and δ < L/2, one can construct a sequence of
functions (uε) ⊂ H1(Ω;C) satisfying the boundary conditions of Theorem 1 above,
with energy and vorticity concentrating around the straight line segments connecting
(0, 0) to (x̄, δ) and (x̄, L − δ) to (0, L), and such that

lim
ε→0

1
|log ε|

∫
Ω

eε(uε) = nπ2(|x̄|2 + δ2)1/2.

This follows from results in [ABO05]. In particular, if dist(0, ∂ω) < 1
2L, one can

choose x̄ and δ so that the right-hand side is strictly less that nπL. Then Theorem 3
below implies that for any minimizing sequence, vorticity cannot concentrate around
{0} × (0, L).

Next we state a result about local minimizers. We will say that f∗ ∈ A0 is a
strict local minimizer of G0 if there exists δ > 0 such that

G0(f∗) < G0(f) for all f ∈ A0 such that 0 < ‖f − f∗‖H1((0,L);(R2)n) < δ .

The point is that we understand “local” with respect to the natural topology which
here is H1((0, L); (R2)n). Similarly, uε is a strict local minimizer of Fε in Aε if there
exists δ > 0 such that

Fε(uε) < Fε(u) for all u ∈ Aε such that 0 < ‖u − uε‖H1(Ω;C) < δ.

In particular, a local minimizer uε of Fε is a solution of the Ginzburg–Landau equa-
tions,

−Δuε =
1
ε2

(1 − |uε|2)uε, (1.16)

and a local minimizer f∗ of G0(·) satisfies

−f∗
i

′′ −
∑
j �=i

f∗
i − f∗

j

|f∗
i − f∗

j |2 = 0 for i = 1, . . . , n. (1.17)

The system (1.17) appears in various contexts; its solutions are equilibria of
reduced systems in fluid mechanics [KMD95,KPV03,LM2000] and supplemented
with suitable periodic conditions they correspond to trajectories in the planar n-body
problem with logarithmic potential (examples of periodic orbits with or without
collisions and for different potentials may be found in [CM99,FT04,Che08,BFT08]).
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Theorem 2. Let (w0,L
ε )ε∈(0,1] ⊂ H1(ω;C) be sequences satisfying (1.9)–(1.11), and

assume that f∗ is a strict local minimizer of G0 in A0, and that f∗
i (z) �= f∗

j (z) for
all i �= j and z ∈ (0, L).

Then there exists a sequence of local minimizers of Fε(·; Ω) in Aε such that for
vε(x, z) := uε(hεx, z), the vorticities J vε converge in W−1,1(B(R) × (0, L)) for all
R > 0 to the vector-valued measure of the form (1.14), where γ∗

i (z) = (f∗
i (z), z) for

i = 1, . . . , n.

Theorems 1 and 2 are the first results that show existence of solutions to the
Ginzburg–Landau equation (1.16) whose vorticity asymptotically concentrates along
the graphs of solutions of the system (1.17). A connection between (1.16) and (1.17)
has long been suspected and supporting evidence can be found in [MSZ04,PK08,
JS09] and the references therein. It can be seen from the proofs that our results
do not only describe the asymptotic geometry of the vorticity, but as a by-product
also give a very precise asymptotic expansion of the energy of the maps uε in terms
of the functional G0 from (1.6), which may be seen as a 3D renormalized energy
of the vortex filaments, in the spirit of the 2D renormalized energy introduced in
[BBH94]. One of our achievements here is an improved compactness for the vorticity
of configurations satisfying (1.23)–(1.25) below.

In the scalar setting of the Allen–Cahn equation, recent results that describe in-
terface clustering have been obtained, see for example [PKW08,PKPW10,PKWY10].
In the scalar case interfaces are of codimension 1; higher condimension defects intro-
duce new difficulties we have to deal with when proving our results, which may be
seen as first analogs of the clustering phenomenon for the vector-valued Ginzburg–
Landau equation.

We note that Theorem 2 does not require condition (1.12), and also has the
additional advantage of not requiring that f∗

i (z) �= f∗
j (z) for i �= j, when z ∈ {0, L}.

We remark however that if one wants to allow collisions between filaments (that is,
values of z ∈ (0, L) for which f∗

i (z) = f∗
j (z) for some i �= j), then the right definition

of “local minimizer” for our purposes would become more complicated, since there
are then multiple essentially different f ∈ H1((0, L); (R2)n) that represent the same
vortex paths. As a result, one would need a notion of local minimizers in a suitable
quotient space of H1((0, L); (R2)n). We prefer to avoid these technicalities here,
since we do not know any examples of local minimizers, in this sense, for which the
filaments collide. However, related considerations appear in the proofs of Lemmas
12 and 13 for example.

1.2 Some definitions and notation. As remarked above, the vorticity can be
realized as either a vector field or a 2-form. For u = u1 + iu2, we will write

Ju = du1 ∧ du2 =
1
2
d(Im(ū du))

for the vorticity 2-form, compare (1.3).



GAFA NEARLY PARALLEL VORTEX FILAMENTS 1167

It is convenient to state some of our results in the language of geometric measure
theory.

If U is an open subset of some Euclidean space, then a k-current U is a bounded
linear functional on the space Dk(U) of smooth k-forms with compact support in U .

We will often encounter 1-currents (as well as 0-currents, which can be identified
with distributions). We will be especially interested in some particular classes of
1-currents. First, to any Lipschitz curve γ : (a, b) → U , there is a corresponding
1-current Tγ , defined by

Tγ(ϕ) :=
∫

γ
ϕ =

∫ b

a
〈ϕ(γ(t)), γ′(t)〉dt.

Here and below, 〈·, ·〉 denotes the dual pairing between covectors and vectors, so
that if ϕ = φ1dx1 + φ2dx2 + φ3dz and v = (v1, v2, v3), then

〈ϕ, v〉 = φiv
i.

(Throughout this work we implicitly sum over repeated indices.) Thus, Tγ acts on
a 1-form ϕ via integration of ϕ over the curve parametrized by γ.

Given a Lipschitz function f : (0, L) → R
2, we will write

Γf := Tγ for γ : (0, L) → R
2 × (0, L) defined by γ(z) = (f(z), z). (1.18)

Thus, Γf is the 1-current in R
2 × (0, L) corresponding to the graph of f over the

segment (0, L) of the z-axis. More generally, if f ∈ H1((0, L);R2), then we define
Γf = Tγ , where γ is a Lipschitz reparametrization of the curve z 	→ (f(z), z). Such a
reparametrization exists, since the condition f ∈ H1 guarantees that the curve has
finite arclength.

As a special case of the above, we will write Γ0 to denote the current correspond-
ing to the vertical segment z ∈ (0, L) 	→ (0, z) ∈ ω × (0, L). With this notation, the
limit in (1.5) is written as nπΓ0(ϕ) (if we view it as acting on 1-forms rather than
vector fields).

The other class of 1-currents that often arises in this paper is the following: given
u = u1 + iu2 ∈ H1(Ω;C), we will write Ju to denote the 1-current defined by

 Ju(ϕ) :=
∫

Ω
〈ϕ, J u〉dx =

∫
Ω

ϕ ∧ Ju, ϕ ∈ D1(Ω). (1.19)

In what follows, it will often be the case that most of the information encoded
in the vorticity Ju (or its distributional realization Ju) is already contained in its
z component, that is, the part of the vorticity that describes rotation in the x1x2

plane, orthogonal to the z-axis. This will be denoted by

Jxu := ∂1u
1 ∂2u

2 − ∂1u
2 ∂2u

1.
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This is the Jacobian determinant with respect to the x variables. Observe that if
ϕ ∈ D1(Ω) has the form ϕ = φdz, for φ a smooth compactly supported function,
then

 Ju(φdz) =
∫

Ω
φ(x, z)Jxu(x, z)dx dz (1.20)

as follows directly from the definitions (1.3), (1.19).
If S is a k-current on an open subset U of a Euclidean space, we use the notation

‖S‖F (U) := sup{S(ϕ) : ϕ ∈ Dk(U), max(‖ϕ‖∞ , ‖dϕ‖∞) ≤ 1} (1.21)

for the flat norm of S. This quantity will be finite for every current S that arises in
this paper.

We note that a 0-current S on a set U ⊂ R
m is just a distribution—that is,

a bounded linear functional on the space D0(U) of smooth, compactly supported
0-forms, or functions. If ϕ is a 0-form, then ‖dϕ‖∞ = ‖∇ϕ‖∞, and it follows that

‖S‖F (U) = sup{S(ϕ) : ϕ ∈ D0(Ω), max(‖ϕ‖∞ , ‖∇ϕ‖∞) ≤ 1}
=: ‖S‖W −1,1(U), (1.22)

so we will sometimes use these two notations interchangeably for 0-currents. For a
1-current, the flat norm is somewhat stronger than the W−1,1 norm.

The mass of a k-current S on an open set U is defined by

M(S) = sup{S(ϕ) : ϕ ∈ Dk(U), ‖ϕ‖∞ ≤ 1}.

If γ is an injective Lipschitz curve then it is easy to check that

M(Tγ) = length(γ).

1.3 Configurations with nearly parallel vortex lines. As suggested above,
our main PDE results will be obtained from a careful study of the energy Fε(uε) for
certain sequences of functions (uε) ⊂ H1(Ω;C) with properties that will be easily
verified in PDE applications.

First, we are interested in sequences that exhibit n ≥ 2 vortex lines clustering
around the segment {0} × (0, L). More precisely, we will assume that

∫ L

0
‖Jxuε(·, z) − πnδ0‖F (ω) dz → 0 as ε → 0. (1.23)

Remark 2. We show below that
∫ L
0 ‖Jxuε(·, z)−πnδ0‖F (ω) dz ≤ ‖Juε−nπΓ0‖F (Ω),

see Sect. 2.1. As a result, (1.23) follows from the assumption

‖  Juε − nπΓ0‖F (Ω) → 0 as ε → 0,

which may appear more natural than (1.23).
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Figure 1: Example of a vortex configuration satisfying (1.23)–(1.25)

We will also assume that there is at least one height z0 ∈ [0, L] and points
q0
1, . . . , q

0
n ∈ R

2, not necessarily distinct, such that

‖Jxuε(·, z0) − π

n∑
i=1

δhεq0
i
‖F (ω) = o(hε) as ε → 0, and (1.24)

∫
ω

e2d
ε (uε)(x, z0) dx ≤ M |log ε| for some M > 0, (1.25)

where

e2d
ε (u) :=

1
2

|∇xu|2 +
1

4ε2
(1 − |u|2)2, ∇x := (∂x1 , ∂x2).

Condition (1.24) implies that at the height z0, there are exactly n vortices, all
within distance O(hε)—the critical length scale—of the vertical axis. The energy
bound (1.25) acts to ensure that the behaviour of uε at height z0 carries meaningful
information about its behaviour at nearby heights.

It turns out—this is a consequence of Theorem 3 below—that under the above
assumptions,

Fε(uε) ≥ nπL |log ε| + πn(n − 1)L |log hε| − O(1).

We therefore introduce

Gε(u) := Fε(u) − [nπL |log ε| + πn(n − 1)L |log hε| + κn(Ω)] , (1.26)

where the constant κn(Ω) is defined in (2.3) below; it is connected to the renormal-
ized energy introduced in [BBH94]. Finally, we will assume2 that there exists some

2 We will number certain specific constants c1, c2, . . . that appear repeatedly in our arguments,
whereas other generic constants will be denoted just by C. Throughout, all constants are indepen-
dent of ε, but may depend for example on Ω and on parameters such as c1.
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constant c1 such that
Gε(uε) ≤ c1. (1.27)

This is a stringent energy bound that will be shown to require that the vortices are
nearly parallel. Our arguments will show that once there is some height z0 at which
there are n vortices at distance O(hε) from the z axis, as in (1.24), (1.25), the energy
bound (1.27) together with (1.23) essentially forces the filaments to remain O(hε)
from the z-axis throughout their entire length.

We remark that (1.27) implies the much less precise bound

Fε(uε) ≤ C|log ε| (1.28)

which is used numerous times throughout this paper.
Assumptions (1.23)–(1.25) above are adapted to the study of problems for which

boundary data is prescribed on ω × {0, L}. Natural assumptions on the boundary
data, such as those described in (1.9)–(1.11), then guarantee that (1.24), (1.25) are
satisfied. Most of our results will remain valid if one does not assume (1.24), (1.25),
but assumption (1.23) is replaced by the stronger condition

∫ L

0
‖Jxu(·, z) − πnδ0‖F (ω) dz ≤ Chε. (1.29)

This is often adequate for the construction of local minimizers of Fε, and under this
assumption some of our arguments can be simplified. However, (1.29) is hard to
verify directly for sequences of energy-minimizers, as considered in Theorem 1. As
in Remark 2, assumption (1.29) follows directly if one instead assumes the (arguably
more natural) condition ‖  Juε − nπΓ0‖F (Ω) ≤ Chε.

1.4 Asymptotic behavior of energy and vorticity. Our main result is the
Γ-convergence of Gε to G0.

Theorem 3. (a) Assume that (uε) ⊂ H1(Ω;C) is a sequence satisfying (1.27), to-
gether with either (1.23)–(1.25) or (1.29).

Then, setting vε(x, z) = uε(hεx, z) for x ∈ ωε = h−1
ε ω and z ∈ (0, L), there exists

some f = (f1, . . . , fn) ∈ H1((0, L), (R2)n) such that after passing to a subsequence
if necessary:

Jxvε → πδ[f(·)] in W−1,1(B(R) × (0, L)) for every R > 0 (1.30)

where δ[f(·)] denotes the measure on R
2 × (0, L) defined by

∫
φδ[f(·)] :=

n∑
i=1

∫ L

0
φ(fi(z), z) dz =

n∑
i=1

Γfi
(φdz). (1.31)

Moreover, there exists some σ ∈ Sn (the symmetric group of degree n) such that
fi(z0) = q0

σ(i) for i = 1, . . . , n, where z0, (q0
i ) appear in (1.24). And finally,

G0(f) ≤ lim inf
ε→0

Gε(uε). (1.32)
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(b) Conversely, given f ∈ H1((0, L), (R2)n), there exists (uε) ⊂ H1(Ω,C) such
that (1.30) holds, together with (1.23)–(1.25), and in addition 3

G0(f) ≥ lim sup
ε→0

Gε(uε). (1.33)

(c) In addition, whenever (uε) satisfies (1.30), (1.33), we have the improved
compactness

‖  Jvε − π

n∑
i=1

Γfi
‖F (B(R)×(0,L)) → 0 as ε → 0, for every R > 0. (1.34)

In its full strength, Theorem 3 does not only lend itself to applications such as
Theorems 1 and 2 but it also provides a framework to analyze clustering of filaments
in more general 3D Ginzburg–Landau problems. Instances where this occurrence is
expected are considered in the works [MSZ04,PK08]. Moreover, the lengthscale hε is
rather natural and it can be imposed by the geometry [MSZ04] or by physical effects
as in [Con11] where distinct filaments are shown to concentrate at this lengthscale
due to an external magnetic field in a much simpler setting. It is also a starting point
towards establishing a correspondence between solutions, not necessarily stable, of
(1.17) and (1.16) (see [JS09] for an appropriate strategy).

Some of the most salient features of the Γ-convergence of Gε to G0 that may be
applied to other situations are the accurate characterization of the vorticity and the
expansion of the energy Fε(uε) up to o(1) for the solutions predicted in Theorems 1
and 2. Following [JS02,ABO05] we would be only able to conclude that

1
π

 Juε → nΓ0 in W−1,1(Ω),

and that

Fε(uε) = nπL| log ε| + o(| log ε|).

In comparison (1.34) allows us to identify the vorticity in a very precise manner that
in particular lets us distinguish n distinct filaments, while (1.32) and (1.33) capture a
renormalized energy of the filaments that stores fine information about the geometry
of the filaments and their mutual interaction. This realization of minimizers of Fε is
a 3D analog, in the present setting, of the asymptotic description in [BBH94].

Theorem 3 is also robust in the sense that rather small adaptations of the proof
could be used to establish variants, such as a corresponding Γ-convergence result with
Dirichlet boundary conditions on ∂ω × (0, L). For example, given g ∈ C∞(∂ω; S1)
of degree n, the conclusions of Theorem 3 still hold for a sequence (uε) in

{u ∈ H1(Ω;C) : u(x, z) = g(x) for x ∈ ∂ω, z ∈ (0, L)} (1.35)

3 In the special case when ω is a ball, results similar to those of part (b) above are proved in
[PK08].
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satisfying the hypotheses of Theorem 3, as long as the constant κn(Ω) appearing in
the definition (1.26) of Gε is changed to a new constant κn(Ω; g), which we display in
(2.6). Briefly, the point is that κn(Ω) is constructed from the Bethuel-Brezis-Hélein
renormalized energy on ω with natural boundary conditions, whereas κn(Ω; g) uses
the renormalized energy on ω with Dirichlet data u = g on ∂ω. The only places
where this requires any changes in the proof of Theorem 3 are the following:

(1) the proof of Lemma 2. Here (3.8) would need to be modified by changing
the natural (Neumann) renormalized energy to the Dirichlet renormalized
energy for g, which is then carried through the rest of the proof.
We remark that the verification of (3.8) relies on Theorem 2 in [JS08]. This
result remains true for Dirichlet boundary conditions, with only cosmetic
changes in the proof, although we do not know any reference that presents
all the details.

(2) the construction of the recovery sequence in Sect. 5.2. Here one would
need to build the recovery sequence out of the canonical harmonic map
with Dirichlet, rather than Neumann, boundary conditions. This would
simply entail a change in the boundary conditions for the phase factor β,
defined in (5.10).

More generally, if one fixes A ⊂ ∂Ω and considers a sequence of functions of the
form

(uε) ⊂ {u ∈ H1(Ω;C) : u = gε on A} (1.36)

and satisfying the hypotheses of Theorem 3, then one expects parallel results to
hold, if κn in the definition of Gε is modified to a suitable κn(Ω; A; gε) ≥ κn(Ω).

In particular, we consider boundary data of the form (1.36) in Theorems 1 and
2, with A = ω × {0, L}. In order to avoid technicalities related to estimates of the
impact of general boundary data on the energy, we focus on carefully chosen data,
for which in fact κn(Ω; A; gε) = κn(Ω).

1.5 Outline of the paper. In the following lines, we explain the main ideas in
the proofs. We begin by presenting the key steps in establishing Theorem 3. In what
follows, all the statements about the asymptotic behavior of objects depending on
the family (uε) are understood to hold up to passing to a subsequence.

Proof of Theorem 3. The general strategy consists in splitting the contributions of
the energy into two parts, one coming from e2d

ε (u), the other from |∂zu|2, and to
obtain sharp lower bounds for each piece.

