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A C∞ CLOSING LEMMA FOR HAMILTONIAN
DIFFEOMORPHISMS OF CLOSED SURFACES

Masayuki Asaoka and Kei Irie

Abstract. We prove a C∞ closing lemma for Hamiltonian diffeomorphisms of
closed surfaces. This is a consequence of a C∞ closing lemma for Reeb flows on closed
contact three-manifolds, which was recently proved as an application of spectral
invariants in embedded contact homology. A key new ingredient of this paper is
an analysis of an area-preserving map near its fixed point, which is based on some
classical results in Hamiltonian dynamics: existence of KAM invariant circles for
elliptic fixed points, and convergence of the Birkhoff normal form for hyperbolic
fixed points.

1 Introduction

The aim of this paper is to prove a C∞ closing lemma for Hamiltonian diffeomor-
phisms of closed surfaces. Let us first introduce some notations. For any closed
surface (i.e., C∞ two-manifold) S, let Diff (S) denote the group of all C∞ diffeo-
morphisms of S, equipped with the C∞ topology. For any ϕ ∈ Diff (S), let Fix(ϕ)
denote the set of fixed points of ϕ, and P(ϕ) denote the set of periodic points of ϕ:

Fix(ϕ) := {x ∈ S | ϕ(x) = x}, P(ϕ) :=
∞⋃

m=1

Fix(ϕm).

Also, the closure of {x ∈ S | ϕ(x) �= x} is called the support of ϕ, and denoted
as supp ϕ.

When S is equipped with an area form (i.e., nowhere vanishing 2-form) ω, let

Diff (S, ω) := {ϕ ∈ Diff (S) | ϕ∗ω = ω},

which is the group of area-preserving diffeomorphisms. For any h ∈ C∞(S), we
define its Hamiltonian vector field Xh by iXh

ω = −dh. Our convention for the
interior product i is iXh

ω( · ) = ω(Xh, · ). For any H ∈ C∞([0, 1] × S) and t ∈ [0, 1],
we define Ht ∈ C∞(S) by Ht(x) := H(t, x), and (ϕt

H)t∈[0,1] denotes the isotopy on
S defined by ϕ0

H = idS and ∂tϕ
t
H = XHt

(ϕt
H). Then we define

Ham (S, ω) := {ϕ1
H | H ∈ C∞([0, 1] × S)},
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which is the group of Hamiltonian diffeomorphisms. It is known that Ham (S, ω) =
Diff (S, ω) when S is homeomorphic to the two-sphere.

Throughout this paper, Ham (S, ω) and Diff (S, ω) are equipped with topologies
induced from the C∞ topology on Diff (S). Now we can state our main result as
follows:

Theorem 1.1. Let S be any closed, oriented surface, ω be any area form on S,
and ϕ ∈ Ham (S, ω). For any nonempty open set U ⊂ S, there exists a sequence
(ϕj)j≥1in Ham (S, ω) such that P(ϕj) ∩ U �= ∅ for every j ≥ 1 and limj→∞ ϕj = ϕ.

Using standard arguments, we can prove a C∞ general density theorem for Hamil-
tonian diffeomorphisms.

Corollary 1.2. For any (S, ω) as in Theorem 1.1,

{ϕ ∈ Ham (S, ω) | P(ϕ) is dense in S }
is residual (i.e., contains a countable intersection of open and dense sets) in Ham
(S, ω).

Proof. For any nonempty open set U ⊂ S, let HU denote the set consisting of
ϕ ∈ Ham (S, ω) such that there exists a nondegenerate periodic orbit of ϕ which
intersects U . Then, HU is obviously open in Ham (S, ω), and dense by Theorem 1.1.
Let (Ui)i∈I be any countable basis of open sets in S. Then

⋂
i∈I HUi

is residual in
Ham (S, ω), and if ϕ ∈ ⋂

i∈I HUi
then P(ϕ) is dense in S. �	

We can also prove a Cr general density theorem (1 ≤ r ≤ ∞) for area-preserving
diffeomorphisms of the two-sphere.

