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MAXIMIZERS FOR THE STEIN–TOMAS INEQUALITY

Rupert L. Frank, Elliott H. Lieb and Julien Sabin

Abstract. We give a necessary and sufficient condition for the precompactness
of all optimizing sequences for the Stein–Tomas inequality. In particular, if a well-
known conjecture about the optimal constant in the Strichartz inequality is true,
we obtain the existence of an optimizer in the Stein–Tomas inequality. Our result
is valid in any dimension.

1 Main Result

A fundamental result in harmonic analysis is the Stein–Tomas theorem [ST84,
TO75], which states that if f ∈ L2(SN−1), N ≥ 2, then the inverse Fourier transform
f̌ of f dω, with dω the surface measure on S

N−1, that is,

f̌(x) :=
1

(2π)N/2

∫
SN−1

eix·ωf(ω) dω,

belongs to Lq(RN ) with
q := 2(N + 1)/(N − 1) (1.1)

and its Lq(RN ) norm is bounded by a constant times the L2(SN−1) norm of f .
Moreover, it is well known that the exponent q is optimal (smallest possible) for this
to hold for any f ∈ L2(SN−1).

In this paper we are interested in the optimal Stein–Tomas constant,

RN := sup
0�≡f∈L2(SN−1)

∫
RN |f̌ |q dx

‖f‖q
,

where ‖·‖ denotes the norm in L2(SN−1). The value of RN and optimizing functions
are only known in dimension N = 3 due to a remarkable work of Foschi [FO15]; see
[CFO15] for partial progress in N = 2. Our main concern here is whether the supre-
mum defining RN is attained and, more generally, the description of maximizing
sequences for RN . These questions were recently considered in fundamental papers
by Christ and Shao, where the existence of a maximizer for N = 3 [CS12a] and
N = 2 [SH15] was shown, as well as a precompactness result for maximizing se-
quences for N = 3 [CS12b]. What makes dimensions N = 2 and 3 special is that the
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exponent q in (1.1) is an even integer, so that one can multiply out |f̌ |q. Our results
will be valid in any dimension.

Christ and Shao discovered that for the problem of existence of an maximizer for
RN a key role is played by the Strichartz inequality [ST77]. The optimal constant
in this inequality is

Sd := (2π)−(d+2)/d sup
0�=ψ∈L2(Rd)

∫∫
R×Rd |eitΔ/2ψ(x)|2+4/d dx dt

‖ψ‖2+4/d
.

(Here ‖ · ‖ denotes the norm in L2(Rd).) Note that 2 + 4/d = q when d = N − 1.
The overall factor (2π)−(d+2)/d and the factor 1/2 in front of the Laplacian are not
important, but simplify some formulas below.

We say that a sequence (fn) ⊂ L2(SN−1) is precompact in L2(SN−1) up to
modulations if there is a subsequence (fnk

) and a sequence (ak) ⊂ R
N such that

e−iak·ωfnk
converges in L2(SN−1).

The following is our main result.

Theorem 1.1. Let N ≥ 2. If

RN >
2q/2

√
π

Γ( q+1
2 )

Γ( q+2
2 )

SN−1, (1.2)

then maximizing sequences for RN , normalized in L2(SN−1), are precompact in
L2(SN−1) up to modulations and, in particular, there is a maximizer for RN .

Clearly, the optimization problem for RN is invariant under modulations, so
precompactness up to modulations is the best one can expect. Our theorem says
that assumption (1.2) is sufficient for this. In fact, it is easy to see that (1.2) is also
necessary for the precompactness modulo modulations of all maximizing sequences.
We will comment on this in Remark 2.5, where we will also see that (1.2) holds with
≥ instead of >.

As we will argue below, in dimensions N = 2 and N = 3, the strict inequality
(1.2) holds and so we recover the Christ–Shao results on the existence of optimizers
[CS12a,SH15] and precompactness in N = 3 [CS12b] and we obtain, for the first
time, precompactness of maximizing sequences for N = 2.

We believe, but cannot prove, that the strict inequality (1.2) holds in any di-
mension. To verify it, it seems natural to first compute SN−1 and then to use a
perturbation argument to establish (1.2). In fact, by a remarkable work of Foschi
[FO07] (see also [HZ06,BBC09]), the value of SN−1 is known for N = 2 and N = 3.
We cite the following conjecture from [FO07]; see also [HZ06].

Conjecture 1.2. Let d ≥ 3. Then the supremum defining Sd is attained for ψ(x) =
e−x2/2, x ∈ R

d.

Assuming that this conjecture is true we can generalize an argument from [CS12a,
SH15] and obtain existence of a maximizer for the Rd+1 problem.
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Proposition 1.3. Let N ≥ 4. If Conjecture 1.2 holds for d = N − 1, then (1.2)
holds and therefore the conclusions of Theorem 1.1 hold.

