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CONVEXITY AND ZARISKI DECOMPOSITION STRUCTURE

Brian Lehmann and Jian Xiao

Abstract. This is the first part of our work on Zariski decomposition structures,
where we study Zariski decompositions using Legendre–Fenchel type transforms. In
this way we define a Zariski decomposition for curve classes. This decomposition
enables us to develop the theory of the volume function for curves defined by the
second named author, yielding some fundamental positivity results for curve classes.
For varieties with special structures, the Zariski decomposition for curve classes
admits an interesting geometric interpretation.

1 Introduction

In [Zar62] Zariski introduced a fundamental tool for studying linear series on a
surface now known as a Zariski decomposition. Over the past 50 years the Zariski
decomposition and its generalizations to divisors in higher dimensions have played a
central role in birational geometry. In this paper we apply abstract convex analysis
to the study of Zariski decompositions. The key perspective is that a Zariski decom-
position captures the failure of strict log concavity of a volume function, and thus
can be studied using Legendre–Fenchel type transforms. Surprisingly, such trans-
forms capture rich geometric information about the variety, a posteriori motivating
many well-known geometric inequalities for pseudo-effective divisors.

There are two natural dualities for cones of divisors and curves: the nef cone of
divisors Nef1(X) is dual to the pseudo-effective cone of curves Eff1(X) and the
pseudo-effective cone of divisors Eff1(X) is dual to the movable cone of curves
Mov1(X). In this paper we study the first duality, obtaining a Zariski decomposi-
tion for curve classes on varieties of arbitrary dimension which generalizes Zariski’s
original construction. In the sequel [LX15], we will focus on the second duality and
study σ-decompositions from the perspective of convex analysis.

Throughout we work over C, but the main results also hold over any algebraically
closed field or in the Kähler setting (see Section 1.7).

1.1 Zariski decomposition. We define a Zariski decomposition for big curve
classes—elements of the interior of the pseudo-effective cone of curves Eff1(X).
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Definition 1.1. Let X be a projective variety of dimension n and let α ∈ Eff1(X)◦

be a big curve class. Then a Zariski decomposition for α is a decomposition

α = Bn−1 + γ

where B is a big and nef R-Cartier divisor class, γ is pseudo-effective, and B ·γ = 0.
We call Bn−1 the “positive part” and γ the “negative part” of the decomposition.

This definition directly generalizes Zariski’s original definition, which (for big
classes) is given by similar intersection criteria. As we will see shortly in Section
1.2, it also mirrors the σ-decomposition of [Nak04] and the Zariski decomposition of
[FL13]. Our first theorem is:

Theorem 1.2. Let X be a projective variety of dimension n and let α ∈ Eff1(X)◦

be a big curve class. Then α admits a unique Zariski decomposition α = Bn−1 + γ.

Example 1.3. If X is an algebraic surface, then the Zariski decomposition provided
by Theorem 1.2 coincides (for big classes) with the numerical version of the classical
definition of [Zar62]. Indeed, using Proposition 5.14 one sees that the negative part
γ is represented by an effective curve N . The self-intersection matrix of N must
be negative-definite by the Hodge Index Theorem. (See e.g. [Nak04] for another
perspective focusing on the volume function.)

1.2 Convexity and Zariski decompositions. According to the philosophy
of [FL13], the key property of the Zariski decomposition (or σ-decomposition for
divisors) is that it captures the failure of the volume function to be strictly log-
concave. The Zariski decomposition for curves plays a similar role for the following
interesting volume-type function defined in [Xia15].

Definition 1.4 (see [Xia15, Definition 1.1]). Let X be a projective variety of di-
mension n and let α ∈ Eff1(X) be a pseudo-effective curve class. Then the volume
of α is defined to be

̂vol(α) = inf
A big and nef divisor class

(

A · α

vol(A)1/n

) n

n−1

.

We say that a big and nef divisor class A computes ̂vol(α) if this infimum is achieved

by A. When α is a curve class that is not pseudo-effective, we set ̂vol(α) = 0.

The function ̂vol is a polar transformation of the volume function for ample divi-
sors. In our setting, the polar transformation plays the role of the Legendre–Fenchel
transform of classical convex analysis, linking the differentiability of a function to
the strict convexity of its transform. From this viewpoint, Definition 1.1 is important
precisely because it captures the log concavity of ̂vol.
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Theorem 1.5. Let X be a smooth projective variety of dimension n. Let α1, α2 ∈
Eff1(X) be two big curve classes. Then

̂vol(α1 + α2)n−1/n ≥ ̂vol(α1)n−1/n + ̂vol(α2)n−1/n

with equality if and only if the positive parts in the Zariski decompositions of α1

and α2 are proportional.

As an important special case, the positive part of a curve class has the same
volume as the original class, showing the similarity with the σ-decomposition. Fur-
thermore, just in Zariski’s classical work, the “projection” onto the positive part
elucidates the intersection-theoretic nature of the volume.

Theorem 1.6. Let X be a projective variety of dimension n and let α ∈ Eff1(X)◦

be a big curve class. Suppose that α = Bn−1 + γ is the Zariski decomposition of α.
Then

̂vol(α) = ̂vol(Bn−1) = Bn

and B is the unique big and nef divisor class with this property such that α − Bn−1

is pseudo-effective.

Example 1.7. [KM13] gives an interesting extension of the σ-decomposition to b-
divisors. Indeed, only by considering all birational models at once can we interpret
the volume and σ-decomposition of divisors via intersection theory.

An important feature of Zariski decompositions and ̂vol for curves is that they
can be calculated via intersection theory directly on X once one has identified the
nef cone of divisors. This is illustrated by Example 5.5 where we calculate the Zariski
decomposition of any curve class on the projective bundle over P

1 defined by O ⊕
O ⊕ O(−1).

Remark 1.8. [Leh13] defines a positivity function for curves similar to ̂vol known as
the mobility, and [FL13] uses the mobility to describe a “Zariski-type” decomposition
for a big curve class α. This decomposition is α = P + N where P is a movable
curve class whose mobility is the same as that of α and where N is pseudo-effective.
Conjecturally, the volume and the mobility coincide (see [LX15]). Assuming this
conjecture, by Theorem 1.6 the decomposition of [FL13] differs from the Zariski
decomposition in that the positive part is only required to lie in a slightly larger
cone. See Section 5.2.1 for a more in-depth comparison, as well as a discussion of
several other similar decompositions in the literature.

1.3 Formal Zariski decompositions. The Zariski decomposition for curves
can be deduced from a general theory of duality for log concave homogeneous func-
tions defined on cones. We define a “formal” Zariski decomposition capturing the
failure of strict log concavity of a certain class of homogeneous functions on finite-
dimensional cones.
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Let C be a full dimensional closed proper convex cone in a finite dimensional
vector space. For any s > 1, let HConcs(C) denote the collection of functions f :
C → R that are upper-semicontinuous, homogeneous of weight s > 1, strictly positive
on the interior of C, and which are s-concave in the sense that

f(v)1/s + f(x)1/s ≤ f(x + v)1/s

for any v, x ∈ C. In this context, the correct analogue of the Legendre–Fenchel
transform is the (concave homogeneous) polar transform. For any f ∈ HConcs(C),
the polar Hf is an element of HConcs/s−1(C∗) for the dual cone C∗ defined as

Hf(w∗) = inf
v∈C◦

(

w∗ · v

f(v)1/s

)s/s−1

∀w∗ ∈ C∗.

We define what it means for f ∈ HConcs(C) to have a Zariski decomposition struc-
ture and show that it follows from a differentiability condition for Hf , and vice
versa (see Section 4). Just as in the classical definition of Zariski, one can view this
structure as a decomposition of the elements of C◦ into “positive parts” retaining
the value of f and “negative parts” along which the strict log concavity of f fails.

Example 1.9. Let q be a bilinear form on a vector space V of signature (1, dim V −1)
and set f(v) = q(v, v). Suppose C is a closed full-dimensional convex cone on which
f is non-negative. Identifying V with V ∗ under q, we see that C ⊂ C∗ and that
Hf |C = f by the Hodge inequality. Then Hf on the entire cone C∗ is controlled by
a Zariski decomposition with positive parts lying in C.

This is of course the familiar picture for surfaces, where f is the self-intersection
on the nef cone and Hf is the volume on the pseudo-effective cone. Thus we see that
the conclusion of Example 1.3—that vol and ̂vol coincide on surfaces—is a direct
consequence of the Hodge Index Theorem for surfaces. Furthermore, we obtain a
theoretical perspective motivating the linear algebra calculations of [Zar62].

Many of the basic geometric inequalities in algebraic geometry—and hence for
polytopes or convex bodies via toric varieties (as in [Tei82] and [Kho89] and the
references therein)—can be understood using this abstract framework. A posteriori
this theory motivates many well-known theorems about the volume of divisors (which
can itself be interpreted as a polar transform). In particular, the σ-decomposition
for divisor classes can be also interpreted by our general theory (see [LX15]).

1.4 Positivity of curves. The volume function for curves shares many of the
important properties of the volume function for divisors. This is no accident—as
explained above, polar duality behaves compatibly with many topological properties
and with geometric inequalities. Clearly the volume function is homogeneous and it
is not hard to show that it is positive precisely on the big cone of curves. Perhaps
the most important property is the following description of the derivative, which
mirrors the results of [BFJ09] and [LM09] for divisors.
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Theorem 1.10. Let X be a projective variety of dimension n. Then the function
̂vol is C1 on the big cone of curves. More precisely, let α be a big curve class on X
and write α = Bn−1 + γ for its Zariski decomposition. For any curve class β, we
have

d

dt

∣

∣

∣

∣

t=0

̂vol(α + tβ) =
n

n − 1
B · β.

Another key property of the σ-decomposition for divisors is that the negative
part is effective. While the negative part of the Zariski decomposition for curves
need not be effective, the correct analogue is given by the following proposition.

Proposition 1.11. Let X be a projective variety of dimension n. Let α be a big
curve class and write α = Bn−1 + γ for its Zariski decomposition. There is a proper
subscheme i : V � X and a pseudo-effective class γ′ ∈ N1(V ) such that i∗γ′ = γ.

By analogy with the algebraic Morse inequality for nef divisors, we prove a Morse-
type inequality for curves.

Theorem 1.12. Let X be a smooth projective variety of dimension n. Let α be a
big curve class and let β be a nef curve class. Write α = Bn−1 + γ for the Zariski
decomposition of α. If

̂vol(α) − nB · β > 0,

then α − β is big.

1.5 Examples. The Zariski decomposition is particularly striking for varieties
with a rich geometric structure. We discuss two classes of examples: toric varieties
and hyperkähler manifolds.

The complete intersection cone CI1(X) is defined to be the closure of the set of
classes of the form An−1 for an ample divisor A on X. Note that the positive part of
the Zariski decomposition takes values in CI1(X). We should emphasize that CI1(X)
need not be convex—the appendix gives an explicit example.

1.5.1 Toric varieties. Let X be a simplicial projective toric variety of dimension
n defined by a fan Σ. Suppose that the curve class α lies in the interior of the movable
cone of curves, or equivalently, α is defined by a positive Minkowski weight on the
rays of Σ. A classical theorem of Minkowski attaches to such a weight a polytope
Pα whose facet normals are the rays of Σ and whose facet volumes are determined
by the weights.

In this setting, the volume of the curve class α is calculated by a mixed volume
problem: amongst all polytopes whose normal fan refines Σ there is a unique Q (up
to homothety) minimizing the mixed volume calculation

(

V (Pn−1
α , Q)

vol(Q)1/n

)n/n−1

.
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The volume of α is n! times this minimum value, and the positive part of α is
proportional to the (n − 1)-product of the big and nef divisor corresponding to Q.
This mixed volume problem is unusual in that it can be solved algorithmically using
the procedure described in Section 6.

For comparison, recall that if instead we let Q vary over all polytopes then the
Brunn–Minkowski inequality shows that the mixed volume is minimized when Q is
(any rescaling of) Pα. The normal fan condition on Q yields a new twist of this
classical problem with interesting algebro-geometric content.

1.5.2 Hyperkähler manifolds. For a hyperkähler manifold X, the results of [Bou04,
Section 4] show that the volume and σ-decomposition of divisors satisfy a natural
compatibility with the Beauville–Bogomolov form. We prove the analogous prop-
erties for curve classes. The following theorem is phrased in the Kähler setting,
although the analogous statements in the projective setting are also true.

Theorem 1.13. Let X be a hyperkähler manifold of dimension n and let q denote
the bilinear form on Hn−1,n−1(X) induced via duality from the Beauville–Bogomolov
form on H1,1(X).

(1) The cone of complete intersection (n − 1, n − 1)-classes is q-dual to the cone of
pseudo-effective (n − 1, n − 1)-classes.

(2) If α is a complete intersection (n−1, n−1)-class then ̂vol(α) = q(α, α)n/2(n−1).
(3) Suppose α lies in the interior of the cone of pseudo-effective (n−1, n−1)-classes

and write α = Bn−1 + γ for its Zariski decomposition. Then q(Bn−1, γ) = 0
and if γ is non-zero then q(γ, γ) < 0.

1.6 Connections with birational geometry. Finally, we briefly discuss the
relationship between the volume function for curves and several other topics in bira-
tional geometry. A basic technique in birational geometry is to bound the positivity
of a divisor using its intersections against specified curves. These results can prof-
itably be reinterpreted using the volume function of curves.

Proposition 1.14. Let X be a smooth projective variety of dimension n. Choose
positive integers {ki}r

i=1. Suppose that α ∈ Mov1(X) is represented by a family of
irreducible curves such that for any collection of general points x1, x2, . . . , xr, y of X,
there is a curve in our family which contains y and contains each xi with multiplicity
≥ ki. Then

̂vol(α)n−1/n ≥
∑

i ki

r1/n
.

We can thus apply volumes of curves to study Seshadri constants, bounds on
volume of divisors, and other related topics. We defer a more in-depth discussion to
Section 8, contenting ourselves with a fascinating example.
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Example 1.15. If X is rationally connected, it is interesting to analyze the possible
volumes for classes of special rational curves on X. When X is a Fano variety of
Picard rank 1, these invariants will be closely related to classical invariants such as
the length and degree.

For example, we say that α ∈ N1(X) is a rationally connecting class if for any
two general points of X there is a chain of rational curves of class α connecting the
two points. Is there a uniform upper bound (depending only on the dimension) for
the minimal volume of a rationally connecting class on a rationally connected X?
[KMM92] and [Cam92] show that this is true for smooth Fano varieties. We discuss
this question briefly in Section 8.2.

1.7 Outline of paper. In this paper we will work with projective varieties over
C for simplicity of arguments and for compatibility with cited references. However,
all the results will extend to smooth varieties over arbitrary algebraically closed
fields on the one hand and arbitrary compact Kähler manifolds on the other. We
give a general framework for this extension in Sections 2.3 and 2.4 and then explain
the details as we go.

In Section 2 we review the necessary background, and make several notes ex-
plaining how the proofs can be adjusted to arbitrary algebraically closed fields and
compact Kähler manifolds. Sections 3 and 4 discuss polar transforms and formal
Zariski decompositions for log concave functions. In Section 5 we construct the
Zariski decomposition of curves and study its basic properties and its relationship
with ̂vol. Section 6 discusses toric varieties, and Section 7 is devoted to the study
of hyperkähler manifolds. Section 8 discusses connections with other areas of bira-
tional and complex geometry. Finally, the appendix gives a toric example where the
complete intersection cone of curves is not convex.