Roughly speaking, if one knew the vorticity of a sequence of maps (uε) obeyed
(1.30) and (1.31) for some f ∈ H1((0, L), (R2)n), then one would expect that on a
typical height z0, the graph of f should cross R2×{z0} transversally and, accordingly,
for small enough ε, the restricted maps (vε(· , z0)) should have n well defined vortices
close to f1(z0), . . . , fn(z0). Then, arguments in Ginzburg–Landau theory should yield
the lower bound for uε,



GAFA NEARLY PARALLEL VORTEX FILAMENTS 1173

∫
ω

e2d
ε (uε(x, z0))dx ≥ πn| log ε| − πn(n − 1) log ‖Jx(uε(·, z0)) − nπδ0‖F (ω) − C

on such a height. From this one should be able to deduce after some work∫
Ω

e2d
ε (uε) ≥ (πn| log ε| + πn(n − 1)| log hε|) |S| − logarithmic interaction terms − C,

where S is the set of these typical heights, which one expects to be close to having
full measure in (0, L). On the other hand, for maps independent of the z-variable,
this lower bound holds with |S| = L and corresponds to the total energy, up to
a constant. This suggests that the remainder should account for variations in the
energy from that of perfectly parallel filaments, that is,

1
2

∫
Ω

|∂zuε|2 ≥ π

2

∫ L

0

∑
i

|f ′
i |2dz − o(1) as ε → 0. (1.37)

In light of this, the first step to a rigorous argument is to establish some pre-
liminary lower bounds under assumptions (1.23), (1.27) and a corresponding initial
compactness for the vorticity, somewhat weaker than (1.30) and (1.31). This will
later allow for improving both the lower bounds and compactness property, upon
subsequent analysis using (1.24) and (1.25).

First estimates. In Sect. 3 we define a notion of ‘good height’ (see (3.11) below).
Heuristically speaking, a height zε is considered good for our purposes if Jxuε(·, zε)
is close to nπδ0 on many balls centered at the origin. This choice makes possible to
deduce that for any such height either∫

ω
e2d
ε (uε(x, zε))dx ≥ π(n + θ)| log ε| for some θ > 0, see Lemma 2 below,

in which case we have a considerable energy excess of order O(| log ε|), or else a very
detailed description of the vortex structure is available which allows for very precise
lower bounds in terms of the renormalized energy (2.2) (see Lemma 2). Right from
the outset, elementary inequalities using this fact tell us that (1.23) implies that
the set Gε of good heights has measure |Gε| = L − o(1), which is not enough for
obtaining a lower bound that accounts for all the divergent part of the energy, but
at least let us conclude in Lemma 5 below that for any interval (a, b) ⊆ (0, L),∫ b

a

∫
ω

e2d
ε (uε)dxdz = nπ(b − a)| log ε| + o(| log ε|). (1.38)

This fact will be used to prove the key Proposition 1 and a first compactness
property of the vorticity of suitably rescaled maps.

A key estimate. We define Bε := (0, L) \ Gε. The next task is to exploit the
definition of good height and an auxiliary result, Lemma 7, to show that if zε ∈ Bε,
somewhat surprisingly, we have the much stronger lower bound on the 2d energy,∫

ω
e2d
ε (uε)(x, zε)dx ≥ ε−α, (1.39)
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for some absolute positive constant α > 0. Thus Bε can be understood either as
the set of “bad heights”, on which we do not have detailed information about vortex
structure, or as the set of “better heights”, which enjoy a very strong lower energy
bound. Note that (1.39) immediately implies, thanks to (1.27), that Bε is smaller in
measure than a power of ε.

The idea here is that with the aid of Lemma 7, we can show that there is a
constant c such that for any “bad” height b, there are many cylinders ω × (a, b),
such that at least one of the following holds

∫
ω×{b,a}

e2d
ε (uε) dx ≥ 2ε−α, or

∫
ω×(a,b)

e2d
ε (uε) dxdz ≥ c| log ε|.

However, choosing a close enough to b, which we show can be done, we can rule out
the latter thanks to (1.38). We also show that we can choose a so that

∫
ω×{a} e2d

ε (uε)
dx < ε−α and thus we deduce the desired bound (1.39) from the former possibility.

Characterizing the vorticity. Section 4 deals with the compactness of (uε), in
particular we show the vorticity concentrates along n vortex filaments which we
identify as H1-curves over (0, L), and we prove the lower bound (1.37). We remark
that results similar to (1.37) are known in somewhat different contexts, in which one
has for example strong bounds on

∫
ω e2d

ε (uε(x, z))dx that are uniform with respect
to the z variable, as well as limiting vortex curves that are known not to intersect;
see [Jer99b,Li99,SS04]. Our proof here borrows some ideas from these earlier works.
We choose to follow [Jer99b], but one could also give a different proof that relies
more on ideas introduced in [SS04].

We start by noticing that thanks to (1.38) we have
∫

Ω
|∂zuε|2 = o(| log ε|),

and therefore we may find a natural scale �ε such that hε ≤ �ε = o(1), which
we show at the end of the proof to be equal to hε, such that the rescaled maps
vε(x, z) := uε(�εx, z) satisfy that their normalized energies

1
| log ε′|

∫
Ωε

eε′(vε)

are uniformly bounded, where ε′ := ε/�ε and Ωε := ωε × (0, L); ωε := �−1
ε ω. This

puts us in a position to apply an abstract compactness result from [JS02](see also
[ABO05]), which we will do at several stages in the proof of part (c) of Theorem 3.
A key point is to show that there is a dense subset H of (0, L), such that for any
heights z1 < z2 ∈ H, we have that

π

2
min
σ∈Sn

n∑
i=1

∣∣pi(z1) − pσ(i)(z2)
∣∣2

z2 − z1
≤ lim inf

ε→0

∫
ωε×(z1,z2)

|∂zvε(x, z)|2
2| log ε| dxdz, (1.40)
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where for j = 1, 2, it holds that

Jxvε(·, zj) → π

n∑
i=1

δpi(zj) in W−1,1(B(R)), for all R > 0.

In fact something stronger is proved in Lemmas 10–13. This type of estimates let
us relate the information of the vorticity of nearby heights, whose variations can
be controlled by |∂zvε|2/| log ε| at any scale. In particular, we make use of (1.40)
to identify the limiting vortex filaments and to gain the anticipated control on the
modulus of continuity of the corresponding f.

Refined lower bounds and compactness. We complete the proof of the com-
pactness and lower bounds, that is part (a) of Theorem 3, in Sect. 4.4 by combining
the previous steps and appealing to (1.24), (1.25). We obtain a very precise lower
bound for e2d

ε (uε) in terms of the intermediate scale �ε in Lemma 14; it follows from
a fact we establish a bit earlier: given z ∈ H, it holds that∫

ω
e2d
ε (uε(x, z)) dx −

[
n(π|log ε| + γ) + n(n − 1)π| log �ε| + n2Hω(0, 0)

]

≥ −π
∑
i�=j

log |qi(z) − qj(z)|, (1.41)

where Jxvε(·, z) → π
∑n

i=1 δqi(z) in W−1,1(B(R)) for all R > 0. For more details see
Lemmas 11 and 12.

An application of Fatou’s lemma to (1.41) and all the previous analysis yield the
lower bound

Gε(uε) ≥ πn(n − 1) log(hε/�ε) + G0(f) + o(1).

Finally, we proceed to conclude the proof of part (a) by using (1.24), (1.25) to
show that the intermediate scale �ε actually coincides with hε in this case.

Stronger compactness and the construction of a recovery sequence. We
turn to the proof of part (c) of Theorem 3 in Sect. 5.1. So far we know that Jxvε →
πδ[f(·)] in W−1,1(B(R) × (0, L)) for every R > 0; here we show that if there is no
loss in (1.32) then in fact f captures all of the limiting vorticity, that is

1
π

 Jvε converges to
n∑

i=1

Γfi
in the flat norm F (B(R) × (0, L)), for every R > 0.

The proof hinges upon the measure-theoretic Lemma 15, which tells us that the
limiting vorticity J (whose existence is guaranteed thanks to Theorem 4) is given
by
∑n

i=1 Γfi
plus some indecomposable pieces supported on a union of horizontal

planes. However, the tightness in the energy precludes the presence of these hori-
zontal components.

To conclude the proof of Theorem 3, it remains to show the existence of a recovery
sequence for the effective energy G0(f) for any admissible f. We construct such
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families (uε) based on canonical harmonic maps and estimates from [JS07,JS08].
This is done in Sect. 5.2.

Theorems 1 and 2. These results rest on the Γ-convergence result. The extra tech-
nical difficulty we need to address is the refinement of the construction of a recovery
sequence that is now additionally required to satisfy prescribed boundary data; this
is a delicate matter because for us boundary conditions with multiple degree vortices
are perfectly acceptable. This is taken care of in Sect. 6 where we present the proof
of Theorem 1. To prove Theorem 2 we need to relate local minimizers with respect to
two different topologies; after this is done the existence of local minimizers with the
desired properties follows from standard arguments (see [MSZ04]). This is achieved
in Sect. 7.

The article concludes with an appendix where the proofs of some technical results
from Sect. 3 are included.

2 Preliminaries

A key object in our study, and more generally in the asymptotic analysis of the
Ginzburg–Landau functional, is the renormalized energy, introduced by Bethuel,
Brezis, and Hélein [BBH94], which in our context may be defined as follows.

For y ∈ ω, we write Hω(·, y) to denote the solution to

ΔxHω(·, y) = 0 in ω, Hω(x, y) = − log |x − y| for x ∈ ∂ω. (2.1)

For distinct points p1, . . . , pn ∈ ω we define

Wω(p1, . . . , pn) = −π

⎛
⎝∑

i�=j

log |pi − pj | +
∑
i,j

Hω(pi, pj)

⎞
⎠ . (2.2)

The constant κn(Ω) appearing in (1.26) is given by

κn(Ω) := −πn2LHω(0, 0) + nLγ, (2.3)

Here γ is the constant defined in [BBH94] as

γ := lim
ε→0

(I(1, ε) + π log ε), (2.4)

where

I(R, ε) := min

{
1
2

∫
B(0,R)

e2d
ε (u)dx ; u ∈ H1(B(R),C), u =

x

|x| on ∂B(R)

}
. (2.5)

Remark 3. We remark that natural boundary conditions on ∂ω are built into the
definition of Hω and hence also Wω and κn(Ω). In particular, if we wish to consider
Dirichlet data on ∂ω × (0, L) of the form contemplated in (1.35), then the correct
substitute for κn is

κn(Ω, g) = −πn2LH(0, 0; g) + nLγ (2.6)
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where H(·, y; g) is harmonic in ω for every y, and

ν(x) · ∇xH(x, y; g) = jτg(x) + ν · (x − y)
|x − y|2 for x ∈ ∂ω. (2.7)

Here jτg(x) = Im(ḡ, ∇τg)(x). Similarly, the correct renormalized energy for (1.35)
is defined as in (2.2), but with Hω(pi, pj ; g) in place of Hω(pi, pj).

2.1 More about currents. In Sect. 1.2, we defined k-currents, and we intro-
duced several particular classes of currents of interest, including for example the
1-current Tγ associated to a Lipschitz curve γ.

In general, if T is a k-current, then ∂T is the (k−1)-current defined by ∂T (φ) :=
T (dφ). For example, if U is an open set in R

n and γ : [a, b] → Ū is a Lipschitz curve
such that γ(s) ∈ U for s ∈ (a, b), then

∂Tγ(φ) = φ(γ(b)) − φ(γ(a)) for φ ∈ D0(U).

In particular, ∂Tγ = 0 in U if γ(a) and γ(b) belong to ∂U , or if γ(a) = γ(b).
We will frequently encounter integer multiplicity rectifiable 1-currents in various

3-dimensional open sets U . Such a current T admits a moderately complicated de-
scription in general, but if M(T ) < ∞ and ∂T = 0 in U , which will always be the
case for us, then it can always be represented in the form

T =
∑
i∈I

Tγi
, ∂Tγi

= 0 in U for all i ∈ I,

M(T ) =
∑
i∈I

M(Tγi
) =

∑
i∈I

H1(γi) < ∞, (2.8)

for some family of Lipschitz maps {γi}i∈I , with I at most countable. (Here and below,
Hk and Lk denote k-dimensional Hausdorff and Lebesgue measure, respectively.)

The remainder of this section is used only rarely and can be skipped until needed.
It will be useful to consider slices of various currents, including Ju and Γ0, by

the function ζ(x, z) = z. In general a slice4 of a 1-current S in Ω by ζ−1{z} is a
0-current supported in ζ−1{z}, which is denoted 〈S, ζ, z〉. For the currents we are
interested in, we have explicit formulas:

〈Ju, ζ, z〉(g) =
∫

ω
Jxu(x, z)g(x, z) dx a.e. z, for u ∈ H1(Ω;C),

〈Γf , ζ, z〉 = δ(f(z),z) a.e. z, for f ∈ H1((0, L);R2),

using notation introduced in (1.18). In particular,

〈Γ0, ζ, z〉 = δ(0,z).

4 In order for the slices of S to be well-defined, S must satisfy some mild regularity hypotheses,
which will always hold for us.
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Note that 〈Ju, ζ, z〉 can (for a.e. z) be identified with the Jacobian of u(·, z) ∈
H1(ω;C), and as a result

‖〈Ju − nπΓ0, ζ, z〉‖F (Ω) = ‖Jxu(·, z) − nπδ0‖F (ω).

In Remark 2 above, we have asserted that
∫ L

0
‖Jxu(·, z) − πnδ0‖F (ω) dz ≤ ‖  Ju − nπΓ0‖F (Ω).

This estimate, which is not really used in this paper, is a direct consequence of the
above considerations and the general fact that

∫ L

0
‖〈S, ζ, z〉‖F (ω)dz ≤ ‖S‖F (Ω) for any current S in Ω, (2.9)

proved in Federer [Fed69] 4.2.1.

3 Preliminary lower bounds for the 2d energy

In this section we prove lower bounds for the 2d energy under assumption (1.23).

3.1 A criterion for vorticity. We first introduce a criterion that will allow us
to detect, roughly speaking, when a function w ∈ H1(ω;C) has n vortices rather
near the origin. There are many ways of doing this; the one we choose is designed
to facilitate the proof of a key estimate that we establish in Proposition 1 below.

We henceforth write

r∗ := 1 ∧ dist(0, ∂ω) = min{1, dist(0, ∂ω)}.

Given w ∈ H1(ω;C), we will use the notation

Sn(w) :=

{
s ∈
(

r∗

2
, r∗
)

:

∣∣∣∣∣
∫

B(s)
Jxw(x) dx − nπ

∣∣∣∣∣ ≤ 1

}
. (3.1)

We will later show that w has various good properties if Sn(w) is large in the
sense that

|Sn(w)| ≥ r∗

4
. (3.2)

This says that on a majority of balls B(s), r∗

2 < s < r∗, the vorticity contained in
B(s) is not too far from nπ.

We first establish some estimates that will later allow us to show that if (uε) ⊂
H1(Ω,C) satisfies assumption (1.23) and ε is small, then w(·) = uε(·, z) satisfies
(3.2) for most values of z.
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Lemma 1. If w ∈ H1(ω;C), then

|Sn(w)| ≥ r∗

2
− ‖Jxw − nπδ0‖F (ω). (3.3)

Also, if |Sn(w)| ≥ r∗

4 , then there exists φ ∈ W 1,∞
0 (ω) such that 0 ≤ φ ≤ 1,

‖∇φ‖∞ ≤ 4/r∗, supp(φ) ⊂ B(r∗), φ = 1 in B(r∗/2), and
∣∣∣∣
∫

ω
φ(x)Jxw(x) dx − nπ

∣∣∣∣ ≤ 1. (3.4)

Proof. Consider a measurable subset A ⊂
(

r∗

2 , r∗) and let g : (0, ∞) → R be the
(unique) compactly supported Lipschitz continuous function such that

g′(s) = −1s∈A sign

(∫
B(s)

Jxw dx − nπ

)
a.e. s.

Since g′(s) = 0 for s ≥ r∗, it is clear that g(s) = 0 for s ≥ r∗, and hence

g(s) = −
∫ r∗

s
g′(t) dt for 0 ≤ s ≤ r∗.

Thus
∫

s∈A

∣∣∣∣∣
∫

B(s)
(Jxw − nπδ0)

∣∣∣∣∣ ds = −
∫ r∗

0
g′(s)

(∫
B(s)

(Jxw − nπδ0)

)
ds

= −
∫

B(r∗)

∫ r∗

|x|
g′(s)(Jxw − nπδ0) ds

=
∫

ω
g(|x|)(Jxw − nπδ0).

If we take A :=
(

r∗

2 , r∗) \ Sn(w), then it follows from the definition of Sn(w) that

r∗

2
− |Sn(w)| = |A| ≤

∫
s∈A

∣∣∣∣∣
∫

B(s)
(Jxw − nπδ0)

∣∣∣∣∣ ds.

Also, max(‖g‖∞, ‖g′‖∞) ≤ 1 so
∫

ω
g(|x|)(Jxw − nπδ0) ≤ ‖Jxw − nπδ0‖F (ω).

The first conclusion of the lemma follows by combining these inequalities.
To prove the final conclusion of the lemma, assume that |Sn(w)| ≥ r∗

4 , and let
g(s) be the (unique) compactly supported Lipschitz continuous function such that

g′(s) = −|Sn(w)|−11Sn(w) a.e. s.
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Then 0 ≤ g ≤ 1, and ‖g′‖∞ = |Sn(w)|−1 ≤ 4/r∗. Moreover, arguing as above one
computes that

∫
ω

g(|x|)(Jxw − nπδ0) = −
∫ r∗

0
g′(s)

(∫
B(s)

Jxw − nπδ0

)
ds

=
1

|Sn(w)|

∫
Sn(w)

(∫
B(s)

Jxw − nπδ0

)
ds.

Then the final conclusion (3.4), with φ(x) = g(|x|), now follows directly from the
definition of Sn(w). ��

We now identify the above-mentioned good properties enjoyed by a function w
satisfying (3.2). We show that such a function either has a very well-defined vortex
structure and associated sharp lower energy bounds, or else it has excess energy, in
the sense that condition (3.5) below fails. More precisely, we have

Lemma 2. There exist positive numbers θ, a, b, depending on n and r∗, such that
b < a, and the following holds:

Assume that w ∈ H1(ω;C) and that |Sn(w)| ≥ r∗

4 and
∫

ω
e2d
ε (w)(x) dx ≤ π(n + θ)|log ε|. (3.5)

If 0 < ε < ε0 = ε0(θ, a, b, n), then there exist pε
1, . . . , p

ε
n ∈ ω, such that

‖Jxw − π
∑

δpε
i
‖F (ω) ≤ εa , (3.6)

dist(pε
i , ∂ω) ≥ r∗

8
for all i, |pε

i − pε
j | ≥ εb for i �= j, and (3.7)∫

ω
e2d
ε (w)dx ≥ n(π| log ε| + γ) + Wω(pε

1, . . . , p
ε
n) − C(n, θ)ε(a−b)/2 (3.8)

where Wω is the renormalized energy defined in (2.2) and γ is defined in (2.4).

The proof of Lemma 2 is postponed to “Appendix A”. For now we only remark
that the verification of (3.6), (3.7) involves a vortex ball argument, and that we will
deduce (3.8) by appealing to results in [JS08], for which (3.6) and (3.7) supply the
hypotheses. Incidentally, the reason we have assumed that ω is simply connected is
that this condition is imposed in [JS08].

Our next result is a corollary of Lemma 2.

Lemma 3. Assume that uε(·, z) ∈ H1(ω;C), that |Sn(uε(·, z))| ≥ r∗

4 , and that (3.5)
holds.

