A *C*[∞] **CLOSING LEMMA FOR HAMILTONIAN DIFFEOMORPHISMS OF CLOSED SURFACES**

Masayuki Asaoka and Kei Irie

Abstract. We prove a C^{∞} closing lemma for Hamiltonian diffeomorphisms of closed surfaces. This is a consequence of a C^{∞} closing lemma for Reeb flows on closed contact three-manifolds, which was recently proved as an application of spectral invariants in embedded contact homology. A key new ingredient of this paper is an analysis of an area-preserving map near its fixed point, which is based on some classical results in Hamiltonian dynamics: existence of KAM invariant circles for elliptic fixed points, and convergence of the Birkhoff normal form for hyperbolic fixed points.

1 Introduction

The aim of this paper is to prove a C^{∞} closing lemma for Hamiltonian diffeomorphisms of closed surfaces. Let us first introduce some notations. For any closed surface (i.e., C^{∞} two-manifold) S, let Diff(S) denote the group of all C^{∞} diffeomorphisms of S, equipped with the C^{∞} topology. For any $\varphi \in \text{Diff}(S)$, let $\text{Fix}(\varphi)$ denote the set of fixed points of φ , and $\mathcal{P}(\varphi)$ denote the set of periodic points of φ :

$$
Fix(\varphi) := \{ x \in S \mid \varphi(x) = x \}, \qquad \mathcal{P}(\varphi) := \bigcup_{m=1}^{\infty} Fix(\varphi^m).
$$

Also, the closure of $\{x \in S \mid \varphi(x) \neq x\}$ is called the support of φ , and denoted as supp φ .

When S is equipped with an area form (i.e., nowhere vanishing 2-form) ω , let

$$
\text{Diff}(S,\omega) := \{ \varphi \in \text{Diff}(S) \mid \varphi^* \omega = \omega \},
$$

which is the group of area-preserving diffeomorphisms. For any $h \in C^{\infty}(S)$, we define its Hamiltonian vector field X_h by $i_{X_h} \omega = -dh$. Our convention for the interior product *i* is $i_{X_h} \omega(\cdot) = \omega(X_h, \cdot)$. For any $H \in C^{\infty}([0, 1] \times S)$ and $t \in [0, 1]$, we define $H_t \in C^{\infty}(S)$ by $H_t(x) := H(t, x)$, and $(\varphi_H^t)_{t \in [0,1]}$ denotes the isotopy on S defined by $\varphi_H^0 = id_S$ and $\partial_t \varphi_H^t = X_{H_t}(\varphi_H^t)$. Then we define

$$
\mathrm{Ham}\,(S,\omega) := \{\varphi_H^1 \mid H \in C^{\infty}([0,1] \times S)\},\
$$

Mathematics Subject Classification: 37J10, 37E30, 37J45

which is the group of Hamiltonian diffeomorphisms. It is known that Ham (S, ω) = $\text{Diff}(S,\omega)$ when S is homeomorphic to the two-sphere.

Throughout this paper, Ham (S, ω) and Diff (S, ω) are equipped with topologies induced from the C^{∞} topology on Diff (S). Now we can state our main result as follows:

Theorem 1.1. Let S be any closed, oriented surface, ω be any area form on S, and $\varphi \in \text{Ham}(S, \omega)$ *. For any nonempty open set* $U \subset S$ *, there exists a sequence* $(\varphi_i)_{i\geq 1}$ *in* Ham (S, ω) *such that* $\mathcal{P}(\varphi_i) \cap U \neq \emptyset$ for every $j \geq 1$ and $\lim_{j\to\infty} \varphi_j = \varphi$.

Using standard arguments, we can prove a C^{∞} general density theorem for Hamiltonian diffeomorphisms.

COROLLARY 1.2. *For any* (S, ω) *as in Theorem* [1.1](#page-1-0)*,*

 $\{\varphi \in \text{Ham}(S, \omega) \mid \mathcal{P}(\varphi) \text{ is dense in } S\}$

is residual (i.e., contains a countable intersection of open and dense sets) in Ham (S, ω) .

Proof. For any nonempty open set $U \subset S$, let \mathcal{H}_U denote the set consisting of $\varphi \in \text{Ham}(S, \omega)$ such that there exists a nondegenerate periodic orbit of φ which intersects U. Then, \mathcal{H}_U is obviously open in Ham (S, ω) , and dense by Theorem [1.1.](#page-1-0) Let $(U_i)_{i\in I}$ be any countable basis of open sets in S. Then $\bigcap_{i\in I} \mathcal{H}_{U_i}$ is residual in Ham (S, ω) , and if $\varphi \in \bigcap_{i \in I} \mathcal{H}_{U_i}$ then $\mathcal{P}(\varphi)$ is dense in S.

We can also prove a C^r general density theorem $(1 \leq r \leq \infty)$ for area-preserving diffeomorphisms of the two-sphere.