2 Preliminaries

In this section, we first fix some notation. When X is a projective variety, we consider
the following spaces and positive cones:

• N1(X): the real vector space of numerical classes of divisors;
• N1(X): the real vector space of numerical classes of curves;
• Eff1(X): the cone of pseudo-effective divisor classes;
• Nef1(X): the cone of nef divisor classes;
• Mov1(X): the cone of movable divisor classes;
• Mov1(X): the cone of movable curve classes, equivalently by [BDPP13] the

dual of Eff1(X);
• CI1(X): the closure of the set of all curve classes of the form An−1 for an ample

divisor A.

With only a few exceptions, capital letters A, B, D, L will denote R-Cartier divisor
classes and Greek letters α, β, γ will denote curve classes. For two curve classes α, β,



1142 B. LEHMANN AND J. XIAO GAFA

we write α 	 β (resp. α 
 β) to denote that α−β (resp. β −α) belongs to Eff1(X).
We will do similarly for divisor classes.

We will use the notation 〈−〉 for the positive product on smooth varieties as in
[BDPP13], [BFJ09] and [Bou02].

To extend our results to arbitrary compact Kähler manifolds, we need to deal
with transcendental objects which are not given by divisors or curves. Let X be a
compact Kähler manifold of dimension n. By analogue with the projective situation,
we need to deal with the following spaces and positive cones:

• H1,1
BC(X, R): the real Bott–Chern cohomology group of bidegree (1, 1);

• Hn−1,n−1
BC (X, R): the real Bott–Chern cohomology group of bidegree (n−1, n−1);

• N (X): the cone of pseudo-effective (n − 1, n − 1)-classes;
• M(X): the cone of movable (n − 1, n − 1)-classes;
• K(X): the cone of nef (1, 1)-classes, equivalently the closure of the Kähler cone;
• E(X): the cone of pseudo-effective (1, 1)-classes.

Recall that we call a Bott–Chern class pseudo-effective if it contains a d-closed
positive current, and call an (n − 1, n − 1)-class movable if it is contained in the
closure of the cone generated by the classes of the form μ∗(ω̃1 ∧ · · · ∧ ω̃n−1) where
μ : ˜X → X is a modification and ω̃1, . . . , ω̃n−1 are Kähler metrics on ˜X. For the
basic theory of positive currents, we refer the reader to [Dem12].

If X is a smooth projective variety over C, then we have the following relations
(see e.g. [BDPP13])

Nef1(X) = K(X) ∩ N1(X), Eff1(X) = E(X) ∩ N1(X)

and

Eff1(X) = N (X) ∩ N1(X), Mov1(X) = M(X) ∩ N1(X).

2.1 Khovanskii–Teissier inequalities. We collect several results which we
will frequently use in our paper. In every case, the statement for arbitrary projec-
tive varieties follows from the familiar smooth versions via a pullback argument.
Recall the well-known Khovanskii–Teissier inequalities for a pair of nef divisors over
projective varieties (see e.g. [Tei79]).

• Let X be a projective variety and let A, B be two nef divisor classes on X.
Then we have

An−1 · B ≥ (An)n−1/n(Bn)1/n.

We also need the characterization of the equality case in the above inequality as
in [BFJ09, Theorem D]—see also [FX14b] for the analytic proof for transcendental
classes in the Kähler setting. (We call this characterization Teissier’s proportionality
theorem as it was first proposed and studied by B. Teissier.)
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• Let X be a projective variety and let A, B be two big and nef divisor classes
on X. Then

An−1 · B = (An)n−1/n(Bn)1/n

if and only if A and B are proportional.

We next prove a more general version of Teissier’s proportionality theorem for n
big and nef (1, 1)-classes over compact Kähler manifolds (thus including projective
varieties defined over C) which follows easily from the result of [FX14b]. This result
should be useful in the study of the structure of complete intersection cone CI1(X).

Theorem 2.1. Let X be a compact Kähler manifold of dimension n, and let
B1, . . . , Bn be n big and nef (1, 1)-classes over X. Then we have

B1 · B2 · · ·Bn ≥ (Bn
1 )1/n · (Bn

2 )1/n · · · (Bn
n)1/n,

where the equality is obtained if and only if B1, . . . , Bn are proportional.

Note that [Laz04, Theorem 1.6.1] proves the inequality in the algebraic set-
ting, and [Dem93] proves the inequality in the analytic setting by Monge–Ampère
equations. However, neither reference proves the characterization of the equality
in Theorem 2.1. Our proof reduces the global inequalities to the pointwise Brunn–
Minkowski inequalities by solving degenerate Monge–Ampère equations [FX14b] and
then applies the result of [FX14b]—where the key technique and estimates go back
to [FX14a]—for a pair of big and nef classes (see also [BFJ09, Theorem D] for divisor
classes).

Recall that the ample locus Amp(D) of a big (1, 1)-class D is the set of points
x ∈ X such that there is a strictly positive current Tx ∈ D with analytic singularities
which is smooth near x. When L is a big R-divisor class on a smooth projective va-
riety X, then the ample locus Amp(L) is equal to the complement of the augmented
base locus B+(L) (see [Bou04]).

Proof. Without loss of generality, we can assume all the Bn
i = 1. Then we need to

prove

B1 · B2 · · ·Bn ≥ 1,

with the equality obtained if and only if B1, . . . , Bn are equal.
To this end, we fix a smooth volume form Φ with vol(Φ) = 1. We choose a smooth

(1, 1)-form bj in the class Bj . Then by [BEGZ10, Theorem C], for every class Bj we
can solve the following singular Monge–Ampère equation

〈(bj + i∂∂̄ψj)n〉 = Φ,

where 〈−〉 denotes the non-pluripolar products of positive currents (see [BEGZ10,
Definition 1.1 and Proposition 1.6]).
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Denote Tj = bj + i∂∂̄ψj , then [BEGZ10, Theorem B] implies Tj is a positive
current with minimal singularities in the class Bj . Moreover, Tj is a Kähler metric
over the ample locus Amp(Bj) of the big class Bj by [BEGZ10, Theorem C].

Note that Amp(Bj) is a Zariski open set of X. Denote Ω = Amp(B1) ∩ · · · ∩
Amp(Bn), which is also a Zariski open set. By [BEGZ10, Definition 1.17], we then
have

B1 · B2 · · ·Bn =
∫

X
〈T1 ∧ · · · ∧ Tn〉

=
∫

Ω
T1 ∧ · · · ∧ Tn,

where the second line follows because the non-pluripolar product 〈T1 ∧· · ·∧Tn〉 puts
no mass on the subvariety X \ Ω and all the Tj are Kähler metrics over Ω.

For any point x ∈ Ω, we have the following pointwise Brunn–Minkowski inequal-
ity

T1 ∧ · · · ∧ Tn ≥
(

Tn
1

Φ

)1/n

· · ·
(

Tn
n

Φ

)1/n

Φ = Φ

with equality if and only if the Kähler metrics Tj are proportional at x. Here the
second equality follows because we have Tn

j = Φ on Ω. In particular, we get the
Khovanskii–Teissier inequality

B1 · B2 · · ·Bn ≥ 1.

And we know the equality B1 · B2 · · ·Bn = 1 holds if and only if the Kähler metrics
Tj are pointwise proportional. At this step, we can not conclude that the Kähler
metrics Tj are equal over Ω since we can not control the proportionality constants
from the pointwise Brunn–Minkowski inequalities. However, for any pair of Ti and
Tj , we have the following pointwise equality over Ω:

Tn−1
i ∧ Tj =

(

Tn
i

Φ

)n−1/n

·
(

Tn
j

Φ

)1/n

Φ,

since Ti and Tj are pointwise proportional over Ω. This implies the equality

Bn−1
i · Bj = 1.

Then by the pointwise estimates of [FX14b], we know the currents Ti and Tj must
be equal over X, which implies Bi = Bj .

In conclusion, we get that B1 · B2 · · ·Bn = 1 if and only if the Bj are equal. ��



GAFA CONVEXITY AND ZARISKI DECOMPOSITION 1145

2.2 Complete intersection cone. Since the complete intersection cone plays
an important role in the paper, we quickly outline its basic properties. Recall that
CI1(X) is the closure of the set of all curve classes of the form An−1 for an ample
divisor A. It naturally has the structure of a closed pointed cone.

Proposition 2.2. Let X be a projective variety of dimension n. Suppose that α ∈
CI1(X) lies on the boundary of the cone. Then either

(1) α = Bn−1 for some big and nef divisor class B, or
(2) α lies on the boundary of Eff1(X).

Proof. We fix an ample divisor class K. Since α ∈ CI1(X) is a boundary point of
the cone, we can write α as the limit of classes An−1

i for some sequence of ample
divisor classes Ai.

First suppose that the values of Ai ·Kn−1 are bounded above as i varies. Then the
classes of the divisor Ai vary in a compact set, so they have some nef accumulation
point B. Clearly α = Bn−1. Furthermore, if B is not big then α will lie on the
boundary of Eff1(X) since in this case Bn−1 · B = 0. If B is big, then it is not
ample, since the map A �→ An−1 from the ample cone of divisors to N1(X) is locally
surjective. Thus in this case B is big and nef.

Now suppose that the values of Ai · Kn−1 do not have any upper bound. Since
the An−1

i limit to α, for i sufficiently large we have

2(α · K) > An−1
i · K ≥ vol(Ai)n−1/n vol(K)1/n

by the Khovanskii–Teissier inequality. In particular this shows that vol(Ai) admits
an upper bound as i varies. Note that the classes Ai/(Kn−1 · Ai) vary in a compact
slice of the nef cone of divisors. Without loss of generality, we can assume they limit
to a nef divisor class B. Then we have

B · α = lim
i→∞

Ai

Kn−1 · Ai
· An−1

i

= lim
i→∞

vol(Ai)
Kn−1 · Ai

= 0.

The last equality holds because vol(Ai) is bounded above but Ai · Kn−1 is not.
So in this case α must be on the boundary of the pseudo-effective cone Eff1. ��

The complete intersection cone differs from most cones considered in birational
geometry in that it is not convex. Since we are not aware of any such example in the
literature, we give a toric example from [FS09] in the appendix. The same example
shows that the cone that is the closure of all products of (n − 1) ample divisors is
also not convex.
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Remark 2.3. It is still true that CI1(X) is “locally convex”. Let A, B be two ample
divisor classes. If ε is sufficiently small, then

An−1 + εBn−1 = An−1
ε

for a unique ample divisor Aε. The existence of Aε follows from the Hard Lefschetz
theorem. Consider the following smooth map

Φ : N1(X) → N1(X)

sending D to Dn−1. By the Hard Lefschetz theorem, the derivative dΦ is an isomor-
phism at the point A. Thus Φ is local diffeomorphism near A, yielding the existence
of Aε. The uniqueness follows from Teissier’s proportionality theorem. (See [GT13]
for a more in-depth discussion.)

Another natural question is:

Question 2.4. Suppose that X is a projective variety of dimension n and that
{Ai}n−1

i=1 are ample divisor classes on X. Then is A1 · . . . · An−1 ∈ CI1(X)?

One can imagine that such a statement may be studied using an “averaging”
method. We hope Theorem 2.1 would be helpful in the study of this problem.

2.3 Fields of characteristic p. Almost all the results in the paper will hold for
smooth varieties over an arbitrary algebraically closed field. The necessary technical
generalizations are verified in the following references:

• [Laz04, Remark 1.6.5] checks that the Khovanskii–Teissier inequalities hold
over an arbitrary algebraically closed field.

• The existence of Fujita approximations over an arbitrary algebraically closed
field is proved in [Tak07].

• The basic properties of the σ-decomposition in positive characteristic are con-
sidered in [Mus13].

• The results of [Cut13] lay the foundations of the theory of positive products
and volumes over an arbitrary field.

• [FL13] describes how the above results can be used to extend [BDPP13] and
most of the results of [BFJ09] over an arbitrary algebraically closed field. In
particular the description of the derivative of the volume function in [BFJ09,
Theorem A] holds for smooth varieties in any characteristic.

2.4 Compact Kähler manifolds. The following results enable us to extend
most of our results to arbitrary compact Kähler manifolds.

• The Khovanskii–Teissier inequalities for classes in the nef cone K can be proved
by the mixed Hodge–Riemann bilinear relations [DN06], or by solving complex
Monge–Ampère equations [Dem93]; see also Theorem 2.1.

• Teissier’s proportionality theorem for transcendental big and nef classes has
recently been proved by [FX14b]; see also Theorem 2.1.
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• The theory of positive intersection products for pseudo-effective (1, 1)-classes
has been developed by [Bou02,BDPP13,BEGZ10].

• The cone duality K∗ = N follows from the numerical characterization of the
Kähler cone of [DP04].

We remark that we need the cone duality K∗ = N to extend the Zariski decom-
positions and Morse-type inequality for curves to positive currents of bidimension
(1, 1).

Comparing with the projective situation, the main ingredient missing is De-
mailly’s conjecture on the transcendental holomorphic Morse inequality, which is
in turn implied by the expected identification of the derivative of the volume func-
tion on pseudo-effective (1, 1)-classes as in [BFJ09]. Indeed, it is not hard to see
these two expected results are equivalent (see e.g. [Xia14, Proposition 1.1]—which
is essentially [BFJ09, Section 3.2]). And they would imply the duality of the cones
M(X) and E(X). Thus, any of our results which relies on either the transcendental
holomorphic Morse inequality, or the results of [BFJ09], is still conjectural in the
Kähler setting. However, these conjectures are known if X is a compact hyperkähler
manifold (see [BDPP13, Theorem 10.12]), so all of our results extend to compact
hyperkähler manifolds.

3 Polar transforms

As explained in the introduction, Zariski decompositions capture the failure of the
volume function to be strictly log concave. In this section and the next, we use some
basic convex analysis to define a formal Zariski decomposition which makes sense
for any non-negative homogeneous log concave function on a cone. The main tool is
a Legendre–Fenchel type transform for such functions.

3.1 Duality transforms. Let V be a finite-dimensional R-vector space of di-
mension n, and let V ∗ be its dual. We denote the pairing of w∗ ∈ V ∗ and v ∈ V
by w∗ · v. Let Cvx(V ) denote the class of lower-semicontinuous convex functions on
V . Then [AM09, Theorem 1] shows that, up to composition with an additive linear
function and a symmetric linear transformation, the Legendre–Fenchel transform is
the unique order-reversing involution L : Cvx(V ) → Cvx(V ∗). Motivated by this
result, the authors define a duality transform to be an order-reversing involution of
this type and characterize the duality transforms in many other contexts (see e.g.
[AM11], [AM08]).

In this section we study a duality transform for the set of non-negative homoge-
neous functions on a cone. This transform is the concave homogeneous version of the
well-known polar transform; see [Roc70, Chapter 15] for the basic properties of this
transform in a related context. This transform is also a special case of the general-
ized Legendre–Fenchel transform studied by [Mor66, Section 14], which is the usual
Legendre–Fenchel transform with a “coupling function”—we would like to thank
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Jonsson for pointing this out to us. See also [Sin97, Section 0.6] and [Rub00, Chap-
ter 1] for a brief introduction to this perspective. Finally, it is essentially the same as
the transform A from [AM11] when applied to homogeneous functions, and is closely
related to other constructions of [AM08]. [Rub00, Chapter 2] and [RD02] work in a
different setting which nonetheless has some nice parallels with our situation.