Then for 0 < ε < ε0,∫
ω

e2d
ε (uε(x, z))dx ≥ nπ |log ε| − C − πn(n − 1) log ‖Jxuε(·, z) − nπδ0‖F (ω) (3.9)
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and ∫
ω

e2d
ε (uε(x, z))dx ≥ nπ |log ε| − C. (3.10)

Proof. We wish to deduce the conclusions of the lemma from (3.8). To do this, we
must estimate

Wω(pε
1, . . . , p

ε
n) = −π

⎛
⎝∑

i�=j

log
∣∣pε

i − pε
j

∣∣+∑
i,j

Hω(pε
i , p

ε
j)

⎞
⎠

where Hω is defined in (2.1).
It is clear that Hω is smooth in the interior of ω × ω, so (3.7) implies that

|Hω(pε
i , p

ε
j)| ≤ C for all i, j.

To estimate the other terms, we write sε := ‖Jxuε(·, z) − nπδ0‖F (ω) for conve-
nience. Then it follows from (3.6) and the triangle inequality that

‖π

n∑
i=1

(δpε
i
− δ0)‖W −1,1 ≤ sε + εa.

On the other hand, setting φ(x) = (r∗ − |x|)+,

‖π

n∑
i=1

(δpε
i
− δ0)‖W −1,1 ≥

∫
ω

φ(x)π
n∑

i=1

(δ0 − δpε
i
) = π

∑
|pε

i |.

Thus |pε
i − pε

j | ≤ sε + εa ≤ 2sε for all i �= j. (The last inequality follows from (3.7),
which with the above shows that sε ≥ εb − εa ≥ 1

2εb.) These imply that

Wω(pε
1, . . . , p

ε
n) ≥ −πn(n − 1) log sε − C.

Also, since |pε
i | ≤ diam(ω) for all i, it is clear that Wω(pε

1, . . . , p
ε
n) ≥ −C. ��

3.2 Good heights. We now fix uε ∈ H1(Ω;C) satisfying (1.23).
We will say that a height z is good if uε(·, z) satisfies (3.2), and we define Gε

1 to
be the set of good heights:

Gε
1 :=

{
z ∈ (0, L) : |Sn(uε(·, z))| ≥ r∗

4

}
. (3.11)

We also define

Bε
1 := (0, L) \ Gε

1.

The results of the previous sections immediately imply that the good set is big:

Lemma 4. For uε ∈ H1(Ω;C) satisfying (1.23), we have the estimates

L − |Gε
1| = |Bε

1| ≤ 4
r∗

∫ L

0
‖Jxuε(·, z) − nπδ0‖F (ω)dz.
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Proof. By (3.3), we know that if z ∈ Bε
1, then ‖Jxuε(·, z) − nπδ0‖F (ω) > r∗

4 . In
addition, Chebyshev’s inequality implies that for any s > 0,

L1
({

z ∈ (0, L) : ‖Jxu(·, z) − πnδ0‖F (ω) ≥ s
})

≤ 1
s

∫ L

0
‖Jxu(·, z) − πnδ0‖F (ω) dz.

(3.12)
The lemma follows by combining these facts. ��

As shown in Lemma 3, if z ∈ Gε
1, then uε(·, z) satisfies good lower energy bounds.

Perhaps surprisingly, under hypotheses that are satisfied by minimizers and local
minimizers whose vorticity clusters around the vertical segment, uε(·, z) satisfies
much stronger lower energy bounds for z ∈ Bε

1. Indeed, in Sect. 3.4 we will prove

Proposition 1. Assume that uε satisfies (1.23) and (1.27). Then for every α ∈(
0, 2

3

)
, there exists ε0 such that if 0 < ε ≤ ε0, then

∫
ω

eε(uε(x, z)) dx ≥ ε−α for every z ∈ Bε
1. (3.13)

As a result, using the upper bound (1.28) on Fε, if ε < ε0 then |Bε
1| ≤ Cεα| log ε|.

This proposition will play an important role in the proof of Theorem 3, although
there in fact a much weaker estimate than (3.13) would suffice.

We continue with some easier estimates that will be used several times, including
in the proof of Proposition 1.

Lemma 5. Assume that (uε) satisfies (1.23), (1.27). If A is any measurable subset
of (0, L), then

lim
ε→0

1
|log ε|

∫
A

∫
ω

eε(uε)dx dz = lim
ε→0

1
|log ε|

∫
A

∫
ω

e2d
ε (uε)dx dz = nπ|A| (3.14)

and as a consequence ∫
Ω

|∂zuε|2 dx dz = o(|log ε|). (3.15)

Proof. If z ∈ Gε
1, then
∫

ω
eε(uε(x, z))dx ≥

∫
ω

e2d
ε (uε(x, z))dx ≥ nπ|log ε| − C.

This follows from Lemma 3 if (3.5) holds, and if not it is immediate. Thus

1
|log ε|

∫
A

∫
ω

eε(uε)dx dz ≥ 1
|log ε|

∫
Gε

1∩A

∫
ω

e2d
ε (uε) dx dz

≥ |A ∩ Gε
1|(nπ − o(1)) as ε → 0.
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Also, it is clear from (1.23) and Lemma 4 that |A ∩ Gε
1| ≥ |A| − |Bε

1| → |A| as ε → 0.
Thus

lim inf
ε→0

1
|log ε|

∫
A

∫
ω

eε(uε)dx dz ≥ lim inf
ε→0

1
|log ε|

∫
A

∫
ω

e2d
ε (uε)dx dz ≥ nπ|A|.

(3.16)
Then using (1.27) and applying (3.16) to Ã = (0, L) \ A,

lim sup
ε→0

1
|log ε|

∫
A

∫
ω

e2d
ε (uε)dx dz ≤ lim sup

ε→0

1
|log ε|

∫
A

∫
ω

eε(uε)dx dz

≤ nπL − nπ|Ã| = nπ|A|.

This is (3.14). Since 1
2 |∂zu|2 = eε(u)−e2d

ε (u), we obtain (3.15) as a direct consequence
of (3.14) and (1.27). ��

We next define another “good set”, consisting of the set of points z such that
uε(·, z) satisfies the hypotheses of Lemmas 2 and 3. This will appear often in the
proof of the Γ-limit lower bound and compactness assertions.

Lemma 6. Assume that (uε) satisfies (1.23) and (1.27), and define

Gε
2 :=

{
z ∈ Gε

1 :
∫

ω
e2d
ε (uε(x, z))dx ≤ π(n + θ)|log ε|

}
, Bε

2 := (0, L) \ Gε
2,

(3.17)
where θ is the constant from Lemma 2. Then

|Bε
2| = o(1) |Gε

2| = L − o(1) as ε → 0.

Proof. We will write

B̃ε
2 :=

{
z ∈ Gε

1 :
∫

ω
e2d
ε (uε(x, z))dx > π(n + θ)|log ε|

}
.

Note that Bε
2 = Bε

1 ∪ B̃ε
2. Lemma 4 and (1.23) imply that L − |Gε

1| = |Bε
1| → 0, so we

only need to prove that |B̃ε
2| → 0 as ε → 0. Toward this end we use Lemma 3 and

the definition of B̃ε
2 to compute

|log ε|(Lnπ + o(1))
(1.27)

≥
∫

Ω
e2d
ε (uε) dx dz

≥
∫

Gε
1\B̃ε

2

∫
ω

e2d
ε (uε) dx dz +

∫
B̃ε

2

∫
ω

e2d
ε (uε) dx dz

≥ (|Gε
1| − |B̃ε

2|)(nπ|log ε| − C) + |B̃ε
2|(π(n + θ)|log ε|

= |Gε
1|nπ|log ε| + θπ|log ε||B̃ε

2| − C.

As already noted, |Gε
1| → L as ε → 0, so the conclusions follow. ��
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3.3 A Jacobian estimate with weak boundary control. The following
result plays an important role in the proof of Proposition 1.

Lemma 7. Let D := (R/�Z) × I for some interval I and some � > 0, and assume
that w ∈ H1(D;C). Then for every α ∈ (0, 2

3), there exists c2 = c2(α) such that for
all sufficiently small ε > 0 (where “sufficiently small” depends on α and D), at least
one of the following holds: ∫

∂D
eε(w)dH1 ≥ ε−α (3.18)

or ∫
D

eε(w) ≥ c2 |log ε|
∣∣∣∣
∫

D
Jw

∣∣∣∣− c2ε
1−α |log ε| . (3.19)

In fact we will show that one may take c2 = π
8 (1 − 3α

2 ).

Conclusion (3.19) is an example of a Jacobian estimate, relating the Ginzburg–
Landau energy and the Jacobian of a complex-valued function w on a domain D.
Well-known examples show that an like (3.19) cannot hold without some information
about the behaviour of w on ∂D. The lemma shows that the very weak bounds∫
∂D eε(w)dH1 < ε−α —that is, the failure of (3.18)—is sufficient information for

this purpose.

Remark 4. A very similar argument shows that the same result is true if D is a
bounded, open subset of R2, with smooth boundary. In this case the geometry of sets
such as ∂B ∩ D and B ∩ ∂D (if B is a ball) becomes more complicated. However,
on small scales, which are all that matter for this argument, these complications
basically vanish.

In the rest of the subsection we will make use of the symbol ∂ to represent either
the topological boundary of a set, or the boundary in the sense of Stoke’s theorem,
the meaning being clear from the context.

Proof. 1. (Preliminaries). By a density argument, we may assume that w is smooth
in D̄. We assume that

e∂D :=
∫

∂D
eε(w) dH1 < ε−α, (3.20)

and we will show that then (3.19) holds for all sufficiently small ε.
We first recall that if Σ is a Lipschitz arc (that is, the image of an injective

Lipschitz curve) in D̄ and H1(Σ) ≥ ε, then∫
Σ

eε(|w|)dH1 ≥ c

ε
‖1 − |w| ‖2

L∞(Σ). (3.21)

See for example [JS02, Lemma 2.3] for a proof. In particular this applies to Σ := ∂D,
so (3.20) implies that

‖1 − |w| ‖L∞(∂D) ≤ cε(1−α)/2 ≤ 1
3

for sufficiently small ε. (3.22)
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We record a couple of consequences of this fact. First, basic properties of the degree
imply that for v := w/|w| (well-defined on ∂D)

2πd∗ := 2π deg(w; ∂D) =
∫

∂D
j(v) · τ =

∫
∂D

1
|w|2 j(w) · τ.

Also, an integration by parts shows that∫
D

Jw =
1
2

∫
∂D

j(w) · τ.

Thus, since that |j(w)| ≤ |w| |∇w| we deduce from (3.22) that∣∣∣∣πd∗ −
∫

D
Jw

∣∣∣∣ =
∣∣∣∣12
∫

∂D

(
1

|w|2 − 1
)

j(w) · τ

∣∣∣∣
≤ 2
∫

∂D

∣∣1 − |w|2
∣∣ |∇w| ≤ 4εe∂D

(3.20)

≤ Cε1−α. (3.23)

We may thus assume that
d∗ �= 0 (3.24)

since otherwise (3.19) follows immediately from (3.23). Next, we again use (3.22) to
find that∣∣∣∣

∫
D

Jw

∣∣∣∣ =
∣∣∣∣12
∫

∂D
j(w) · τ

∣∣∣∣ ≤
∫

∂D
|∇w| ≤ C

√
e∂D ≤ Cε−α/2. (3.25)

What follows is a modification, in which we exploit (3.20) to control certain
boundary terms, of the classical procedure of obtaining lower bounds for Ginzburg–
Landau functionals in terms of the Jacobian by means of a ball construction [Jer99a,
San98].

2. (Basic estimates). For v = w
|w| as above, recall that

eε(w) =
1
2
|w|2|∇v|2 + eε(|w|), eε(|w|) :=

1
2
|∇|w||2 +

1
4ε2

(|w|2 − 1)2. (3.26)

In particular this implies that |∇v| ≤ 1
|w| |∇w|.

Next, let B be a ball5 of radius r. Fix r0 > 0, depending on D, such that if
r < r0, then ∂D ∩ B consists of at most one line segment, necessarily of length at
most 2r and ∂B ∩D is an arc of a circle (It suffices to take r0 < 1

2 min(�, |I|)). Then
(3.22) and elementary inequalities imply that∫

∂D∩B
|∂τv|dH1 ≤ 2

∫
∂D∩B

|∂τw|dH1 ≤ 4
√

r
√

e∂D,

where ∂τw denotes the tangential derivative. Thus∫
∂D∩B

|∂τv|dH1 ≤ π, if r ≤ r1 := min(
π2

16
e−1
∂D, r0). (3.27)

5 We have in mind a ball with respect to the natural notion of distance in (R/�Z) × R.
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On the other hand, if d := deg(w; ∂(B ∩ D)) is well-defined and nonzero, then

d =
1
2π

∫
∂(B∩D)

j(v) · τ.

Since |j(v) · τ | ≤ |v| |∂τv| = |∂τv|, we combine this with (3.27) to find that
∫

∂B∩D
|∂τv| ≥ (2π|d| − π) ≥ π|d| if r ≤ r1.

In particular, if m := min∂B∩D |w|, it follows from this, (3.26) and (3.22) that
∫

∂B∩D
eε(w) ≥ m2

2

∫
∂B∩D

|∂τv|2 +
∫

∂B∩D
eε(|w|)

≥ m2

2H1(∂B ∩ D)

(∫
∂B∩D

|∂τv|
)2

+
c

ε
(1 − m)2

≥ m2πd2

4r
+

c

ε
(1 − m)2 if r ≤ r1.

If we define

λε(r, d) := min
m∈[0,1]

m2πd2

4r
+

c

ε
(1 − m)2 , (3.28)

then it follows that for any ball B,∫
∂B∩D

eε(w) ≥ λε(r, d)

if d := deg(w; ∂(B ∩ D)) and r = radius(B) ≤ r1 := min(
π2

16
e−1
∂D, r0). (3.29)

3. (Lower bounds via a ball construction). With estimate (3.29) in hand, we can
carry out a vortex ball construction, as described in “Appendix A”, as long as all
balls have radius at most r1. We sketch the main steps, following the presentation
in [Jer99a,JS02]. To get started, we invoke Proposition 3.3 in [Jer99a], which shows
that there exists a finite collection {B0

i } of closed, pairwise disjoint balls such that

SE ⊂ ∪B0
i for SE defined in (A.6), (3.30)

r0
i ≥ ε for all i, (3.31)∫

B0
i ∩SE

eε(w) ≥ c0

ε
r0
i ≥ Λε(r0

i ) :=
∫ r0

i

0
λε(r, 1) ∧ c0

ε
dr. (3.32)

Here r0
i denotes the radius of B0

i and c0 a constant, independent of w and ε.
If
∑

i r
0
i ≥ r1, then it follows from (3.32), the choice of r1 [see (3.29)] and (3.20)

that ∫
D

eε(w) ≥ c0

ε
r1 ≥ cεα−1.
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Since α < 2/3, this together with (3.25) implies that (3.19) holds for all small ε. We
may therefore assume that

∑
r0
i < r1. Next, from the additivity properties of the

degree, (3.30), and the definition (A.6) of SE , we see that6

0
(3.24)

�= d∗ = deg(w; ∂D) =
∑

i

deg(w; ∂(B0
i ∩ D)) =:

∑
i

d0
i .

Thus at least one ball has nonzero degree, and hence

σ0 := min
i

r0
i

|d0
i |

< r1.

We may now follow a standard vortex ball argument construction as summarized
in Lemma 22, but using (3.28), (3.29) in place of the usual estimates (A.9), (A.10).
For a range of σ > σ0, this yields a collection B(σ) = {Bσ

k }k(σ)
k=1 of balls such that

SE ⊂ ∪kB
σ
k , (3.33)∫

Bσ
k ∩ω

e2d
ε (w) dx ≥ rσ

k

σ
Λε(σ), for rσ

k := radius(Bσ
k ), (3.34)

rσ
k ≥ σ|dσ

k |, for dσ
k := deg(w; ∂(Bσ

k ∩ D)). (3.35)

Moreover, σ 	→
∑

k rσ
k is a continuous, nondecreasing function. This process may be

continued as long as all balls in the collection have radius at most r1.
The estimates we obtain in this way are both worse and better than the classical

ones, summarized in Lemma 22 for example. They are worse in that we have a
somewhat weaker lower bound (compare (3.28) and (A.9)) and we can only continue
as long as every ball has radius at most r1; but better in that all the estimates
we obtain apply to all balls, even those that intersect ∂D. This is not true in the
classical case, compare for example (3.35).

We stop the ball construction when the sum of the radii is exactly r1. Then (3.34),
(3.35), and the fact7 that s 	→ 1

sΛε(s) is nonincreasing, imply the lower bound
∫

D
eε(w) ≥ |d∗|Λε(

r1

|d∗|), where d∗ = deg(w; ∂D) =
∑

dσ
k . (3.36)

The last equality follows from (3.33) and the additivity of the degree.
4. (Estimating the right-hand side of (3.36)).
In view of (3.23), in order to prove (3.19), it suffices to show that

Λε(
r1

|d∗|) ≥ c|log ε| for all sufficiently small ε > 0.

6 Strictly speaking, if V is a set such that ∂V ∩ SE �= ∅, then here and below, deg(w; ∂V ) should
be replaced by dg(w; ∂Vi), see (A.8) for the definition. This does not change the argument in any
essential way.

7 This is easily checked, and a proof can be for example [Jer99a], Proposition 3.1.
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It is straightforward to check (see [Jer99a] or [JS02]) that

Λε(σ) ≥ π

4
log

σ

ε
− C.

Also, it follows from (3.23) and (3.25) that |d∗| ≤ C
√

e∂D ≤ Cε−α/2. As a result, if
r1 = r0, then

Λ(
r1

|d∗|) ≥ π

2
log(

r0

Cε1−α/2
) − C =

π

2
(1 − α

2
)|log ε| − C ≥ π

4
(1 − α

2
)|log ε|

if ε is small enough. On the other hand, if r1 = π2

16e−1
∂D then

Λε(
r1

|d∗|) ≥ Λε(
e−1
∂D

C
√

e∂D
) ≥ π

2
log(

e
−3/2
∂D

ε
) − C

(3.20)

≥ π

2
(1 − 3α

2
)|log ε| − C ≥ π

4
(1 − 3α

2
)|log ε|

if ε is small enough. ��

Remark 5. The cylinder ∂B(t) × I ⊂ R
3 may be parametrized by the map

i : (R/2πt) × I → R
3, i(s, z) = (t cos(

s

t
), t sin(

s

t
), z).

and then

∫
∂B(s)×I

Ju =
∫

(R/2πs)×I
i∗Ju =

∫
(R/2πs)×I

i∗u∗(d area)

=
∫

(R/2πs)×I
(u ◦ i)∗(d area) =

∫
(R/2πs)×I

J(u ◦ i).

Here u∗(d area) denotes the pullback by u : Ω → C ∼= R
2 of the area form dx1 ∧ dx2

on R
2. Thus, writing u = (u1, u2), we have u∗(dx1∧dx2) = du1∧du2 = Ju. Similarly

i∗Ju denotes the pullback by i of Ju.
Also, the area formula implies that

∫
∂B(s)×I

eε(uε)dH2 ≥
∫

(R/2πs)×I
e2d
ε (uε ◦ i)dH2.