In connection with Conjecture 1.2 we would like to mention that the existence
and precompactness problem for the optimization corresponding to Sd was solved
by Kunze [KU03] in d = 1 and by Shao [SH09] in d ≥ 1. As we will explain
next, this problem is considerably easier than that for RN since on the paraboloid
{(ξ, ω) ∈ R

d ×R : |ξ|2 = ω}, no points have parallel normal vectors (which is also a
consequence of the fact that the paraboloid can be written globally as a graph and
has non-vanishing curvature). In fact, our proof technique allows one to simplify the
proofs in [KU03,SH09].

Let us discuss some of the challenges in proving Theorem 1.1. As in most opti-
mization problems the key difficulty here is to find a weak limit of an optimizing
sequence which is non-zero. There is an obvious way how a maximizing sequence
can go weakly to zero, namely by modulations. However, potentially there is an-
other way, namely by concentration and, in fact, the largest part of our proof is
concerned with showing that concentration does not occur. If a sequence would con-
centrate at a point, we could approximate the sphere close to this concentration
point by a paraboloid and we are in the setting of the Strichartz inequality. (Note
that the Strichartz inequality is invariant under dilations.) Therefore, if a maxi-
mizing sequence concentrates at a point, one could naively expect that the largest
possible ‘energy’ it can have is SN−1. What makes this problem interesting is that a
maximizing sequence can do better than concentrating at a single point! Namely, it
can concentrate at a pair of antipodal points. What we will show is that the largest
possible ‘energy’ in this case is 2q/2√

π

Γ( q+1
2

)

Γ( q+2
2

)
SN−1 with a factor

2q/2

√
π

Γ( q+1
2 )

Γ( q+2
2 )

> 1.

From this and our assumption (1.2) we will deduce that maximizing sequences cannot
concentrate at two antipodal points and therefore will be precompact.

The fact that a strict ‘energy’ inequality leads to precompactness of minimizing
sequences is frequently used in the calculus of variations, for instance, in the linear
Schrödinger operator theory. In a non-linear context it seems to appear for the first
time in the Brézis–Nirenberg problem [BN83, Lem. 1.2]. (Existence of minimizers,
but not precompactness of minimizing sequences, under a strict ‘energy’ inequality
was shown earlier in the Yamabe problem [AU76].) We emphasize that both in
the Yamabe and in the Brézis–Nirenberg problem one has to deal with the loss of
compactness due to concentration around a point.

However, the fact that concentration at two points is better than concentration
at a single point is a non-local phenomenon and is a novel feature of the optimization
problem RN . As far as we know, it does not appear in optimization problems related
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to Sobolev spaces (for instance, the Yamabe problem or the Brézis–Nirenberg prob-
lem mentioned before—not even in non-local versions of these problems) or in the
optimization problem related to the Strichartz inequality. In order to deal with this
non-local effect we have to modify existing strategies in the calculus of variations
and we hope that our techniques will be useful in problems with a similar flavor.
In particular, our method should yield a solution in the case of a general manifold
with positive Gauss curvature. In this case the role of antipodal points is played by
pairs of points with opposite normal vectors. For earlier results in the case of general
curves (N = 2), but with pairs of points with opposite normal vectors excluded, we
refer to [OL14].

The mechanism of antipodal concentration was discovered by Christ and Shao
in [CS12a]. In their analysis, however, the fact that q is even plays a major role.
First, it allows them to restrict their attention to non-negative functions, which
eliminates the loss of compactness due to modulations. More importantly, however,
it also allows them to restrict their attention to antipodally symmetric functions. In
this way the concentration at antipodal points is built into their proof automatically
and, for instance, it is trivial in their case that the concentration happens with the
same profile at both points, whereas this is a non-trivial step in our proof.

In order to prove Theorem 1.1 we use the method of the missing mass (MMM)
which was invented in [LI83] and [BN83, Lem. 1.2]; see also [BL84,FLL86] for early
and [FL12,FL15] for more recent applications of this method. The basic idea is to
decompose a maximizing sequence into a main piece, which converges in a strong
sense, and a remainder piece, which vanishes in a suitable sense. The goal of the
decomposition is that each of the quantities involved in the maximization problem
splits into a contribution of the main piece and the remainder piece, without any
interaction between them. The crucial point is to not ignore the remainder piece
(i.e., the missing mass), but to treat it as a potential optimizer. Because of the non-
linear nature of the optimization problem, one can then conclude that the missing
mass is either everything (which is impossible, since the main piece does not vanish)
or nothing, which means that the maximizing sequence converges, in fact, strongly.

The MMM can deal both with exact symmetries (as in [BL84]) and with almost
symmetries (as in [BN83]). One novelty of our work is that we need to apply the
method twice, once to deal with the exact modulation symmetry (Proposition 2.2)
and once to deal with the almost dilation symmetry (Proposition 2.4).