COROLLARY 1.3. Let r be a positive integer or ∞ , and let $\text{Diff}_r(S, \omega)$ denote the *set of* C^r *diffeomorphisms of* S *preserving* ω*. When* S *is homeomorphic to the twosphere,*

$$
\{\varphi \in \text{Diff}_r(S,\omega) \mid \mathcal{P}(\varphi) \text{ is dense in } S \}
$$

is residual in $\text{Diff}_r(S, \omega)$ *with the* C^r *topology.*

Proof. The case $r = \infty$ is immediate from Corollary [1.2,](#page-1-1) since Diff $\alpha(S, \omega)$ Ham (S, ω) . The case $1 \leq r < \infty$ follows from the case $r = \infty$ and the fact that $\text{Diff}_{\infty}(S,\omega)$ is dense in $\text{Diff}_r(S,\omega)$ with the C^r topology, which is proved in [\[Zeh77](#page-9-0)]. \Box

REMARK 1.4 (Historical remarks). The $C¹$ closing lemma (and general density the-orem) was first proved for nonconservative dynamics by Pugh [\[Pug67a](#page-9-1), Pug67b], and later proved for conservative dynamics by Pugh–Robinson [\[PR83\]](#page-9-3). In particular, $[PR83]$ $[PR83]$ established the $C¹$ closing lemma for symplectic and volume-preserving diffeomorphisms in arbitrary dimensions. On the other hand, a C^r closing lemma for $r > 2$ is not established except for a few cases (see [\[AZ12\]](#page-8-0) Section 5), and it has been considered as an important open problem in the theory of dynamical systems (in particular, see Smale [\[Sma98](#page-9-4)] Problem 10).

As for the C^r general density theorem for area-preserving diffeomorphisms of closed surfaces (which is completely settled for the two-sphere by Corollary [1.3\)](#page-1-2), as far as the authors know the only affirmative result so far is that the union of the (un)stable manifolds of hyperbolic periodic points are dense in the surface for a C^r generic area-preserving diffeomorphism of a closed surface and $1 \leq r \leq \infty$. This result was proved by Franks–Le Calvez [\[FL03\]](#page-8-1) for the two-sphere and by Xia ([\[Xia06](#page-9-5)]), supplemented by Koropecki–Le Calvez–Nassiri ([\[KLN15\]](#page-9-6), Section 8.5), for a general surface.

Theorem [1.1](#page-1-0) is a consequence of a C^{∞} closing lemma for Reeb flows on closed contact three-manifolds (Lemma [2.1\)](#page-2-0), which was proved in [\[Iri15\]](#page-9-7). For the convenience of the reader, we sketch its proof in Section [2.](#page-2-1) The proof uses recent developments in quantitative aspects of embedded contact homology, in particular the result in [\[CHR15\]](#page-8-2) by Cristofaro-Gardiner, Hutchings and Ramos.

In Section [3,](#page-4-0) we prove a C^{∞} closing lemma for area-preserving diffeomorphisms of a surface with boundary, which satisfy some technical conditions (Lemma [3.1\)](#page-4-1). The idea of the proof is to regard an area-preserving map as a "return map" of a certain Reeb flow, which is inspired by a recent paper [\[Hut15](#page-9-8)] by Hutchings.

In Section [4,](#page-5-0) we prove Theorem [1.1](#page-1-0) using Lemma [3.1](#page-4-1) and an analysis of an area-preserving map near its fixed point. We exploit some classical results in Hamiltonian dynamics: existence of KAM invariant circles for elliptic fixed points, and convergence of the Birkhoff normal form for hyperbolic fixed points.

2 Reeb flows on contact three-manifolds

Let (M, λ) be a contact manifold, where λ denotes the contact form, with the contact distribution $\xi_{\lambda} := \ker \lambda$. The Reeb vector field R_{λ} is defined by equations $\lambda(R_{\lambda}) = 1$, $d\lambda(R_{\lambda},\cdot)=0$. Let $\mathcal{P}(M,\lambda)$ denote the set of periodic orbits of R_{λ} , namely

$$
\mathcal{P}(M,\lambda) := \{ \gamma : \mathbb{R}/T_{\gamma}\mathbb{Z} \to M \mid T_{\gamma} > 0, \, \dot{\gamma} = R_{\lambda}(\gamma) \}.
$$

Lemma [2.1](#page-2-0) below is proved as a claim in the proof of [Iri15] [Iri15] [Iri15] Lemma 3.1 (in a slightly weaker form). The aim of this section is to sketch its proof, referring to [\[Iri15](#page-9-7)] for details.

LEMMA 2.1 ([IRI15]). Let (M, λ) be a closed contact three-manifold. For any $h \in$ $C^{\infty}(M,\mathbb{R}_{\geq 0})\backslash\{0\}$, there exist $t \in [0,1]$ and $\gamma \in \mathcal{P}(M,(1+th)\lambda)$ which intersects supp h*.*

Our proof of Lemma [2.1](#page-2-0) is based on embedded contact homology (ECH). For any closed contact three-manifold (M, λ) and $\Gamma \in H_1(M : \mathbb{Z})$, this theory assigns a $\mathbb{Z}/2$ -vector space^{[1](#page-2-2)} ECH(M, ξ_λ, Γ), which is relatively \mathbb{Z} -graded if $c_1(\xi_\lambda) + 2PD(\Gamma) \in$

¹ ECH can be defined with $\mathbb Z$ coefficients, however $\mathbb Z/2$ coefficients are sufficient for our purpose.

 $H^2(M: \mathbb{Z})$ is torsion (c₁ denotes the first Chern class, and PD denotes the Poincaré dual). It is easy to see that such Γ exists for any (M, ξ_{λ}) .