Thus Lemma 7 immediately implies the same result for cylinders in R
3.
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3.4 Proof of Proposition 1. Here we combine the definition of a good height
and the implicit global information about the vorticity provided by Lemma 7.

Proof of Proposition 1. Step 1. Fix α ∈ (0, 2
3), and fix zb ∈ Bε

1.
We define a new “good set” :

Gε
3 :=

{
z ∈ (0, L) : ‖Jxuε(·, z) − πnδ0‖F (ω) ≤ r∗

16
,

∫
ω

eε(uε(x, z))dx ≤ r∗

32
ε−α

}
.

It follows from (3.12), and (1.27) and Chebyshev’s inequality (for the condition
involving the energy) that

|(0, L) \ Gε
3| ≤ C(

∫ L

0
‖Jxuε(·, z) − nπδ0‖F (ω) + εα/2).

Thus if ε is small enough, in view of (1.23), we may fix zg ∈ Gε
3 such that

1
2
δ ≤ |zb − zg| ≤ δ (3.37)

for δ = δ(α) to be fixed below.
If we define

S̃ε(z) :=

{
s ∈
(

r∗

2
, r∗
)

:

∣∣∣∣∣
∫

B(s)
Jxuε(x, z) dx − nπ

∣∣∣∣∣ ≤
1
2

}
,

then the proof of Lemma 1 shows that for every z,
∣∣∣S̃ε(z)

∣∣∣ ≥ r∗

2
− 2‖Jxu(·, z) − nπδ0‖F (ω),

and thus

if z ∈ Gε
3, then

∣∣∣S̃ε(z)
∣∣∣ ≥ 3r∗

8
.

In particular, this holds for z = zg.
On the other hand, the definition of Bε

1 implies that the set
{

s ∈
(

r∗

2
, r∗
)

:

∣∣∣∣∣
∫

B(s)
Jxuε(x, zb) dx − nπ

∣∣∣∣∣ ≥ 1

}

has measure at least r∗/4. Thus the intersection of this set with S̃ε(zg) has measure
at least r∗/8. As a result, the set

T :=

{
s ∈
(

r∗

2
, r∗
)

:

∣∣∣∣∣
∫

B(s)
Jxuε(x, zb) dx −

∫
B(s)

Jxuε(x, zg)dx

∣∣∣∣∣ ≥
1
2

}
(3.38)

satisfies
|T | ≥ r∗

8
. (3.39)
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Figure 2: Configuration with good height zg and bad height zb

Step 2. In what follows, if M is an oriented 2d submanifold of Ω, we write∫
M Juε to denote the integral of Juε over M in the standard sense of differential

geometry (recalling that Juε is a 2-form). Then in particular8∫
B(s)

Jxuε(x, z) dx =
∫

B(s)×{z}
Juε. (3.40)

Now let I = (z0, z1), where z0 = min(zb, zg) and z1 = max(zg, zb). Since d Juε = 0,
we find from Stokes Theorem that

0 =
∫

B(s)×I
d Juε =

∫
∂(B(s)×I)

Juε,

and upon breaking ∂(B(s) × I) into pieces in the natural way, we find that∫
∂B(s)×I

Juε =
∫

B(s)×{z0}
Juε −

∫
B(s)×{z1}

Juε.

It thus follows from (3.40) and the definition (3.38) of T that∣∣∣∣∣
∫

∂B(s)×I
Juε

∣∣∣∣∣ ≥
1
2

if s ∈ T . (3.41)

Step 3. Now define

T∗ :=

{
s ∈ T :

∫
∂B(s)×{zg,zb}

eε(uε)dH1 < ε−α

}
, T ∗ := T \ T∗.

8 This identity specifies our convention for orienting B(s) × {z}, which is the standard one.
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We will show that |T ∗| ≥ r∗

16 . To do this, in view of (3.39), it suffices to show that
|T∗| < r∗

16 for all small ε. To do this, note that the coarea formula, Lemma 7 (see
also Remark 5) and (3.41) imply that

∫
ω×I

eε(uε) dx dz ≥
∫

s∈T∗

(∫
∂B(s)×I

eε(uε) dH2

)

≥ 1
2
c2|log ε||T∗| − cε1−α|log ε|.

On the other hand, we know from Lemma 5 and (3.37) that∫
ω×I

eε(uε) dx dz ≤ nπ|log ε|(|I| + o(1)) ≤ nπ|log ε|(δ + o(1)).

By a suitable choice of δ, we can therefore guarantee that |T∗| < r∗

16 for all sufficiently
small ε > 0.

Step 4. Since |T ∗| ≥ r∗

16 , we easily see that
∫

ω×{zg,zb}
eε(uε)dH2 ≥

∫
s∈T ∗

∫
∂B(s)×{zg,zb}

eε(uε) ≥ r∗

16
ε−α.

Since ∫
ω×{zg}

eε(uε)dH2 ≤ r∗

32
ε−α

by definition of Gε
3, we conclude that∫

ω×{zb}
eε(uε)dH2 ≥ r∗

32
ε−α

for all sufficiently small ε. This is the conclusion (3.13) of the Proposition, up to the
factor r∗

32 , which can be absorbed by taking a larger choice of α and a correspondingly
smaller ε0. ��

Remark 6. The proof shows that eε(uε) may be replaced by e2d
ε (uε) in the conclu-

sion (3.13), since in fact only tangential components of the boundary energy appear
in the

∫
∂D eεdH1 ≥ ε−α part of the possibilities contemplated in Lemma 7.

3.5 Alternate hypothesis (1.29). Recall that in Theorem 3, we have assumed
energy bounds (1.27), together with either (1.23)–(1.25) or (1.29). In this section we
demonstrate a couple of ways in which the latter assumption is stronger than the
former. The first shows that the (1.29) case of Theorem 3 implies the (1.23)–(1.25)
case, and the second indicates some ways in which our arguments can be simplified
if we assume (1.29).

Following this section we will focus on hypotheses (1.23)–(1.25) which, in addition
to being more subtle, are also the hypotheses we need for our applications in Theorem
1.



1192 A. CONTRERAS, R. L. JERRARD GAFA

Lemma 8. If (uε) ⊂ H1(Ω;C) is a sequence satisfying (1.27) and (1.29), then there
is a subsequence along which it also satisfies (1.23)–(1.25).

Proof. Since (1.23) follows immediately from (1.29), we only need to find a point
z ∈ (0, L) and a subsequence along which assumptions (1.24)–(1.25) hold.

To do this, we define yet another “good set”,

Gε
4 := {z ∈ Gε

2 : ‖Jxuε(·, z) − πnδ0‖F (ω) ≤ 3Chε},

where C is the same constant appearing in (1.29). It follows from (1.29), (3.12) and
Lemma 6 that |Gε

4| ≥ L
2 . By the Borel–Cantelli Lemma, we can therefore find some

z0 ∈ (0, L) and a subsequence εk such that z0 ∈ Gεk

4 for all k.
The fact that z0 ∈ Gεk

2 for all k implies that (1.25) holds. To prove (1.24), Lemma
2 implies that for all sufficiently large k there exist points {pε

i}n
i=1 such that (3.6)

holds, i.e.

‖Jxuε(·, z0) − π

n∑
i=1

δpε
i
‖F (w) ≤ εa.

(Here and below, we often write ε instead of εk, to reduce clutter.) Since z0 ∈ Gεk

4 ,

‖nπδ0 − π

n∑
i=1

δpε
i
‖W −1,1(ω) ≤ εa + 3Chε ≤ Chε.

It follows from the definition (1.22) of the flat norm (for example by testing with
ϕ = (1 − |x|)+ or a regularization thereof) that

∑
|pε

i | ≤ Chε. If we let qε
i = pε

i/hε,
then

∑
|qε

i | ≤ C, and we may pass to a further subsequence such that qε
i → q0

i for
i = 1, . . . , n. Then for this subsequence, by the triangle inequality

‖Jxuε(·, z0) − π

n∑
i=1

δhεq0
i
‖F (w) ≤ εa + π

n∑
i=1

‖δpε
i
− δhεq0

i
‖F (ω).

It follows again from the definition (1.22) of the flat norm that the right-hand side
is bounded by εa +

∑
|pε

i −hεq
0
i | = εa +hε|qε

i −q0
i |, and this is clearly o(hε) as ε → 0.

��

Our next result is not used anywhere in this paper. Its significance is that it shows
that, if we allow ourselves the stronger assumption (1.29), then certain difficulties
in the proof of Theorem 3 can be avoided.

Lemma 9. If (uε) ⊆ H1(Ω;C) is a family satisfying (1.27) and (1.29), then∫
Ω

e2d
ε (uε) ≥ nπL |log ε| + πn(n − 1)L |log hε| − C (3.42)

and ∫
Ω

|∂zuε|2 dx dz ≤ C. (3.43)
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In the next section, when proving Theorem 3 under the weaker hypotheses (1.23)–
(1.25), we only know at the outset that

∫
Ω |∂zuε|2dx dz = o(|log ε|), see (3.15). This

is considerably weaker than (3.43), and this weakness introduces some complications
into our arguments.

Proof. According to Lemma 3, if z belongs to the set Gε
2, defined in (3.17), then the

lower energy bound (3.9) holds. In addition, it follows from Proposition 1 and the
definition of Gε

2 that
∫

ω
e2d
ε (uε(x, z))dx ≥ π(n + θ)|log ε| for z �∈ Gε

2.

From this and (3.9),
∫

Ω
e2d
ε (uε)dx dz ≥ (L − |Gε

2|)π(n + θ)|log ε|

+
∫

z∈Gε
2

(
nπ| log ε| − πn(n − 1) log ‖Jxuε(·, z) − nπδ0‖F (ω) − C

)
dz

≥ nπL|log ε| − C − πn(n − 1)
∫

z∈Gε
2

log ‖Jxuε(·, z) − nπδ0‖F (ω) dz.

To estimate the integral, note that by Jensen’s inequality and (1.29),

−
∫

Gε
2

log ‖Jxuε(·, z) − nπδ0‖F (ω)dz

≥ −|Gε
2| log

(
1

|Gε
2|

∫
Gε

2

‖Jxuε(·, z) − nπδ0‖F (ω)dz

)
≥ −L log hε − C.

This proves (3.42). Finally, (3.43) is immediate from (3.42) and (1.27), since eε(u) =
e2d
ε (u) + 1

2 |∂u
∂z |2. ��

4 Compactness and lower bound

In this section we prove part (a) of Theorem 3, consisting of the compactness and
lower bound assertions. In view of Lemma 8, it suffices to consider assumptions
(1.23)–(1.25), together with (1.27).

Our strategy will be to rescale on a scale �ε chosen to facilitate the proof of the
compactness assertions. We will also obtain energy lower bounds that depend on �ε

in a way that will allow us to conclude, only in the final step of the proof, that in fact
�ε = hε. This will require us to be rather careful about how some of our estimates
depend on certain constants, such as c3, defined below.

Thus the rescaling will turn out to be the same as that in the statement of the
theorem, and the lower energy bounds we prove will reduce to (1.32).
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Thus, we fix a sequence (uε) satisfying (1.23) and (1.27), and we define

�ε := max

{
hε ,

(
1

c3|log ε|

∫
Ω

|∂zuε|2 dx dz

)1/2
}

(4.1)

for a constant c3 that will be specified later. (We will invoke assumptions (1.24)
and (1.25) only when they are needed). It follows from the definition of �ε and from
(3.15) that

hε ≤ �ε = o(1) as ε → 0. (4.2)

Throughout the rest of this section, we will use the notation

ωε = �−1
ε ω, vε(x, z) = uε(�εx, z) for (x, z) ∈ Ωε := ωε × (0, L). (4.3)

A change of variables shows that

1
|log ε|

∫
Ωε

|∂zvε|2 dx dz =
1

�2
ε|log ε|

∫
Ω

|∂zuε|2 dx dz ≤ c3 (4.4)

and that, for ε′ = ε/�ε,∫
Ωε

e2d
ε′ (vε) dx dz =

∫
Ω

e2d
ε (uε) dx dz ≤ C|log ε|.

From (4.2) and (1.7),
|log ε′|
|log ε| → 1 as ε → 0, (4.5)

and recalling that eε′(vε) = e2d
ε′ (vε) + 1

2 |∂zvε|2, it follows that

1
| log ε′|

∫
Ωε

eε′(vε) dx dz ≤ C. (4.6)

At different stages in the proof of (1.30) we will need to invoke a general com-
pactness result for Ginzburg–Landau functionals of [JS02,ABO05].

Theorem 4. Let U be a bounded, open subset of R3. Assume (uε) ⊆ W 1,2(U ;C) is
such that

lim sup
ε→0

1
|log ε|

∫
U

eε(uε)dx < ∞.

Then, there exists a subsequence εk → 0 and an integer multiplicity rectifiable 1-
current J such that 1

πJuεk
converges to J in W−1,1(U). In addition, one has the

following uniform lower semicontinuity:

lim inf
k→∞

1
|log εk|

∫
U

eεk
(uεk

)dx ≥ πMU (J).
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This was first proved in [JS02], which in fact established compactness in the
(C0,α

c (U))∗ norm for all 0 < α ≤ 1. A different proof, which established compactness
in the flat norm F (U), was subsequently given in [ABO05], which also proved a
corresponding upper bound.

We immediately conclude from (4.6) and Theorem 4 (the statement considers a
family of maps indexed by ε′ but it can be easily seen to also apply to (vε)) that
there exists an integer multiplicity 1-current J in R

2 × (0, L) such that

1
π

 Jvε → J in W−1,1(B(R) × (0, L)) for all R > 0. (4.7)

Our goal is to show that, roughly speaking, J consists of n graphs of H1 functions
over the vertical segment (0, L), possibly together with other pieces that the vertical
component Jxvε of the vorticity fails to record.

In view of (4.4), we may also assume, after passing to a further subsequence,
that there exists a measure μ on [0, L] such that

με ⇀ μ weakly as measures, where με(A) :=
∫

ωε×A

|∂zvε(x, z)|2

|log ε| dx dz. (4.8)

For this subsequence, general properties of weak convergence of measures imply that

μ((0, L)) ≤ lim inf
ε→0

∫
Ωε

|∂zvε(x, z)|2

|log ε| dx dz = lim inf
ε→0

∫
Ω

|∂zuε(x, z)|2

�2
ε|log ε| dx dz.

The objective now is to identify the filaments. To that end we will find a countable
dense subset of heights such that, among other things, the slices of the Jacobians at
these heights converge to π times the sum of n Dirac masses; these are the candidates
for the values of f at these heights. We then establish the existence of a unique
H1((0, L)) extension of f . This will require control on the modulus of continuity of
f ; obtaining this control is our first task.

4.1 Modulus of continuity. We first establish the basic estimate, see (4.11)
below, that lets us control ‖f ′‖2

L2 by
∫
Ω |∂zuε|2. At this stage we do not yet need all

the hypotheses of Theorem 3.

Lemma 10. Assume that (uε) satisfies (1.23), (1.27), define (vε) by rescaling as in
(4.1), (4.3), and define μ by (4.8).

Assume that {zε
1} and {zε

2} are sequences in [0, L] such that zε
j → zj for j = 1, 2,

with 0 ≤ z1 < z2 ≤ L, and that the following conditions hold for j = 1, 2 (perhaps
after passing to a subsequence):

Jxvε(·, zε
j ) → π

n(zj)∑
i=1

δpi(zj) in W−1,1(B(R)), for all R > 0, (4.9)
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(for certain points {pi(zj)}n(zj)
i=1 , not necessarily distinct) and

lim sup
ε→0

|log ε|−1
∫

ω
e2d
ε (uε(x, zε

j ))dx ≤ M (4.10)

for some M > 0. Finally, assume that n(zi) = n for either i = 1 or 2. Then n(z1) =
n(z2) = n, and

π

2
min
σ∈Sn

n∑
i=1

∣∣pi(z1) − pσ(i)(z2)
∣∣2

z2 − z1
≤ 1

2
μ([z1, z2]). (4.11)

Here we follow the idea in the proof of Proposition 3 in [Jer99b], where however
one has somewhat more information, such as bounds on

∫
ωε

e2d
ε (vε) that are uniform

for z ∈ (z1, z2), as well as distinct limiting vortex curves that are known not to
intersect.

Proof. We first present the proof in the basic case when zε
j = zj for all ε, for j = 1, 2.

Given a small number 0 < τ , we define ψτ
ε : ωε × R → R

2 as follows:

ψτ
ε (x, z) =

⎧⎪⎨
⎪⎩

vε(x, z1) if z ≤ z1/τ

vε(x, τz) if z1/τ < z < z2/τ

vε(x, z2) if z2/τ ≤ z.

(4.12)

Step 1. Let us write ni = n(zi) for i = 1, 2, and (as above) ε′ = ε/�ε. We first
prove that n1 = n2 = n, and that

lim inf
ε→0

1
|log ε′|

∫ z2/τ

z1/τ

∫
ωε

eε′(ψτ
ε )dx dz

≥ π min
σ∈sn

n∑
i=1

(
τ−2(z1 − z2)2 + |pi(z1) − pσ(i)(z2)|2

) 1
2 . (4.13)

For δ ≥ 0 we will use the notation

Iδ = (
z1

τ
− δ,

z2

τ
+ δ), Uδ = R

2 × Iδ.

First, some changes of variable show that∫
Iδ

∫
ωε

eε′(ψτ
ε )dx dz = δ

∑
i=1,2

∫
ω

e2d
ε (uε(x, zi))dx

+
1
τ

∫ z2

z1

∫
ωε

e2d
ε′ (vε)dx dz +

τ

2

∫ z2

z1

∫
ωε

|∂zvε|2dx dz. (4.14)

In light of (4.4), (4.5), (4.6), and (4.10), there is thus a constant C = C(τ, δ) such
that

1
|log ε′|

∫
Iδ

∫
ωε

eε′(ψτ
ε )dx dz ≤ C for all ε ∈ (0, 1].
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Figure 3: Depiction of a Ĵ whose associated gi’s are of minimal length

It therefore follows from Theorem 4 that there exists a 1-current Ĵ in Uδ such that,
after passing to a subsequence if necessary,

1
π

Jψτ
ε → Ĵ in W−1,1(B(R) × Iδ), for all R > 0.

Moreover, Ĵ is integer multiplicity rectifiable, with ∂Ĵ = 0 in Uδ, and

lim inf
ε→0

1
|log ε′|

∫
Iδ

∫
ωε

eε′(ψτ
ε )dx dz ≥ πMUδ

(Ĵ). (4.15)

We want to estimate MUδ
(Ĵ). Note first from (4.9) and definition of ψτ

ε that, using
the notation (1.18), we have

Ĵ = π

n1∑
i=1

Tli− in R
2 × (τ−1z1 − δ, τ−1z1), for li−(z) = (pi(z1), z), (4.16)

Ĵ = π

n2∑
i=1

Tli+
in R

2 × (τ−1z2, τ
−1z2 + δ), for li+(z) = (pi(z2), z). (4.17)

On the other hand, recalling (2.8), there exist Lipschitz curves {gi}i∈I such that

Ĵ =
∑
i∈I

Tgi
, ∂Tgi

= 0 in Uδ, for all i,

and M(Ĵ) =
∑

i∈I length(gi). In particular, certain of these curves must coincide
(after reparametrization) with li−(z) for z ∈ (τ−1z1 − δ, τ−1z1). We may thus choose
to label and parametrize these {gi} so that gi(z) = li−(z) for z ∈ (τ−1z1 − δ, τ−1z1),
for i = 1, . . . , n1 (see figure 3 below).