The method relies on two main ingredients which have to be verified in each
problem. First, one needs to identify a main piece which does not vanish in the
limit. This usually comes from a compactness theorem. In our case we prove a
refinement of the Stein–Tomas inequality (Proposition 5.1) which relies on a deep
bilinear restriction theorem of Tao [TA03]. Our strategy here is reminiscent of Tao’s
proof of what he calls the ‘inverse Strichartz theorem’ [TA09]. We feel that this
approach is more direct than earlier approaches using Xp spaces, which were used
in connection with refined Strichartz inequalities (and were also an ingredient in
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[KU03,SH09]). Refinements of the Stein–Tomas inequality in terms of these spaces
also play an important role in the works of Christ–Shao [CS12a] and Shao [SH15].

The second ingredient in the MMM is the decoupling of the main and the re-
mainder piece. While for a Hilbertian norm involved in the maximization problem
this follows simply from weak convergence, one usually uses almost everywhere con-
vergence and the Brézis–Lieb lemma [LI83,BL83] for an Lq norm. Indeed, we are
able to verify almost everywhere convergence in our setting by proving an analogue
of the local smoothing property of the Schrödinger equation (Lemma 4.4). However,
we need a generalization of the Brézis–Lieb lemma (Lemma 3.1) since in our second
application of MMM the main piece will not be convergent. Nevertheless, we will be
able to separate its contribution from that of the remainder piece. The fact that the
main piece is not convergent is ultimately a consequence of the non-local interaction
between concentration points.

The outline of this paper is as follows. In Section 2 we present the overall strategy
of our argument in more detail and explain how the MMM works. Section 3 contains
the new generalization of the Brézis–Lieb lemma, Section 4 the results on almost
everywhere convergence and Section 5 (and Appendix A) the compactness result
mentioned before. In Section 6 we complete the computation of the compactness level
by showing that, if concentration at antipodal points happens, then it is energetically
favorable to have the same concentration profile on both points. Finally, Section 7
is devoted to the proof of Proposition 1.3.

2 Outline of the Proof: Method of the Missing Mass

In this section we explain the main steps in the proof of Theorem 1.1. In Proposi-
tion 2.2 we will show that the conclusions of Theorem 1.1 hold if 2q/2√

π

Γ( q+1
2

)

Γ( q+2
2

)
SN−1

on the right side of (1.2) is replaced by a certain quantity R∗
N , which is abstractly

defined through certain sequences in L2(SN−1) that converge weakly to zero. In a
second step in Proposition 2.4 we will show that

R∗
N = S̃N−1, (2.1)

where S̃N−1 is a quantity defined in terms of pairs of functions in L2(RN−1) and is
a generalization of the Strichartz constant SN−1. Finally, in Section 6 we will show
that

S̃d =
2q/2

√
π

Γ( q+1
2 )

Γ( q+2
2 )

Sd, (2.2)

which will complete the proof of Theorem 1.1.
The proof of Proposition 2.4 will rely on Sections 3, 4 and 5. We present it already

at this point both in order to motivate the more technical work in these sections
and in order to emphasize the general nature of our argument.

We now present the steps in more detail.
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Definition 2.1. Let (fn) ⊂ L2(SN−1). We write

fn ⇀mod 0

if for every sequence (an) ⊂ R
N one has

e−ian·ωfn ⇀ 0 in L2(SN−1).

(Here and in the following, we slightly abuse notation and write e−ian·ωf for the
function ω �→ e−ian·ωf(ω).)

Define

R∗
N := sup

{
lim sup

∫
RN

|f̌n|q dx : ‖fn‖ = 1, fn ⇀mod 0
}

.

Proposition 2.2. If
RN > R∗

N ,

then maximizing sequences for RN , normalized in L2(SN−1), are precompact in
L2(SN−1) up to modulations and, in particular, there is a maximizer for RN .

Proof. Let (fn) ⊂ L2(SN−1) be a maximizing sequence with ‖fn‖ = 1. Since

lim
∫
RN

|f̌n|q dx = RN > R∗
N ,

we infer that fn 	⇀mod 0. That is, there is an h ∈ L2(SN−1) and a sequence (an) ⊂ R
N

such that lim supn→∞ |
∫

he−ian·ωfn dω| > 0. After passing to a subsequence we
may assume that infn |

∫
he−ian·ωfn dω| > 0. By weak compactness, after passing

to another subsequence, we may assume that e−ian·ωfn ⇀ g in L2(SN−1). Then∫
he−ian·ωfn dω →

∫
hg dω and this is non-zero, so we conclude that g 	≡ 0.