Corollary 1.3. Let r be a positive integer or ∞, and let Diff r(S, ω) denote the
set of Cr diffeomorphisms of S preserving ω. When S is homeomorphic to the two-
sphere,

{ϕ ∈ Diff r(S, ω) | P(ϕ) is dense in S }
is residual in Diff r(S, ω) with the Cr topology.

Proof. The case r = ∞ is immediate from Corollary 1.2, since Diff ∞(S, ω) =
Ham (S, ω). The case 1 ≤ r < ∞ follows from the case r = ∞ and the fact that
Diff ∞(S, ω) is dense in Diff r(S, ω) with the Cr topology, which is proved in [Zeh77].

�	
Remark 1.4 (Historical remarks). The C1 closing lemma (and general density the-
orem) was first proved for nonconservative dynamics by Pugh [Pug67a,Pug67b],
and later proved for conservative dynamics by Pugh–Robinson [PR83]. In particu-
lar, [PR83] established the C1 closing lemma for symplectic and volume-preserving
diffeomorphisms in arbitrary dimensions. On the other hand, a Cr closing lemma
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for r ≥ 2 is not established except for a few cases (see [AZ12] Section 5), and it has
been considered as an important open problem in the theory of dynamical systems
(in particular, see Smale [Sma98] Problem 10).

As for the Cr general density theorem for area-preserving diffeomorphisms of
closed surfaces (which is completely settled for the two-sphere by Corollary 1.3),
as far as the authors know the only affirmative result so far is that the union of
the (un)stable manifolds of hyperbolic periodic points are dense in the surface for
a Cr generic area-preserving diffeomorphism of a closed surface and 1 ≤ r ≤ ∞.
This result was proved by Franks–Le Calvez [FL03] for the two-sphere and by Xia
([Xia06]), supplemented by Koropecki–Le Calvez–Nassiri ([KLN15], Section 8.5), for
a general surface.

Theorem 1.1 is a consequence of a C∞ closing lemma for Reeb flows on closed con-
tact three-manifolds (Lemma 2.1), which was proved in [Iri15]. For the convenience
of the reader, we sketch its proof in Section 2. The proof uses recent developments
in quantitative aspects of embedded contact homology, in particular the result in
[CHR15] by Cristofaro-Gardiner, Hutchings and Ramos.

In Section 3, we prove a C∞ closing lemma for area-preserving diffeomorphisms
of a surface with boundary, which satisfy some technical conditions (Lemma 3.1).
The idea of the proof is to regard an area-preserving map as a “return map” of a
certain Reeb flow, which is inspired by a recent paper [Hut15] by Hutchings.

In Section 4, we prove Theorem 1.1 using Lemma 3.1 and an analysis of an
area-preserving map near its fixed point. We exploit some classical results in Hamil-
tonian dynamics: existence of KAM invariant circles for elliptic fixed points, and
convergence of the Birkhoff normal form for hyperbolic fixed points.

2 Reeb flows on contact three-manifolds

Let (M, λ) be a contact manifold, where λ denotes the contact form, with the contact
distribution ξλ := kerλ. The Reeb vector field Rλ is defined by equations λ(Rλ) = 1,
dλ(Rλ, · ) = 0. Let P(M, λ) denote the set of periodic orbits of Rλ, namely

P(M, λ) := {γ : R/TγZ → M | Tγ > 0, γ̇ = Rλ(γ)}.

Lemma 2.1 below is proved as a claim in the proof of [Iri15] Lemma 3.1 (in a slightly
weaker form). The aim of this section is to sketch its proof, referring to [Iri15] for
details.

Lemma 2.1 ([Iri15]). Let (M, λ) be a closed contact three-manifold. For any h ∈
C∞(M,R≥0)\{0}, there exist t ∈ [0, 1] and γ ∈ P(M, (1 + th)λ) which intersects
supp h.