Furthermore, because ∂Tgi
= 0 for all i, and all Tli± are oriented in the same

way, we conclude each gi, for i = 1, . . . , n1, must connect to one of the curves lj+,
j = 1, . . . , n2, and each lj+ must connect to one gi. It follows that n1 = n2 = n (since
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ni = n for one of i = 1, 2, by assumption), and that there is some σ ∈ Sm such that
gi connects to l

σ(i)
+ . Then elementary geometry implies that

length(gi) ≥ 2δ + |li−(
z1

τ
) − l

σ(i)
+ (

z2

τ
)| = 2δ +

(
(z2 − z1)2

τ2
+ |pi(z1) − pσ(i)(z2)|2

) 1
2

.

Adding over i = 1, . . . , n, we deduce that

lim inf
ε→0

1
|log ε′|

∫
Iδ

∫
ωε

eε′(ψτ
ε )dx dz

≥ π min
σ∈Sn

n∑
i=1

(
τ−2(z1 − z2)2 + |pi(z1) − pσ(i)(z2)|2

) 1
2 + 2πnδ.

Then (4.13) follows by sending δ ↘ 0. This involves an interchange of limits on the
left-hand side, which is justified since

1
| log ε′|

∫
Iδ\I0

∫
ωε

eε′(ψτ
ε )dx dz

(4.10)

≤ | log ε|
| log ε′|Mπδ

(4.5)

≤ 2Mπδ

for all positive δ and all sufficiently small ε > 0.
Step 2. We next show that

lim sup
ε→0

1
|log ε′|

∫ z2/τ

z1/τ

∫
ωε

e2d
ε′ (ψτ

ε )dx dz =
nπ

τ
(z2 − z1). (4.18)

Indeed, changing variables as in (4.14) we have
∫ z2/τ

z1/τ

∫
ωε

e2d
ε′ (ψτ

ε )dx dz =
1
τ

∫ z2

z1

∫
ωε

e2d
ε′ (vε)dx dz =

1
τ

∫ z2

z1

∫
ω

e2d
ε (uε)dx dz.

Then the claim follows by dividing by | log ε′|, recalling (4.5), using (3.14), with
S = (z1, z2), and sending ε → 0.

Step 3. Standard properties of weak convergence imply that

μ([z1, z2]) ≥ lim inf
ε→0

με([z1, z2]) = lim inf
ε→0

1
2

∫ z2

z1

∫
ωε

|∂zvε|2

|log ε| dx dz.

And from the previous steps we deduce that

lim inf
ε→0

1
2

∫ z2

z1

∫
ωε

|∂zvε|2

|log ε| dx dz = lim inf
ε→0

1
τ

∫ τ−1z2

τ−1z1

∫
ωε

|∂zψ
τ
ε |2

2 |log ε|dx dz

= lim inf
ε→0

1
τ

∫ τ−1z2

τ−1z1

∫
ωε

eε(ψτ
ε ) − e2d

ε (ψτ
ε )

|log ε| dx dz

≥ π

τ
min
σ∈Sm

n∑
i=1

((
(z1 − z2)2

τ2
+ |pi(z1) − pσ(i)(z2)|2

) 1
2

− (z2 − z1)
τ

)
.
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Since the left-hand side is independent of τ , we can take the τ → 0 limit of the
right-hand side to deduce (4.11).

Step 4. Now assume that zε
1, z

ε
2 depend nontrivially on ε. For each ε, define

Vε(x, z) =

⎧⎪⎨
⎪⎩

vε(x, zε
1) if z ≤ zε

1

vε(x, z) if zε
1 < z < zε

2

vε(x, zε
2) if zε

2 ≤ z.

Then for any Z1 < z1 < z2 < Z2, we may apply the previous case on the (fixed)
interval (Z1, Z2), since vε(x, zε

j ) = Vε(x, Zj) for j = 1, 2 and all sufficiently small ε.
Then (4.11) implies that

π

2
min
σ∈Sm

n∑
i=1

∣∣pi(z1) − pσ(i)(z2)
∣∣2

Z2 − Z1
≤ 1

2
μ̃([Z1, Z2]) ≤ 1

2
μ([Z1, Z2]),

where μ̃ is the measure generated as in (4.8), but by |∂zVε|2 rather than |∂zvε|2. We
conclude the proof by letting Z1 ↗ z1 and Z2 ↘ z2. ��

4.2 Compactness and lower bounds at a.e height. We will use the nota-
tion

ξε(z) :=
∫

ω
e2d
ε (uε(x, z) dx−

[
n(π|log ε|+γ)+n(n−1)π| log �ε|−n2πHω(0, 0)

]
. (4.19)

Lemma 11. Assume that (uε) ⊂ H1(Ω;C) satisfies (1.23)–(1.25) and (1.27).
(a) There exist ε0 > 0 and C > 0

ξε(z) ≥ −C for all z ∈ Gε
2 and 0 < ε < ε0, (4.20)

where Gε
2 was defined in (3.17).

(b) In addition, suppose that for some z and some sequence εk ↘ 0,

z ∈ Gεk

2 for all sufficiently large k. (4.21)

Then, after possibly passing to a further subsequence, there exist points qi(z), i =
1, . . . , n such that

Jxvε(·, z) → π

n∑
i=1

δqi(z) in W−1,1(B(R)), for all R > 0, (4.22)

lim inf
k→∞

ξεk
(z) ≥ −π

∑
i�=j

log |qi(z) − qj(z)|, (4.23)

and, setting c4 := maxi |q0
i |, where q0

1, . . . , q
0
n appear in (1.24),

|qi(z)| ≤ c4 + (
c3 L

π
)1/2 for all i. (4.24)
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In our notation, as with qi(z) above, we will consistenly fail to indicate the
dependence of various limiting quantities on the subsequence that generates them.

The uniform lower bound (4.20), needed for our Γ-limit lower bound, is proved
using a compactness argument, and the proof of the lemma begins by assembling
the necessary compactness assertions.

Proof. Step 1. Recall that if z ∈ Gε
2, then uε(·, z) satisfies the hypotheses of Lemma

2. There thus exist points {pε
i (z)}n

i=1 that satisfy (3.6), (3.7), (3.8). To express these
conclusions in terms of vε, note that by rescaling, one has

‖Jxvε(·, z) − π

n∑
i=1

δ�−1
ε pε

i (z)‖F (ωε) ≤ �−1
ε ‖Jxuε(·, z) − π

n∑
i=1

δpε
i (z)‖F (ω).

This is straightforward to check from the definition (1.22) of the flat norm. Thus
(3.6), (3.7) imply that for qε

i (z) := pε
i (z)/�ε,

‖Jxvε(·, z) − π

n∑
i=1

δqε
i (z)‖F (ωε) ≤ �−1

ε εa, (4.25)

|qε
i (z) − qε

j (z)| ≥ �−1
ε εb for i �= j. (4.26)

Now consider any sequence (εk) tending to 0 and a sequence of points (zεk) ⊂ Gεk

2

and zεk → z, for some z ∈ [0, L]. We may pass to a further subsequence and relabel
if necessary to find some integer n(z) ≤ n, and points qi(z) ∈ R

2 for i = 1, . . . , n(z),
such that

qεk

i (zεk) → qi(z) for 1 ≤ i ≤ n(z), |qεk

i | → ∞ for n(z) < i ≤ n. (4.27)

Then it follows easily from (4.25) and standard properties of the W−1,1 norm (and
is easily checked from the definition (1.22)) that

Jxvεk
(·, zεk) → π

n(z)∑
i=1

δqi(z) in W−1,1(B(R)), for every R > 0. (4.28)

Step 2. We claim that under these conditions, n(z) = n, and (4.24) holds.
We first assume that z �= z0, where z0 is the height appearing in (1.24), (1.25).

For concreteness we assume that z < z0; the other case is identical. We want to
apply Lemma 10 along the subsequence fixed above, with zεk

1 = zεk and zεk

2 = z0.
To verify the hypotheses of the lemma, we first rescale (1.24) to find that

‖Jxvε(·, z0) − π

n∑
i=1

δhεq0
i /�ε

‖W −1,1(ωε) = o(
hε

�ε
) = o(1)

as ε → 0. Since �ε ≥ hε by construction, we may assume after passing to a subse-
quence that hε/�ε → α as ε → 0, for some α ∈ [0, 1]. Then

Jxvε(·, z0) → π

n∑
i=1

δαq0
i

in W−1,1(B(R)) for all R > 0. (4.29)
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This is one of the hypotheses on (zεk

2 ) in Lemma 10. The other hypothesis follows
directly from (1.25). The same hypotheses are satisfied by (zεk

1 ), by (4.28) and the
fact that zεk

1 ∈ Gεk

2 . We may therefore apply this lemma to find that n(z) = n if
z �= z0. In addition, since μ([0, L]) ≤ c3 due to (4.4) and (4.8), we deduce from (4.11)
that for some σ ∈ Sn,

n∑
i=1

|qi(z) − αq0
σ(i)|2 ≤ c3

π
|z − z0| ≤ c3

L

π

which implies that max |qi(z)| ≤ c4 +
√

c3L/π if z �= z0.
If z = z0, we apply Lemma 10 with zε = z1

ε , and z2
ε any sequence in Gε

k such that
zε
2 → z2 �= z0, along some subsequence such that Jxvε(·, zε

z) converges to a limit as
in (4.9). Since we may take z2 as close as we like to z0, we may repeat the arguments
from above to easily conclude that (4.24) holds in this case as well.

Step 3. We claim that there exists ε0 > 0 such that

max
i

|qε
i (z)| < c4 + 2

√
c3L/π for all 0 < ε < ε0 and z ∈ Gε

2. (4.30)

Assume toward a contradiction that (4.30) fails. Then we may find a sequence (εk)
tending to 0 and a sequence of points (zεk) ⊂ Gεk

2 such that

max
i

|qεk

i (zεk)| ≥ c4 + 2
√

c3L/π for all k. (4.31)

We may pass to a subsequence such that zεk
converges to a limit z, and in addition

(4.27) and (4.28) hold, with n(z) = n. Clearly, (4.31) implies that maxi |qi(z)| ≥
c4 + 2

√
c3L/π, which is impossible in view of (4.24). This contradiction completes

the proof.
Step 4. For z ∈ Gε

2, estimate (3.8) states that∫
ω

e2d
ε (uε(x, z))dx ≥ n(π|log ε| + γ) + Wω(pε

1(z), . . . , pε
n(z)) − Cε(a−b)/2,

where according to (2.2),

Wω(pε
1(z), . . . , pε

n(z)) = −π

⎛
⎝∑

i�=j

log |pε
i (z) − pε

j(z)| +
∑
i,j

Hω(pε
i (z), pε

j(z))

⎞
⎠ .

We also know from (4.30) that |pε
i (z)| ≤ C�ε for 0 < ε < ε0, with a constant

independent of z. Since Hω is smooth in the interior of ω × ω, it follows that
Hω(pε

i (z), pε
j(z)) = Hω(0, 0) + O(�ε) for every i, j. Writing pε

i = �εq
ε
i as in Step

1, we deduce that

ξε(z) ≥ −π
∑
i�=j

log |qε
i (z) − qε

j (z)| − C�ε − Cε(a−b)/2. (4.32)

Conclusion (4.20) follows immediately from this estimate together with (4.30).
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Now assume that z satisfies (4.21). From Steps 1 and 2 we know that we may
find a subsequence such that (4.28) holds, with n(z) = n. This is (4.22). In addition,
it follows immediately from (4.32) that (4.23) is satisfied as well. We have already
verified in Step 2 above that (4.24) holds, so this completes the proof. ��

4.3 Identifying the filaments. We next use the basic estimate (4.11) to choose
a subsequence for which the vorticities converge at a.e. height. To this end, it is
convenient to introduce some notation. Let X denote the quotient space (R2)n/Sn.
Thus, points in X consist of equivalence classes in (R2)n, where p ∼ p′ if there exists
some permutation σ such that pi = p′

σ(i) for all i = 1, . . . , n. The equivalence class
containing p will be denoted [p]. The natural notion of distance in X is

dX([p], [p′])2 = min
σ∈Sn

n∑
i=1

|pi − p′
σ(i)|2, for p, p′ ∈ (R2)n. (4.33)

We will write

δ[p] :=
n∑

i=1

δpi
. (4.34)

Note that this is well-defined in the sense that the measure on the right-hand side
depends only on the equivalence class. Similarly, the function

[q] ∈ X 	→ −π
∑
i�=j

log |qi(z) − qj(z)|

is also well-defined, since the right-hand side is invariant under permutations of the
indices. We remark that we adopt the convention that − log(0) = +∞.

In the following lemma, we identify the limiting vorticity by a map (0, L) → X,
which in effect means that at this stage we do not worry about labelling the points.

Lemma 12. Assume that (uε) ⊂ H1(Ω;C) satisfies (1.23)–(1.25) and (1.27).
Then there exists a set HG ⊂ (0, L) of full measure, a subsequence (εk), and a

function [q] : (0, L) → X, such that for every z ∈ HG (as well as for z = z0, from
(1.24)),

Jxvεk
(·, z) → πδ[q](z) in W−1,1(B(R)) for every R > 0 (4.35)

and

lim inf
ε→0

ξε(z) ≥ −π
∑
i�=j

log |qi(z) − qj(z)|. (4.36)

Moreover, for every z < z′,

π
dX([q](z), [q](z′) )2

|z − z′| ≤ μ((z, z′)). (4.37)
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Proof. Recall from Lemma 6 that under our hypotheses, |Bε
2| = o(1) as ε → 0. We

may therefore choose a subsequence (εk) such that
∑

|Bεk

2 | < ∞. (Note, we will
shortly pass to further subsequences.) Then by the Borel–Cantelli Lemma, the set

HG :=
∞⋃

�=1

∞⋂
k=�

Gεk

2

has full measure in (0, L).
In view of Lemma 11, we may now choose subsequences and invoke a diagonal

argument to find a set H0
G = {zi}∞

i=0 ⊂ HG, dense in (0, L), such that (4.22) and
(4.23) hold for every zi. Applying Lemma 10 along this subsequence with zε

1 =
zi, z

ε
2 = zj for pairs of points zi, zj in H0

G, we find that

π
dX([q(zi)], [q(zj)])2

|zj − zi|
≤ μ([zi, zj ]) ≤ μ([0, L]) whenever zi < zj . (4.38)

In particular, this states that the map

zi ∈ H0
G 	→ [q(zi)] ∈ X

is Hölder continuous. It thus has a unique extension to a continuous map, say [q] :
(0, L) → X, such that [q](zi) = [q(zi)] for all i. For any z < z′, we may fix sequences
(zj), (z′

j) ∈ HG such that zj ↘ z, z′
j ↗ z′. Then

π dX([q](z), [q](z′))2 = π lim
j→∞

dX([q](zj), [q](z′
j))

2 ≤ |z − z′|μ((z, z′)).

This proves (4.37).
We finally claim that without passing to any further subsequences, (4.35) holds

for every z ∈ HG. If not, then we could find some z ∈ HG and a further subsequence
of the chosen subsequence (εk) such that (4.22) holds but (4.35) fails. Then we see
from (4.11) that

π

2
dX([q(zi)], [q(z)])2 ≤ |zi − z| μ([0, L])

for every zi ∈ H0
G. Since H0

G is dense and [q(zi)] = [q](zi) → q[z] as zi → z, it follows
that [q(z)] = [q](z), a contradiction. This proves the claim. ��

We next show that [q] : (0, L) → X = (R2)n/Sn admits a suitable lifting to
a map (0, L) → (R2)n. This will complete the identification of the limiting vortex
filaments.

Lemma 13. Let [q] : (0, L) → X satisfy (4.37) for some measure μ on (0, L).
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Then there exists a function f ∈ H1((0, L), (R2)n) such that [f(z)] = [q](z) for
all z ∈ (0, L). Moreover, whenever 0 ≤ z < z′ ≤ L,

π

n∑
j=1

|fj(z) − fj(z′)|2
|z − z′| ≤ μ((z, z′)) , and (4.39)

π

∫ z′

z

∑
i

|f ′
i |2 dz ≤ μ((z, z′)) . (4.40)

Proof. We will write

Di := {kL/2i : k = 1, . . . , 2i − 1}, D := ∪iDi.

We refer to elements of D as dyadic heights. For every i, we can choose f i : Di →
(R2)n such that

[f i(z)] = [q](z) for all z ∈ Di, (4.41)
and

n∑
j=1

|f i
j(z)− f i

j(z
′)|2 = dX([q](z), [q](z′))2, if z, z′ ∈ Di, |z − z′| = 2−iL. (4.42)

Now fix i0, and for l > i0, and let f i0,l denote the restriction of f l to Di0 . For
every i, it is clear that f i0,l satisfies (4.41). For every [q] ∈ X, there are at most n!
points p ∈ (R2)n such that [p] = [q], and hence there are only finitely many maps
Di → (R2)n that satisfy (4.41). By the pigeonhole principle, we can thus find a
subsequence lm → ∞ along which f i0,lm(z) is independent of lm, for all large enough
m, for every z ∈ Di0 .

We then define f(z) for z ∈ Di0 by requiring that

f(z) = f i0,lm(z) for all sufficiently large m. (4.43)

Now fix z, z′ ∈ Di0 and some l from the subsequence (lm) such that (4.43) holds.
We assume that z < z′, and we let zs := z + 2−ls. Then Jensen’s inequality implies
that

π

n∑
j=1

|fj(z) − fj(z′)|2
z′ − z

= π

n∑
j=1

1
z′ − z

∣∣∣∣∣∣
2l(z′−z)∑

s=1

f l
j(zs) − f l

j(zs−1)

∣∣∣∣∣∣
2

≤ π

n∑
j=1

2l(z′−z)∑
s=1

2l
∣∣∣f l

j(zs) − f l
j(zs−1)

∣∣∣2

(4.42)
= π

2l(z′−z)∑
s=1

2l dX( [q](zs), [q](zs−1) )2

(4.37)

≤
2l(z′−z)∑

s=1

μ((zs−1, zs) ) ≤ μ( (z, z′) ). (4.44)
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Figure 4: 2−i-scale approx. of f with labels and its Lipschitz continuous limit (right). This
example of f admits two consistent labellings

When invoking (4.42), we have used the fact that every zs belongs to Dl.
Now let i1 > i0 be some element of the chosen subsequence, for example l1,

and let f i1,lm be the restriction of f lm to Di1 . Arguing as above, we find a further
subsequence, still denoted (lm), along which f i1,lm is eventually independent of m,
and we define f(z) for z ∈ Di1 as in (4.43). Note that this is consistent with the
earlier definition of points in Di0 ⊂ Di1 , and that (4.44) holds exactly as before.

Continuing in this way, we define f(z) for every z ∈ D, such that [f(z)] = [q](z),
and (4.39) holds for every pair of points in D. In particular, it follows that f is
continuous, as a map D → (R2)n, and hence has a unique continuous extension to a
function, still denoted f , mapping (0, L) → (R2)n. It then easily follows that (4.39)
holds and that [f(z)] = [q](z) for all z ∈ (0, L).