For each $\sigma \in \text{ECH}(M,\xi_{\lambda},\Gamma)\setminus\{0\}$, one can assign $c_{\sigma}(M,\lambda) \in \mathbb{R}_{>0}$ (see [\[Hut11](#page-9-9)] Section 4.1), the associated *ECH spectral invariant* (this term is not used in [\[Hut11](#page-9-9)]). One can prove the following properties:

(a):
$$
c_{\sigma}(M, \lambda) \in \{0\} \cup \left\{ \sum_{i=1}^{m} T_{\gamma_i} \middle| m \geq 1, \gamma_1, \ldots, \gamma_m \in \mathcal{P}(M, \lambda) \right\}.
$$

- (b): If a sequence $(f_j)_{j\geq 1}$ in $C^{\infty}(M,\mathbb{R}_{>0})$ satisfies $\lim_{j\to\infty}||f_j 1||_{C^0} = 0$, then $\lim_{j\to\infty} c_{\sigma}(M, f_j\lambda) = c_{\sigma}(M, \lambda).$
- (c): Let $\Gamma \in H_1(M : \mathbb{Z})$ be such that $c_1(\xi_\lambda) + 2PD(\Gamma)$ is torsion, and let I denote an arbitrary absolute Z-grading on $\mathrm{ECH}(M,\xi_{\lambda},\Gamma)$.
	- (i): $\text{ECH}(M,\xi_{\lambda},\Gamma)$ is unbounded from above with this Z-grading.
	- (ii): If M is connected, for any sequence $(\sigma_k)_{k>1}$ of nonzero homogeneous elements in ECH(M, ξ_{λ}, Γ) satisfying $\lim_{k\to\infty} I(\sigma_k) = \infty$, there holds

$$
\lim_{k \to \infty} \frac{c_{\sigma_k}(M, \lambda)^2}{I(\sigma_k)} = \int_M \lambda \wedge d\lambda =: \text{vol}(M, \lambda).
$$

(iii): For any $h \in C^{\infty}(M,\mathbb{R}_{\geq 0})\setminus\{0\}$, there exists $\sigma \in \mathrm{ECH}(M,\xi_{\lambda},\Gamma)$ such that $c_{\sigma}(M,(1+h)\lambda) > c_{\sigma}(M,\lambda).$

(a) is $[Iri15]$ Lemma 2.4 (a special case is proved in $[CH16]$ Lemma 3.1). (b) is explained in $\lbrack \text{CH16} \rbrack$ Section 2.5 as the "Continuity axiom". (c)-(i) follows from Seiberg–Witten Floer theory (see [\[CH16\]](#page-8-3) Section 2.6). (c)-(ii) is [\[CHR15](#page-8-2)] Theorem 1.3. (c)-(iii) follows from (i) and (ii), since $vol(M,(1+h)\lambda) > vol(M,\lambda)$.

We also need Lemma [2.2](#page-3-0) below, which is proved by elementary arguments using Sard's theorem (see [\[Iri15\]](#page-9-7) Section 2.1 for details).

LEMMA 2.2 ([\[Iri15](#page-9-7)] Lemma 2.2)*. For any closed contact manifold* (M, λ) *,*

$$
\mathcal{A}(M,\lambda)_+ := \{0\} \cup \left\{ \sum_{i=1}^m T_{\gamma_i} \bigg| m \ge 1, \, \gamma_1, \dots, \gamma_m \in \mathcal{P}(M,\lambda) \right\}
$$

is a null (i.e., Lebesgue measure zero) set.

Proof of Lemma [2.1.](#page-2-0) We may assume that M is connected, and we set $\lambda_t := (1+th)\lambda$ for any $t \in [0,1]$. Suppose that the lemma does not hold, i.e., $\gamma \in \mathcal{P}(M, \lambda_t) \implies$ $\text{Im }\gamma \cap \text{supp } h = \emptyset \text{ for any } t \in [0,1].$ Then $\mathcal{P}(M, \lambda_t) = \mathcal{P}(M, \lambda)$ for any $t \in [0,1],$ since $R_{\lambda_t} = R_{\lambda}$ on $M \sup p h$. Hence $\mathcal{A}(M, \lambda_t)_+ = \mathcal{A}(M, \lambda)_+$ for any $t \in [0, 1]$.

For any $\Gamma \in H_1(M : \mathbb{Z})$, $\sigma \in \text{ECH}(M, \xi_\lambda, \Gamma) \setminus \{0\}$ and $t \in [0, 1]$, (a) shows that

$$
c_{\sigma}(M,\lambda_t) \in \mathcal{A}(M,\lambda_t)_+ = \mathcal{A}(M,\lambda)_+.
$$

(b) shows that $c_{\sigma}(M,\lambda_t)$ is continuous on $t \in [0,1]$. On the other hand, $\mathcal{A}(M,\lambda)_+$ is a null set (Lemma [2.2\)](#page-3-0). Thus $c_{\sigma}(M, \lambda_t)$ is constant on $t \in [0, 1]$, in particular we obtain $c_{\sigma}(M, (1+h)\lambda) = c_{\sigma}(M, \lambda)$ for any σ , which contradicts (c)-(iii). obtain $c_{\sigma}(M,(1+h)\lambda) = c_{\sigma}(M,\lambda)$ for any σ , which contradicts (c)-(iii).