Our proof of Lemma 2.1 is based on embedded contact homology (ECH). For
any closed contact three-manifold (M, λ) and Γ ∈ H1(M : Z), this theory assigns a
Z/2 -vector space1 ECH(M, ξλ, Γ), which is relatively Z -graded if c1(ξλ)+2PD(Γ) ∈
1 ECH can be defined with Z coefficients, however Z/2 coefficients are sufficient for our purpose.
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H2(M : Z) is torsion (c1 denotes the first Chern class, and PD denotes the Poincaré
dual). It is easy to see that such Γ exists for any (M, ξλ).

For each σ ∈ ECH(M, ξλ, Γ)\{0}, one can assign cσ(M, λ) ∈ R≥0 (see [Hut11]
Section 4.1), the associated ECH spectral invariant (this term is not used in [Hut11]).
One can prove the following properties:

(a): cσ(M, λ) ∈ {0} ∪
{∑m

i=1 Tγi

∣∣∣∣m ≥ 1, γ1, . . . , γm ∈ P(M, λ)
}

.

(b): If a sequence (fj)j≥1 in C∞(M,R>0) satisfies limj→∞ ‖fj − 1‖C0 = 0, then
limj→∞ cσ(M, fjλ) = cσ(M, λ).

(c): Let Γ ∈ H1(M : Z) be such that c1(ξλ) + 2PD(Γ) is torsion, and let I denote
an arbitrary absolute Z -grading on ECH(M, ξλ, Γ).
(i): ECH(M, ξλ, Γ) is unbounded from above with this Z -grading.
(ii): If M is connected, for any sequence (σk)k≥1 of nonzero homogeneous

elements in ECH(M, ξλ, Γ) satisfying limk→∞ I(σk) = ∞, there holds

lim
k→∞

cσk
(M, λ)2

I(σk)
=

∫

M
λ ∧ dλ =: vol(M, λ).

(iii): For any h ∈ C∞(M,R≥0)\{0}, there exists σ ∈ ECH(M, ξλ, Γ) such that
cσ(M, (1 + h)λ) > cσ(M, λ).

(a) is [Iri15] Lemma 2.4 (a special case is proved in [CH16] Lemma 3.1). (b)
is explained in [CH16] Section 2.5 as the “Continuity axiom”. (c)-(i) follows from
Seiberg–Witten Floer theory (see [CH16] Section 2.6). (c)-(ii) is [CHR15] Theorem
1.3. (c)-(iii) follows from (i) and (ii), since vol(M, (1 + h)λ) > vol(M, λ).

We also need Lemma 2.2 below, which is proved by elementary arguments using
Sard’s theorem (see [Iri15] Section 2.1 for details).

Lemma 2.2 ([Iri15] Lemma 2.2). For any closed contact manifold (M, λ),

A(M, λ)+ := {0} ∪
{

m∑

i=1

Tγi

∣∣∣∣m ≥ 1, γ1, . . . , γm ∈ P(M, λ)

}

is a null (i.e., Lebesgue measure zero) set.

Proof of Lemma 2.1. We may assume that M is connected, and we set λt := (1+th)λ
for any t ∈ [0, 1]. Suppose that the lemma does not hold, i.e., γ ∈ P(M, λt) =⇒
Im γ ∩ supp h = ∅ for any t ∈ [0, 1]. Then P(M, λt) = P(M, λ) for any t ∈ [0, 1],
since Rλt

= Rλ on M\supp h. Hence A(M, λt)+ = A(M, λ)+ for any t ∈ [0, 1].
For any Γ ∈ H1(M : Z), σ ∈ ECH(M, ξλ, Γ)\{0} and t ∈ [0, 1], (a) shows that

cσ(M, λt) ∈ A(M, λt)+ = A(M, λ)+.

(b) shows that cσ(M, λt) is continuous on t ∈ [0, 1]. On the other hand, A(M, λ)+
is a null set (Lemma 2.2). Thus cσ(M, λt) is constant on t ∈ [0, 1], in particular we
obtain cσ(M, (1 + h)λ) = cσ(M, λ) for any σ, which contradicts (c)-(iii). �	
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3 Return maps of Reeb flows

The aim of this section is to prove Lemma 3.1 below. Ω1 denotes the set of C∞

1-forms.