Finally, we may approximate f by a sequence of maps f � : (0, L) → (R2)n that
agree with f at a finite number of points and interpolate linearly between these. It
follows from (4.39) that such maps belong to H1((0, L); (R2)n), with π

∑
‖(f �

i )
′‖2

L2 ≤
μ((0, L)). Then standard arguments imply that

(f �
i )

′ ⇀ f ′
i weakly in L2((0, L)), for every i,

and as a result, further standard arguments imply that

π

n∑
i=1

∫ L

0
|f ′

i(z)|2 dz ≤ lim inf
�

π

n∑
i=1

∫ L

0
|f �

i
′(z)|2 dz ≤ μ((0, L)).

This proves that f ∈ H1((0, L); (R2)n). The same argument may be carried out on
any given subinterval (z, z′) ⊂ (0, L), which proves that (4.40) holds. ��

4.4 Conclusion of the proof of compactness and lower bound.

Lemma 14. Along the subsequence (εk) found in Lemma 12,

lim inf
∫ L

0
ξε(z) dz ≥ −π

∫ L

0

∑
i�=j

log |fi(z) − fj(z)| dz. (4.45)
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Proof. We have already proved in (4.36) that

lim inf
ε→0

ξε(z) ≥ −π
∑
i�=j

log |fi(z) − fj(z)|

for a.e. z. Moreover, it follows from Proposition 1 that there exists some ε0 > 0 such
that ξε(z) ≥ 0 for all z ∈ Bε

1, when 0 < ε < ε0. And we have shown in Lemma 11
that, taking ε0 smaller if necessary, ξε(z) ≥ −C for all z ∈ Gε

1, for ε < ε0. Thus the
conclusion follows from Fatou’s Lemma. ��

We can now present the

Conclusion of the proof of part (a) of Theorem 3. Step 1. We first claim that if the
parameter c3 in the definition of �ε is taken to be large enough, then

�ε = hε for all small ε. (4.46)

If this fails, then we see from the definition (4.1) of �ε that
∫

Ω
|∂zuε|2dx dz = c3(

�ε

hε
)2.

Then the definitions of Gε and ξε (see (1.26), (4.19)) imply that

Gε(uε) =
∫ L

0
ξε(z) dz − n(n − 1)πL log(

�ε

hε
) +

c3

2
(
�ε

hε
)2. (4.47)

Recalling from (1.27) that Gε(uε) ≤ c1 < ∞ for all ε, we deduce from (4.45) that

lim sup
ε→0

[
−n(n − 1)πL log(

�ε

hε
) +

c3

2
(
�ε

hε
)2
]

≤ c1 + π

∫ L

0

∑
i�=j

log |fi(z) − fj(z)| dz.

If c3 ≥ n(n − 1)πL, then the function s 	→ −n(n − 1)πL log s + c3
2 s2 is increasing

on [1, ∞). Since �ε

hε
≥ 1, it follows that the left-hand side of the above inequality is

greater than or equal to c3
2 . On the other hand, it follows from (4.24) that |fi(z)| ≤

c4 +
√

Lc3/π for all i and z. Putting these together, we obtain

1
2
c3 ≤ c1 + n(n − 1)Lπ log(2c4 + 2

√
Lc3/π).

We now fix c3 large enough that this yields a contradiction; then (4.46) follows.
Step 2. Since �ε = hε, and recalling (4.4) and (4.8), we can rewrite

Gε =
∫ L

0
ξε(z) dz +

1
2
με([0, L]).

Then the Γ-limit lower bound (1.32) follows immediately from (4.45) and (4.40).
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Step 3. The claim that [f(z0)] = [q0] is a consequence of the proof of Lemma
12 (which in particular shows that (4.35) holds for z = z0), assumption (1.24), and
Lemma 13.

It therefore only remains to improve the convergence already established in Lem-
mas 12, 13 above, by showing that Jxvε → δ[f(·)] in W−1,1(B(R) × (0, L)) for every
R > 0. First, recall from (4.7) that the family of 1-currents (Jvε) is precompact
in ∪RW−1,1(B(R) × (0, L)). Then the relationship (1.20) between Jvε and Jxvε

implies that (Jxvε) is also precompact in the same topology. So we only need to
identify the limit. To do this, fix φ ∈ W 1,∞

c (R2 × (0, L)), and let φε(x, z) := φ( x
hε

, z)
and

Φε(z) :=
∫

ωε

φ(x, z)Jxvε(x, z) dx =
∫

ω
φε(x, z)Jxuε(x, z) dx.

It follows from Lemma 12 that Φε(z) → Φ(z) = π
∫

φ(x, z)δ[f(z)] for a.e. z, along the
chosen subsequence. In addition, Theorem 2.1 [JS02] implies that for every z ∈ (0, L),

|Φε(z)| ≤ C(ω)(‖φε‖L∞ + εα‖φε‖W 1,∞)
(

1 +
∫

ω

e2d
ε (uε(·, z))

|log ε| dx

)

for some α > 0. We then see from Lemma 5 that for any measurable S ⊂ (0, L),

∫
S

|Φε(z)| dz ≤ C‖φ‖W 1,∞(|S| + o(1)) as ε → 0,

where the o(1) term is independent of S. Thus the sequence (Φε) is asymptotically
uniformly integrable, so the Vitali Convergence Theorem implies that in fact Φε → Φ
in L1. This implies that

∫
Ωε

φ Jxvε dx dz =
∫ L

0
Φε(z) dz →

∫ L

0
Φ(z) dz =

∫
φδ[f(·)]. ��

5 Upper bound and improved compactness

In this section we prove the remaining results of Theorem 3.

5.1 Improved compactness for “tight” sequences We first prove that se-
quences which attain the Γ-limit lower bound are compact in a stronger sense than
previously established in (1.30). The results of the previous section are all available,
as we continue to assume hypotheses (1.27), together with either (1.23)–(1.25) or
(1.29), although some of these are by now redundant.

The proof requires a measure-theoretic lemma that is proved at the end of this
subsection.
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Proof of part (c) of Theorem 3. Let (uε) be a sequence satisfying (1.30) and (1.33).
Recall (see (4.7), (4.8)) that, up to subsequence, there exists an integer multiplicity
rectifiable 1-current J such that 1

π  Jvε → J in W−1,1(B(R) × (0, L)) for every
R > 0.

We have also shown (see (4.19), (4.45), and recall that in fact �ε = hε) that
∫ L

0

∫
ω

e2d
ε (uε)dx dz ≥ nπL |log ε| + πn(n − 1)L |log hε|

−π
∑
i�=j

∫ L

0
log
∣∣f i(z) − f j(z)

∣∣ dz + κn(Ω) + oε(1), (5.1)

where κn(Ω) was defined in (2.3). Finally, recall that there exists a measure μ on
[0, L] such that με ⇀ μ weakly as measures, where

με(A) :=
∫

ωε×A

|∂zvε(x, z)|2

|log ε| dx dz,

and that (see (4.40)) for all measurable A ⊆ (0, L)

μ(A) ≥ π

∫
A

∣∣f ′(z)
∣∣2 dz, where |f ′|2 :=

∑
j

|f ′
j |2. (5.2)

But then (1.33) implies that
∫ L
0

∫
ω e2d(uε)dx dz − nπL |log ε|
−πn(n − 1)L |log hε|

−→ −π
∑
i�=j

∫ L

0
log
∣∣f i(z) − f j(z)

∣∣ dz + κn(Ω),

as ε → 0; and

μ((0, L)) = π

∫ L

0

∣∣f ′∣∣2 dz. (5.3)

Since |f ′|2 is nonnegative, we deduce from (5.2) and (5.3) that μ is absolutely con-
tinuous with respect to Lebesgue measure with density

dμ = π
∣∣f ′∣∣2 dz.

In particular μ has no atoms.
Our goal is to show that

S := J −
n∑

i=1

Γfi
= 0.

We know that for every φ ∈ C∞
c (R2 × (0, L)),

1
π

 Jvε(φdz) =
∫

φJxvε dx dz →
∫

φδ[f(·)] =
n∑

i=1

Γfi
(φdz),
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and it follows that S(φdz) = 0 for all such φ. Then it follows from Lemma 15 below
that S may be written as a linear combination of currents

S =
∑
j∈I

Tγj

where each Tγj
is supported in a horizontal plane {z = zj}. Assume toward a con-

tradiction that Tγj
is nonzero for j = 1, say, and let ε0, δ0 > 0 be two small numbers

to be chosen later. We know from (3.14), (4.5) and a change of variables that

lim
ε→0

1
|log ε|

∫ z1+δ0

z1−δ0

∫
ωε

e2d
ε′ (vε)dx dz = 2nπδ0

for ε′ = ε/hε. At the same time we know that

1
2
με((z1 − δ0, z1 + δ0)) → π

2

∫ z1+δ0

z1−δ0

∣∣f ′∣∣2 dz.

We can choose δ0 small enough so that

max
{

2nπδ0,
π

2

∫ z1+δ0

z1−δ0

∣∣f ′∣∣2 dz

}
<

ε0

2
.

In light of this we have

lim inf
ε→0

1
|log ε|

∫ z1+δ0

z1−δ0

∫
ωε

eε′(vε)dx dz < ε0. (5.4)

On the other hand, for every δ0 > 0, the mass of the limiting current J in B(R) ×
(z1 − δ0, z1 + δ0) is at least M(Tγ1), for R large enough, depending on the support
of Tγ1 . Thus, by applying Theorem 4 in B(R) × (z1 − δ0, z1 + δ0) for this choice of
R, we find that

lim inf
ε→0

1
|log ε|

∫ z1+δ0

z1−δ0

∫
ωε

eε′(vε)dx dz ≥ πM(Tγ1). (5.5)

Choosing ε0 < πM(Tγ1) makes (5.4) and (5.5) incompatible. Hence S = 0, which
completes the proof of (1.34). ��

Lemma 15. Let S be an integer multiplicity rectifiable 1-current in R
2 × (0, L) such

that M(S) < ∞ and ∂S = 0 in R
2 × (0, L). Assume in addition that S(φdz) = 0

for all φ ∈ C∞
c ((R2 × (0, L)).

Then S may be written as a sum of 1-currents

S =
∑
i∈I

Tγi

where each Tγi
is supported in a hyperplane {z = ai} for some ai ∈ (0, L).
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Figure 5: A current with an indecomposable component supported at {z = z0}

Proof. We first claim that ∂S = 0 in R
3. To see this, fix any φ ∈ C∞

c (R3). For any
χ ∈ C∞

c ((0, L)) (which we identify in the natural way with a function on R
2 × (0, L)

depending only on the z variable) we have

S(χdφ) = S(d(χφ)) − S(φdχ) = ∂S(χφ) − S(φχ′ dz) = 0.

We can thus take a sequence of functions χk such that χk ↗ 1(0,L) to conclude that
S(dφ) = 0. Since φ was arbitrary, it follows that ∂S = 0 in R

3 as claimed.
The remainder of the proof is classical; we recall the arguments for the con-

venience of the reader. Using the decomposition theorem for 1-dimensional inte-
ger multiplicity currents, see [Fed69] 4.2.25 (to which we refer for the definition
of indecomposable) we may write S as a sum of indecomposable 1-currents, say
S =

∑
i∈I Tγi

, with
∑

I M(Tγi
) = M(S) and

∑
I M(∂Tγi

) = M(∂S) = 0. It follows
that ∂Tγi

= 0 and that Tγi
(φdz) = 0 for every i and all φ ∈ C∞

c . By basic properties
of slicing of currents (see for example [Fed69] 4.3.2) this implies that 〈Tγi

, ζ, z〉 = 0
for a.e. z ∈ (0, L), where ζ : R2 × (0, L) → (0, L) is the projection onto the vertical
axis, ζ(x, z) = z. Then Solomon’s Separation Lemma [Sol84] implies that every Tγi

is supported in a level set of ζ.
We remark that Solomon’s Lemma applies to indecomposable currents T in R

n

such that M(T )+M(∂T ) < ∞; it is for this reason that we verified that ∂S = 0 < ∞
in R

3. ��

5.2 Constructing a recovery sequence. In this part, given f ∈ H1((0, L);
(R2)n) we build sequences of maps (uε) ⊂ H1(Ω;C) whose Ginzburg–Landau energy
recovers the nearly parallel vortex filaments energy G0(f). Part (b) of Theorem 3
follows from

Proposition 2. (Recovery Sequence). Let f ∈ H1
(
(0, L); (R2)n

)
. Then there exists

a sequence (uε) ⊂ H1(Ω;C) such that

(a) ‖Jvε − π
∑n

i=1 Γfi
‖F (B(R)×(0,L)) → 0 for every R > 0, as ε → 0,

(b) limε→0 Gε(ue) ≤ G0(f).
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As it is usual in this kind of construction, we define a sequence of trial maps (uε)
based on canonical harmonic maps with prescribed singularities in ω, introduced in
[BBH94], section I.3. This provides us with the right estimates for e2d

ε . Then, we
show that the L2-norm of f ′ is well approximated by π

∫
Ω |∂zuε|2 dx dz. Finally, the

task is to show that a sequence defined in this way satisfies (a).
First note that to prove Proposition 2, it suffices to prove it for smooth f satis-

fying
inf

z ∈ (0, L)
i �= j ∈ {1, . . . , n}

∣∣f i(z) − f j(z)
∣∣ > 0. (5.6)

In fact, once we prove Proposition 2 for such configurations, a density (and diagonal)
argument yields the result.

We will write fε = (fε,1, . . . , fε,n) = hεf . We will take our trial functions to have
the form

uε(x, z) :=
n∏

j=1

[
eiβ(x,fε,j(z))Uε(x − fε,j(z))

]
(5.7)

for certain functions β, Uε that we now describe. First, if we write x ∈ R
2 in polar

coordinates (r cos θ, r sin θ), then we define

Uε(x) = eiθ if |x| ≥
√

ε, (5.8)

and in B(
√

ε), we choose Uε to minimize
∫
B(

√
ε) e2d

ε (u) among all functions u :
B(

√
ε) → C such that u = eiθ on ∂B(

√
ε). Thus, using notation introduced in (2.5),

∫
B(

√
ε)

e2d
ε (Uε) dx = I(

√
ε, ε). (5.9)

The intermediate length scale
√

ε is chosen rather arbitrarily—we just need some
radius rε such that ε � rε � hε. Theorem 11.2 in [PR2000] implies that Uε has the
form

Uε = ρε(r)eiθ with 0 ≤ ρε ≤ 1 for all r > 0

for all sufficiently small ε > 0. Next, β(x, y) is chosen so that for every y ∈ ω,
{

Δxβ(x, y) = 0 for x in ω,

ν(x) · ∇x

(
eiβ(x,y)Uε(x − y)

)
= 0 for x ∈ ∂ω,

(5.10)

for all ε small enough such that |Uε(x − y)| = 1 for x ∈ ∂ω. This defines β up to a
constant, which we fix by requiring that

∫
ω β(x, y)dx = 0 for all y.

We will only need a couple of facts about β. First,

|∇yβ(x, y)| ≤ C(r) for all (x, y) ∈ ω × B(r), if B(r) ⊂ ω. (5.11)



1212 A. CONTRERAS, R. L. JERRARD GAFA

This is a straightforward consequence of standard elliptic regularity results. Second,
we have the estimates∫

ω
e2d(uε(x, z) ) dx ≤ n(π |log ε| + γ) + Wω(fε,1(z), . . . , fε,n(z)) + Cε (5.12)

and ∥∥Jxuε(·, z) − πδ[fε(z)]

∥∥
W −1,1(ω)

≤ Cε (5.13)

with constants independent of z. These are proved9 in Lemma 14 in [JS08].
Rewriting the right-hand side of (5.12) using (2.2) and (2.3), and integrating in

z, we have
∫

Ω
e2d
ε (uε(x, z) )dx dz ≤ πLn |log ε| + πLn(n − 1)| log hε|

−π
∑
i�=j

∫ L

0
log
∣∣f i(z) − f j(z)

∣∣+ κn(Ω) + O (hε) . (5.14)

The dominant contribution to the O(hε) errors term comes from the integral of∑
i,j(H(fε,i(z), fε,j(z)) − H(0, 0)).
Also, by setting vε(x, z) = uε(hεx, z) and rescaling, we deduce from (5.13) that

sup
z∈(0,L)

∥∥Jxvε(·, z) − πδ[f(z)]

∥∥
W −1,1(ωε)

≤ Cεh−1
ε → 0, as ε → 0 . (5.15)

In light of this, to prove part (b) of Proposition 2, it remains to show

Lemma 16.

lim sup
ε→0

1
2

∫
Ω

|∂zuε|2 dx dz ≤ π

2

∫ L

0

∣∣f ′∣∣2 dz. (5.16)

Remark 7. We note that, in light of (5.15), once (5.16) is established, we can ap-
peal to Theorem 3 (c) to conclude Jvε → π

∑
Γfi

, thereby proving part (a) of
Proposition 2.

Proof of Lemma 16. Let us write βε(x, z) :=
∑n

i=1 β(x; fε,i(z)), so that

uε(x, z) = eiβε(x,z)
n∏

j=1

Uε(x − fε,j(z)).

9 Although the descriptions are a little different, our function uε(·, z) is exactly the same as
ur,ε

� (·, a, d) from [JS08], once we set r =
√

ε, a = (fε,1(z), . . . , fε,n(z)) and d = (1, . . . , 1). If one
wants to check this, it is helpful to note that ∇xβ(x, y) = ∇⊥

x H(x, y), for H solving (2.1).

Experts will recognize that the definition of β is such that uε(·,z)
|uε(·,z)| is exactly the canonical harmonic

map with singularities at (fε,1(z), . . . , fε,n(z)) and natural boundary conditions, as introduced in
[BBH94] section I.3, and (5.12) expresses this fact.
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Then since ‖Uε‖L∞ = 1,

|∂zuε(x, z)|2 ≤ |∂zβε(x, z)|2 +
n∑

i−1

|∂z (Uε(x − fε,i(z)))|2 .

To estimate the first term, note that

∂zβε(x, z) =
∑

i

∇yβ(x; fε,i(z)) · f ′
ε,i(z).

Since f ′
ε,i(z) = hεf

′
i(z), it follows from (5.11) that

|∂zβε(x, z)|2 ≤ Ch2
ε

n∑
i=1

|f ′
i(z)|2 = Ch2

ε|f ′(z)|2.

Next, for every i = 1, . . . , n,

|∂z (Uε(x − fε,i(z)))|2 = h2
ε

∣∣∇xUε(x − fε,i(z)) · f ′
i(z)
∣∣2 .

Thus, fixing R > diam(ω),∫
ω

|∂z (Uε(x − fε,i(z)))|2 dx ≤
∫

B(R,fε,i(z))
h2

ε

∣∣f ′
i(z) · ∇xUε(x − fε,i(z))

∣∣2

=
∫

B(R,0)
h2

ε

∣∣f ′
i(z) · ∇Uε(x)

∣∣2 .

But the rotational symmetry of Uε implies that for any vector v ∈ R
2,∫

B(R,0)
h2

ε |v · ∇Uε(x)|2 =
∫

B(R,0)
h2

ε

∣∣∣v⊥ · ∇Uε(x)
∣∣∣2 .