Let us denote rn := e−ian·ωfn − g. Then rn ⇀ 0 in L2(SN−1) and therefore

m := lim
n→∞ ‖rn‖2 exists and satisfies 1 = ‖g‖2 + m.

Moreover, since eix·ω ∈ L2(SN−1), weak convergence implies that řn → 0 pointwise
and therefore, by the Brézis–Lieb lemma [LI83,BL83],

μ := lim
n→∞ ‖řn‖q

q exists and satisfies RN = ‖ǧ‖q
q + μ.

Since ‖řn‖q
q ≤ RN‖rn‖q, we have μ ≤ RNmq/2 and therefore

RN = ‖ǧ‖q
q+μ ≤ ‖ǧ‖q

q+RNmq/2 =‖ǧ‖q
q+RN (1 − ‖g‖2)q/2 ≤‖ǧ‖q

q + RN − RN‖g‖q,

where we used the elementary inequality (1 − t)q/2 ≤ 1 − tq/2 for t ∈ [0, 1]. Thus, we
have shown that 0 ≤ ‖ǧ‖q

q −RN‖g‖q, which means that g is a maximizer (recall that
g 	≡ 0) and that equality must hold everywhere. Since the elementary inequality is
strict unless t ∈ {0, 1}, we conclude that ‖g‖2 = 1. Thus, m = 0, which means that
e−ian·ωfn converges to g strongly in L2(SN−1). This completes the proof. �
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This proposition reduces the proof of our main theorem to showing that

R∗
N =

2q/2

√
π

Γ( q+1
2 )

Γ( q+2
2 )

SN−1,

which we will verify in two steps. For d ≥ 1 (which will typically be N − 1 in our
application), let

S̃d := (2π)−(d+2)/d

× sup
(0,0) �=(ψ+,ψ−)∈L2(Rd)2

limλ→∞
∫∫

R×Rd

∣∣eitΔ/2ψ+(x) + eiλxN e−itΔ/2ψ−(x)
∣∣2+4/d

dx dt

(‖ψ+‖2 + ‖ψ−‖2)1+2/d
.

It is easy to see that the limit λ → ∞ exists. We discuss this in some more detail
before Lemma 6.1.

Our next goal is to prove equality (2.1). Intuitively, this equality says that for
the computation of R∗

N we only need to consider sequences which concentrate on
a pair of antipodal points. Approximating the sphere near the concentration points
by a paraboloid, we arrive at S̃N−1. (The factor of (2π)−(d+2)/d comes from the
normalization of the Fourier transform.)

In order to make this intuition precise we have to quantify the notion of con-
centration. We will introduce a family of maps BR,δ with R ∈ O(N) and δ > 0
which identifies pairs of functions on L2(RN−1) with a function on L2(SN−1). The
orthogonal matrix R ∈ O(N) will determine the equator along which we cut the
function in L2(SN−1) into two pieces. The parameter δ > 0 corresponds to a scaling
in L2(RN−1).

We begin with the case R = Id, in which the equator along which we cut is
the standard equator. For φ+, φ− ∈ L2(RN−1) and δ > 0 we define a function
Bδ(φ+, φ−) ∈ L2(SN−1) by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Bδ(φ+, φ−)

(
ξ√

1 + ξ2
,

1√
1 + ξ2

)
:= (1 + ξ2)N/4 δ−(N−1)/2 φ+(ξ/δ),

Bδ(φ+, φ−)

(
ξ√

1 + ξ2
,

−1√
1 + ξ2

)
:= (1 + ξ2)N/4 δ−(N−1)/2 φ−(ξ/δ)

(2.3)

for ξ ∈ R
N−1. (It is inessential that Bδ(φ+, φ−) is not defined on the set {ω ∈ S

N−1 :
ωN = 0} of measure zero.) A simple change of variables shows that

‖Bδ(φ+, φ−)‖2 = ‖φ+‖2 + ‖φ−‖2. (2.4)

The map Bδ will be BR,δ with R = Id. Now for any R ∈ O(N), φ+, φ− ∈ L2(RN−1),
and δ > 0 we define a function BR,δ(φ+, φ−) ∈ L2(SN−1) by

BR,δ(φ+, φ−)(ω) = Bδ(φ+, φ−)(R−1ω). (2.5)

Since Bδ concentrates as δ → 0 around the north pole (0, . . . , 0, 1) and the south pole
(0, . . . , 0, −1), BR,δ concentrates around R(0, . . . , 0, 1) and R(0, . . . , 0, −1) as δ → 0.
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Definition 2.3. Let (fn) ⊂ L2(SN−1). We write

fn ⇀conc 0

if for all sequences (an) ⊂ R
N , (Rn) ⊂ O(N) and (δn) ⊂ (0, ∞) with sup δn < ∞

one has

B−1
Rn,δn

(
e−ian·ωfn

)
⇀ (0, 0) in L2(RN−1) × L2(RN−1).