Lemma 3.1. Let S be any compact, connected surface with boundary such that ∂S
is diffeomorphic to S1. Let ω be any area form on S and ϕ ∈ Diff (S, ω) such that:

• ϕ ≡ idS near ∂S.
• For any β ∈ Ω1(S) such that dβ = ω, ϕ∗β − β is exact.

Then, for any nonempty open set U in int S := S\∂S, there exists a sequence
(ϕj)j≥1in Diff (S, ω) such that limj→∞ ϕj = ϕ, and for every j ≥ 1 there holds

P(ϕj) ∩ U �= ∅, supp (ϕ−1 ◦ ϕj) ⊂ U.

Our idea to prove Lemma 3.1 is to realize ϕ|int S as a “return map” of a certain
Reeb flow. First we recall the following notion from [HWZ98].

Definition 3.2. Let (M, λ) be a closed contact three-manifold, and let (ϕt)t∈R
denote the flow on M generated by Rλ, i.e., ϕ0 = idM and ∂tϕ

t = Rλ(ϕt). A global
surface of section in (M, λ) is a compact surface Σ with boundary, which is embedded
in M and satisfies the following conditions:

• Each connected component of ∂Σ is a (image of) periodic orbit of Rλ.
• int Σ is transversal to Rλ.
• For any p ∈ M\Σ, there exist t−(p) ∈ R<0, t+(p) ∈ R>0 such that ϕt−(p)(p),

ϕt+(p)(p) ∈ Σ and t ∈ (t−(p), t+(p)) =⇒ ϕt(p) /∈ Σ.

Let us define π± : M\Σ → int Σ by π±(p) := ϕt±(p)(p). We also define the return
map ρM,λ,Σ : int Σ → int Σ so that ρM,λ,Σ(π−(p)) = π+(p) for any p ∈ M\Σ.

It is easy to see that ρM,λ,Σ preserves dλ|intΣ. We abbreviate ρM,λ,Σ as ρλ when
there is no risk of confusion.

The next lemma is a small variation of [Hut15] Proposition 2.1.

Lemma 3.3. For any (S, ω, ϕ) which satisfies the assumptions in Lemma 3.1, there
exists (M, λ, Σ) such that (int S, ω, ϕ|int S) is C∞ conjugate to (int Σ, dλ, ρM,λ,Σ).

Proof. Let us take a Liouville vector field V on (S, ω), i.e., d(iV ω) = ω and V is
outer normal to ∂S. We set β := iV ω. There exists a local chart (r, θ) (

√
1 − ε2 ≤

r ≤ 1, θ ∈ R/Z) near ∂S such that ∂S = {r = 1} and β = ar2dθ, where a :=
∫
S ω.

Let Y := [0, 1] × S/ ∼, where ∼ is defined as (1, x) ∼ (0, ϕ(x)) (x ∈ S). For any
t ∈ [0, 1], we define an embedding et : S → Y by et(x) := [(t, x)]. Then, there exists
a contact form λY on Y such that:

• There exists h ∈ Z>0 such that λY = a(hdt + r2dθ) near ∂Y = [0, 1] × ∂S/ ∼.
• The Reeb vector field RλY

is parallel to ∂t.
• e∗

t dλY = ω for any t ∈ [0, 1].
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λY is defined as follows: since ϕ∗β − β is exact, there exists f ∈ C∞(S) such that
ϕ∗β − β = df . f is constant near ∂S, since ϕ ≡ idS near ∂S. By adding a constant,
we may assume that min f > 0 and f ≡ ah near ∂S for some h ∈ Z>0. Now we can
proceed in exactly the same way as the proof of [Hut15] Proposition 2.1.

Let Z = R/Z × {z ∈ C | |z| < ε}, and C := R/Z × {0} ⊂ Z. We define
M := intY 	 Z/ ∼, where ∼ is defined as

(t, r, θ) ∼ (τ, z = ρe
√−1ψ) ⇐⇒ r2 + ρ2 = 1, ψ = 2πt, θ = τ − ht.