3 Return maps of Reeb flows

The aim of this section is to prove Lemma [3.1](#page-4-1) below. Ω^1 denotes the set of C^{∞} 1-forms.

Lemma 3.1. *Let* S *be any compact, connected surface with boundary such that* ∂S *is diffeomorphic to* S^1 *. Let* ω *be any area form on* S and $\varphi \in \text{Diff}(S, \omega)$ *such that:*

- \bullet $\varphi \equiv \text{ids}$ *near* ∂S *.*
- For any $\beta \in \Omega^1(S)$ *such that* $d\beta = \omega$, $\varphi^* \beta \beta$ *is exact.*

Then, for any nonempty open set U *in* int $S := S \ \delta S$, there exists a sequence $(\varphi_i)_{i\geq 1}$ *in* Diff (S, ω) *such that* $\lim_{i\to\infty} \varphi_i = \varphi$ *, and for every* $j \geq 1$ *there holds*

$$
\mathcal{P}(\varphi_j) \cap U \neq \emptyset, \qquad \text{supp } (\varphi^{-1} \circ \varphi_j) \subset U.
$$

Our idea to prove Lemma [3.1](#page-4-1) is to realize $\varphi|_{\text{int }S}$ as a "return map" of a certain Reeb flow. First we recall the following notion from [\[HWZ98](#page-8-4)].

DEFINITION 3.2. Let (M, λ) be a closed contact three-manifold, and let $(\varphi^t)_{t \in \mathbb{R}}$ denote the flow on M generated by R_{λ} , i.e., $\varphi^0 = id_M$ and $\partial_t \varphi^t = R_{\lambda}(\varphi^t)$. A *global surface of section* in (M, λ) is a compact surface Σ with boundary, which is embedded in M and satisfies the following conditions:

- Each connected component of $\partial \Sigma$ is a (image of) periodic orbit of R_{λ} .
- int Σ is transversal to R_{λ} .
- For any $p \in M \setminus \Sigma$, there exist $t_-(p) \in \mathbb{R}_{< 0}$, $t_+(p) \in \mathbb{R}_{> 0}$ such that $\varphi^{t_-(p)}(p)$, $\varphi^{t_+(p)}(p) \in \Sigma$ and $t \in (t_-(p), t_+(p)) \implies \varphi^t(p) \notin \Sigma$.

Let us define $\pi_{\pm}: M \backslash \Sigma \to \text{int } \Sigma$ by $\pi_{\pm}(p) := \varphi^{t_{\pm}(p)}(p)$. We also define the *return map* $\rho_{M,\lambda,\Sigma}$: int $\Sigma \to \text{int } \Sigma$ so that $\rho_{M,\lambda,\Sigma}(\pi_-(p)) = \pi_+(p)$ for any $p \in M \backslash \Sigma$.

It is easy to see that $\rho_{M,\lambda,\Sigma}$ preserves $d\lambda|_{int\Sigma}$. We abbreviate $\rho_{M,\lambda,\Sigma}$ as ρ_{λ} when there is no risk of confusion.

The next lemma is a small variation of [\[Hut15\]](#page-9-8) Proposition 2.1.

LEMMA 3.3. For any (S, ω, φ) which satisfies the assumptions in Lemma [3.1,](#page-4-1) there *exists* (M, λ, Σ) *such that* $(\text{int } S, \omega, \varphi|_{\text{int } S})$ *is* C^{∞} *conjugate to* $(\text{int } \Sigma, d\lambda, \rho_{M, \lambda, \Sigma})$ *.*

Proof. Let us take a Liouville vector field V on (S, ω) , i.e., $d(i_V \omega) = \omega$ and V is outer normal to ∂S . We set $\beta := i_V \omega$. There exists a local chart $(r, \theta) (\sqrt{1-\varepsilon^2})$ $r \leq 1, \theta \in \mathbb{R}/\mathbb{Z}$ near ∂S such that $\partial S = \{r = 1\}$ and $\beta = ar^2 d\theta$, where $a := \int_S \omega$.

Let $Y := [0,1] \times S/\sim$, where \sim is defined as $(1,x) \sim (0,\varphi(x))$ ($x \in S$). For any $t \in [0,1]$, we define an embedding $e_t : S \to Y$ by $e_t(x) := [(t,x)]$. Then, there exists a contact form λ_Y on Y such that:

- There exists $h \in \mathbb{Z}_{>0}$ such that $\lambda_Y = a(hdt + r^2d\theta)$ near $\partial Y = [0, 1] \times \partial S / \sim$.
- The Reeb vector field R_{λ_Y} is parallel to ∂_t .
- $e_t^* d\lambda_Y = \omega$ for any $t \in [0, 1]$.

 λ_Y is defined as follows: since $\varphi^*\beta - \beta$ is exact, there exists $f \in C^{\infty}(S)$ such that $\varphi^*\beta-\beta=df.$ f is constant near ∂S , since $\varphi\equiv id_S$ near ∂S . By adding a constant, we may assume that min $f > 0$ and $f \equiv ah$ near ∂S for some $h \in \mathbb{Z}_{>0}$. Now we can proceed in exactly the same way as the proof of [\[Hut15\]](#page-9-8) Proposition 2.1.