(Recall that, with our slight abuse of notation, e−ian·ωf denotes the function
ω �→ e−ian·ωf(ω).)

Let us briefly comment on this definition. At first sight it might look unnecessary
to include a sequence of orthogonal maps (Rn) in this definition since the space
O(N) is compact and hence, up to a subsequence, (Rn) will converge to a fixed
orthogonal map. However, if δn → 0, the sphere gets ‘blown-up’ and the maps (Rn)
might move a point on the sphere on a distance 1/δn when looking around the
concentration point at the scale 1/δn. As a consequence, the (Rn) play the role
of the v-translations (modulation symmetry) in the symmetries of the Strichartz
inequality (see the appendix of [TA09]). The importance of keeping these rotations
will become clear in the proof of Lemma 5.2. Let us also remark that the analogue
of our (an) are (tn, xn)-translations in the Strichartz case.

Our definition of the convergence fn ⇀conc 0 is specific to the sphere: we used
that any rotation stabilizes the sphere. If one tries to adapt our approach to a general
compact manifold with positive Gauss curvature one probably needs to work with
local versions of the B operators.

We introduce two auxiliary functions ζ1, ζ2 on [0, ∞) by

ζ1(k) =
1√

1 + k2
, ζ2(k) =

2
k2

(
1 − 1√

1 + k2

)
.

For ψ ∈ L2(RN−1) we define with x = (x′, xN ) ∈ R
N−1 × R

(Tδψ) (x) :=
1

(2π)(N−1)/2

∫
RN−1

ψ̂(ξ)ei(ξ·x′ζ1(δ|ξ|)− 1
2
ξ2xNζ2(δ|ξ|)) dξ

(1 + δ2ξ2)N/4
. (2.6)

The operators Tδ arise naturally in this context since for any pair of functions
ψ+, ψ− ∈ L2(RN−1) and any δ > 0, setting

f := Bδ(ψ̂+, ψ̂−),

we find

δ−(N−1)/2f̌(x′/δ, xN/δ2) = (2π)−1/2
(
eixN /δ2 (Tδψ

+
)
(x) + e−ixN /δ2 (Tδψ

−) (x′,−xN )
)

.

(2.7)

This follows by a simple change of variables.
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We are now able to carry out the second step in the proof of Theorem 1.1,
which is a variation of the argument used to prove Proposition 2.2 combined with
a compactness theorem for the fn ⇀conc 0 convergence (Corollary 5.3) and two
convergence theorems for the operators Tδ (Propositions 4.1 and 4.3).

Proposition 2.4. R∗
N = S̃N−1.

Proof. We begin with the proof of ≤. Let (fn) ⊂ L2(SN−1) be a sequence with
‖fn‖ = 1, fn ⇀mod 0 and ‖f̌n‖q

q → R∗
N . We may assume that R∗

N > 0, for otherwise
there is nothing to prove, and therefore f̌n 	→ 0 in Lq(RN ). According to Corollary
5.3 and weak compactness, after passing to a subsequence, we may assume that
there are sequences (an) ⊂ R

N , (Rn) ⊂ O(N) and (δn) ⊂ (0, ∞) with sup δn < ∞
and functions ψ+, ψ− ∈ L2(RN−1) with

‖ψ+‖2 + ‖ψ−‖2 	= 0 (2.8)

such that B−1
Rn,δn

(e−ian·ωfn) ⇀ (ψ̂+, ψ̂−) in L2(RN−1)×L2(RN−1). Since fn ⇀mod 0,
we have δn → 0. Because of rotation and modulation invariance of the problem, we
may assume that Rn = Id and an = 0 for all n and we write Bδn

instead of BRn,δn
.

We define

pn := Bδn
(ψ̂+, ψ̂−) and rn := fn − Bδn

(ψ̂+, ψ̂−).

We shall show that

m := lim
n→∞ ‖rn‖2 exists and satisfies 1 = ‖ψ+‖2 + ‖ψ−‖2 + m (2.9)

and

μ := lim
n→∞

∫
RN

|řn|q dx exists and satisfies R∗
N = P + μ, (2.10)

where

P := lim
n→∞

∫
RN

|πn|q dx

and

πn(x) := (2π)−1/2
(
eixN/δ2

n

(
eixNΔ/2ψ+

)
(x′) + e−ixN/δ2

n

(
e−ixNΔ/2ψ−

)
(x′)
)

.

(The fact that the limit definining P exists is again a consequence of the arguments
before Lemma 6.1. In fact, we do not really need here the existence of the limit, but
could simply work with the limsup in the definitions of both μ and P .)