Then, it is easy to see that λY |int Y extends to a C∞ contact form λ on M , such
that C is a periodic orbit of Rλ. Finally, Σ := {0} × int S ∪ C is a global surface of
section in (M, λ), and (int Σ, dλ, ρM,λ,Σ) is conjugate to (intS, ω, ϕ|int S) via e0|int S .

�	

Proof of Lemma 3.1. By Lemma 3.3, there exists (M, λ, Σ) such that (int Σ, dλ,
ρM,λ,Σ) is conjugate to (int S, ω, ϕ|int S) via a diffeomorphism F : int S → int Σ.

Let us take h ∈ C∞(M,R≥0)\{0} such that supph ⊂ π−1
− (F (U)). By Lemma

2.1, there exists a sequence (tj)j≥1 in R>0 such that limj→∞ tj = 0 and for every j
there exists γj ∈ P(M, (1 + tjh)λ) which intersects supp h.

Let λj := (1 + tjh)λ. Then Σ is a global surface of section in (M, λj) for any
sufficiently large j, and limj→∞ ρλj

= ρλ in the C∞ topology. Let K := π−(supp h) ⊂
F (U). For any such j, there holds supp (ρ−1

λ ◦ ρλj
) ⊂ K and P(ρλj

) ∩ K �= ∅. Also,
ρλj

preserves dλj |int Σ = dλ|int Σ. Moreover, F−1 ◦ ρλj
◦ F ∈ Diff (int S, ω) extends

to ϕj ∈ Diff (S, ω) by setting ϕj |∂S := id∂S , since supp (ρ−1
λ ◦ ρλj

) is compact. Then
(ϕj)j satisfies the requirements in the lemma. �	

4 Proof of Theorem 1.1

First we prove the following lemma.

Lemma 4.1. Let ω be any area form on A := [0, 1] × S1, and U , V be open neigh-
borhoods of {1} × S1 which are disjoint from {0} × S1. For any diffeomorphism
ψ : U → V which satisfies ψ∗ω = ω, there exists ψ̄ ∈ Diff (A, ω) which satisfies
ψ̄ ≡ ψ near {1} × S1 and ψ̄ ≡ id near {0} × S1.

Proof. Since any orientation-preserving diffeomorphism on S1 is smoothly isotopic
to idS1 , ψ is smoothly isotopic to id near {1} × S1. Hence there exists f ∈ Diff (A)
such that f ≡ ψ near {1} × S1 and f ≡ id near {0} × S1.

(f∗ω − ω)|int A represents 0 in H2
c,dR(int A). Thus there exists η ∈ Ω1(A), which

vanishes near ∂A and satisfies dη = f∗ω−ω. For any t ∈ [0, 1], let ωt := ω+t(f∗ω−ω),
and define a vector field Xt by iXt

ωt = η. Then Xt ≡ 0 near ∂A. Let (gt)t∈[0,1] be
the isotopy on A defined by g0 = idA and ∂tgt = Xt(gt). Then, ψ̄ := f ◦ g1 satisfies
the requirements in the lemma. �	
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Let us start the proof of Theorem 1.1. We may assume that S is connected.
Let ϕ ∈ Ham (S, ω), and take H ∈ C∞([0, 1] × S) such that ϕ = ϕ1

H . By the
Arnold conjecture for surfaces (see [Flo86] and the references therein), there exists
q ∈ Fix(ϕ) such that (ϕt

H(q))t∈[0,1] forms a contractible loop on S.

Lemma 4.2. For any β ∈ Ω1(S\{q}) such that dβ = ω, ϕ∗β − β is exact.

Proof. It is sufficient to show that any γ : R/Z → S\{q} satisfies
∫
γ ϕ∗β−β = 0. Let

us define Γ : [0, 1] × R/Z → S by Γ(t, θ) := ϕt
H(γ(θ)), then

∫
Γ ω = 0. It is sufficient

to prove the following claim:
Claim: There exists a smooth family of maps (Γs : [0, 1] × R/Z → S)s∈[0,1] such
that Γ0 = Γ, q /∈ Im Γ1, and Γs|{0,1}×R/Z = Γ|{0,1}×R/Z for any s ∈ [0, 1].