And since

|v · ∇Uε(x)|2 +
∣∣∣v⊥ · ∇Uε(x)

∣∣∣2 = |v|2 |∇Uε(x)|2

we conclude that∫
ω

|∂z (Uε(x − fε,i(z)))|2 dx ≤ 1
2
|f ′

i(z)|2
∫

B(R,0)

|∇Uε(x)|2
|log ε| dx.

To estimate the right-hand side, we first remark that the constant I(r, ε) appearing
on the right-hand side of (5.9) is known to satisfy

I(r, ε) = π log
(r

ε

)
+ γ + O

((ε

r

)2
)

,

see [JS07], Lemma 6.8. It follows from this and (5.8) that

1
2

∫
B(R,0)

|∇Uε(x)|2
|log ε| dx ≤ 1

|log ε|

(
π log

R

ε
+ γ + O(ε)

)
= π + O

(
1

|log ε|

)
.
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The above estimates combine to show that
∫

ω
|∂zuε(x, z)|2 dx ≤ π

n∑
i=1

|f ′
i(z)|2 + O

(
1 + |f ′

i(z)|2
|log ε|

)

where the error terms are uniform with respect to z. The proof is concluded by
integrating in z. ��

6 The proof of Theorem 1

To deduce Theorem 1 from Theorem 3, we must first verify that it is possible to
construct recovery sequences—that is, sequences verifying the conclusions of part
(b) of Theorem 3—that in addition satisfy the boundary conditions (1.13). Our
first lemma addresses difficulties that arise when the boundary vortex locations
(q0

1(z), . . . , q0
n(z)), for z ∈ {0, L}, are not distinct.

Lemma 17. Let f = (f1, . . . , fn) ∈ H1([0, L]; (R2)n). Then for all sufficiently small
δ > 0, where the smallness condition may depend on f , there exists f δ ∈ H1([0, L];
(R2)n) of the form

f δ
i =

⎧⎪⎨
⎪⎩

fi in {0, L}
fi + aδ

i in [δ1/2, L − δ1/2]
affine in [0, δ1/2] and in [L − δ1/2, L]

(6.1)

for certain aδ
i ∈ R

2 such that |aδ
i | ≤ δ1/3 and

max
z∈[0,L]

|f δ
i (z) − fi(z)| ≤ o(δ1/4) for all i = 1, . . . n, (6.2)

|f δ
i (z) − f δ

j (z)| ≥ δ1/2 min{z, L − z, δ1/2}, for i �= j, (6.3)
∫ √

δ

0
|(f δ)′|2 +

∫ L

L−
√

δ
|(f δ)′|2 = o(1) as δ ↘ 0, (6.4)

and ∫ L−
√

δ

√
δ

⎛
⎝π

2
|(f δ)′|2 − π

∑
i�=j

log |f δ
i − f δ

j |

⎞
⎠ dz → G0(f) as δ → 0. (6.5)

Proof. Step 1. We only need to explain how to choose the points aδ
i such that the

stated properties hold. For this, we introduce some notation: let

fij(z) := fi(z) − fj(z),

N δ
ij := {x ∈ R

2 : dist(x, Image(fij)) < δ},

N δ
ij := {a ∈ (R2)n : ai − aj ∈ N δ

ij}.
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We will show below that we can find

aδ ∈ {a ∈ (R2)n : |ai| ≤ δ1/3 for all i, a �∈ ∪i,jN δ
ij}. (6.6)

First, we assume that we have found such a point aδ, and we check that f δ then has
the desired properties. For z ∈ [δ1/2, L − δ1/2], we deduce from (6.1) and (6.6) that
|f δ

i (z) − fi(z)| ≤ δ1/3, which implies (6.2) for these z. In particular, since

|f i(z) − f i(0)| ≤
√

z(
∫ z

0
|f ′| dz)1/2 = o(

√
z) as z ↘ 0,

it follows that |f δ
i (δ1/2) − fi(0)| ≤ o(δ1/4). Then for z ∈ [0, δ1/2], it follows that

|f δ
i (z) − fi(z)| ≤ |f δ

i (z) − fi(0)| + |fi(0) − fi(z)| = o(δ1/4) as δ → 0.

A similar argument of course holds near z = L, completing the proof of (6.2). To
verify (6.3), first suppose that δ1/2 < z < L − δ1/2. Since aδ �∈ N δ

ij , the definitions
imply that for every z ∈ (0, L)

δ ≤ |fij(z) − (aδ
i − aδ

j)| = |f δ
i (z) − f δ

j z)|.

This is (6.3) for z ∈ [δ1/2, L − δ1/2]. For other values of z it follows from the fact
that f δ is affine in [0, δ1/2] and in [L − δ1/2, L].

One may deduce (6.4) rather directly from the above estimates, which imply that
|(f δ)′(z)| = o(δ−1/4) for z ∈ [0, δ1/2] ∪ [L − δ1/2, L].

Next we observe that for z ∈ [δ1/2, L − δ1/2], if i �= j and δ is small enough, then

|f δ
i (z) − f δ

j (z)| ≥
{

|fi(z) − fj(z)|4 if |fi(z) − fj(z)| ≤ δ1/4

1
2 |fi(z) − fj(z)| otherwise.

This follows from (6.3) in the first case, and in the second case from the fact that
|aδ

i | ≤ δ1/3. Since f is bounded, it follows that |f δ
i −f δ

j | ≥ C−1|fi−fj |4 for C = C(f),
and hence that

−π
∑
i�=j

log |f δ
i (z) − f δ

j (z)| ≤ −4π
∑
i�=j

log |fi(z) − fj(z)| + C

if z ∈ [δ1/2, L− δ1/2]. Thus we can apply the dominated convergence theorem to the
logarithmic interaction terms in (6.5). Since (f δ)′ = f ′ in [δ1/2, L − δ1/2], the other
terms converge trivially, and (6.5) follows.

Step 2. To find aδ satisfying (6.6), it suffices to show that

L2n
(
∪i�=jBδ

ij

)
� δ2n/3, for Bδ

ij := {a ∈ N δ
ij : |ai| < δ1/3 ∀ i }, (6.7)

since then the set in (6.6), which is the complement of ∪Bδ
ij in {a : max |ai| ≤ δ1/3},

must have positive measure. To prove (6.7), first note that for every i, j

∫ L

0
|f ′

ij(z)| dz ≤
√

L

(∫ L

0
|f ′

i(z) − f ′
j(z)|2

)1/2

≤ C‖f ′‖L2((0,L) = C.
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The image of fij is therefore a connected curve of length at most C. It follows that
L2(N δ

ij) ≤ Cδ. Next, if we define Pij : (R2)n → R
2 by Pij(a1, . . . , an) = ai −aj , then

N δ
ij = P−1

ij (N δ
ij), and one easily computes that the Jacobian of Pij (in the sense of

the coarea formula) is JPij = 1. Then the coarea formula implies that

L2n(Bδ
ij) =

∫
{maxi |ai|≤δ1/3}

JPij 1Pij(a)∈Nδ
ij
dL2n(a)

=
∫

Nδ
ij

H2n−2
(
{a : max

i
|ai| ≤ δ1/3, Pij(a) = x}

)
dx ≤ Cδ(2n−2)/3L2(N δ

ij).

Thus L2n(Bδ
ij) ≤ Cδ(2n+1)/3 for all i �= j. This implies (6.7) for all sufficiently small

δ > 0. ��

Lemma 18. Assume that (wz
ε) ⊂ H1(ω;C) are sequences satisfying (1.9)–(1.11) for

z ∈ {0, L}, and that f ∈ H1([0, L]; (R2)n) satisfies

fi(0) = q0
i (0), fi(L) = q0

σ(i)(L) for i = 1, . . . , n

for some σ ∈ Sn. Then there is a sequence (uε) ⊂ H1(Ω;C) such that (defining vε

as usual by rescaling)

Jvε → π

n∑
i=1

Γfi
in ∪R>0 F (B(R) × (0, L)), lim inf

ε→0
Gε(uε) ≤ G0(f)

and uε(x, z) = wz
ε(x) for x ∈ ω and z ∈ {0, L}.

Proof. Let fε = hεf
δε , where f δ is the regularization of f provided by Lemma 17

and δε = ε1/3. We then define

ũε(x, z) :=
n∏

j=1

[
eiβ(x,fε,j(z))Ũε(x − fε,j(z), z)

]

where β is defined in (5.10), and [for Ûε from (5.8), (5.9)] we set

Ũε(x, z) :=

⎧⎪⎨
⎪⎩

ζε(x) + ε−1/6z(Ûε(x) − ζε(x)) if 0 ≤ z ≤ ε1/6

Ûε(x) if ε1/6 ≤ z ≤ L − ε1/6

ζε(x) + ε−1/6(L − z)(Ûε(x) − ζε(x)) if L − ε1/6 ≤ z ≤ L.

(Recall that ζε is defined in Sect. 1.1.) The flat-norm convergence of Jvε follows
very much as in the proof of Proposition 2, so we omit the details.

Step 1. For δ1/2 = ε1/6 ≤ z ≤ L − ε1/6, Lemma 17 implies that

|fε,i − fε,j | ≥ 2
√

ε for sufficiently small ε. (6.8)

The significance of this stems from the fact that
√

ε is the intermediate length
scale that we chose (rather arbitrarily) in the construction of Ûε. Once vortices are
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separated by larger distances (that is, once (6.8) holds), all the estimates in the
proofs of Proposition 2 and Lemma 16 are uniform, and it follows that

∫ L−ε1/6

ε1/6

∫
ω

eε(ũε) dx dz − nπL(|log ε| + γ) − n(n − 1)πL| log hε| − κn(Ω)

≤
∫ L−ε1/6

ε1/6

π

2
|(f δε)′|2 − π

∑
i�=j

log |f δε

i − f δε

j | dz + o(1)

as ε → 0. In view of (6.5), we therefore only need to show that

∫ ε1/6

0

∫
ω

eε(ũε) +
∫ L

L−ε1/6

∫
ω

eε(ũε) → 0. (6.9)

We will only consider the first integral, since the estimate of the second is identical.
Step 2. Both Ûε and ζε have the form ρε(r)eiθ for ρε satisfying

ρε(0) = 0, 0 ≤ ρ′
ε ≤ C

ε
, 1 ≥ ρε(s) ≥ 1 − C

ε

s
. (6.10)

Thus Ũε(·, z) also has this form for every z. It follows that ∂zũε is a sum of terms
of the form already estimated in Lemma 16, together with some new terms of the
form

ε−1/6(Uε(· − a) − ζε(· − a)) ∗ (smooth functions)

where the smooth functions have modulus less than 1. It also follows from (6.10)
that |(Ûε − ζε)(x)| ≤ min{1, Cε/|x|} and hence that for every a,

‖Ûε(· − a) − ζε(· − a)‖2
L2(ω) ≤

∫ diam(ω)

0
min(1, Cε/s)2s ds ≤ Cε2|log ε|

as long as 0 < ε < 1/2 say, where C = C(ω). Using these facts and arguing as in
the proof of Lemma 16, one checks that

∫ ε1/6

0

∫
ω

|∂zũε|2dx dz ≤ C

∫ ε1/6

0
|(f δε)′|2 + o(1)

(6.4)
= o(1)

as ε → 0.
Step 3. We now write

ũj
ε := eiβ(x,fε,j(z))Ũε(x − fε,j(z), z),

so that ũε =
∏n

i=1 ũj
ε. Since ‖ũj

ε‖L∞ ≤ 1 for every j, it is clear that

|∇xũε|2 ≤ (
∑

j

|∇xũj
ε|)2 ≤ n

∑
j

|∇xũj
ε|2.
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Also, for a, b ∈ [0, 1], by rearranging the inequality 0 ≤ (1−a2)(1− b2), we find that
(1 − a2b2) ≤ (1 − a2) + (1 − b2). By induction, we deduce that

(1 − |
∏

ũj
ε|2)2 ≤

(∑
(1 − |ũj

ε|2)
)2

≤ n
∑

(1 − |ũj
ε|2)2.

Therefore

e2d
ε (ũε) ≤ n

n∑
j=1

e2d(ũj
ε).

We can then appeal to rather standard estimates of e2d(ũj
ε) to conclude that∫

ω
e2d(ũj

ε(x, z))dz ≤ π|log ε| + C

for every z, so it follows that
∫ ε1/6

0

∫
ω

e2d(ũε)dx dz ≤ ε1/6n2 sup
j,z

∫
ω

e2d(ũj
ε(x, z))dx ≤ ε1/6n2(π|log ε| + C) ,

completing the proof of (6.9). ��

Proof of Theorem 1. Let uε minimize Fε in

Aε := {u ∈ H1(Ω;C) : u(x, 0) = w0
ε(x), u(x, L) = wL

ε (x)}

for boundary data as described in (1.9). We want to verify that the sequence (uε)
generated in this way satisfies the hypotheses of part (a) of Theorem 3. It is straight-
forward to check from (1.9)–(1.11) that assumptions (1.24) and (1.25) are satisfied,
and (1.27) follows from Lemma 18. The only remaining hypothesis to check is that

‖  Juε − nπΓ0‖W −1,1(Ω) → 0 as ε → 0. (6.11)

To verify this we argue as in Lemma 10. Thus, for δ > 0 to be specified below, we
let Ωδ := ω × (−δ, L + δ), and we extend each uε to a function on Ωδ, still denoted
uε, such that uε(x, z) = w0

ε(x) for z < 0, and uε(x, z) = wL
ε (x) for z > L. From

(1.27) and Theorem 4, we may pass to a subsequence and find an integer multiplicity
1-current J in Ωδ such that ∂J = 0 in Ωδ,

1
π

 Juε → J in W−1,1(Ωδ), MΩ(J) < MΩδ(J) ≤ nL + 2δM.

We must show that the restriction of J to Ω is nΓ0. It is for this that we will need
our assumption that

L < 2R where R = dist(0, ∂ω).

Due to our assumptions on w0,L
ε , it is straightforward to check that the restriction

of J to ω × (−δ, 0), for example, consists of n copies of the segment {0} × (−δ, 0)
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(with the correct, “upward” orientation, henceforth not mentioned), with a similar
statement in ω × (L, L + δ).

We may write J =
∑

i∈I Tγi
, where each γi is a Lipschitz curve without boundary

in Ωδ. Then there must be subsets I0, I1 of I, both with cardinality n, such that

for i ∈ I0, Tγi
= {0} × (−δ, 0) in ω × (−δ, 0),

for i ∈ I1, Tγi
= {0} × (L, L + δ) in ω × (L, L + δ).

Clearly, if i ∈ I0 ∩ I1, then γi connects a copy of {0} × (−δ, 0) to a copy of {0} ×
(L, L + δ), and must have length at least L + 2δ.

On the other hand, if i ∈ I0 \ I1, then γi must connect a copy of {0} × (−δ, 0)
to ∂ω × [0, L], and must have length at least δ + R. The same applies to i ∈ I1 \ I0.
Thus, if n0 := #(I0 ∩ I1), then

nL + 2Mδ ≥ MΩδ(J) ≥
∑

i∈(I0∪I1)

MΩδ(Tγi
)

≥ n(L + 2δ) + (n − n0)(2R − L).

Since δ may be chosen arbitrarily small, we may deduce that n = n0, and hence that
I0 = I1. Similar considerations show that I = I0—that is, there are no indecompos-
able pieces other than the n curves that connect {0} × (−δ, 0) to {0} × (L, L + δ).
Finally, the same argument shows that none of these n curves can have length greater
than L + 2δ. Thus every curve coincides with {0} × (0, L) = Γ0 in Ω. This says that
the restriction of J to Ω is exactly nΓ0, which completes the proof of (6.11).

Having verified (6.11), we may apply part (a) of Theorem 3 to conclude that
 1

πJvε is precompact in W−1,1(B(R) × (0, L)) for every R > 0, and that every limit
of a convergent subsequence has the form π

∑n
i=1 Γf∗

i
, where

f∗ ∈ A0 := {f ∈ H1([0, L]; (R2)n) : ∃σ ∈ Sn, fi(0) = q0
i (0), fi(L) = q0

σ(i)(L)}

for (q0
i (z)), z = 0, L appearing in (1.9), (1.11); and that

G0(f∗) ≤ lim inf
ε→0

Gε(uε)

along the subsequence. Since uε minimizes Fε in Aε, it follows from Lemma 18 that

lim inf
ε→0

Gε(uε) ≤ inf
f∈A0

G0(f).

Therefore f∗ minimizes G0(·) in A0, as was to be shown. ��
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7 The proof of Theorem 2

We first need a Lemma that relates local minimizers with respect to two different
topologies.

Lemma 19. Assume that f∗ ∈ H1((0, L); (R2)n) is a strict local minimizer of G0 in
A0 and that f∗

i (z) �= f∗
j (z) for all z ∈ (0, L) and i �= j.

Then there exists δ∗, R1 > 0 such that

if f ∈ A0 and 0 < ‖π

n∑
i=1

(Γfi
− Γf∗

i
)‖F (B(R)×(0,L)) < δ∗ for some R ≥ R1,

then G0(f) > G0(f∗).

Proof. Consider any sequence (fk) ∈ A0 such that

G0(fk) ≤ G0(f∗), ‖
n∑

i=1

(Γfk
i

− Γf∗
i
)‖F (B(R)×(0,L)) → 0 (7.1)

for some R ≥ R1, where R1 will be fixed below. We will show that fk → f∗ in
H1((0, L); (R2)n) as k → ∞, after a possible relabelling. Since f∗ is a local minimizer,
this will prove that fk = f∗ for all sufficiently large k. Because the sequence (fk) is
arbitrary, this will establish the lemma.

First, by a 1-dimensional Sobolev embedding theorem,

‖fk‖2
L∞ ≤ ‖fk(0)‖2 + L‖(fk)′‖2

L2 = C + C‖(fk)′‖2
L2 ,

where the constants depend on the boundary data for A0 and on L. Also, it is clear
that

−π

∫ L

0

∑
i�=j

log |fk
i − fk

j | ≥ −πn(n − 1)L log(2‖fk‖L∞).

It follows that

‖fk‖2
L∞ − C log(‖fk‖L∞) − C ≤ CG0(fk) ≤ CG0(f∗).

Since x2 − C log x → +∞ as x → +∞, there exists some constant C such that
∫ L

0

∑
i�=j

log |fk
i − fk

j | ≤ C, ‖fk‖∞ + ‖(fk)′‖L2 ≤ C for all k. (7.2)

We now fix R1 := supk ‖fk‖∞ + 1.
Now for δ ∈ (0, L/2), define r = r(δ) by

r(δ) := min
(

{1} ∪
{

1
4
|f∗

i (z) − f∗
j (z)| : i �= j, δ ≤ z ≤ L − δ

})
.
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We claim that for every δ as above, if k is large enough, then for every i,

min
j

|f∗
i (z) − fk

j (z)| < r(δ) for δ < z < L − δ. (7.3)

Suppose toward a contradiction that (7.3) fails for some i and z. Since both f∗ and
fk are C0, 1

2 , with modulus of continuity depending on f∗ but independent of k, see
(7.2), it follows that there is an interval Ik such that

min
j

|f∗
i (z) − fk

j (z)| ≥ 1
2
r(δ) for all z ∈ Ik, |Ik| ≥ c = c(f∗).