Let C ⊂ V be a proper closed convex cone of full dimension and let C∗ ⊂ V ∗

denote the dual cone of C, that is,

C∗ = {w∗ ∈ V ∗| w∗ · v ≥ 0 for any v ∈ C}.

If v1, v2 ∈ V , we will continue to write v1 
 v2 if v2 − v1 ∈ C. We let HConcs(C)
denote the collection of functions f : C → R satisfying:

• f is upper-semicontinuous and homogeneous of weight s > 1;
• f is strictly positive in the interior of C (and hence non-negative on C);
• f is s-concave: for any v, x ∈ C we have f(v)1/s + f(x)1/s ≤ f(v + x)1/s.

Note that since f1/s is homogeneous of degree 1, the definition of concavity for
f1/s above coheres with the usual one: for any c ∈ [0, 1], we indeed have f(cv +
(1 − c)x)1/s ≥ cf(v)1/s + (1 − c)f(x)1/s. For any f ∈ HConcs(C), the function f1/s

can extend to a proper upper-semicontinuous concave function over V by letting
f1/s(v) = −∞ whenever v /∈ C. Thus many tools developed for arbitrary concave
functions on V also apply in our case.

Since an upper-semicontinuous function is continuous along decreasing sequences,
the following continuity property of f follows immediately from the non-negativity
and concavity of f1/s.

Lemma 3.1. Let f ∈ HConcs(C) and v ∈ C. For any element x ∈ C we have

f(v) = lim
t→0+

f(v + tx).

In particular, any f ∈ HConcs(C) must vanish at the origin, and is determined
by its values in C◦.

In this section we outline the basic properties of the polar transform H (following
a suggestion of M. Jonsson). In contrast to abstract convex transforms, H retains
all of the properties of the classical Legendre–Fenchel transform. Since the proofs
are essentially the same as in the theory of classical convex analysis, we omit most
of the proofs in this section.

Recall that the polar transform H associates to a function f ∈ HConcs(C) the
function Hf : C∗ → R defined as

Hf(w∗) := inf
v∈C◦

(

w∗ · v

f(v)1/s

)s/s−1

.

By Lemma 3.1 the definition is unchanged if we instead vary v over all elements
of C where f is positive. The following proposition shows that H defines an order-
reversing involution from HConcs(C) to HConcs/s−1(C∗). Its proof is similar to the
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classical result in convex analysis (see e.g. [Roc70, Theorem 15.1]) in that it relies
on elementary properties of upper-semicontinuity and the Hahn–Banach theorem.

Proposition 3.2. Let f, g ∈ HConcs(C). Then we have

(1) Hf ∈ HConcs/s−1(C∗).
(2) If f ≤ g then Hf ≥ Hg.
(3) H2f = f .

It will be crucial to understand which points obtain the infimum in the definition
of Hf .

Definition 3.3. Let f ∈ HConcs(C). For any w∗ ∈ C∗, we define Gw∗ to be the set
of all v ∈ C which satisfy f(v) > 0 and which achieve the infimum in the definition
of Hf(w∗), so that

Hf(w∗) =
(

w∗ · v

f(v)1/s

)s/s−1

.

Remark 3.4. The set Gw∗ is the analogue of supergradients of concave functions.
In particular, in the following sections we will see that the differential of Hf at w∗

lies in Gw∗ if Hf is differentiable.

It is easy to see that Gw∗ ∪ {0} is a convex subcone of C. Note the symmetry in
the definition: if v ∈ Gw∗ and Hf(w∗) > 0 then w∗ ∈ Gv. Thus if v ∈ C and w∗ ∈ C∗

satisfy f(v) > 0 and Hf(w∗) > 0 then the conditions v ∈ Gw∗ and w∗ ∈ Gv are
equivalent.

The analogue of the Young-Fenchel inequality in our situation is:

Proposition 3.5. Let f ∈ HConcs(C). Then for any v ∈ C and w∗ ∈ C∗ we have

Hf(w∗)s−1/sf(v)1/s ≤ v · w∗.

Furthermore, equality is obtained only if either v ∈ Gw∗ and w∗ ∈ Gv, or at least
one of Hf(w∗) and f(v) vanishes.

The next theorem describes the basic properties of Gv:

Theorem 3.6. Let f ∈ HConcs(C).

(1) Fix v ∈ C. Let {w∗
i } be a sequence of elements of C∗ with Hf(w∗

i ) = 1 such
that

f(v) = lim
i

(v · w∗
i )

s > 0.

Suppose that the sequence admits an accumulation point w∗. Then f(v) =
(v · w∗)s and Hf(w∗) = 1.

(2) For every v ∈ C◦ we have that Gv is non-empty.
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(3) Fix v ∈ C◦. Let {vi} be a sequence of elements of C◦ whose limit is v and for
each vi choose w∗

i ∈ Gvi
with Hf(w∗

i ) = 1. Then the w∗
i admit an accumulation

point w∗, and any accumulation point lies in Gv and satisfies Hf(w∗) = 1.

Proof. (1) The limiting statement for f(v) is clear. We have Hf(w∗) ≥ 1 by upper
semicontinuity, so that

f(v)1/s = lim
i→∞

v · w∗
i ≥ v · w∗

Hf(w∗)s−1/s
≥ f(v)1/s.

Thus we have equality everywhere. If Hf(w∗)s−1/s > 1 then we obtain a strict
inequality in the middle, a contradiction.

(2) Let w∗
i be a sequence of points in C∗◦ with Hf(w∗

i ) = 1 such that f(v) =
limi→∞(w∗

i · v)s. By (1) it suffices to see that the w∗
i vary in a compact set. But

since v is an interior point, the set of points which have intersection with v less than
2f(v)1/s is bounded.

(3) By (1) it suffices to show that the w∗
i vary in a compact set. For sufficiently

large i we have that 2vi − v ∈ C. By the log concavity of f on C we see that f must
be continuous at v. Thus for any fixed ε > 0, we have for sufficiently large i

w∗
i · v ≤ 2w∗

i · vi ≤ 2(1 + ε)f(v)1/s.

Since v lies in the interior of C, this implies that the w∗
i must lie in a bounded

set. ��
We next identify the collection of points where f is controlled by H.

Definition 3.7. Let f ∈ HConcs(C). We define Cf to be the set of all v ∈ C such
that v ∈ Gw∗ for some w∗ ∈ C∗ satisfying Hf(w∗) > 0.

Since v ∈ Gw∗ and Hf(w∗) > 0, Proposition 3.5 and the symmetry of G show that
w∗ ∈ Gv. Furthermore, we have C◦ ⊂ Cf by Theorem 3.6 and the symmetry of G.

3.2 Differentiability

Definition 3.8. We say that f ∈ HConcs(C) is differentiable if it is C1 on C◦. In
this case we define the function

D : C◦ → V ∗ by v �→ df(v)
s

.

The main properties of the derivative are:

Theorem 3.9. Suppose that f ∈ HConcs(C) is differentiable. Then

(1) D defines an (s − 1)-homogeneous function from C◦ to C∗
Hf .

(2) D satisfies a Brunn–Minkowski inequality with respect to f : for any v ∈ C◦

and x ∈ C
D(v) · x ≥ f(v)s−1/sf(x)1/s.

Moreover, we have D(v) · v = f(v) = Hf(D(v)).
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Proof. For (1), the homogeneity is clear. Note that for any v ∈ C◦ and x ∈ C we
have f(v + x) ≥ f(v) by the non-negativity of f and the concavity of f1/s. Thus D
takes values in C∗. The fact that it takes values in C∗

Hf is a consequence of (2) which
shows that D(v) ∈ Gv.

For (2), we start with the inequality f(v + εx)1/s ≥ f(v)1/s + f(εx)1/s. Since we
have equality when ε = 0, by taking derivatives with respect to ε at 0, we obtain

df(v)
s

· x ≥ f(v)s−1/sf(x)1/s.

The equality Hf(D(v)) = f(v) is a consequence of the Brunn–Minkowski in-
equality, and the equality D(v) · v = f(v) is a consequence of the homogeneity
of f . ��

We will need the following familiar criterion for the differentiability of f , which
is an analogue of related results in convex analysis connecting the differentiability
with the uniqueness of supergradient (see e.g. [Roc70, Theorem 25.1]).

Proposition 3.10. Let f ∈ HConcs(C). Let U ⊂ C◦ be an open set. Then f |U is
differentiable if and only if for every v ∈ U the set Gv ∪ {0} consists of a single
ray. In this case D(v) is defined by intersecting against the unique element w∗ ∈ Gv

satisfying Hf(w∗) = f(v).

We next discuss the behaviour of the derivative along the boundary.

Definition 3.11. We say that f ∈ HConcs(C) is +-differentiable if f is C1 on C◦

and the derivative on C◦ extends to a continuous function on all of Cf .

A C1-function is automatically continuous; since the derivative extends continu-
ously to Cf , an easy limit argument shows:

Lemma 3.12. If f ∈ HConcs(C) is +-differentiable then f is continuous on Cf .

Remark 3.13. For +-differentiable functions f , we define the function D : Cf → V ∗

by extending continuously from C◦. Many of the properties in Theorem 3.9 hold for
D on all of Cf . By taking limits and applying Lemma 3.1 we obtain the Brunn–
Minkowski inequality. In particular, for any x ∈ Cf we still have

D(x) · x = f(x) = Hf(D(x)).

Thus it is clear that D(x) ∈ C∗
Hf for any x ∈ Cf .

Lemma 3.14. Assume f ∈ HConcs(C) is +-differentiable. For any x ∈ Cf and y ∈ C◦,
we have

d

dt

∣

∣

∣

∣

t=0+

f(x + ty)1/s = (D(x) · y)f(x)1−s/s.
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We next analyze what we can deduce about f in a neighborhood of v ∈ Cf from
the fact that Gv ∪ {0} is a unique ray.

Lemma 3.15. Let f ∈ HConcs(C). Let v ∈ Cf and assume that Gv ∪ {0} consists
of a single ray. Suppose {vi} is a sequence of elements of Cf converging to v. Let
w∗

i ∈ Gvi
be any point satisfying Hf(w∗

i ) = 1. Then the w∗
i vary in a compact set.

Any accumulation point w∗ must be the unique point in Gv satisfying Hf(w∗) = 1.

Proof. By Theorem 3.6 it suffices to prove that the w∗
i vary in a compact set. Oth-

erwise, we must have that w∗
i · m is unbounded for some interior point m ∈ C◦. By

passing to a subsequence we may suppose that w∗
i · m → ∞. Consider the normal-

ization

ŵ∗
i :=

w∗
i

w∗
i · m

;

note that ŵ∗
i vary in a compact set. Take some convergent subsequence, which we

still denote by ŵ∗
i , and write ŵ∗

i → ŵ∗
0. Since ŵ∗

0 · m = 1 we see that ŵ∗
0 �= 0.

We first prove v · ŵ∗
0 > 0. Otherwise, v · ŵ∗

0 = 0 implies

v · (w∗ + ŵ∗
0)

Hf(w∗ + ŵ∗
0)s−1/s

≤ v · w∗

Hf(w∗)s−1/s
= f(v)1/s.

By our assumption on Gv, we get w∗ + ŵ∗
0 and w∗ are proportional, which implies

ŵ∗
0 lies in the ray spanned by w∗. Since ŵ∗

0 �= 0 and v ·w∗ > 0, we get that v · ŵ∗
0 > 0.

So our assumption v · ŵ∗
0 = 0 does not hold. On the other hand, Hf(w∗

i ) = 1 implies

Hf(ŵ∗
i )

s−1/s =
1

m · w∗
i

→ 0.

By the upper-semicontinuity of f and the fact that lim vi · ŵ∗
i = v · ŵ∗

0 > 0, we
get

f(v)1/s ≥ lim sup
i→∞

f(vi)1/s

= lim sup
i→∞

vi · ŵ∗
i

Hf(ŵ∗
i )s−1/s

= ∞.

This is a contradiction, thus the sequence w∗
i must vary in a compact set. ��

Theorem 3.16. Let f ∈ HConcs(C). Suppose that U ⊂ Cf is a relatively open set
and Gv ∪ {0} consists of a single ray for any v ∈ U . If f is continuous on U then
f is +-differentiable on U . In this case D(v) is defined by intersecting against the
unique element w∗ ∈ Gv satisfying Hf(w∗) = f(v).

Even if f is not continuous, we at least have a similar statement along the
directions in which f is continuous (for example, any directional derivative toward
the interior of the cone).
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Proof. Proposition 3.10 shows that f is differentiable on U ∩ C◦ and is determined
by intersections. By combining Lemma 3.15 with the continuity of f , we see that
the derivative extends continuously to any point in U . ��
Remark 3.17. Assume f ∈ HConcs(C) is +-differentiable. In general, we can not
conclude that Gv ∪ {0} contains a single ray if x ∈ Cf is not an interior point. An
explicit example is in Section 5. Let X be a smooth projective variety of dimension
n, let C = Nef1(X) be the cone of nef divisor classes and let f = vol be the volume
function of divisors. Let B be a big and nef divisor class which is not ample. Then
GB contains the cone generated by all Bn−1+γ with γ pseudo-effective and B ·γ = 0,
which in general is more than a ray.

4 Formal Zariski decompositions

The Legendre–Fenchel transform relates the strict concavity of a function to the
differentiability of its transform. The transform H will play the same role in our
situation; however, one needs to interpret the strict concavity slightly differently.
We will encapsulate this property using the notion of a Zariski decomposition.

Definition 4.1. Let f ∈ HConcs(C) and let U ⊂ C be a non-empty subcone. We
say that f admits a Zariski decomposition with respect to U if:

(1) For every v ∈ Cf there are unique elements pv ∈ U and nv ∈ C satisfying

v = pv + nv and f(v) = f(pv).

We call the expression v = pv + nv the Zariski decomposition of v, and call pv

the positive part and nv the negative part of v.
(2) For any v, w ∈ Cf satisfying v + w ∈ Cf we have

f(v)1/s + f(w)1/s ≤ f(v + w)1/s

with equality only if pv and pw are proportional.

Remark 4.2. Note that the vector nv must satisfy f(nv) = 0 by the non-negativity
and log-concavity of f . In particular nv lies on the boundary of C. Furthermore, any
w∗ ∈ Gv is also in Gpv

and must satisfy w∗ · nv = 0.
Note also that the proportionality of pv and pw may not be enough to conclude

that f(v)1/s + f(w)1/s = f(v + w)1/s. This additional property turns out to rely on
the strict log concavity of Hf .

The main principle of the section is that when f satisfies a differentiability prop-
erty, Hf admits some kind of Zariski decomposition. Usually the converse is false,
due to the asymmetry of G when f or Hf vanishes. However, the existence of a
Zariski decomposition is usually strong enough to determine the differentiability of
f along some subcone. We will give a version that takes into account the behavior
of f along the boundary of C.
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Theorem 4.3. Let f ∈ HConcs(C). Then we have the following results:

• If f is +-differentiable, then Hf admits a Zariski decomposition with respect
to the cone D(Cf ) ∪ {0}.

• If Hf admits a Zariski decomposition with respect to a cone U , then f is
differentiable.

Proof. First suppose f is +-differentiable; we must prove the function Hf satisfies
properties (1), (2) in Definition 4.1.