Indeed, once we have established the claim, we can complete the proof by
∫

γ
ϕ∗β − β =

∫

Γ1

dβ =
∫

Γ1

ω =
∫

Γ0

ω = 0.

Now let us prove the above claim. Since (ϕt
H(q))t∈[0,1] forms a contractible loop

on S, there exists a smooth map C : [0, 1]2 → S such that

C(0, t) = ϕt
H(q), C(1, t) = q, C(s, 0) = C(s, 1) = q (∀s, t ∈ [0, 1]).

Then there exists a smooth family of vector fields (ξs,t)(s,t)∈[0,1]2 , where ξs,t is a
smooth vector field on S for each (s, t) ∈ [0, 1]2, such that

ξs,0 = ξs,1 = 0 (∀s ∈ [0, 1]), ξs,t(C(s, t)) = ∂sC(s, t) (∀s, t ∈ [0, 1]).

Let (Φs,t)(s,t)∈[0,1]2 denote the smooth family of isotopies on S defined by

Φ0,t = idS (∀t ∈ [0, 1]), ∂sΦs,t = ξs,t(Φs,t) (∀s, t ∈ [0, 1]).

Then it is easy to see that

C(s, t) = Φs,t(ϕt
H(q)) (∀s, t ∈ [0, 1]), Φs,0 = Φs,1 = idS (∀s ∈ [0, 1]).

Now let us define Γs by Γs(t, θ) := Φs,t(Γ(t, θ)). The properties Γ0 = Γ and
Γs|{0,1}×R/Z = Γ|{0,1}×R/Z (∀s ∈ [0, 1]) are easy to see. The property q /∈ Im Γ1 can
be confirmed by

Γ1(t, θ) = Φ1,t(Γ(t, θ)) = Φ1,t ◦ ϕt
H(γ(θ)) �= Φ1,t ◦ ϕt

H(q) = C(1, t) = q.

The middle inequality follows since Φ1,t and ϕt
H are bijections and q /∈ Im γ. �	

Let U be any nonempty open set in S. We may assume that U is diffeomorphic to
R

2 and Ū (the closure of U in S) is disjoint from q. We are going to show that, there
exists a sequence (ϕj)j in Ham (S, ω) which satisfies the requirements in Theorem
1.1.

Let us take a local chart (x, y) near q such that q = (0, 0) and ω = dx ∧ dy. By
adding a C∞ small perturbation to ϕ, we may assume that the following conditions
are satisfied:
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• The eigenvalues of dϕ(q) are in {z ∈ C | z3 �= 1, z4 �= 1}. In particular q is a
nondegenerate fixed point of ϕ.

• With respect to the local chart (x, y), ϕ is real-analytic near (0, 0).

By the first condition, the fixed point q is either hyperbolic (i.e., the eigenvalues of
dϕ(q) are in R\{±1}) or elliptic (i.e., the eigenvalues are in {z ∈ C | |z| = 1}\{±1}).
We consider the two cases separately.

The case q is hyperbolic
According to the result by Moser ([Mos56] Theorem 1), there exists a local chart

(X, Y ) defined near q such that q = (0, 0), ω = dX ∧ dY and

ϕ(X, Y ) = (u(XY )X, u(XY )−1Y ),

where u(t) is a real-analytic function defined near t = 0. Notice that u(0) is an
eigenvalue of dϕ(q), in particular nonzero.

Let us take sufficiently small ε > 0, and let Uε := {(X, Y ) | X2 + Y 2 < ε}. Let
us define a diffeomorphism F : (0, ε/2) × R/2πZ → Uε\{q} by

F (r, θ) :=
√

2r(cos θ, sin θ),

then F ∗(dX ∧ dY ) = dr ∧ dθ, and F−1 ◦ ϕ ◦ F is defined on (0, δ) × R/2πZ for
sufficiently small δ > 0. Let us define R and Θ by

(R(r, θ), Θ(r, θ)) := F−1 ◦ ϕ ◦ F (r, θ).