Before proving (2.9) and (2.10), let us show that they imply the proposition.
Since δn → 0 we have Bδn

(ψ̂+, ψ̂−) ⇀mod 0, and since fn ⇀mod 0 by assumption, we
have rn ⇀mod 0. Thus,

μ ≤ R∗
N mq/2. (2.11)
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(In fact, if m = 0, this follows from the Stein–Tomas inequality and, if 0 < m < 1,
it follows by using the definition of R∗

N for the sequence rn/‖rn‖.) Combining (2.9),
(2.10) and (2.11) and recalling the elementary inequality used in the proof of Propo-
sition 2.2 we obtain

R∗
N = P + μ ≤ P + R∗

Nmq/2 = P + R∗
N

(
1 − ‖ψ+‖2 − ‖ψ−‖2

)q/2

≤ P + R∗
N

(
1 −

(
‖ψ+‖2 + ‖ψ−‖2

)q/2
)

,

that is,

R∗
N

(
‖ψ+‖2 + ‖ψ−‖2

)q/2 ≤ P.

Because of (2.8) this is the claimed upper bound on R∗
N .

It remains to prove (2.9) and (2.10). For the proof of (2.9) we recall the unitarity
relation (2.4) for Bδn

. Thus, the weak convergence B−1
δn

rn ⇀ 0 implies

1 = ‖fn‖2 =
∥∥B−1

δn
fn

∥∥2 =
∥∥∥(ψ̂+, ψ̂−) + B−1

δn
rn

∥∥∥2
=
∥∥∥(ψ̂+, ψ̂−)

∥∥∥2
+
∥∥B−1

δn
rn

∥∥2 + o(1).

Using once again ‖B−1
δn

rn‖2 = ‖rn‖2, we obtain (2.9).

For the proof of (2.10) we denote (ψ̂+
n , ψ̂−

n ) := B−1
δn

fn and decompose, using (2.7),

δ−(N−1)/2
n f̌n(x′/δn, xN/δ2

n) = πn(x) + ρn(x) + σn(x),

where we have set

ρn(x) := (2π)−1/2
(
eixN/δ2

nρ+
n (x′, xN ) + e−ixN/δ2

nρ−
n (x′, −xN )

)

with

ρ±
n (x) := Tδn

(
ψ±

n − ψ±) (x)

and

σn(x) := (2π)−1/2
(
eixN/δ2

nσ+
n (x′, xN ) + e−ixN/δ2

nσ−
n (x′, −xN )

)

with

σ±
n (x) :=

(
Tδn

ψ±) (x) −
(
eixNΔ/2ψ±

)
(x′).

It follows from Proposition 4.3 that, after passing to a subsequence if necessary,
ρ±

n → 0 almost everywhere and from Proposition 4.1 that σ±
n → 0 in Lq. Moreover,

|πn(x)| ≤ (2π)−1/2
(∣∣∣
(
eixNΔ/2ψ+

)
(x′)
∣∣∣+
∣∣∣
(
e−ixNΔ/2ψ−

)
(x′)
∣∣∣
)

∈ Lq
x(RN ).

Therefore, the generalized Brézis–Lieb Lemma 3.1 implies∫
RN

∣∣∣δ−(N−1)/2
n f̌n(x′/δn, xN/δ2

n)
∣∣∣q dx =

∫
RN

|πn(x)|q dx +
∫
RN

|ρn(x)|q dx + o(1).
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By scaling, the left side equals ‖f̌n‖q
q and, since

ρn(x) = δ−(N−1)/2
n řn(x′/δn, xN/δ2

n),

the second term on the right side equals ‖řn‖q
q. Taking the limit as n → ∞ and using

the fact that the limit definining P exists we obtain (2.11). This completes the proof
of the inequality ≤ in the proposition.

The proof of the inequality ≥ is similar, but simpler. Indeed, pick any pair of
functions (ψ+, ψ−) ∈ L2(RN−1)2 such that ‖ψ+‖2 + ‖ψ−‖2 = 1 and any sequence
(δn) of positive numbers converging to zero. Then, the sequence fn := Bδn

(ψ̂+, ψ̂−)
satisfies ‖fn‖ = 1 and fn ⇀mod 0. As a consequence,

lim sup
n→∞

∫
RN

|f̌n|q dx ≤ R∗
N .

On the other hand, by the same method as in the proof of the inequality ≤, we have

lim inf
n→∞

∫
RN

|f̌n|q dx

≥ (2π)−q/2 lim
n→∞

∫
RN

∣∣∣
(
eixNΔ/2ψ+

)
(x′) + e−2ixN/δ2

n

(
e−ixNΔ/2ψ−

)
(x′)
∣∣∣q dx ,

showing that S̃N−1 ≤ R∗
N . �

To complete the proof of Theorem 1.1 it suffices to show equality (2.2). This is
the content of Corollary 6.2.