We first show the existence of the Zariski decomposition in property (1). If w∗ ∈
C∗

Hf then by definition there is some v ∈ C satisfying f(v) > 0 such that w∗ ∈ Gv. In
particular, by the symmetry of G we also have v ∈ Gw∗ , thus v ∈ Cf . Since f(v) > 0
we can define

pw∗ :=
(Hf(w∗)

f(v)

)s−1/s

· D(v), nw∗ = w∗ − pw∗ .

Then pw∗ ∈ D(Cf ) and

Hf(pw∗) = H
(

(Hf(w∗)
f(v)

)s−1/s

· D(v)

)

=
Hf(w∗)

f(v)
· Hf (D(v)) = Hf(w∗)

where the final equality follows from Theorem 3.9 and Remark 3.13. We next show
that nw∗ ∈ C∗. Choose any x ∈ C◦ and note that for any t > 0 we have the inequality

v + tx

f(v + tx)1/s
· w∗ ≥ v

f(v)1/s
· w∗

with equality when t = 0. By Lemma 3.14, taking derivatives at t = 0 we obtain

x · w∗

f(v)1/s
− (v · w∗)(D(v) · x)

f(v)(s+1)/s
≥ 0,

or equivalently, identifying v · w∗/f(v)1/s = Hf(w∗)s−1/s,

x ·
(

w∗ − D(v) · Hf(w∗)s−1/s

f(v)s−1/s

)

≥ 0.

Since this is true for any x ∈ C◦, we see that nw∗ ∈ C∗ as claimed.
We next show that pw∗ constructed above is the unique element of D(Cf ) satis-

fying the two given properties. First, after some rescaling we can assume Hf(w∗) =
f(v), which then implies w∗ · v = f(v). Suppose that z ∈ Cf and D(z) is another
vector satisfying Hf(D(z)) = Hf(w∗) and w∗ − D(z) ∈ C. Note that by Remark
3.13 f(z) = Hf(D(z)) = f(v). By Proposition 3.5 we have

Hf(D(z))s−1/sf(v)1/s ≤ D(z) · v ≤ w∗ · v = f(v)
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so we obtain equality everywhere. In particular, we have D(z)·v = f(v). By Theorem
3.9, for any x ∈ C we have

D(z) · x ≥ f(z)s−1/sf(x)1/s.

Set x = v + εq where ε > 0 and q ∈ C◦. With this substitution, the two sides of the
equation above are equal at ε = 0, so taking an ε-derivative of the above equation
and arguing as before, we see that D(z) − D(v) ∈ C∗.

We claim that D(z) = D(v). First we note that D(v) · z = f(z). Indeed, since
f(z) = f(v) and D(v) 
 D(z) we have

f(v)s−1/sf(z)1/s ≤ D(v) · z ≤ D(z) · z = f(z).

Thus we have equality everywhere, proving the equality D(v) · z = f(z). Then we
can apply the same argument as before with the roles of v and z switched. This
shows D(v) 	 D(z), so we must have D(z) = D(v).

We next turn to (2). The inequality is clear, so we only need to characterize the
equality. Suppose w∗, y∗ ∈ C∗

Hf satisfy

Hf(w∗)s−1/s + Hf(y∗)s−1/s = Hf(w∗ + y∗)s−1/s

and w∗ + y∗ ∈ C∗
Hf . We need to show they have proportional positive parts. By

assumption Gw∗+y∗ is non-empty, so we may choose some v ∈ Gw∗+y∗ . Then also
v ∈ Gw∗ and v ∈ Gy∗ . Note that by homogeneity v is also in Gaw∗ and Gby∗ for any
positive real numbers a and b. Thus by rescaling w∗ and y∗, we may suppose that
both have intersection f(v) against v, so that Hf(w∗) = Hf(y∗) = f(v). Then we
need to verify the positive parts of w∗ and y∗ are equal. But they both coincide with
D(v) by the argument in the proof of (1).

Conversely, suppose that Hf admits a Zariski decomposition with respect to the
cone U . We claim that f is differentiable. By Proposition 3.10 it suffices to show
that Gv ∪ {0} is a single ray for any v ∈ C◦.

For any two elements w∗, y∗ in Gv we have

Hf(w∗)1/s + Hf(y∗)1/s =
w∗ · v

f(v)1/s
+

y∗ · v

f(v)1/s
≥ Hf(w∗ + y∗)1/s.

Since w∗, y∗ and their sum are all in C∗
Hf , we conclude by the Zariski decom-

position condition that w∗ and y∗ have proportional positive parts. After rescaling
so that Hf(w∗) = f(v) = Hf(y∗) we have pw∗ = py∗ . Thus it suffices to prove
w∗ = pw∗ . Note that Hf(w∗) = Hf(pw∗) as pw∗ is the positive part. If w∗ �= pw∗ ,
then v · w∗ > v · pw∗ since v is an interior point. This implies

f(v) = inf
y∗∈C∗◦

(

v · y∗

Hf(y∗)s−1/s

)s

<

(

v · w∗

Hf(w∗)s−1/s

)s

,

contradicting with w∗ ∈ Gv. Thus w∗ = pw∗ and Gv ∪ {0} must be a single ray. ��
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Remark 4.4. It is worth emphasizing that if f is +-differentiable and w∗ ∈ C∗
Hf ,

we can construct a positive part for w∗ by choosing any v ∈ Gw∗ with f(v) > 0 and
taking an appropriate rescaling of D(v).

Remark 4.5. It would also be interesting to study some kind of weak version of
Zariski decomposition. For example, one can define a weak Zariski decomposition
as a decomposition v = pv + nv only demanding f(v) = f(pv) and the strict log
concavity of f over the set of positive parts. Appropriately interpreted, the existence
of a weak decomposition for Hf should be a consequence of the differentiability
of f .

Under some additional conditions, we can get the continuity of the Zariski de-
compositions.

Theorem 4.6. Let f ∈ HConcs(C) be +-differentiable. Then the function taking
an element w∗ ∈ C∗◦ to its positive part pw∗ is continuous.

If furthermore Gv ∪ {0} is a unique ray for every v ∈ Cf and Hf is continuous
on all of C∗

Hf , then the Zariski decomposition is continuous on all of C∗
Hf .

Proof. Fix any w∗ ∈ C∗◦ and suppose that w∗
i is a sequence whose limit is w∗.

For each choose some vi ∈ Gw∗
i

with f(vi) = 1. By Theorem 3.6, the vi admit an
accumulation point v ∈ Gw∗ with f(v) = 1. By the symmetry of G, each vi and
also v lies in Cf . The D(vi) limit to D(v) by the continuity of D. Recall that by
the argument in the proof of Theorem 4.3 we have pw∗

i
= Hf(w∗

i )
s−1/sD(vi) and

similarly for w∗. Since Hf is continuous at interior points, we see that the positive
parts vary continuously as well.

The last statement follows by a similar argument using Lemma 3.15. ��
Example 4.7. Suppose that q is a bilinear form on V and f(v) = q(v, v). Let P
denote one-half of the positive cone of vectors satisfying f(v) ≥ 0. It is easy to see
that f is 2-concave and non-trivial on P if and only if q has signature (1, dim V −1).
Identifying V with V ∗ under q, we have P = P∗ and Hf = f by the usual Hodge
inequality argument.

Now suppose C ⊂ P. Then C∗ contains C. As discussed above, by the Hodge
inequality Hf |C = f . Note that f is everywhere differentiable and D(v) = v for
classes in C. Thus on C the polar transform Hf agrees with f , but outside of C the
function Hf is controlled by a Zariski decomposition involving a projection to C.

This is of course just the familiar picture for curves on a surface identifying f with
the self-intersection on the nef cone and Hf with the volume on the pseudo-effective
cone. More precisely, for big curve classes the decomposition constructed in this way
is the numerical version of Zariski’s original construction. Along the boundary of
C∗, the function Hf vanishes identically so that Theorem 4.3 does not apply. The
linear algebra arguments of [Zar62], [Bau09] give a way of explicitly constructing
the vector computing the minimal intersection as above.
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Example 4.8. Fix a spanning set of unit vectors Q in R
n. Recall that the poly-

topes whose unit facet normals are a subset of Q naturally define a cone C in a finite
dimensional vector space V which parametrizes the constant terms of the bound-
ing hyperplanes. One can also consider the cone CΣ which is the closure of those
polytopes whose normal fan is Σ. The volume function vol defines a weight-n homo-
geneous function on C and (via restriction) volΣ on CΣ, and it is interesting to ask
for the behavior of the polar transforms. (Note that this is somewhat different from
the link between polar sets and polar functions, which is described for example in
[AM11].)

The dual space V ∗ consists of the Minkowski weights on Q. We will focus on
the subcone M of strictly positive Minkowski weights, which is contained in the
dual of both cones. By Minkowski’s theorem, a strictly positive Minkowski weight
determines naturally a polytope in C, so we can identify M with the interior of C.
As explained in Section 6, the Brunn–Minkowski inequality shows that H vol |M
coincides with the volume function on M. However, calculating H volΣ |M is more
subtle.

It would be very interesting to extend this duality to all convex sets, perhaps by
working on an infinite dimensional space.

Remark 4.9. The Zariski decomposition of b-divisors in [KM13] occurs in an
infinite-dimensional space and so does not fit into the framework developed in this
section (see also [BFJ09] for Cartier b-divisor classes). Thus it would be quite in-
teresting to generalize the theory to infinite dimensional spaces. It is observed in
[LX16, Section 4] that the Alexandrov body construction in convex geometry can
be seen as some kind of infinite dimensional extension of the theory developed here
when applied to that particular setting.

4.1 Teissier proportionality. In this section, we give some conditions which
are equivalent to the strict log concavity. The prototype is the volume function of
divisors over the cone of big and movable divisor classes.

Definition 4.10. Let f ∈ HConcs(C) be +-differentiable and let CT be a non-empty
subcone of Cf . We say that f satisfies Teissier proportionality with respect to CT if
for any v, x ∈ CT satisfying

D(v) · x = f(v)s−1/sf(x)1/s

we have that v and x are proportional.

Note that we do not assume that CT is convex—indeed, in examples it is impor-
tant to avoid this condition. However, since f is defined on the convex hull of CT ,
we can (somewhat abusively) discuss the strict log concavity of f |CT

:

Definition 4.11. Let C′ ⊂ C be a (possibly non-convex) subcone. We say that f is
strictly log concave on C′ if

f(v)1/s + f(x)1/s < f(v + x)1/s
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holds whenever v, x ∈ C′ are not proportional. Note that this definition makes sense
even when C′ is not itself convex.

Theorem 4.12. Let f ∈ HConcs(C) be +-differentiable. For any non-empty sub-
cone CT of Cf , consider the following conditions:

(1) The restriction f |CT
is strictly log concave (in the sense defined above).

(2) f satisfies Teissier proportionality with respect to CT .
(3) The restriction of D to CT is injective.

Then we have:

• For any CT , (1) =⇒ (2) =⇒ (3).
• If CT is convex, then we have (2) =⇒ (1).
• If CT is open in the ambient vector space, then we have (3) =⇒ (1).

In particular, if CT is open and convex, then (1) ⇐⇒ (2) ⇐⇒ (3).

Proof. We first prove (1) =⇒ (2). Let v, x ∈ CT satisfy D(v) · x = f(v)s−1/sf(x)1/s

and f(v) = f(x). Assume for a contradiction that v �= x. Since f |CT
is strictly log

concave, for any two v, x ∈ CT which are not proportional we claim that

f(x)1/s < f(v)1/s +
D(v) · (x − v)

f(v)s−1/s
.

Indeed, for any c ∈ (0, 1), since cx, (1 − c)v are not proportional, by (1) we get

f(v + c(x − v))1/s − f(v)1/s >
(

cf(x)1/s + (1 − c)f(v)1/s
)

− f(v)1/s

= c(f(x)1/s − f(v)1/s).

On the other hand, by the concavity of f1/s we have

f(v + c(x − v))1/s − f(v)1/s ≤ df1/s(v) · c(x − v).

Note that df1/s(v) = D(v)
f(v)s−1/s , this then finishes the proof of our claim.

Since we have assumed D(v) · x = f(v)s−1/sf(x)1/s and f(v) = f(x), we must
have

f(x)1/s = f(v)1/s +
D(v) · (x − v)

f(v)s−1/s

since D(v) · v = f(v). This is a contradiction, so we must have v = x. This then
implies that f satisfies Teissier proportionality.

We next show (2) =⇒ (3). Let v1, v2 ∈ CT with D(v1) = D(v2). Then we have

f(v1) = D(v1) · v1 = D(v2) · v1

≥ f(v2)s−1/sf(v1)1/s,
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which implies f(v1) ≥ f(v2). By symmetry, we get f(v1) = f(v2). So we must have

D(v1) · v2 = f(v1)s−1/sf(v2)1/s.

By the Teissier proportionality we see that v1, v2 are proportional, and since
f(v1) = f(v2) they must be equal.

We next show that if CT is convex then (2) =⇒ (1). Fix y in the interior of C
and fix ε > 0. Then

f(v + x + εy)1/s − f(v)1/s =
∫ 1

0
(D(v + t(x + εy)) · x)f(v + t(x + εy))1−s/sdt.

The integrand is bounded by a positive constant independent of ε as we let ε
go to 0 due to the +-differentiability of f (which also implies the continuity of f).
Using Lemma 3.1, the dominanted convergence theorem shows that

f(v + x)1/s − f(v)1/s =
∫ 1

0
(D(v + tx) · x)f(v + tx)1−s/sdt.

Since CT is convex, we have v + tx ∈ CT , this immediately shows the strict log
concavity.

Finally, we show that if CT is open then (3) =⇒ (1). By [Roc70, Corollary
26.3.1], it is clear that for any convex open set U ⊂ CT the injectivity of D over U is
equivalent to the strict log concavity of f |U . Using the global log concavity of f , we
obtain the conclusion. More precisely, assume x, y ∈ CT are not proportional, then
by the strict log concavity of f near x and the global log concavity on C, for t > 0
sufficiently small we have

f1/s(x + y) ≥ f1/s(x + ty) + (1 − t)f1/s(y)

> (f1/s(x) + f1/s(x + 2ty))/2 + (1 − t)f1/s(y)

≥ f1/s(x) + f1/s(y). ��

Another useful observation is:

Proposition 4.13. Let f ∈ HConcs(C) be differentiable and suppose that f is
strictly log concave on an open subcone CT ⊂ C◦. Then Hf is differentiable on
D(CT ) and the derivative is determined by the prescription

D(D(v)) = v.

Proof. We first show that D(CT ) ⊂ C∗◦. Suppose that there were some v ∈ CT

such that D(v) lay on the boundary of C∗. Choose x ∈ C satisfying x · D(v) = 0.
By openness we have v + tx ∈ CT for sufficiently small t. Since D(v) ∈ Gv+tx, we
must have that D(v) and D(v + tx) are proportional by Proposition 3.10. This is a
contradiction by Theorem 4.12.

Now suppose w∗ = D(v) ∈ D(CT ). By the strict log concavity of f on CT (and the
global log concavity), we must have that Gw∗ ∪ {0} consists only of the ray spanned
by v. Applying Proposition 3.10, we obtain the statement. ��



1160 B. LEHMANN AND J. XIAO GAFA

Combining all the results above, we obtain a very clean property of D under the
strongest possible assumptions.