Setting v(r, θ) := u(r · sin 2θ), direct computations show

R(r, θ) = r · (v(r, θ)2 cos2 θ + v(r, θ)−2 sin2 θ),

tan Θ(r, θ) = v(r, θ)−2 tan θ.

Hence, for sufficiently small δ′ > 0, F−1 ◦ϕ◦F uniquely extends to (−δ′, δ)×R/2πZ
as a real-analytic map, which we denote by ψ. Let ω0 := dr ∧ dθ. Since ψ∗ω0 − ω0 is
real-analytic and vanishes on (0, δ) × R/2πZ, it vanishes on (−δ′, δ) × R/2πZ, thus
ψ∗ω0 = ω0. By Lemma 4.1, there exists ψ̄ ∈ Diff ([−1, 0] × R/2πZ, ω0) such that
ψ̄ ≡ ψ near {0} × R/2πZ, and ψ̄ ≡ id near {−1} × R/2πZ.

Let S̄ := ([−1, δ) × R/2πZ) ∪F (S\{q}). We define an area form ω̄ on S̄ by

ω̄|[−1,δ)×R/2πZ = ω0, ω̄|S\{q} = ω.

We also define ϕ̄ ∈ Diff (S̄, ω̄) by ϕ̄|[−1,0]×R/2πZ = ψ̄ and ϕ̄|S\{q} = ϕ.
By Lemma 4.2, one can apply Lemma 3.1 for (S̄, ω̄, ϕ̄). Then there exists a

sequence (ϕ̄j)j in Diff (S̄, ω̄) such that supp (ϕ̄−1 ◦ ϕ̄j) ⊂ U , P(ϕ̄j)∩U �= ∅ for every
j, and limj→∞ ϕ̄j = ϕ̄. For each j, ϕ̄j |S\{q} extends to ϕj ∈ Diff (S, ω) by ϕj(q) := q.
Moreover ϕj ∈ Ham (S, ω), since supp (ϕ−1 ◦ ϕj) ⊂ U and U is diffeomorphic to R

2.
Then, the sequence (ϕj)j satisfies the requirements in Theorem 1.1.
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The case q is elliptic
We assumed that the eigenvalues of dϕ(q) are in {z ∈ C | z3 �= 1, z4 �= 1}. Then,

there exists a local chart (X, Y ) near q such that q = (0, 0), ω = dX ∧ dY and

ϕ(X, Y )=(cos θ(X, Y )X−sin θ(X, Y )Y, sin θ(X, Y )X + cos θ(X, Y )Y ) + O4(X, Y ),

where θ(X, Y ) = θ0+θ1(X2+Y 2) (θ0, θ1 are real constants), and O4 is a real-analytic
map whose expansion involves terms of order ≥ 4 only (see [SM95] Section 32 and
Section 23, pp. 172–173).

By adding a C∞ small perturbation to ϕ, we may assume that θ1 �= 0. Then,
there exists a neighborhood D of q which is diffeomorphic to D2, preserved by ϕ
and sufficiently close to q such that D ∩ Ū = ∅ (see [SM95] Section 34). ∂D is a so
called KAM invariant circle.

Again by Lemmas 4.1 and 4.2, one can apply Lemma 3.1 to conclude that there
exists a sequence (ϕ′

j)j in Diff (S\D, ω) such that P(ϕ′
j)∩U �= ∅, supp (ϕ−1◦ϕ′

j) ⊂ U
for every j, and limj→∞ ϕ′

j = ϕ|S\D. Every ϕ′
j extends to ϕj ∈ Diff (S, ω) by setting

ϕj |D := ϕ|D. ϕj ∈ Ham (S, ω) since supp (ϕ−1 ◦ ϕj) ⊂ U and U is diffeomorphic to
R

2. The sequence (ϕj)j satisfies the requirements in Theorem 1.1. �	
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