Remark 2.5. Similar arguments to those used before show that

RN ≥ 2q/2

√
π

Γ( q+1
2 )

Γ( q+2
2 )

SN−1 , (2.12)

which is the non-strict version of (1.2). In fact, we clearly have RN ≥ R∗
N , so that

(2.12) follows from Proposition 2.4 and (2.2). Moreover, by definition there is a
sequence (fn) ⊂ L2(SN−1) with ‖fn‖ = 1 and ‖f̌n‖q

q → R∗
N which is not precompact

in L2(SN−1). Thus, the strict inequality (1.2) is necessary for the precompactness
of all maximizing sequences.

3 A Generalization of the Brézis–Lieb Lemma

The following abstract lemma decouples the main piece from a remainder piece that
converges to zero almost everywhere.

Lemma 3.1. Let (X, dx) be a measure space and p > 0. Let (αn) be a bounded
sequence in Lp(X) such that

αn = πn + ρn + σn,
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where, for some Π ∈ Lp(X),

|πn| ≤ Π for all n

and where

ρn → 0 almost everywhere and σn → 0 in Lp(X).

Then ∫
X

|αn|p dx =
∫

X
|πn|p dx +

∫
X

|ρn|p dx + o(1) as n → ∞.

Note that, if πn is independent of n and σn = 0, this is the result from [LI83]
which was generalized in [BL83]. Our lemma follows by similar arguments as in
[BL83].

Proof. As a preliminary step we show that the asymptotics are independent of σn.
By the triangle inequality we have for p ≥ 1,

∣∣∣‖αn‖p − ‖πn + ρn‖p

∣∣∣ ≤ ‖σn‖p

and for 0 < p ≤ 1
∣∣∣‖αn‖p

p − ‖πn + ρn‖p
p

∣∣∣ ≤ ‖σn‖p
p.

We conclude that ∫
X

|αn|p dx =
∫

X
|πn + ρn|p dx + o(1).

(For p > 1 we also use the fact that supn ‖αn‖p and supn ‖πn + ρn‖p are finite; see
the proof below.) Thus, the lemma will follow if we can prove that

∫
X

||πn + ρn|p − |πn|p − |ρn|p| dx = o(1) as n → ∞. (3.1)

Let ε > 0 and put

Rn := (||πn + ρn|p − |πn|p − |ρn|p| − ε |ρn|p)+ .

Then ∫
X

||πn + ρn|p − |πn|p − |ρn|p| dx ≤ ε

∫
X

|ρn|p dx +
∫

X
Rn dx,

and asymptotics (3.1) will follow if we can prove that

lim sup
n→∞

∫
X

|ρn|p dx < ∞ (3.2)
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and ∫
X

Rn dx = o(1) as n → ∞. (3.3)

For the proof of (3.2) we simply bound

|ρn|p ≤ Cp (|αn|p + |πn|p + |σn|p) ≤ Cp (|αn|p + Πp + |σn|p)

with Cp = 3p−1 if p ≥ 1 and Cp = 1 if p < 1. Thus, by assumption,

lim sup
n→∞

∫
X

|ρn|p dx ≤ Cp lim sup
n→∞

∫
X

(|αn|p + Πp) dx < ∞,

which gives (3.2).
We will prove (3.3) by dominated convergence. Clearly, there is a Cε,p such that

for all a, b ∈ C,

||a + b|p − |b|p| ≤ ε |b|p + Cε,p |a|p .

Thus,

||πn + ρn|p − |πn|p − |ρn|p| ≤ ||πn + ρn|p − |ρn|p| + |πn|p ≤ ε |ρn|p + (Cε,p + 1) |πn|p

and so

Rn ≤ (Cε,p + 1) |πn|p ≤ (Cε,p + 1) Πp.

By assumption, the right side is integrable.
To complete the proof we show that Rn → 0 almost everywhere. Note that

ρn → 0 almost everywhere and that |πn| ≤ Π. The set {ρn → 0} ∩ {Π < ∞} has full
measure and on this set we have Rn → 0 almost everywhere. This simply follows
from the fact that for sequences (an), (bn) ⊂ C with sup |an| < ∞ and bn → 0, we
have |an + bn|p − |an|p → 0 for any p > 0. This proves the lemma. �

4 Some A-Priori Estimates and Convergence Results

In this section we discuss the convergence properties of the operators Tδ from (2.6) as
δ → 0. These properties were used in the proof of Proposition 2.4. As we have already
seen in Section 2, the operators Tδ appear naturally in our problem for functions
on S

N−1 which concentrate near the north pole with the parameter δ denoting the
scale on which the functions live.
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4.1 Lq Convergence. We recall that we always assume q = 2(N +1)/(N − 1).
The purpose of this subsection is to prove the following convergence result.