Let $Z = \mathbb{R}/\mathbb{Z} \times \{z \in \mathbb{C} \mid |z| < \varepsilon\}$, and $C := \mathbb{R}/\mathbb{Z} \times \{0\} \subset Z$. We define $M := \text{int } Y \sqcup Z/\sim$, where \sim is defined as

$$
(t, r, \theta) \sim (\tau, z = \rho e^{\sqrt{-1}\psi}) \iff r^2 + \rho^2 = 1, \psi = 2\pi t, \theta = \tau - ht.
$$

Then, it is easy to see that $\lambda_Y|_{int Y}$ extends to a C^{∞} contact form λ on M, such that C is a periodic orbit of R_λ . Finally, $\Sigma := \{0\} \times \text{int } S \cup C$ is a global surface of section in (M, λ) , and $(int \Sigma, d\lambda, \rho_{M, \lambda, \Sigma})$ is conjugate to $(int S, \omega, \varphi|_{int S})$ via $e_0|_{int S}$. \Box

Proof of Lemma [3.1.](#page-4-1) By Lemma [3.3,](#page-4-2) there exists (M, λ, Σ) such that $(\text{int }\Sigma, d\lambda,$ $(\rho_{M,\lambda,\Sigma})$ is conjugate to (int $S,\omega,\varphi|_{\text{int }S}$) via a diffeomorphism $F: \text{int } S \to \text{int } \Sigma$.

Let us take $h \in C^{\infty}(M,\mathbb{R}_{\geq 0})\backslash\{0\}$ such that supp $h \subset \pi^{-1}(F(U))$. By Lemma [2.1,](#page-2-0) there exists a sequence $(t_j)_{j\geq 1}$ in $\mathbb{R}_{>0}$ such that $\lim_{j\to\infty} t_j = 0$ and for every j there exists $\gamma_j \in \mathcal{P}(M, (1+t_jh)\lambda)$ which intersects supp h.

Let $\lambda_j := (1 + t_j h)\lambda$. Then Σ is a global surface of section in (M, λ_j) for any sufficiently large j, and $\lim_{j\to\infty}\rho_{\lambda_j}=\rho_{\lambda}$ in the C^{∞} topology. Let $K:=\pi_{-}(\mathrm{supp}\,h)\subset$ $F(U)$. For any such j, there holds supp $(\rho_{\lambda}^{-1} \circ \rho_{\lambda_j}) \subset K$ and $\mathcal{P}(\rho_{\lambda_j}) \cap K \neq \emptyset$. Also, ρ_{λ_j} preserves $d\lambda_j|_{\text{int }\Sigma} = d\lambda|_{\text{int }\Sigma}$. Moreover, $F^{-1} \circ \rho_{\lambda_j} \circ F \in \text{Diff}(\text{int }S, \omega)$ extends to $\varphi_j \in \text{Diff}(S, \omega)$ by setting $\varphi_j|_{\partial S} := \text{id}_{\partial S}$, since supp $(\rho_{\lambda}^{-1} \circ \rho_{\lambda_j})$ is compact. Then $(\varphi_i)_i$ satisfies the requirements in the lemma.

4 Proof of Theorem [1.1](#page-1-0)

First we prove the following lemma.

LEMMA 4.1. Let ω be any area form on $A := [0,1] \times S^1$, and U, V be open neigh*borhoods of* $\{1\} \times S^1$ *which are disjoint from* $\{0\} \times S^1$ *. For any diffeomorphism* $\psi : U \to V$ *which satisfies* $\psi^* \omega = \omega$, there exists $\bar{\psi} \in \text{Diff}(A, \omega)$ *which satisfies* $\bar{\psi} \equiv \psi$ *near* $\{1\} \times S^1$ *and* $\bar{\psi} \equiv$ id *near* $\{0\} \times S^1$ *.*

Proof. Since any orientation-preserving diffeomorphism on S^1 is smoothly isotopic to id_{S^{1}}, ψ is smoothly isotopic to id near $\{1\} \times S^1$. Hence there exists $f \in \text{Diff}(A)$ </sub> such that $f \equiv \psi$ near $\{1\} \times S^1$ and $f \equiv id$ near $\{0\} \times S^1$.

 $(f^*\omega - \omega)|_{\text{int }A}$ represents 0 in $H^2_{c, \text{dR}}(\text{int }A)$. Thus there exists $\eta \in \Omega^1(A)$, which vanishes near ∂A and satisfies $d\eta = f^*\omega - \omega$. For any $t \in [0,1]$, let $\omega_t := \omega + t(f^*\omega - \omega)$, and define a vector field X_t by $i_{X_t}\omega_t = \eta$. Then $X_t \equiv 0$ near ∂A . Let $(g_t)_{t\in[0,1]}$ be the isotopy on A defined by $g_0 = id_A$ and $\partial_t g_t = X_t(g_t)$. Then, $\bar{\psi} := f \circ g_1$ satisfies the requirements in the lemma. the requirements in the lemma.

Let us start the proof of Theorem [1.1.](#page-1-0) We may assume that S is connected. Let $\varphi \in \text{Ham}(S, \omega)$, and take $H \in C^{\infty}([0,1] \times S)$ such that $\varphi = \varphi_H^1$. By the Arnold conjecture for surfaces (see [\[Flo86](#page-8-5)] and the references therein), there exists $q \in \text{Fix}(\varphi)$ such that $(\varphi_H^t(q))_{t \in [0,1]}$ forms a contractible loop on S.