Theorem 4.14. Assume f ∈ HConcs(C) and its polar transform Hf ∈
HConcs/s−1(C∗) are +-differentiable. Let U = D(C∗

Hf ) ∪ {0} and U∗ = D(Cf ) ∪ {0}.
Then we have:

• f and Hf admit a Zariski decomposition with respect to the cone U and the
cone U∗ respectively;

• For any v ∈ Cf we have D(v) = D(pv) (and similarly for w ∈ C∗
Hf );

• D defines a bijection D : U◦ → U∗◦ with inverse also given by D. In particular,
f and Hf satisfy Teissier proportionality with respect to the open cone U◦ and
U∗◦ respectively.

Proof. Note that U∗ ⊂ C∗
Hf (and U ⊂ Cf ) since for any v ∈ Cf we have D(v) ∈ Gv

and f(v) > 0.
The first statement is immediate from Theorem 4.3.
We next show the second statement. By the definition of positive parts, we have

Gv ⊂ Gpv
. Since both v, pv ∈ Cf , we know by the argument of Theorem 4.3 that

D(v) and D(pv) are both proportional to the (unique) positive part of any w∗ ∈ Gv

with positive Hf .
Finally we show the third statement. We start by proving the Teissier propor-

tionality on U◦. By part (2) of the Zariski decomposition condition f is strictly log
concave on U◦, and Teissier proportionality follows by Theorem 4.12. Furthermore,
the argument of Proposition 4.13 then shows that D(U◦) ⊂ C∗◦ and D(D(U◦)) = U◦.

We must show that D(U◦) ⊂ U∗◦. Suppose that v ∈ U◦ had that D(v) was on the
boundary of U∗. Since D(v) ∈ C∗◦, there must be some sequence w∗

i ∈ C∗◦−U∗ whose
limit is D(v). We note that each D(w∗

i ) lies on the boundary of C, thus must lie on
the boundary of U . Indeed, by the second statement we have D(w∗

i ) = D(w∗
i + tnw∗

i
)

for any t > 0, which would violate the uniqueness of GD(w∗
i ) as in Proposition 3.10

if it were an interior point. Using the continuity of D we see that v = D(D(v)) lies
on the boundary of U , a contradiction.

In all, we have shown that D : U◦ → U∗◦ is an isomorphism onto its image with
inverse D. By symmetry we also have D(U∗◦) ⊂ U◦, and we conclude after taking
D the reverse inclusion U∗◦ ⊂ D(U◦). ��
4.2 Morse-type inequality. The polar transform H also gives a natural way
of translating cone positivity conditions from C to C∗. In this section, D ⊃ C will
denote a proper closed convex cone of full dimension containing C.

Definition 4.15. Let C ⊂ D be a subcone and let f ∈ HConcs(D) be +-differen-
tiable. We say that f satisfies a Morse-type inequality on D with respect to C if for
any v ∈ Df and x ∈ C satisfying the inequality

f(v) − sD(v) · x > 0

we have that v − x ∈ D◦.
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The prototype of the Morse-type inequality is the well known algebraic Morse
inequality for nef divisors and its generalization to big divisors: if L is a big divisor
class and D is a movable divisor class then by [Xia14]

vol(L − D) ≥ vol(L) − n〈Ln−1〉 · D.

In particular if the right hand side is positive then L − D is a big class; in
other words, the volume satisfies a Morse-type inequality on Eff1(X) with respect
to Mov1(X). (One could also study whether f(v − x) ≥ f(v) − sD(v) · x, but this
property seems less useful in our situation.)

Remark 4.16. In general, we can not require C = D in Definition 4.15. For example,
if A, B are two nef divisor classes satisfying An − nAn−1 · B > 0 then A − B is not
necessarily ample.

In order to translate the positivity in C to C∗, we need the following “reverse”
Khovanskii–Teissier inequality.

Proposition 4.17. Let f ∈ HConcs(D) be +-differentiable and satisfy a Morse-
type inequality on D with respect to C. Then we have

s(y∗ · v)(D(v) · x) ≥ f(v)(y∗ · x),

for any y∗ ∈ D∗, v ∈ Df and x ∈ C.

Proof. By continuity, it suffices to prove the statement when neither side is equal to
0. Since both sides are homogeneous in all the arguments, we may rescale to assume
that y∗ · v = y∗ · x. Then we need to show that sD(v) · x ≥ f(v). If not, then

f(v) − sD(v) · x > 0,

so that v −x ∈ D◦ by the Morse-type inequality. But then we conclude that y∗ · v >
y∗ · x, a contradiction. ��

Remark 4.18. Assume that y∗ = D(z). Then we have D(z) · x ≥ f(z)s−1/sf(x)1/s,
giving a lower bound for D(z) · x. The above proposition implies that we also have

D(z) · x ≤ s(D(z) · v)(D(v) · x)
f(v)

,

giving an upper bound for D(z) · x. This is why we use the terminology “reverse
Khovanskii–Teissier inequality”.

We now discuss how to pass Morse-type inequalities to dual cones. Throughout,
the polar dual operation H will always be with respect to (the restriction of f to)
the cone C and not with respect to the cone D.
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Theorem 4.19. Let f ∈ HConcs(D) be +-differentiable and satisfy a Morse-type
inequality on D with respect to C. Then for any v ∈ Cf ∩ Df and y∗ ∈ D∗ satisfying

Hf(D(v)) − sv · y∗ > 0,

we have D(v) − y∗ ∈ C∗◦. In particular, we have D(v) − y∗ ∈ C∗
Hf and

Hf(D(v) − y∗)s−1/s ≥ (Hf(D(v)) − sv · y∗)Hf(D(v))−1/s

= (f(v) − sv · y∗)f(v)−1/s.

As a consequence, we get

Hf(D(v) − y∗) ≥ f(v) − s2

s − 1
v · y∗.

Proof. Note that Hf(D(v)) = f(v). First we claim that the inequality f(v)−sv ·y∗ >
0 implies D(v)−y∗ ∈ C∗◦. To this end, fix some sufficiently small y′∗ ∈ D∗◦ such that
y∗ + y′∗ still satisfies f(v) − sv · (y∗ + y′∗) > 0. Then by the “reverse” Khovanskii–
Teissier inequality, for some δ > 0 and for any x ∈ C we have

D(v) · x ≥
(

f(v)
s(y∗ + y′∗) · v

)

(y∗ + y′∗) · x > (1 + δ)(y∗ + y′∗) · x.

This implies D(v) − y∗ ∈ C∗◦.
By the definition of Hf we have

Hf(D(v) − y∗) = inf
x∈C◦

(

(D(v) − y∗) · x

f(x)1/s

)s/s−1

≥
(

f(v) − sy∗ · v

f(v)

)s/s−1

inf
x∈C◦

(

D(v) · x

f(x)1/s

)s/s−1

= Hf(D(v))
(

f(v) − sy∗ · v

f(v)

)s/s−1

,

where the second line follows from the “reverse” Khovanskii–Teissier inequality as
in Proposition 4.17. We can substitute Hf(D(v)) = f(v) to obtain the alternative
form of the inequality.

To show the last inequality, we only need to note that the function (1 − x)α is
convex for x ∈ [0, 1) if α ≥ 1. This implies (1−x)α ≥ 1−αx. Applying this inequality
in our situation, we get

Hf(D(v) − y∗) ≥
(

1 − sv · y∗

f(v)

)s/s−1

f(v)

≥ f(v) − s2

s − 1
v · y∗. ��
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4.3 Boundary conditions. Under certain conditions we can control the be-
haviour of Hf near the boundary, and thus obtain continuity.

Definition 4.20. Let f ∈ HConcs(C) and let α ∈ (0, 1). We say that f satisfies the
sublinear boundary condition of order α if for any non-zero v on the boundary of C
and for any x in the interior of C, there exists a constant C := C(v, x) > 0 such that
f(v + εx)1/s ≥ Cεα.

Note that the condition is always satisfied at v if f(v) > 0. Furthermore, the
condition is satisfied for any v, x with α = 1 by homogeneity and log-concavity, so
the crucial question is whether we can decrease α slightly.

Using this sublinear condition, we get the vanishing of Hf along the boundary.

Proposition 4.21. Let f ∈ HConcs(C) satisfy the sublinear boundary condition of
order α. Then Hf vanishes along the boundary. As a consequence, Hf extends to a
continuous function over V ∗ by setting Hf = 0 outside C∗.

Proof. Let w∗ be a boundary point of C∗. Then there exists some non-zero v ∈ C
such that w∗ · v = 0. Fix x ∈ C◦. By the definition of Hf we get

Hf(w∗)s−1/s ≤ w∗ · (v + εx)
f1/s(v + εx)

≤ εw∗ · x

Cεα
.

Letting ε tend to zero, we see Hf(w∗) = 0.
To show the continuity, by Lemma 3.1 we only need to verify

lim
ε→0

Hf(w∗ + εy∗) = 0

for some y∗ ∈ C∗◦ (as any other limiting sequence is dominated by such a sequence).
This follows easily from

Hf(w∗ + εy∗)s−1/s ≤ (w∗ + εy∗) · (v + εx)
f1/s(v + εx)

≤ ε(y∗ · v + w∗ · x + εy∗ · x)
Cεα

. ��

Remark 4.22. If f satisfies the sublinear condition, then C∗
Hf = C∗◦. This makes the

statements of the previous results very clean. In the following section, the function
̂vol has this nice property.
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5 Positivity for curves

We now study the basic properties of ̂vol and of the Zariski decompositions for
curves. Some aspects of the theory will follow immediately from the formal theory
of Section 4; others will require a direct geometric argument.

We first outline how to apply the results of Section 4. Recall that ̂vol is the
polar transform of the volume function for divisors restricted to the nef cone. More
precisely, we are now in the situation:

C = Nef1(X), f = vol, C∗ = Eff1(X), Hf = ̂vol.

Thus, to understand the properties of ̂vol we need to recall the basic features
of the volume function on the nef cone of divisors. It is an elementary fact that
the volume function on the nef cone of divisors is differentiable everywhere (with
D(A) = An−1). In the notation of Section 3 the cone Nef1(X)vol coincides with the
big and nef cone. The Khovanskii–Teissier inequality (with Teissier proportionality)
holds on the big and nef cone as recalled in Section 2. Finally, the volume for nef
divisors satisfies the sublinear boundary condition of order n − 1/n: this follows
from an elementary intersection calculation using the fact that N ·An−1 �= 0 for any
non-zero nef divisor N and ample divisor A.

Remark 5.1. Due to the outline above, the proofs in this section depend only upon
elementary facts about intersection theory, the Khovanskii–Teissier inequality and
Teissier’s proportionality theorem. As discussed in the preliminaries, the arguments
in this section thus extend immediately to smooth varieties over an arbitrary alge-
braically closed field and to the Kähler setting.

5.1 Properties of the volume. The following theorems collect the various
analytic consequences for ̂vol.

Theorem 5.2. Let X be a projective variety of dimension n. Then:

(1) ̂vol is continuous and homogeneous of weight n/n−1 on Eff1(X) and is positive
precisely for the big classes.

(2) For any big and nef divisor class A, we have ̂vol(An−1) = vol(A).
(3) For any big curve class α, there is a big and nef divisor class B such that

̂vol(α) =
(

B · α

vol(B)1/n

)n/n−1

.

We say that the class B computes ̂vol(α).

The first two were already proved in [Xia15, Theorem 3.1].

Proof. (1) follows immediately from Propositions 3.2 and 4.21. Since D(A) = An−1,
(2) follows from the computation (see Theorem 3.9)

̂vol(An−1) = D(A) · A = An.

The existence in (3) follows from Theorem 3.6. ��
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We also note the following easy basic linearity property, which follows immedi-
ately from the Khovanskii–Teissier inequalities.

Theorem 5.3. Let X be a projective variety of dimension n and let α be a big
curve class. If A computes ̂vol(α), it also computes ̂vol(c1α+c2A

n−1) for any positive
constants c1 and c2.

After constructing Zariski decompositions below, we will see that in fact we can
choose a possibly negative c2 so long as c1α + c2A

n−1 is a big class.

5.2 Zariski decompositions for curves. The following theorem is the basic
result establishing the existence of Zariski decompositions for curve classes.

Theorem 5.4. Let X be a projective variety of dimension n. Any big curve class
α admits a unique Zariski decomposition: there is a unique pair consisting of a big
and nef divisor class Bα and a pseudo-effective curve class γ satisfying Bα · γ = 0
and

α = Bn−1
α + γ.

In fact ̂vol(α) = ̂vol(Bn−1
α ) = vol(Bα). In particular Bα computes ̂vol(α), and

any big and nef divisor computing ̂vol(α) is proportional to Bα.

Proof. The existence of the Zariski decomposition and the uniqueness of the positive
part Bn−1

α follow from Theorem 4.3. The uniqueness of Bα follows from Teissier
proportionality for big and nef divisor classes. It is clear that Bα computes ̂vol(α)
by Theorem 4.3. The last claim follows from Teissier proportionality and the fact
that α 	 Bn−1

α . ��
As discussed before, conceptually the Zariski decomposition α = Bn−1

α + γ cap-
tures the failure of log concavity of ̂vol: the term Bn−1

α captures all the positivity
encoded by ̂vol and is positive in a very strong sense, while the negative part γ lies
on the boundary of the pseudo-effective cone.

Example 5.5. Let X be the projective bundle over P
1 defined by O ⊕ O ⊕ O(−1).

There are two natural divisor classes on X: the class f of the fibers of the projective
bundle and the class ξ of the sheaf OX/P1(1). Using for example [Ful11, Theorem 1.1]
and [FL13, Proposition 7.1], one sees that f and ξ generate the algebraic cohomology
classes with the relations f2 = 0, ξ2f = −ξ3 = 1 and

Eff1(X) = Mov1(X) = 〈f, ξ〉 Nef1(X) = 〈f, ξ + f〉
and

Eff1(X) = 〈ξf, ξ2〉 Nef1(X) = 〈ξf, ξ2 + ξf〉
CI1(X) = 〈ξf,ξ2 + 2ξf〉.
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Using this explicit computation of the nef cone of the divisors, we have

̂vol(xξf + yξ2) =
(

inf
a,b≥0

ay + bx

(3ab2 + 2b3)1/3

)3/2

.

This is essentially a one-variable minimization problem due to the homogeneity
in a, b. It is straightforward to compute directly that for non-negative values of x, y:

̂vol(xξf + yξ2) =
(

3
2
x − y

)

y1/2 if x ≥ 2y;

=
x3/2

21/2
if x < 2y.

Note that when x < 2y, the class xξf + yξ2 no longer lies in the complete
intersection cone—to obtain ̂vol, Theorem 5.4 indicates that we must project α
onto the complete intersection cone in the y-direction. This exactly coheres with the
calculation above.

5.2.1 Comparison of decompositions. We briefly contrast Zariski decompositions
with several related notions in the literature.

[FL13] defines a decomposition which captures the concavity of a different pos-
itivity function on Eff1(X) known as the mobility. More precisely, a decomposition
in the sense of [FL13] is an expression α = P + N where P is a movable curve class
whose mobility is the same as that of α and where N is pseudo-effective. Note the
similarity to the characterization of the Zariski decomposition in Theorem 5.4.