For such z, it follows that

‖
n∑

j=1

(δf∗
j (z) − δfk

j (z))‖F (B(R))

≥
∫

B(R)
(
1
2
r(δ) − |f∗

i (z) − x|)+
( n∑

j=1

(δf∗
j (z) − δfk

j (z)|)
)
(dx) =

1
2
r(δ).

Hence for all k,
∫ L

0
‖

n∑
j=1

(δf∗
j (z) − δfk

j (z))‖F (B(R))dz ≥ 1
2

|Ik| r(δ) > c > 0.

On the other hand, we may use (2.9) to estimate
∫ L

0
‖

n∑
i=1

(δf∗
i (z) − δfk

i (z))‖F (B(R)) dz =
∫ L

0
‖〈

n∑
i=1

(Γf∗
i

− Γfk
i
), ζ, z〉‖F (B(R)) dz

≤ ‖
n∑

i=1

(Γf∗
i

− Γfk
i
)‖F (B(R)×(0,L)) → 0,

a contradiction. Hence (7.3) holds.
Since the balls B(f∗

i (z), r(δ)) are disjoint for δ < z < L − δ, by definition of
r(δ), it follows from (7.3) that for every z in this range, each of these balls contains
exactly one point fk

j (z). We may relabel the (fk
j ) such that at height z = L/2 for

example, |f∗
i (L/2)−fk

i (L/2)| < r(δ) for all i. Then (7.3) and the continuity of f∗, fk

imply that |f∗
i (z) − fk

i (z)| < r(δ) for all i and all z ∈ (δ, L − δ).
Now we let k → ∞ and, using (7.2), extract a subsequence such that fk converges

weakly in H1, and thus uniformly, to a limit f∞ ∈ A0. It follows from the above that
|f∗

i (z)−f∞
i (z)| ≤ r(δ) for all i and all z ∈ (δ, L−δ). Since δ is arbitrary, we conclude

that f∞ = f∗. Thus in fact fk ⇀ f∗ in H1, without passing to a subsequence. Then
the choice of (fk) and standard lower semicontinuity arguments imply that

G0(f∗) ≥ lim inf G0(fk) ≥ G0(f∗).

It follows in particular that
∫

|(fk)′|2dz →
∫

|(f∗)′|2dz. This allows us to improve
weak H1 convergence to strong H1 convergence, completing the proof. ��
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The proof of Theorem 2 now follows standard arguments.

Proof of Theorem 2. Fix 0 < δ1 < δ∗, for δ∗ from Lemma 19, and let uε minimize
Fε in

Āε,δ1 := {u ∈ Aε : ‖  Ju − π

n∑
i=1

Γhεf∗
i
‖F (Ω) ≤ hεδ

1}.

Existence of a minimizer is rather standard; see for example [MSZ04], Theorem 4.2
for a very similar argument. We claim that if ε is small enough

‖  Juε − π

n∑
i=1

Γhεf∗
i
‖F (Ω) < hεδ

1 or equivalently, uε ∈ Aε,δ1 . (7.4)

Toward this end, consider a hypothetical sequence in Āε,δ1 for which (7.4) fails,
so that the constraint holds with equality. Then Lemma 18 and the definition of
Aε imply that (uε) satisfies the hypotheses of Theorem 3. Thus, defining as usual
vε(x, z) = uε(hεx, z), we conclude that

Jvε → π

n∑
i=1

Γfi
in F (B(R) × (0, L)) for every R > 0.

for some f ∈ H1((0, L); (R2)n). Moreover, again appealing to Lemma 18 (the recov-
ery sequence with correct boundary conditions) and Theorem 3, we find that

G0(f) ≤ G0(f∗).

Also, by rescaling our assumption that ‖Juε−π
∑n

i=1 Γhεf∗
i
‖F (Ω) = hεδ

1 and taking
limits, we conclude that ‖π

∑n
i=1(Γfi

− Γf∗
i
)‖F (B(R)×(0,L)) = δ1 for every R > 0.

This is impossible, in view of Lemma 19, so (7.4) must be true.
Then it is well-known (see for example [MSZ04]) and not hard to check that

Aε,δ1 is an open set in H1, and so (7.4) implies that uε is a local minimizer. By
arguing in this way for a sequence δk ↘ 0, and employing a diagonal argument, we
may generate a sequence (uε) such that the rescaled Jacobians (Jvε) converge as
required to π

∑
Γf∗

i
. ��
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A

We finally present the proof of Lemma 2, which establishes certain properties of uε(·, z) for
z ∈ Gε

2 . The main point of the proof is contained in the following

Lemma 20. There exist positive numbers θ, a, b, depending on n and ω, such that b < a,
and the following holds:
Assume that w ∈ H1(ω;C) satisfies∫

ω

e2d(w)(x) dx ≤ π(n + θ)|log ε| (A.1)

and ∫
ω

φ(x)Jxw(x) dx ≥ nπ − 1 for some φ ∈ W 1,∞
0 (B(r∗)) with Lip(φ) ≤ 4/r∗, (A.2)

where r∗ := min{1,dist(0, ∂ω)}.
Then if ε is sufficiently small, there exists p = (p1, . . . , pn) such that

‖Jxw − π
∑

δpi
‖W −1,1(ω) ≤ εa (A.3)

and

dist(pi, ∂ω) ≥ r∗

8
for all i, |pi − pj | ≥ εb for all i �= j. (A.4)

To obtain Lemma 2 from the above, note that if z satisfies the hypotheses of Lemma 2, then
w = uε(·, z) satisfies (A.1), (A.2). Indeed, (A.1) is exactly (3.5), and (A.2) is a consequence of
Lemma 1, see (3.4). Thus (3.6) (3.7) follow directly from (A.3), (A.4). The final conclusion
(3.8) is then an immediate consequence10 of Theorem 2 in [JS08], whose hypotheses are
implied by (3.6), (3.7).
Throughout the proof of Lemma 20, we will assume that w is smooth. The general case
follows from this by a standard mollification argument.
Our proof relies on a vortex ball construction, as introduced by [Jer99a] and [San98]. We
recall some ingredients that we will need below. Our presentation mostly follows that of
[Jer99a] and [JS02], which can also be used as sources, adapted to our needs, for background
on topics such as the degree deg(w; ∂O).
We will use the notation

S := {x ∈ ω : |w(x)| ≤ 1
2
}, (A.5)

SE := ∪{components Si of S : deg(w; ∂Si) �= 0}, (A.6)
Sε

E := ∪{components Si of S : deg(w; ∂Si) �= 0, dist(Si, ∂ω) ≥ ε}. (A.7)

If O is an open subset of ω such that ∂O ∩ SE = ∅, then

dg(w; ∂O) :=
∑{

deg(u; ∂Si) : components Si of SE such that Si ⊂ O
}
. (A.8)

10 If one wants to check this, note from (3.6), (3.7) that ρα ≥ 1
2
εb, and that one may take sε = εa,

where the notation ρα and sε appears in [JS08]. From this one easily checks that hypotheses in
[JS08] relating sε and ρα are satisfied here. Note also that Σε

Ω(u; α, d) appearing in [JS08] is defined
to be

∫
Ω

e2d
ε (u))dx − n(π| log ε| + γ) + Wω(α1, . . . , αn) when d = (1, . . . , 1), which is the relevant

case here. So conclusion (3.8) is exactly a lower bound for Σε
ω(u(·, z), pε, d) with d as above.
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We also define

λε(r, d) := min
m∈[0,1]

(
m2d2π

r
+

1
cε

(1 − m)2
)

, (A.9)

Λε(s) :=
∫ s

0

(λε(r; 1) ∧ 1
Cε

) dr.

Lemma 21. Assume that B(r, x) ⊂ ω for some r ≥ ε, and that |deg(w; ∂B(r, x))| = d > 0.
Then ∫

∂B(r,x)

e2d
ε (w) dx ≥ λε(r, d) ≥ λε(

r

d
, 1). (A.10)

For a proof, see for example [Jer99a] Theorem 2.1, or consult Lemma 7 above for a very
similar argument.
By integrating (A.10), one obtains lower bounds for the energy e2d

ε (w) on an annulus on
which one has some information about the degree. These bounds are naturally expressed in
terms of Λε. The main point of the vortex ball construction is to assemble these estimates
in a clever way. These arguments lead for example to the following:

Lemma 22. For all σ ≥ r0 := Cε
∫

ω
e2d
ε (w)dx, there exists a collection B(σ) = {Bσ

k }k(σ)
k=1 of

disjoint balls such that

Sε
E ⊂ ∪kBσ

k (A.11)∫
Bσ

k ∩ω

e2d
ε (w) dx ≥ rσ

k

σ
Λε(σ), for rσ

k := radius(Bσ
k ) (A.12)

rσ
k ≥ σ|dσ

k | if Bσ
k ⊂ ω, for dσ

k := dg(w, ∂Bσ
k ). (A.13)

Moreover, if xσ
k denotes the center of Bσ

k , then

‖Jw − π
∑

dkδxσ
k
‖W −1,1(ω) ≤ C(r0 +

∑
k

rσ
k )
∫

ω

e2d
ε (w) dx. (A.14)

Finally, Λε(σ) ≥ π log σ
ε − C for all σ.

Proof. In Proposition 6.4 in [JS02] it is proved that a collection of balls satisfying (A.11)–
(A.13) exists for every σ larger than some r0. The fact that one may take r0 = Cε

∫
ω

e2d
ε (w)dx

follows from the proofs of Propositions 6.2 and 6.4, [JS02].
To prove (A.14), one modifies {Bσ

k } to obtain a collection of balls that covers all of S, and
whose radii sum to at most r0 +

∑
rσ
k . This relies on a lemma due to [San98], which shows

that S may be covered by a collection of disjoint balls whose radii sum to at most r0. Then,
(A.14) follows from standard arguments, see for example [SS07, Theorem 6.1]. ��

With the above result as our starting point, we can now present the

proof of Lemma 20. We fix positive numbers θ, a, b such that

n + θ

1 − 2a
< n + 1, θ ≤ b < a.

For example, if 2b = a = 1
3(n+1) then both inequalities may be satisfied by a sufficiently

small positive θ.
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Step 1. First, consider the collection of balls B(σ) from Lemma 22, with σ = ε2a. We will
write {xσ

i } for the center of Bσ
i . Then (A.12) implies that

∑
k

∫
Bσ

k ∩ω

e2d
ε (w)dx ≥

∑
k

rσ
k

σ
Λε(σ) ≥

∑ rσ
k

σ
(1 − 2a) (π|log ε| − C) . (A.15)

Then from (A.1) and the choice of a, we find that for small enough ε,

∑
k

rσ
k

σ
≤ (n + θ)

(1 − 2a)
|log ε|

|log ε| − C
< n + 1 and thus

∑
k

|dσ
k | ≤ n. (A.16)

On the other hand, from (A.14), (A.16) and (A.1) we have

‖Jxw − π
∑

dσ
i δxσ

i
‖W −1,1(ω) ≤ Cσ(n + 1)

∫
ω

e2d
ε (w) ≤ εa (A.17)

if ε is small enough. This and (A.2) imply that

nπ − 1 ≤ π
∑

k

dσ
kφ(xσ

k) + 4εa/r∗.

If ε is small enough, then by comparing this with (A.16) and recalling that 0 ≤ φ ≤ 1, we
see that

dσ
k ≥ 0 for all k,

∑
k

dσ
k = n (A.18)

and

φ(xσ
k) ≥ 1 − 1

π > 1
2 for all k such that dσ

k > 0.

Since Lip(φ) ≤ 4/r∗ and supp(φ) ⊂ B(1), it follows that

|xσ
i | ≤ 7

8
r∗ for k such that dσ

k > 0. (A.19)

We also remark that (A.13), (A.16), and (A.18) imply that

nσ ≤
∑

rσ
k < (n + 1)σ for small ε

and thus
dσ

kσ ≤ rσ
k < (dσ

k + 1)σ for all k,
∑
dσ

k=0

rσ
k < σ. (A.20)

In particular, maxk rσ
k ≤ (n + 1)σ.

To complete the proof of the lemma, it suffices to show that

dσ
k ≤ 1 for all k, and |xσ

k − xσ
� | ≥ εb if dσ

k , dσ
� �= 0 and k �= �. (A.21)

Indeed, once we know (A.21), then it follows from (A.18) that there are exactly n points xσ
k

for which dσ
k is nonzero, and that dσ

k = 1 for all of these. We take {p1, . . . , pn} to be these
points. Then (A.19), (A.21) imply that (A.4) holds, and (A.17) reduces to (A.3).
Step 2. To start the proof of (A.21), let

B̃0 := {Bσ
k ∈ B(σ) : dσ

k �= 0}.
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We claim that there is a collection B̃1 = {B̃1
k} of (at most n) closed pairwise disjoint balls

such that ⋃
B̃0

Bσ
k ⊂

⋃
B̃1

B̃1
k (A.22)

and every ball in B̃1 has the same radius r̃1, with

r̃1 ≤ C(n)σ. (A.23)

Such a collection can be found as follows:

• first replace every Bσ
k ∈ B̃0 by a concentric ball of radius maxB̃0 rσ

k ≤ (n + 1)σ;
• enclose intersecting balls in larger balls, without increasing the sum of the radii, to obtain

a new pairwise disjoint collection, with fewer balls;
• repeat: increase the radii of the remaining balls, as necessary, until they are the same

size, then combine balls that intersect. After finitely many steps (at most n−1 mergings)
this produces a collection satisfying (A.22), (A.23).

Let

R̃1 := sup
{

R ∈ (r̃1,
1
8
) : {B(R, x̃1

i )} are pairwise disjoint
}

where {x̃1
i } denotes the centers of the balls in B1. We now proceed inductively, using the

same procedure to find collections B̃j = {B̃j
i } of (at most n+1−j) balls such that for j ≥ 2,

⋃
B̃j−1

B(R̃j−1, x̃j−1
k ) ⊂

⋃
B̃j

B̃j
k (A.24)

and all balls are closed and pairwise disjoint, with the same radius

r̃j ≤ C(n)R̃j−1 (A.25)

and where

R̃j := sup
{

R ∈ (r̃j ,
1
8
) : {B(R, x̃j

i )} are pairwise disjoint
}

.

Let J denote the first j for which either R̃j = r∗
8 or r̃j+1 ≥ r∗

8 . With each step the number
of balls decreases, and if there is only one ball left, it can expand unimpeded, so it is clear
that J ≤ n. It follows from (A.19) that the interiors of all the balls are contained in ω. Note
also that

R̃J ≥ 1
8C(n)

. (A.26)

This is clear if R̃J = r∗
8 , and if r̃J+1 ≥ r∗

8 then it follows from (A.25).
To prove (A.21), it now suffices to show that

B̃1 consists of n balls, all of degree 1, and R̃1 > εb/2. (A.27)

Step 3. We now write Ãj
k := B(R̃j , x̃j

k) \ B(r̃j , x̃
j
k), and we estimate the energy contained

in these annuli.
Let us write d̃j

k := dg(u; ∂B̃j
k), and note that

d̃j
k > 0 for all j, k,

∑
k d̃j

k = n for every j, maxj d̃j
k ≥ 2 for j ≥ 2. (A.28)
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For every j and k we deduce from (A.10) that
∫

Ãj
k

e2d
ε (w)dx =

∫ R̃j

r̃j

∫
∂B(r,x̃j

k)

e2d
ε (w)dH1 dr

≥
∫ R̃j

r̃j

∫
∂B(r,x̃j

k)

λε(r, d̃
j
k)1r �∈Aj

k
dr , (A.29)

for

Aj
k := {r ∈ (r̃j , R̃j) : dg(u, ∂B(r, x̃j

k)) �= d̃j
k}.

In general, since r 	→ λε(r, d) is a nonincreasing function for every d, if A is a measurable
subset of an interval (a, b), then

∫ b

a

λε(r, d)1r �∈A dr ≥
∫ b

a+|A|
λε(r, d) dr.

Thus we would like to estimate the measure of Aj
k. Toward this end, let

Z := ∪{Bσ
k ∈B(σ) : dσ

k=0}Bσ
k

and note that if ∂B(r, x̃j
k) ∩ Z = ∅, then dg(u, ∂B(r, x̃j

k)) is well-defined and equals d̃j
k, as a

consequence of the definition of dg together with (A.11), (A.22), (A.24), and the definition
of Z. So

Aj
k ⊂ {r ∈ (r̃j , R̃j) : ∂B(r, x̃j

k) ∩ Z �= ∅}.
Since Z is a union of balls whose radii sum to at most σ, see (A.20), we conclude that
|Aj

k| ≤ 2σ. Thus for every j, k,
∫

Ãj
k

e2d
ε (w)dx ≥

∫ R̃j

r̃j
∗

λε(r, d̃
j
k) dr, r̃j

∗ := min{r̃j + 2σ, R̃j}
(A.25)

≤ C(n)R̃j−1. (A.30)

Also, it is straightforward to check from the definition of λε that if r ≥ εa and d ≤ n, then

λε(r, d) ≥ πd2

r
(1 − C(n)ε1−a).

Thus
J∑

j=1

∑
k

∫
Ãj

k

e2d
ε (w) dx ≥ (1 − Cε1−a)

∑
j

π log(
R̃j

r̃j
∗

)

(∑
k

(dj
k)2
)

.

Step 4. We wish to show that neither of the conditions appearing in (A.21) can be violated.
We thus consider two cases.
Case 1: d1k > 1 for some k. Then it follows from (A.28) that

∑
k(dj

k)2 > n + 2 for all j,
and hence that

J∑
j=1

∑
k

∫
Ãj

k

e2d
ε (w) dx ≥ π(n + 2)(1 − Cε1−a)

J∑
j=1

log(
R̃j

r̃j
∗

)

= π(n + 2)(1 − Cε1−a)

⎡
⎣log(

R̃J

r̃1∗
) +

J∑
j=2

log(
R̃j−1

r̃j
∗

)

⎤
⎦ .
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But it follows from (A.30), (A.26) and (A.23)

R̃j−1

r̃j
∗

≥ 1
C

,
R̃J

r̃1∗
≥ 1

Cσ
=

1
Cε2a

for constants depending on n. It follows that

J∑
j=1

∑
k

∫
Ãj

k

e2d
ε (w) dx ≥ π(n + 2)2a|log ε| − C.

Combining this with (A.15) we find that
∫

ω

e2d
ε (w) ≥ π(n + 4a)|log ε| − C,

contradicting (A.1) when ε is small enough.
Case 2: d1k = 1 for all k, but R̃1 ≤ εb/2. This implies that r̃2∗ ≤ Ceb. Then essentially
the same arguments as above show that

J∑
j=1

∑
k

∫
Ãj

k

e2d
ε (w) dx ≥ (1 − Cε1−a)

⎡
⎣nπ log(

R̃1

r̃1∗
) + (n + 2)π

J∑
j=2

log(
R̃j

r̃j
∗

)

⎤
⎦ .

Continuing to follow the previous case, from this one deduces that
∫

ω

e2d
ε (w) ≥ π(n + 2b)|log ε| − C,

again contradicting (A.1). This verifies (A.27) and completes the proof of the lemma. ��
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