LEMMA 4.2. *For any* $\beta \in \Omega^1(S \setminus \{q\})$ *such that* $d\beta = \omega$, $\varphi^* \beta - \beta$ *is exact.*

Proof. It is sufficient to show that any $\gamma : \mathbb{R}/\mathbb{Z} \to S\backslash\{q\}$ satisfies $\int_{\gamma} \varphi^* \beta - \beta = 0$. Let us define $\Gamma : [0,1] \times \mathbb{R}/\mathbb{Z} \to S$ by $\Gamma(t,\theta) := \varphi_H^t(\gamma(\theta))$, then $\int_{\Gamma} \omega = 0$. It is sufficient to prove the following claim:

Claim: There exists a smooth family of maps $(\Gamma_s : [0,1] \times \mathbb{R}/\mathbb{Z} \to S)_{s \in [0,1]}$ such that $\Gamma_0 = \Gamma$, $q \notin \text{Im } \Gamma_1$, and $\Gamma_s|_{\{0,1\}\times\mathbb{R}/\mathbb{Z}} = \Gamma|_{\{0,1\}\times\mathbb{R}/\mathbb{Z}}$ for any $s \in [0,1]$.

Indeed, once we have established the claim, we can complete the proof by

$$
\int_{\gamma} \varphi^* \beta - \beta = \int_{\Gamma_1} d\beta = \int_{\Gamma_1} \omega = \int_{\Gamma_0} \omega = 0.
$$

Now let us prove the above claim. Since $(\varphi_H^t(q))_{t\in[0,1]}$ forms a contractible loop on S, there exists a smooth map $C : [0,1]^2 \rightarrow \widetilde{S}$ such that

$$
C(0,t) = \varphi_H^t(q)
$$
, $C(1,t) = q$, $C(s, 0) = C(s, 1) = q$ ($\forall s, t \in [0, 1]$).

Then there exists a smooth family of vector fields $(\xi_{s,t})_{(s,t)\in[0,1]^2}$, where $\xi_{s,t}$ is a smooth vector field on S for each $(s, t) \in [0, 1]^2$, such that

$$
\xi_{s,0} = \xi_{s,1} = 0 \quad (\forall s \in [0,1]), \quad \xi_{s,t}(C(s,t)) = \partial_s C(s,t) \quad (\forall s, t \in [0,1]).
$$

Let $(\Phi_{s,t})_{(s,t)\in[0,1]^2}$ denote the smooth family of isotopies on S defined by

$$
\Phi_{0,t} = \text{id}_S \quad (\forall t \in [0,1]), \quad \partial_s \Phi_{s,t} = \xi_{s,t}(\Phi_{s,t}) \quad (\forall s, t \in [0,1]).
$$

Then it is easy to see that

$$
C(s,t) = \Phi_{s,t}(\varphi_H^t(q)) \quad (\forall s, t \in [0,1]), \qquad \Phi_{s,0} = \Phi_{s,1} = \text{id}_S \quad (\forall s \in [0,1]).
$$

Now let us define Γ_s by $\Gamma_s(t, \theta) := \Phi_{s,t}(\Gamma(t, \theta))$. The properties $\Gamma_0 = \Gamma$ and $\Gamma_s|_{\{0,1\}\times\mathbb{R}/\mathbb{Z}} = \Gamma|_{\{0,1\}\times\mathbb{R}/\mathbb{Z}}$ ($\forall s \in [0,1]$) are easy to see. The property $q \notin \text{Im }\Gamma_1$ can be confirmed by

$$
\Gamma_1(t,\theta) = \Phi_{1,t}(\Gamma(t,\theta)) = \Phi_{1,t} \circ \varphi_H^t(\gamma(\theta)) \neq \Phi_{1,t} \circ \varphi_H^t(q) = C(1,t) = q.
$$

The middle inequality follows since $\Phi_{1,t}$ and φ_H^t are bijections and $q \notin \text{Im }\gamma$. \Box

Let U be any nonempty open set in S . We may assume that U is diffeomorphic to \mathbb{R}^2 and \bar{U} (the closure of U in S) is disjoint from q. We are going to show that, there exists a sequence $(\varphi_i)_j$ in Ham (S, ω) which satisfies the requirements in Theorem [1.1.](#page-1-0)

Let us take a local chart (x, y) near q such that $q = (0, 0)$ and $\omega = dx \wedge dy$. By adding a C^{∞} small perturbation to φ , we may assume that the following conditions are satisfied:

- The eigenvalues of $d\varphi(q)$ are in $\{z \in \mathbb{C} \mid z^3 \neq 1, z^4 \neq 1\}$. In particular q is a nondegenerate fixed point of φ .
- With respect to the local chart (x, y) , φ is real-analytic near $(0, 0)$.

By the first condition, the fixed point q is either hyperbolic (i.e., the eigenvalues of $d\varphi(q)$ are in $\mathbb{R}\setminus\{\pm 1\}$ or elliptic (i.e., the eigenvalues are in $\{z \in \mathbb{C} \mid |z|=1\} \setminus \{\pm 1\}$). We consider the two cases separately.

The case q **is hyperbolic**

According to the result by Moser ([\[Mos56\]](#page-9-10) Theorem 1), there exists a local chart (X, Y) defined near q such that $q = (0, 0), \omega = dX \wedge dY$ and

$$
\varphi(X, Y) = (u(XY)X, u(XY)^{-1}Y),
$$

where $u(t)$ is a real-analytic function defined near $t = 0$. Notice that $u(0)$ is an eigenvalue of $d\varphi(q)$, in particular nonzero.