Conjecturally, the volume and the mobility coincide (see [LX15]). Assuming this
conjecture, the two decompositions are easily compared: the only distinction is where
the positive part is required to lie. Each Zariski decomposition studied here is also
a decomposition in the sense of [FL13]. The converse is false—there will usually be
many decompositions in the sense of [FL13], only one of which is the Zariski decom-
position. In fact (still assuming the conjecture) the set of all such decompositions
is determined by the Zariski decomposition: by applying Theorem 5.4 to the pos-
itive part P , we see that every decomposition in the sense of [FL13] has the form
P = Bn−1 + β and N = γ − β where β ∈ Eff1(X) is any class such that Bn−1 + β
is movable, γ − β is pseudo-effective, and Bn−1 · β = 0.

An alternative decomposition is given by the second author in [Xia15]. This
decomposition is modeled on the analytic approach of [Bou04] and also applies to
the Kähler setting. The decomposition α = Z(α) + N(α) of [Xia15] identifies a
negative part N(α) which can always be represented by an effective curve which is
very rigidly embedded in X, but the positive part Z(α) need not be movable (see
[Xia15, Example 3.2]). By [Xia15, Theorem 3.3], ̂vol(α) = ̂vol(Z(α)) and Z(α)−Bn−1

α

is always pseudo-effective, thus the Zariski decomposition of Z(α) has the same
positive part as the Zariski decomposition of α, but the two decompositions seem to
be quite different in general.
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A third decomposition is given by [Nak04]. The decomposition α = Pσ(α)+Nσ(α)
of [Nak04] defines Nσ(α) as the largest effective curve which is less effective than
every effective curve representing α. This decomposition is similar to that of [Xia15],
but is again quite different from the Zariski decomposition in this paper, since Nσ

is often smaller than the negative part—see [FL13] for a more in-depth discussion.

5.3 First properties. The Zariski decomposition for curves is continuous.

Theorem 5.6. Let X be a projective variety of dimension n. The function sending
a big curve class α to its positive part Bn−1

α or to the corresponding divisor Bα is
continuous.

Proof. The first statement follows from Theorem 4.6. The second then follows from
the continuity of the inverse map to the n − 1-power map. ��

It is interesting to study whether the Zariski projection taking α to its positive
part is C1. This is true on the ample cone—the map Φ sending an ample divisor
class A to An−1 is a C1 diffeomorphism by the argument in Remark 2.3.

Remark 5.7. The continuity of the Zariski decomposition does not extend to the
entire pseudo-effective cone. Indeed, this is not even true for the classical Zariski
decomposition on surfaces: the decomposition is discontinuous whenever a surface
contains infinitely many curves of negative self-intersection (see for example [Bou04,
Proposition 3.14]).

An important feature of the σ-decomposition for divisors is its concavity: given
two big divisors L1, L2 we have

Pσ(L1 + L2) 	 Pσ(L1) + Pσ(L2).

However, the analogous property fails for curves:

Example 5.8. Let X be a smooth projective variety such that CI1(X) is not convex.
(An explicit example is given in Appendix.) Then there are complete intersection
classes α = Bn−1

α and β = Bn−1
β such that α+β is not a complete intersection class.

Let Bn−1
α+β denote the positive part of the Zariski decomposition for α + β. Then

Bn−1
α+β 
 α + β = Bn−1

α + Bn−1
β .

Furthermore, we can not have equality since the sum is not a complete intersection
class. Thus

Bn−1
α+β � Bn−1

α + Bn−1
β .

However, one can still ask:
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Question 5.9. Fix α ∈ Eff1(X). Is there a fixed class ξ ∈ CI1(X) such that for any
ε > 0 there is a δ > 0 satisfying

Bn−1
α+δβ 
 Bn−1

α+εξ

for every β ∈ N1(X) of bounded norm?

This question seems crucial for making sense of the Zariski decomposition of a
curve class on the boundary of Eff1(X) via taking a limit.

5.4 Strict log concavity. The following theorem is an immediate consequence
of Theorem 4.3, which gives the strict log concavity of ̂vol.

Theorem 5.10. Let X be a projective variety of dimension n. For any two pseudo-
effective curve classes α, β we have

̂vol(α + β)
n−1
n ≥ ̂vol(α)

n−1
n + ̂vol(β)

n−1
n .

Furthermore, if α and β are big, then we obtain an equality if and only if the positive
parts of α and β are proportional.

Proof. The inequality is clear. Combining the +-differentiability of vol with Theorem
4.3, we see the forward implication in the last sentence. Conversely, if α and β have
proportional positive parts, then working directly from the definition it is clear that
the sum of the positive parts is the (unique) positive part of α + β. More precisely,
assume that α = Bn−1 + γα and β = cBn−1 + γβ are the decompositions of α, β,
then we have B · γα = B · γβ = 0. Now the decomposition

α + β = (1 + c)Bn−1 + (γα + γβ)

satisfies B · (γα + γβ) = 0, so it is exactly the Zariski decomposition of α + β. ��
5.5 Differentiability. In [BFJ09] and [LM09] the derivative of the volume func-
tion was calculated using the positive product: given a big divisor class L and any
divisor class E, we have

d

dt

∣

∣

∣

∣

t=0

vol(L + tE) = n〈Ln−1〉 · E.

In this section we prove an analogous statement for curve classes. For curves, the
big and nef divisor class B occurring in the Zariski decomposition plays the role of
the positive product, and the homogeneity constant n/n − 1 plays the role of n.

Theorem 5.11. Let X be a projective variety of dimension n, and let α be a big
curve class with Zariski decomposition α = Bn−1 + γ. Let β be any curve class.
Then ̂vol(α + tβ) is differentiable at 0 and

d

dt

∣

∣

∣

∣

t=0

̂vol(α + tβ) =
n

n − 1
B · β.

In particular, the function ̂vol is C1 on the big cone of curves.
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Proof. This follows immediately from Propositions 3.10 and 4.13 since Gα ∪ {0}
consists of a single ray by the last statement of Theorem 5.4. ��
Example 5.12. We return to the setting of Example 5.5: let X be the projective
bundle over P

1 defined by O ⊕ O ⊕ O(−1). Using our earlier notation we have

Eff1(X) = 〈ξf, ξ2〉
and

̂vol(xξf + yξ2) =
(

3
2
x − y

)

y1/2 if x ≥ 2y;

=
x3/2

21/2
if x < 2y.

We focus on the complete intersection region where x ≥ 2y. Then we have

xξf + yξ2 =
(

x − 2y

2y1/2
f + y1/2(ξ + f)

)2

.

The divisor in the parentheses on the right hand side is exactly the B appearing
in the Zariski decomposition expression for xξf + yξ2. Thus, we can calculate the
directional derivative of ̂vol along a curve class β by intersecting against this divisor.

For a very concrete example, set α = 3ξf + ξ2, and consider the behavior of ̂vol
for

αt := 3ξf + ξ2 − t(2ξf + ξ2).

Note that αt is pseudo-effective precisely for t ≤ 1. In this range, the explicit ex-
pression for the volume above yields

̂vol(αt) =
(

7
2

− 2t

)

(1 − t)1/2,

d

dt
̂vol(αt) = −3(1 − t)1/2 − 3

4
(1 − t)−1/2.

Note that this calculation agrees with the prediction of Theorem 5.11, which states
that if Bt is the divisor defining the positive part of αt then

d

dt
̂vol(αt) =

3
2
Bt · (2ξf + ξ2)

=
−3
2

(

(3 − 2t) − 2(1 − t)
2(1 − t)1/2

+ 2(1 − t)1/2

)

.

In particular, the derivative decreases to −∞ as t approaches 1 (and the coeffi-
cients of the divisor B also increase without bound). This is a surprising contrast
to the situation for divisors. Note also that ̂vol is not convex on this line segment,
while vol is convex in any pseudo-effective direction in the nef cone of divisors by
the Morse inequality.
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5.6 Negative parts. We next analyze the structure of the negative part of the
Zariski decomposition. First we have:

Lemma 5.13. Let X be a projective variety. Suppose α is a big curve class and write
α = Bn−1 + γ for its Zariski decomposition. If γ �= 0 then γ �∈ Mov1(X).

Proof. Since B is big and B · γ = 0, γ cannot be movable if it is non-zero. ��
For the Zariski decomposition under ̂vol, we can not guarantee the negative part

is the class of an effective curve. As in [FL13], it is more reasonable to ask if the
negative part is the pushforward of a pseudo-effective class from a proper subvariety.
Note that this property is automatic when the negative part is represented by an
effective class, and for surfaces it is actually equivalent to asking that the negative
part be effective. In general this subtle property of pseudo-effective classes is crucial
for inductive arguments on dimension.

Proposition 5.14. Let X be a projective variety of dimension n. Let α be a big
curve class and write α = Bn−1 + γ for its Zariski decomposition. There is a proper
subscheme i : V � X and a pseudo-effective class γ′ ∈ N1(V ) such that i∗γ′ = γ.

Proof. Write B = A + E as the sum of an ample divisor class and the class of an
effective divisor E. Any non-zero pseudo-effective curve class β satisfying B · β = 0
will also satisfy E · β < 0. This implies that any such β (and in particular γ) is
the pushforward of a pseudo-effective curve class on E. (For example, one can apply
[FL16, Proposition 5.3] to the extremal rays generating the face B⊥ ⊂ Eff1(X).) ��
Remark 5.15. In contrast, for the Zariski decomposition of curves in the sense of
Boucksom (see [Xia15, Theorem 3.3 and Lemma 3.5]) and in the sense of Nakayama
(see [Nak04]) the negative part can always be represented by an effective curve which
is very rigidly embedded in X; see also the discussions in Section 5.2.1.

5.7 Birational behavior. We next use the Zariski decomposition to analyze
the behavior of positivity of curves under birational maps φ : Y → X. Note that
(in contrast to divisors) the birational pullback can only decrease the positivity for
curve classes: we have

̂vol(α) ≥ ̂vol(φ∗α).

In fact pulling back does not preserve pseudo-effectiveness, and even for a movable
class we can have a strict inequality of ̂vol (for example, a big movable class can pull
back to a movable class on the pseudo-effective boundary). Again guided by [FL13],
the right approach is to consider all φ∗-preimages of α at once.

Proposition 5.16. Let φ : Y → X be a birational morphism of projective varieties
of dimension n. Let A be the set of all pseudo-effective curve classes α′ on Y satisfying
φ∗α′ = α. Then

sup
α′∈A

̂vol(α′) = ̂vol(α).

This supremum is achieved by an element αY ∈ A.
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Proof. Suppose α′ ∈ A. Since φ∗α′ = α, it is clear from the projection formula that
̂vol(α′) ≤ ̂vol(α). Conversely, set γY to be any pseudo-effective curve class on Y
pushing forward to γ. Let α = Bn−1 + γ be the Zariski decomposition of α. Define
αY = φ∗Bn−1+γY . Since φ∗B ·γY = 0, by Theorem 5.4 this expression is the Zariski
decomposition for αY . In particular ̂vol(αY ) = ̂vol(α). ��

This proposition indicates the existence of some “distinguished” preimages of
α with maximum ̂vol. In fact, these distinguished preimages also have a very nice
structure.

Proposition 5.17. Let φ : Y → X be a birational morphism of projective varieties
of dimension n. Let α be a big curve class on X with Zariski decomposition Bn−1+γ.
Set A′ to be the set of all pseudo-effective curve class α′ on Y satisfying φ∗α′ = α
and ̂vol(α′) = ̂vol(α). Then

(1) Every α′ ∈ A′ has a Zariski decomposition of the form

α′ = φ∗Bn−1 + γ′.

Thus A′ = {φ∗Bn−1 + γ′ | γ′ ∈ Eff1(Y ), φ∗γ′ = γ} is determined by the set of
pseudo-effective preimages of γ.

(2) These Zariski decompositions are stable under adding φ-exceptional curves: if
ξ is a pseudo-effective curve class satisfying φ∗ξ = 0, then for any α′ ∈ A′ we
have

α′ + ξ = φ∗Bn−1 + (γ′ + ξ)

is the Zariski decomposition for α′ + ξ.

Proof. To see (1), note that

φ∗B
vol(B)1/n

· α′ =
B

vol(B)1/n
· α = ̂vol(α).

Thus if ̂vol(α′) = ̂vol(α) then ̂vol(α′) is computed by φ∗B. By Theorem 5.4 we
obtain the statement.

(2) follows immediately from (1), since

̂vol(α) = ̂vol(α′) ≤ ̂vol(α′ + ξ) ≤ ̂vol(α)

by Proposition 5.16. ��
Remark 5.18. While there is not necessarily a uniquely distinguished φ∗-preimage
of α, there is a uniquely distinguished complete intersection class on Y whose φ-
pushforward lies beneath α—namely, the positive part of any sufficiently large class
pushing forward to α. This is the analogue in our setting of the “movable transform”
of [FL13].
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5.8 Morse-type inequality for curves. In this section we prove a Morse-type
inequality for curves under the volume function ̂vol. First let us recall the algebraic
Morse inequality for nef divisor classes over smooth projective varieties. If A, B are
nef divisor classes on a smooth projective variety X of dimension n, then by [Laz04,
Example 2.2.33] (see also [Dem85], [Siu93], [Tra95])

vol(A − B) ≥ An − nAn−1 · B.

In particular, if An − nAn−1 · B > 0, then A − B is big. This gives us a very
useful bigness criterion for the difference of two nef divisors.

By analogy with the divisor case, we can ask:

• Let X be a projective variety of dimension n, and let α, γ ∈ Eff1(X) be two nef
(movable) curve classes. Is there a criterion for the bigness of α − γ ∈ Eff1(X)
using only intersection numbers defined by α, γ?

Inspired by [Xia13], we give such a criterion using the ̂vol function. In [LX15],
we answer the above question by giving a slightly different criterion which needs the
refined structure of the movable cone of curves. The following results follow from
Theorem 4.19.

Theorem 5.19. Let X be a projective variety of dimension n. Let α be a big curve
class and let β be a movable curve class. Write α = Bn−1 + γ for the Zariski
decomposition of α. If

̂vol(α) − nB · β > 0,

then α − β is big. In fact,

̂vol(α − β)n−1/n ≥ (̂vol(α) − nB · β) · ̂vol(α)−1/n

= (Bn − nB · β) · (Bn)−1/n.

Furthermore,

̂vol(α − β) ≥ Bn − n2

n − 1
B · β.

Proof. The volume for divisors satisfies a Morse-type inequality on Eff1(X) with
respect to Nef1(X). Dualizing, Theorem 4.19 shows that for any big and nef divisor
B and for any movable curve class β satisfying Bn − nB · β > 0 we have that
Bn−1 − β ∈ Eff1(X)◦. Since α 	 Bn−1, we conclude the bigness of α − β. The other
parts follow by the same argument. ��
Example 5.20. The constant n is optimal in Theorem 5.19. Indeed, for any ε > 0
there exists a projective variety X such that

̂vol(α) − (n − ε)Bα · γ > 0,
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for some α ∈ Eff1(X) and γ ∈ Mov1(X) but α − γ is not a big curve class.
To find such a variety, let E be an elliptic curve with complex multiplication

and set X = E×n. The pseudo-effective cone of divisors Eff1(X) is identified with
the cone of constant positive (1, 1)-forms, while the pseudo-effective cone of curves
Eff1(X) is identified with the cone of constant positive (n−1, n−1)-forms. Further-
more, every strictly positive (n − 1, n − 1)-form is a (n − 1)-self-product of a strictly
positive (1, 1)-form. We set

Bα = i

n
∑

j=1

dzj ∧ dz̄j , Bγ = i

n
∑

j=1

λjdzj ∧ dz̄j .