Let us take sufficiently small $\varepsilon > 0$, and let $U_{\varepsilon} := \{(X, Y) | X^2 + Y^2 < \varepsilon\}$. Let us define a diffeomorphism $F : (0, \varepsilon/2) \times \mathbb{R}/2\pi\mathbb{Z} \to U_{\varepsilon} \setminus \{q\}$ by

$$
F(r,\theta) := \sqrt{2r}(\cos\theta, \sin\theta),
$$

then $F^*(dX \wedge dY) = dr \wedge d\theta$, and $F^{-1} \circ \varphi \circ F$ is defined on $(0, \delta) \times \mathbb{R}/2\pi\mathbb{Z}$ for sufficiently small $\delta > 0$. Let us define R and Θ by

$$
(R(r,\theta),\Theta(r,\theta)) := F^{-1} \circ \varphi \circ F(r,\theta).
$$

Setting $v(r, \theta) := u(r \cdot \sin 2\theta)$, direct computations show

$$
R(r,\theta) = r \cdot (v(r,\theta)^2 \cos^2 \theta + v(r,\theta)^{-2} \sin^2 \theta),
$$

tan $\Theta(r,\theta) = v(r,\theta)^{-2} \tan \theta$.

Hence, for sufficiently small $\delta' > 0$, $F^{-1} \circ \varphi \circ F$ uniquely extends to $(-\delta', \delta) \times \mathbb{R}/2\pi\mathbb{Z}$ as a real-analytic map, which we denote by ψ . Let $\omega_0 := dr \wedge d\theta$. Since $\psi^* \omega_0 - \omega_0$ is real-analytic and vanishes on $(0, \delta) \times \mathbb{R}/2\pi\mathbb{Z}$, it vanishes on $(-\delta', \delta) \times \mathbb{R}/2\pi\mathbb{Z}$, thus $\psi^*\omega_0 = \omega_0$. By Lemma [4.1,](#page-5-1) there exists $\bar{\psi} \in \text{Diff}([-1,0] \times \mathbb{R}/2\pi\mathbb{Z}, \omega_0)$ such that $\bar{\psi} \equiv \psi$ near $\{0\} \times \mathbb{R}/2\pi\mathbb{Z}$, and $\bar{\psi} \equiv \text{id}$ near $\{-1\} \times \mathbb{R}/2\pi\mathbb{Z}$.

Let $\bar{S} := ([-1, \delta) \times \mathbb{R}/2\pi\mathbb{Z}) \cup_F (S \setminus \{q\})$. We define an area form $\bar{\omega}$ on \bar{S} by

$$
\bar{\omega}|_{[-1,\delta)\times\mathbb{R}/2\pi\mathbb{Z}}=\omega_0,\qquad \bar{\omega}|_{S\setminus\{q\}}=\omega.
$$

We also define $\overline{\varphi} \in \text{Diff}(\overline{S}, \overline{\omega})$ by $\overline{\varphi}|_{[-1,0]\times\mathbb{R}/2\pi\mathbb{Z}} = \overline{\psi}$ and $\overline{\varphi}|_{S\setminus\{q\}} = \varphi$.

By Lemma [4.2,](#page-6-0) one can apply Lemma [3.1](#page-4-1) for $(S, \bar{\omega}, \bar{\varphi})$. Then there exists a sequence $(\bar{\varphi}_i)_j$ in Diff $(S,\bar{\omega})$ such that supp $(\bar{\varphi}^{-1} \circ \bar{\varphi}_j) \subset U$, $\mathcal{P}(\bar{\varphi}_j) \cap U \neq \emptyset$ for every j, and $\lim_{j\to\infty}\bar{\varphi}_j=\bar{\varphi}$. For each j, $\bar{\varphi}_j|_{S\setminus\{q\}}$ extends to $\varphi_j\in\text{Diff}(S,\omega)$ by $\varphi_j(q):=q$. Moreover $\varphi_j \in \text{Ham}(S, \omega)$, since supp $(\varphi^{-1} \circ \varphi_j) \subset U$ and U is diffeomorphic to \mathbb{R}^2 . Then, the sequence $(\varphi_j)_j$ satisfies the requirements in Theorem [1.1.](#page-1-0)

The case q **is elliptic**

We assumed that the eigenvalues of $d\varphi(q)$ are in $\{z \in \mathbb{C} \mid z^3 \neq 1, z^4 \neq 1\}$. Then, there exists a local chart (X, Y) near q such that $q = (0, 0)$, $\omega = dX \wedge dY$ and

$$
\varphi(X,Y) = (\cos \theta(X,Y)X - \sin \theta(X,Y)Y, \sin \theta(X,Y)X + \cos \theta(X,Y)Y) + O_4(X,Y),
$$

where $\theta(X, Y) = \theta_0 + \theta_1 (X^2 + Y^2)$ (θ_0, θ_1 are real constants), and O_4 is a real-analytic map whose expansion involves terms of order \geq 4 only (see [\[SM95\]](#page-9-11) Section 32 and Section 23, pp. 172–173).

By adding a C^{∞} small perturbation to φ , we may assume that $\theta_1 \neq 0$. Then, there exists a neighborhood D of q which is diffeomorphic to D^2 , preserved by φ and sufficiently close to q such that $D \cap \overline{U} = \emptyset$ (see [\[SM95\]](#page-9-11) Section 34). ∂D is a so called KAM invariant circle.

Again by Lemmas [4.1](#page-5-1) and [4.2,](#page-6-0) one can apply Lemma [3.1](#page-4-1) to conclude that there exists a sequence $(\varphi'_j)_j$ in Diff $(S \ D, \omega)$ such that $\mathcal{P}(\varphi'_j) \cap U \neq \emptyset$, supp $(\varphi^{-1} \circ \varphi'_j) \subset U$ for every j, and $\lim_{j\to\infty}\varphi'_j=\varphi|_{S\setminus D}$. Every φ'_j extends to $\varphi_j\in\text{Diff}(S,\omega)$ by setting $\varphi_j|_D := \varphi|_D$. $\varphi_j \in \text{Ham}(S, \omega)$ since supp $(\varphi^{-1} \circ \varphi_j) \subset U$ and U is diffeomorphic to \mathbb{R}^2 . The sequence $(\varphi_j)_j$ satisfies the requirements in Theorem [1.1.](#page-1-0)

Acknowledgments

We are grateful to the referees for their comments which are very helpful to improve presentations of the paper. We also appreciate Kenji Fukaya, Viktor Ginzburg, Yi-Jen Lee and Kaoru Ono for useful conversations. MA is supported by JSPS Grantin-Aid for Scientific Research (C) (26400085). KI is supported by JSPS Grant-in-Aid for Young Scientists (B) (25800041) and JSPS Postdoctoral Fellowships for Research Abroad. KI also acknowledges the Simons Center for Geometry and Physics in Stony Brook University, where a part of the revision of this paper took place.

References

- [AZ12] D.V. Anosov and E.V. Zhuzhoma. Closing lemmas. *Differential Equations*, (13)**48** (2012), 1653–1699
- [CH16] D. CRISTOFARO-GARDINER and M. HUTCHINGS. From one Reeb orbit to two. *Journal of Differential Geometry*, (1)**102** (2016), 25–36
- [CHR15] D. Cristofaro-Gardiner, M. Hutchings and V.G.B. Ramos. The asymptotics of ECH capacities. *Inventiones Mathematicae*, (1)**199** (2015), 187–214
- [Flo86] A. Floer. Proof of the Arnold conjecture for surfaces and generalizations to certain K¨ahler manifolds. *Duke Mathematical Journal*, (1)**53** (1986), 1–32
- [FL03] J. Franks and P. Le Calvez. Regions of instability for non-twist maps. *Ergodic Theory and Dynamical Systems*, (1)**23** (2003), 111–141
- [HWZ98] H. Hofer, K. Wysocki and E. Zehnder. The dynamics on three-dimensional strictly convex energy surfaces. *Annals of Mathematics (2)*, (1)**148** (1998), 197– 289
- [Hut11] M. Hutchings. Quantitative embedded contact homology. *Journal of Differential Geometry*, (2)**88** (2011), 231–266
- [Hut15] M. HUTCHINGS. Mean action and the Calabi invariant (2015). [arXiv:1509.02183v3](http://arxiv.org/abs/1509.02183v3)
- [Iri15] K. IRIE. Dense existence of periodic Reeb orbits and ECH spectral invariants. *Journal of Modern Dynamics* **9** (2015), 357–363
- [KLN15] A. Koropecki, P. Le Calvez and M. Nassiri. Prime ends rotation numbers and periodic points. *Duke Mathematical Journal*, (3)**164** (2015), 403–472
- [Mos56] J. Moser. The analytic invariants of an area-preserving mapping near a hyperbolic fixed point. *Communications on Pure and Applied Mathematics* (4)**9** (1956), 673–692
- [Pug67a] C.C. Pugh. The closing lemma. *American Journal of Mathematics* (4)**89** (1967), 956–1009
- [Pug67b] C.C. Pugh. An improved closing lemma and a General density theorem. *American Journal of Mathematics* (4)**89** (1967), 1010–1021
- [PR83] C.C. PUGH and C. ROBINSON. The $C¹$ closing lemma, including Hamiltonians. *Ergodic Theory and Dynamical Systems* (2)**3** (1983), 261–313
- [SM95] C.L. Siegel and J.K. Moser. *Lectures on celestial mechanics. Classics in Mathematics*. Springer-Verlag, Berlin (1995)
- [Sma98] S. Smale. Mathematical problems for the next century. *The Mathematical Intelligencer* (2)**20** (1998), 7–15
- [Xia06] Z. Xia. Area-preserving surface diffeomorphisms. *Communications in Mathematical Physics* (3)**263** (2006), 723–735
- [Zeh77] E. Zehnder. *Note on smoothing symplectic and volume-preserving diffeomorphisms. Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976)*, pp. 828–854. Lecture Notes in Math., Vol. 597, Springer, Berlin (1977)

Masayuki Asaoka, Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan asaoka@math.kyoto-u.ac.jp

KEI IRIE, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan

and

Simons Center for Geometry and Physics, State University of New York, Stony Brook, NY 11794-3636, USA iriek@kurims.kyoto-u.ac.jp

> Received: April 16, 2016 Accepted: September 8, 2016