Here the λj > 0. Let α = Bn−1
α and γ = Bn−1

γ . Then ̂vol(α) − (n − ε)Bα · γ > 0
is equivalent to

n
∑

j=1

λ1 . . . ̂λj . . . λn <
n

n − ε
,

and α − γ being big is equivalent to

λ1 . . . ̂λj . . . λn < 1

for every j. Now it is easy to see we can always choose λ1, . . . , λn such that the first
inequality holds but the second does not hold.

Remark 5.21. Using the cone duality K∗ = N and results of [Xia13], it is easy to
extend the above Morse-type inequality for curves to positive currents of bidimension
(1, 1) over compact Kähler manifolds.

One wonders if Theorem 5.19 can be improved:

Question 5.22. Let X be a projective variety of dimension n. Let α be a big curve
class and let β be a movable curve class. Write α = Bn−1 + γ for the Zariski
decomposition of α. Is

̂vol(α − β) ≥ ̂vol(α) − nB · β?

Remark 5.23. By Theorem 5.19, if ̂vol(α) − nB · β > 0 then ̂vol is C1 at the point
α − sβ for every s ∈ [0, 1]. The derivative formula of ̂vol implies

̂vol(α − β) − ̂vol(α) =
∫ 1

0
− n

n − 1
Bα−sβ · β ds,

where Bα−sβ is the big and nef divisor class defining the Zariski decomposition of
α − sβ. To give an affirmative answer to Question 5.22, we conjecture the following:

Bα−sβ · β ≤ (n − 1)Bα · β for every s ∈ [0, 1].

Without loss of generality, we can assume Bα · β > 0. Then by continuity of the
decomposition, this inequality holds for s in a neighbourhood of 0. At this moment,
we do not know how to see this neighbourhood covers [0, 1].
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6 Toric varieties

In this section X will denote a simplicial projective toric variety of dimension n. In
terms of notation, X will be defined by a fan Σ in a lattice N with dual lattice M .
We let {vi} denote the primitive generators of the rays of Σ and {Di} denote the
corresponding classes of T -divisors.

6.1 Mixed volumes. Suppose that L is a big movable divisor class on the toric
variety X. Then L naturally defines a (non-lattice) polytope QL: if we choose an
expression L =

∑

aiDi, then

QL = {u ∈ MR|〈u, vi〉 + ai ≥ 0}
and changing the choice of representative corresponds to a translation of QL. Con-
versely, suppose that Q is a full-dimensional polytope such that the unit normals
to the facets of Q form a subset of the rays of Σ. Then Q uniquely determines a
big movable divisor class LQ on X. The divisors in the interior of the movable cone
correspond to those polytopes whose facet normals coincide with the rays of Σ.

Given polytopes Q1, . . . , Qn, let V (Q1, . . . , Qn) denote the mixed volume of
the polytopes. [BFJ09] explains that the positive product of big movable divisors
L1, . . . , Ln can be interpreted via the mixed volume of the corresponding polytopes:

〈L1 · . . . · Ln〉 = n!V (Q1, . . . , Qn).

Now suppose that α lies in the interior of Mov1(X). Using [LX15, Theorem 1.8],
we see that α = 〈Ln−1〉 for some big movable divisor class L. Let Pα denote the
polytope corresponding to L. Reinterpreting 〈Ln−1〉 · A as a positive product for an
ample divisor A, we see that the volume is

̂vol(α) = inf
Q

(

n!V (Pn−1
α , Q)

n!1/n vol(Q)1/n

)n/n−1

= n! inf
Q

(

V (Pn−1
α , Q)

vol(Q)1/n

)n/n−1

where Q varies over all polytopes whose normal fan is refined by Σ.

6.2 Computing the Zariski decomposition. The nef cone of divisors and
pseudo-effective cone of curves on X can be computed algorithmically. Thus, for any
face F of the nef cone, by considering the (n − 1)-product and adding on any curve
classes in the dual face, one can easily divide Eff1(X) into regions where the positive
product is determined by a class on F . In practice this is a good way to compute
the Zariski decomposition (and hence the volume) of curve classes on X.

In the other direction, suppose we start with a big curve class α. On a toric
variety, every big and nef divisor is semi-ample (that is, the pullback of an ample
divisor on a toric birational model). Thus, the Zariski decomposition is characterized
by the existence of a birational toric morphism π : X → X ′ such that:

• the class π∗α ∈ N1(X ′) coincides with An−1 for some ample divisor A, and
• α − (π∗A)n−1 is pseudo-effective.
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Thus one can compute the Zariski decomposition and volume for α by the following
procedure.

1. For each toric birational morphism π : X → X ′, check whether π∗α is in the
complete intersection cone. If so, there is a unique big and nef divisor AX′ such
that An−1

X′ = π∗α.
2. Check if α − (π∗AX′)n−1 is pseudo-effective.

The first step involves solving polynomial equations to deduce the equality of coef-
ficients of numerical classes, but otherwise this procedure is completely algorithmic.
(Note that there may be no natural pullback from Eff1(X ′) to Eff1(X), and in
particular, the calculation of (π∗AX′)n−1 is not linear in An−1

X′ .)

Example 6.1. Let X be the toric variety defined by a fan in N = Z
3 on the rays

v1 = (1, 0, 0) v2 = (0, 1, 0) v3 = (1, 1, 1)
v4 = (−1, 0, 0) v5 = (0, −1, 0) v6 = (0, 0, −1)

with maximal cones

〈v1, v2, v3〉, 〈v1, v2, v6〉, 〈v1, v3, v5〉, 〈v1, v5, v6〉,
〈v2, v3, v4〉, 〈v2, v4, v6〉, 〈v3, v4, v5〉, 〈v4, v5, v6〉.

The Picard rank of X is 3. Letting Di and Cij be the divisors and curves corre-
sponding to vi and vivj respectively, we have intersection product

D1 D2 D3

C12 −1 −1 1
C13 0 1 0
C23 1 0 0

Standard toric computations show that:

Eff1(X) = 〈D1, D2, D3〉 Nef1(X) = 〈D1 + D3, D2 + D3, D3〉
Mov1(X) = 〈D1 + D2, D1 + D3, D2 + D3, D3〉

and

Eff1(X) = 〈C12, C13, C23〉 Nef1(X) = 〈C12 + C13 + C23, C13, C23〉.
X admits a unique flip and has only one birational contraction corresponding to

the face of Nef1(X) generated by D1 + D3 and D2 + D3. Set Ba,b = aD1 + bD2 +
(a + b)D3. The complete intersection cone is given by taking the convex hull of the
boundary classes

B2
a,b = Ta,b = 2abC12 + (a2 + 2ab)C13 + (b2 + 2ab)C23

and the face of Nef1(X) spanned by C13, C23.
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For any big class α not in CI1(X), the positive part can be computed on the
unique toric birational contraction π : X → X ′ given by contracting C12. In practice,
the procedure above amounts to solving α − tC12 = Ta,b for some a, b, t. If α =
xC12+yC13+zC23, this yields the quadratic equation 4(y−x+t)(z−x+t) = (x−t)2.
Solving this for t tells us γ = tC12, and the volume can then easily be computed.

Remark 6.2. More generally, suppose that X is a Mori Dream Space. The movable
cone of divisors admits a chamber structure defined via the ample cones on small
Q-factorial modifications. This chamber structure behaves compatibly with the σ-
decomposition and the volume function for divisors.

For curves we obtain a complementary picture. The movable cone of curves ad-
mits a “chamber structure” defined via the complete intersection cones on small
Q-factorial modifications. However, the Zariski decomposition and volume of curves
are no longer invariant under small Q-factorial modifications but instead exactly re-
flect the changing structure of the pseudo-effective cone of curves. Thus the Zariski
decomposition is the right tool to understand the birational geometry of movable
curves on X. This example is analyzed in more detail in [LX15], since it relies on
the techniques developed there.

7 Hyperkähler manifolds

Throughout this section X will denote a hyperkähler variety of dimension n (with
n = 2m). We will continue to work in the projective setting. However, as explained
in Section 2.4, Demailly’s conjecture on transcendental Morse inequality is known
for hyperkähler manifolds. Thus all the results in this section and related results in
[LX15] can be extended accordingly in the Kähler setting for hyperkähler varieties
with no qualifications.

Let σ be a symplectic holomorphic form on X. For a real divisor class D ∈ N1(X)
the Beauville–Bogomolov quadratic form is defined as

q(D) = D2 · {(σ ∧ σ̄)}n/2−1,

where we normalize the symplectic form σ such that

q(D)n/2 = Dn.

As proved in [Bou04, Section 4], the bilinear form q is compatible with the volume
function and σ-decomposition for divisors in the following way:

(1) The cone of movable divisors is q-dual to the pseudo-effective cone.
(2) If D is a movable divisor then vol(D) = q(D, D)n/2 = Dn.
(3) For a pseudo-effective divisor D write D = Pσ(D) + Nσ(D) for its σ-decom-

position. Then q(Pσ(D), Nσ(D)) = 0, and if Nσ(D) �= 0 then q(Nσ

(D), Nσ(D)) < 0.
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The bilinear form q induces an isomorphism ψ : N1(X) → N1(X) by sending a
divisor class D to the curve class defining the linear function q(D, −). We obtain an
induced bilinear form q on N1(X) via the isomorphism ψ, so that for curve classes
α, β

q(α, β) = q(ψ−1α, ψ−1β) = ψ−1α · β.

In particular, two cones C, C′ in N1(X) are q-dual if and only if ψ(C) is dual to C′

under the intersection pairing (and similarly for cones of curves). In this section we
verify that the bilinear form q on N1(X) is compatible with the volume and Zariski
decomposition for curve classes in the same way as for divisors.

Remark 7.1. Since the signature of the Beauville–Bogomolov form is (1, dim N1

(X) − 1), one can use the Hodge inequality to analyze the Zariski decomposition as
in Example 4.7. We will instead give a direct geometric argument to emphasize the
ties with the divisor theory.

We first need the following proposition.

Proposition 7.2. Let D be a big movable divisor class on X. Then we have

ψ(D) =
〈Dn−1〉

vol(D)n−2/n
.

In particular, the complete intersection cone coincides with the ψ-image of the
nef cone of divisors and if A is a big and nef divisor then ̂vol(ψ(A)) = vol(A)1/n−1.

Proof. First note that ψ(D) is contained in Mov1(X). Indeed, since the movable cone
of divisors is q-dual to the pseudo-effective cone of divisors by [Bou04, Proposition
4.4], the ψ-image of the movable cone of divisors is dual to the pseudo-effective cone
of divisors.

For any big movable divisor L, the basic equality for bilinear forms shows that

L · ψ(D) = q(L, D) =
1
2
(vol(L + D)2/n − vol(L)2/n − vol(D)2/n).

In [LX15, Theorem 1.7] we show that vol(L + D)1/n ≥ vol(L)1/n + vol(D)1/n with
equality if and only if L and D are proportional. Squaring and rearranging, we see
that

L · ψ(D)
vol(L)1/n

≥ vol(D)1/n

with equality if and only if L is proportional to D. By [LX15, Proposition 3.3 and
Theorem 3.12] we immediately get that

ψ(D) =
〈Dn−1〉

vol(D)n−2/n
.

The final statements follow immediately. ��
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Theorem 7.3. Let q denote the Beauville–Bogomolov form on N1(X). Then:

(1) The complete intersection cone of curves is q-dual to the pseudo-effective cone
of curves.

(2) If α is a complete intersection curve class then ̂vol(α) = q(α, α)n/2(n−1).
(3) For a big class α write α = Bn−1 + γ for its Zariski decomposition. Then

q(Bn−1, γ) = 0 and if γ is non-zero then q(γ, γ) < 0.

Proof. For (1), since the complete intersection cone coincides with ψ(Nef1(X)) it is
q-dual to the dual cone of Nef1(X). For (2), by Proposition 7.2 we have

q(ψ(A), ψ(A)) = q(A, A) = vol(A)2/n

= ̂vol(ψ(A))2(n−1)/n.

For (3), we have

q(Bn−1, γ) = ψ−1(Bn−1) · γ = vol(B)n−2/nB · γ = 0.

For the final statement q(γ, γ) < 0, note that

q(α, α) = q(Bn−1, Bn−1) + q(γ, γ)

so it suffices to show that q(α, α) < q(Bn−1, Bn−1). Set D = ψ−1α. The desired
inequality is clear if q(D, D) ≤ 0, so by [Huy99, Corollary 3.10 and Erratum Propo-
sition 1] it suffices to restrict our attention to the case when D is big. (Note that
the case when −D is big can not occur, since q(D, A) = A · α > 0 for an ample
divisor class A.) Let D = Pσ(D) + Nσ(D) be the σ-decomposition of D. By [Bou04,
Proposition 4.2] we have q(Nσ(D), B) ≥ 0. Thus

vol(B)2(n−1)/n = q(Bn−1, Bn−1) = q(α, Bn−1)

= vol(B)n−2/nq(D, B) ≥ vol(B)n−2/nq(Pσ(D), B).

Arguing just as in the proof of Proposition 7.2, we see that

q(Pσ(D), B) ≥ vol(Pσ(D))1/n vol(B)1/n

with equality if and only if Pσ(D) and B are proportional. Combining the two
previous equations we obtain

vol(B)n−1/n ≥ vol(Pσ(D))1/n

and equality is only possible if B and Pσ(D) are proportional. Then we calculate:

q(α, α) = q(D, D)
≤ q(Pσ(D), Pσ(D)) by [Bou04, Theorem 4.5]

= vol(Pσ(D))2/n

≤ vol(B)2(n−1)/n = q(B, B).
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If Pσ(D) and B are not proportional, we obtain a strict inequality at the last step.
If Pσ(D) and B are proportional, then Nσ(D) > 0 (since otherwise D = B and
α is a complete intersection class). Then by [Bou04, Theorem 4.5] we have a strict
inequality q(Pσ(D), Pσ(D)) > q(D, D) on the second line. In either case we conclude
q(α, α) < q(B, B) as desired. ��

8 Connections with birational geometry

We end with a discussion of several connections between positivity of curves and
other constructions in birational geometry. There is a large body of literature relating
the positivity of a divisor at a point to its intersections against curves through that
point. One can profitably reinterpret these relationships in terms of the volume of
curve classes. A key result conceptually is:

Proposition 8.1. Let X be a smooth projective variety of dimension n. Choose
positive integers {ki}r

i=1. Suppose that α ∈ Mov1(X) is represented by a family of
irreducible curves such that for any collection of general points x1, x2, . . . , xr, y of X,
there is a curve in our family which contains y and contains each xi with multiplicity
≥ ki. Then

̂vol(α)
n−1
n ≥

∑

i ki

r1/n
.

This is just a rephrasing of well-known results in birational geometry; see for
example [Kol96, V.2.9 Proposition].

Proof. By continuity and rescaling invariance, it suffices to show that if L is a big
and nef Cartier divisor class then

(

r
∑

i=1

ki

)

vol(L)1/n

r1/n
≤ L · C.

A standard argument (see for example [Leh13, Example 8.22]) shows that for any ε >
0 and any general points {xi}r

i=1 of X there is a positive integer m and a Cartier divi-
sor M numerically equivalent to mL and such that multxi

M ≥ mr−1/n vol(L)1/n −ε
for every i. By the assumption on the family of curves we may find an irreducible
curve C with multiplicity ≥ ki at each xi that is not contained M . Then

m(L · C) ≥
r

∑

i=1

ki multxi
M ≥

(

r
∑

i=1

ki

)

(

m vol(L)1/n

r1/n
− ε

)

.

Divide by m and let ε go to 0 to conclude. ��
Example 8.2. The most important special case is when α is the class of a family
of irreducible curves such that for any two general points of X there is a curve in
our family containing them. Proposition 8.1 then shows that ̂vol(α) ≥ 1.
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8.1 Seshadri constants. Let X be a smooth projective variety of dimension
n and let A be a big and nef R-Cartier divisor on X. Recall that for points {xi}r

i=1

on X the Seshadri constant of A along the {xi} is

ε(x1, . . . , xr, A) := inf
C�xi

A · C
∑

i multxi
C

where the infimum is taken over all reduced irreducible curves C containing at least
one of the points xi. An easy intersection calculation on the blow-up of X at the r
points shows that

ε(x1, . . . , xr, A) ≤ vol(A)1/n

r1/n
.

When the r points are very general, r is large, and A is sufficiently ample, one
“expects” the two sides of the inequality to be close. This heuristic can fail badly, but
it is interesting to analyze how close it is to being true. In particular, the Seshadri
constant should only be very small compared to the volume in the presence of a
“Seshadri-exceptional fibration” (see [EKL95], [HK03]). This motivates the following
definition:

Definition 8.3. Let A be a big and nef R-Cartier divisor on X. Set εr(A) to be
the Seshadri constant of A along r points x := {xi} of X. We define the Seshadri
ratio of A to be

srx(A) :=
r1/nε(x1, . . . , xr, A)

vol(A)1/n
.

Note that the Seshadri ratio is at most 1, and that low values should only arise
in special geometric situations. The principle established by [EKL95], [HK03] is that
if the Seshadri ratio for A is small, then the curves which approximate the bound
in the Seshadri constant can not “move too much.”

In this section we revisit these known results on Seshadri constants from the
perspective of the volume of curves. In particular we demonstrate how the Zariski
decomposition can be used to bound the classes of curves C which give small values
in the Seshadri computations above.

Proposition 8.4. Let X be a smooth projective variety of dimension n and let A
be a big and nef R-Cartier divisor on X. Fix δ > 0 and fix r points x1, . . . , xr.
Suppose that C is a curve containing at least one of the xi and such that

ε(x1, . . . , xr, A)(1 + δ) >
A · C

∑

i multxi
C

.

Letting α denote the numerical class of C, we have

srx(A)(1 + δ) ≥ r1/n
̂vol(α)n−1/n

∑

i multxi
C

.
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In fact, this estimate is rather crude; with better control on the relationship
between A and α, one can do much better.

Proof. One simply multiplies both sides of the first inequality by r1/n/ vol(A)1/n to
deduce that

srx(A)(1 + δ) ≥ r1/n A · C

vol(A)1/n
∑

i multxi
C

and then uses the obvious inequality (A · C)/ vol(A)1/n ≥ ̂vol(C)n−1/n. ��
We can then bound the Seshadri ratio of A in terms of the Zariski decomposition

of the curve.

Proposition 8.5. Let X be a smooth projective variety of dimension n and let A
be a big and nef R-Cartier divisor on X. Fix δ > 0 and fix r distinct points xi ∈ X.
Suppose that C is a curve containing at least one of the xi such that the class α of
C is big and

ε(x1, . . . , xr, A)(1 + δ) >
A · C

∑

i multxi
C

.

Write α = Bn−1 + γ for the Zariski decomposition. Then srx(A)(1 + δ) > srx(B).

Proof. By Proposition 8.4 it suffices to show that

r1/n
̂vol(α)n−1/n

∑

i multxi
C

≥ srx(B).

But this follows from the definition of Seshadri constants along with the fact that
B · C = ̂vol(C). ��

These results are of particular interest in the case when the points are very
general, when it is easy to deduce the bigness of the class of C.

Certain geometric properties of Seshadri constants become very clear from this
perspective. For example, following the notation of [Nag60] we say that a curve C
on X is abnormal for a set of r points {xi} and a big and nef divisor A if C contains
at least one xi and

1 >
r1/n(A · C)

vol(A)1/n
∑

i multxi
C

.

Corollary 8.6. Let X be a smooth projective variety of dimension n and let A be
a big and nef R-Cartier divisor on X. Fix r very general points x1, . . . , xr. Then no
abnormal curve goes through a very general point of X aside from the xi.

Proof. Since the xi are very general, any curve going through at least one more very
general point deforms to cover the whole space, so its class is big and nef. Then
combine Propositions 8.4 and 8.1 to deduce that if the Seshadri constant of the {xi}
is computed by a curve through an additional very general point then srx(A) = 1.��
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8.2 Rationally connected varieties. Given a rationally connected variety X
of dimension n, it is interesting to ask for the possible volumes of curve classes repre-
senting rational curves. In particular, one would like to know if one can find classes
whose volumes satisfy a uniform upper bound depending only on the dimension.
There are four natural options:

(1) Consider all classes of rational curves.
(2) Consider all classes of chains of rational curves which connect two general

points.
(3) Consider all classes of irreducible rational curves which connect two general

points.
(4) Consider all classes of very free rational curves.

Note that each criterion is more special than the previous ones. We call a class of
the second kind an RCC class and a class of the fourth kind a VF class. Every one
of the classes (2), (3), (4) has positive volume; indeed, [BCEKPRS02] shows that if
two general points of X can be connected via a chain of curves of class α, then α is
a big class.

On a Fano variety of Picard rank 1, the minimal volume of an RCC class is
determined by the degree and the minimal degree of an RCC class against the
ample generator (or equivalently, the degree, the index, and the length of an RCC
class). The minimum volume is thus related to these well studied invariants.

In higher dimensions, the work of [KMM92] and [Cam92] shows that there are
constants C(n), C ′(n) such that any n-dimensional smooth Fano variety carries an
RCC class satisfying −KX ·α ≤ C(n), and a VF class satisfying −KX ·β ≤ C ′(n). We
then also obtain explicit bounds on the minimal volume of an RCC or VF class on
X. It is interesting to ask what happens for arbitrary rationally connected varieties.

Example 8.7. We briefly discuss bounds on the volumes of rational curve classes
on smooth surfaces. Consider first the Hirzebruch surfaces Fe. It is clear that on
a Hirzebruch surface a curve class is RCC if and only if it is big, and one easily
sees that the minimum volume for an RCC class is 1

e . Thus there is no non-trivial
universal lower bound for the minimum volume of an RCC class.

In terms of upper bounds, note that if π : Y → X is a birational map and
α is an RCC class, then π∗α is an RCC class as well. Conversely, given any RCC
class β on X, there is some preimage β′ on Y which is also an RCC class. Thus by
Proposition 5.16, we see that any rational surface carries an RCC class of volume
no greater than that of an RCC class on a minimal surface. This shows that any
smooth rational surface has an RCC class of volume at most 1.

On a surface any VF class is necessarily big and nef, so the universal lower bound
on the volume is 1. In the other direction, consider again the Hirzebruch surface Fe.
Any VF class will have the form aC0 + bF where C0 is the section of negative self-
intersection and F is the class of a fiber. Note that the self intersection is 2ab − a2e.
For a VF class we clearly must have a ≥ 1, so that b ≥ ea to ensure nefness. Thus
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the smallest possible volume of a VF class is e, and this is achieved by the class
C0 + eF . Note that there is no uniform upper bound on the minimum volume of a
VF class.

As indicated in the previous example, it is most interesting to look for upper
bounds on the minimum volume of an RCC class. Indeed, by taking products with
projective spaces, one sees that in any dimension the only uniform lower bound for
volumes of RCC classes is 0. Furthermore, there is no uniform upper bound for the
minimum volume of a VF class. The crucial distinction is that VF classes are nef,
while RCC classes need not be, so that a uniform bound on the volume of a VF
class can only be expected for bounded families of varieties.

The following question gives a “birational” version of the well-known results of
[KMM92].

Question 8.8. Let X be a smooth rationally connected variety of dimension n. Is
there a bound d(n), depending only on n, such that X admits an RCC class of
volume at most d(n)?

It is also interesting to ask for optimal bounds on volumes. The first situation to
consider are the “extremes” in the examples above. Note that the lower bound of
the volume of a VF class is 1 by Proposition 8.1, so it is interesting to ask when the
minimum is achieved.

Question 8.9. For which varieties X is the smallest volume of an RCC class equal
to 1?

For which varieties X is the smallest volume of a VF class equal to 1?

8.3 Towards the transcendental holomorphic Morse inequality. The
(weak) transcendental holomorphic Morse inequality over compact Kähler manifolds
conjectured by Demailly is stated as follows:

• Let X be a compact Kähler manifold of dimension n, and let α, β ∈ K be
two nef classes. Then we have vol(α − β) ≥ αn − nαn−1 · β. In particular, if
αn − nαn−1 · β > 0 then there exists a Kähler current in the class α − β.

Note that the last statement has been proved in the recent work [Pop14] (see also
[Xia13] for a weaker result and the recent important progress made in [Wit16]). The
missing part is how to bound the volume vol(α − β) by αn − nαn−1 · β.

In this subsection, we show that the duality theory might apply to this problem.
By [Xia15, Theorem 2.1 and Remark 2.3] the volume for transcendental pseudo-
effective (1, 1)-classes is conjectured to be characterized as following:

vol(α) = inf
γ∈M,M(γ)=1

(α · γ)n. (1)

For the definition of M in the Kähler setting, see [Xia15, Definition 2.2]. If we denote
the right hand side of (1) by vol(α), then we can prove the following as an application
of our work:
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Theorem 8.10. Let X be a compact Kähler manifold of dimension n, and let α, β ∈
K be two nef classes. Then we have

vol(α − β)1/n vol(α)n−1/n ≥ αn − nαn−1 · β.

Proof. We only need to consider the case when αn − nαn−1 · β > 0. And [Pop14]
implies the class α − β is big. By the definition of vol, we have

vol(α − β)1/n = inf
γ∈M,M(γ)=1

(α − β) · γ.

So we need to estimate (α − β) · γ with M(γ) = 1:

(α − β) · γ = α · γ − β · γ

≥ α · γ − n(αn−1 · β) · (α · γ)
αn

=
α · γ

αn
(αn − nαn−1 · β)

≥ vol(α)1−n/n(αn − nαn−1 · β),

where the second line follows from the “reverse” Khovanskii–Teissier inequality in
Proposition 4.17 and the last line follows from the definition of M and M(γ) = 1.

By the arbitrariness of γ we get

vol(α − β)1/n vol(α)n−1/n ≥ αn − nαn−1 · β. ��
Remark 8.11. Without using the conjectured equality (1), it is observed indepen-
dently by [Tos15] and [Pop15] that one can replace vol by the volume function vol
in Theorem 8.10.

9 Appendix: Non-convexity of the complete intersection cone

We give an example explicitly verifying the non-convexity of CI1(X).

Example 9.1. [FS09] gives an example of a smooth toric threefold X such that
every nef divisor is big. We show that for this toric variety CI1(X) is not convex.

Let X be the toric variety defined by a fan in N = Z
3 on the rays

v1 = (1, 0, 0) v2 = (0, 1, 0) v3 = (0, 0, 1) v4 = (−1, −1, −1)
v5 = (1, −1, −2) v6 = (1, 0, −1) v7 = (0, −1, −2) v8 = (0, 0, −1)

with maximal cones

〈v1, v2, v3〉, 〈v1, v2, v6〉, 〈v1, v3, v4〉, 〈v1, v4, v5〉,
〈v1, v5, v6〉, 〈v2, v3, v4〉, 〈v2, v4, v8〉, 〈v2, v5, v6〉,
〈v2, v5, v8〉, 〈v4, v5, v7〉, 〈v4, v7, v8〉, 〈v5, v7, v8〉.
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Since X is the blow-up of P
3 along 4 rays, it has Picard rank 5. Let Di be the

divisor corresponding to the ray vi and Cij denote the curve corresponding to the face
generated by vi and vj . Standard toric computations show that the pseudo-effective
cone of divisors is simplicial and is generated by D1, D5, D6, D7, D8. The pseudo-
effective cone of curves is also simplicial and is generated by C14, C16, C25, C47, C48.
From now on we will write divisor or curve classes as vectors in these (ordered)
bases.

The intersection matrix is:

D1 D5 D6 D7 D8

C14 −2 1 0 0 0
C16 1 1 −2 0 0
C25 0 −1 1 0 1
C47 0 1 0 −2 1
C48 0 0 0 1 −2

The nef cone of divisors is dual to the pseudo-effective cone of curves. Thus it is
simplicial and has generators A1, . . . , A5 determined by the columns of the inverse
of the matrix above:

A1 = (1, 3, 2, 2, 1)
A2 = (3, 6, 4, 4, 2)
A3 = (6, 12, 9, 8, 4)
A4 = (2, 4, 3, 2, 1)
A5 = (4, 8, 6, 5, 2)

A computation using toric intersection theory shows that for real numbers
x1, . . . , x5,

(

5
∑

i=1

xiAi

)2

= (1, 3, 6, 2, 4)(x2
1 + 6x1x2 + 12x1x3 + 4x1x4 + 8x1x5) + (9, 22, 45, 15, 30)x2

2

+ (12, 30, 60, 20, 40)(x2x4 + 2x2x5 + 3x2x3 + 3x2
3 + 2x3x4 + 4x3x5)

+ (4, 10, 20, 6, 13)x2
4 + (16, 40, 80, 26, 52)(x4x5 + x2

5).

Note that the five vectors above form a basis of N1(X) and each one is propor-
tional to one of the A2

i .
It is clear from this explicit description that the cone is not convex. For example,

the vector

v = (9, 22, 45, 15, 30) + (4, 10, 20, 6, 13)

can not be approximated by curves of the form H2 for an ample divisor H. Indeed,
if we have a sequence of ample divisors Hj =

∑

xi,jAi with xi,j > 0 such that H2
j
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converges to v, then

lim
j→∞

x2,j = 1 and lim
j→∞

x4,j = 1.

But then the limit of the coefficient of (12, 30, 60, 20, 40) is at least 1, a contradiction.
Exactly the same argument shows that the closure of the set of all products of two
(possibly different) ample divisors is not convex.
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[KM13] A. Küronya and C. Maclean. Zariski decomposition of b-divisors. Math-
ematische Zeitschrift, (1–2)273 (2013), 427–436 (English).

[KMM92] J. Kollár, Y. Miyaoka, and S. Mori. Rational connectedness and bound-
edness of Fano manifolds. Journal of Differential Geometry, (3)36 (1992),
765–779.

[Kol96] J. Kollár. Rational curves on algebraic varieties, Ergebnisse der Math-
ematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Se-
ries of Modern Surveys in Mathematics], Vol. 32. Springer, Berlin (1996).

[Laz04] R. Lazarsfeld. Positivity in algebraic geometry. I, Ergebnisse der Math-
ematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Se-
ries of Modern Surveys in Mathematics], Vol. 48. Springer, Berlin. Classical
setting: line bundles and linear series (2004).

[Leh13] B. Lehmann. Geometric characterizations of big cycles. arXiv:1309.0880,
see also “Volume-type functions for numerical cycle classes” on the author’s
homepage (2013).

[LM09] R. Lazarsfeld and M. Mustaţă. Convex bodies associated to linear se-
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