Proposition 4.1. Let ψ ∈ L2(RN−1). Then, as δ → 0,

(Tδψ) (x) →
(
eixNΔ/2ψ

)
(x′) in Lq(RN ).

We begin with an a-priori bound for Tδ.

Lemma 4.2. Tδ is a bounded operator from L2(RN−1) to Lq(RN ) and ‖Tδ‖L2→Lq is
independent of δ > 0.

Proof of Lemma 4.2. We claim that for all ψ ∈ L2(RN−1) and for all x ∈ R
N ,

(Tδψ)(x) = (2π)1/2e−ixN/δ2
(VδF−1BUδFψ)(x). (4.1)

where Vδ and Uδ are isometric isomorphisms in Lq(RN ) and L2(RN ), respectively,
F denotes the Fourier transform and B is a unitary operator from L2(RN−1) to
L2(SN−1

+ ) (SN−1
+ denoting the northern hemisphere). Thus,

‖Tδ‖L2→Lq = (2π)1/2‖F−1‖L2(SN−1
+ )→Lq(RN ),

which is finite by the Stein–Tomas theorem. The operators Vδ−1 and Uδ are simply
defined by

(VδF ) (x) = δ−(N+1)/qF (x′/δ, xN/δ2), (Uδφ) (ξ) = δ−(N−1)/2φ(ξ/δ).

The operator B is defined by

(Bφ)

(
ξ√

1 + ξ2
,

1√
1 + ξ2

)
= (1 + |ξ|2)N/4φ(ξ). (4.2)

The fact that B is a unitary operator from L2(RN−1) to L2(SN−1
+ ) follows by a

simple change of variables. The claimed identity (4.1) follows by the same change of
variables. �

We now use this lemma to prove the proposition.

Proof of Proposition 4.1. Because of Lemma 4.2 it suffices to prove the proposition
for ψ ∈ L2(RN−1) with ψ̂ ∈ C∞

c (RN−1). For such ψ we shall show that for all
(x′, xN ) ∈ R

N ,
lim
δ→0

(Tδψ) (x′, xN ) =
(
eixNΔ/2ψ

)
(x′), (4.3)

∣∣(Tδψ) (x′, xN )
∣∣+
∣∣∣
(
eixNΔ/2ψ

)
(x′)
∣∣∣ ≤ C|x|−(N−1)/2 (4.4)

for some constant C > 0 independent of δ (but dependent of ψ). The limit (4.3)
follows immediately from Lebesgue’s dominated convergence theorem, since we have
the correct limit under the integral and ψ̂ ∈ L1(RN−1). Assume for the moment the
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decay estimate (4.4) and let us show that this implies the claimed Lq convergence.
We have for some C ′ and all δ > 0∫

|x|≥R

(
|(Tδψ) (x)|q +

∣∣∣
(
eixNΔ/2ψ

)
(x′)
∣∣∣q
)

dx ≤ C ′

R
.

This can be made arbitrarily small, uniformly in δ > 0, by choosing R > 0 large.
Thus, it suffices to prove that for any fixed R > 0

χBR
(x) (Tδψ) (x) → χBR

(x)
(
eixNΔ/2ψ

)
(x′) in Lq(RN ),

where BR denotes the ball of radius R > 0. This follows immediately by dominated
convergence from the pointwise convergence (4.3) together with the uniform bound

|(Tδψ) (x)| ≤ (2π)−(N−1)/2

∫
RN−1

|ψ̂(ξ)| dξ < ∞.

Thus, it thus remains to prove the decay estimate (4.4), which follows from
stationary phase estimates as in Stein [ST93, p. 349]. Let us recall how it is done
when there is no dependence on δ. The integral

(
eixNΔ/2ψ

)
(x′) =

1
(2π)(N−1)/2

∫
RN−1

eix′·ξ−ixNξ2/2ψ̂(ξ) dξ

can be written as an oscillatory integral∫
RN−1

eiλΦ(ω,ξ)a(ξ) dξ

with a large parameter λ = |x|, a smooth phase function Φ(ω, ξ) = ω′ · ξ − ωNξ2/2,
where ω = (ω′, ωN ) ∈ S

N−1, and an amplitude a = ψ̂/(2π)N−1 ∈ C∞
c (RN−1). We

distinguish two cases: when ω is close to the poles, then the phase has critical points
but we have a uniform lower bound on the determinant of the Hessian, so we may
use stationary phase. Away from the poles, there is no critical point and we have a
uniform lower bound on |∇Φ|, so that we may use integration by parts.

First, when |ωN | ≥ b for some 0 < b < 1 to be determined later (that is, when ω
is close to the poles), then the phase is stationary at the points where

∇ξΦ(ω, ξ) = ω′ − ωNξ = 0,

that is for ξ = ω′/ωN . Furthermore, we have D2
ξΦ(ω, ξ) = ωN , meaning that

| det D2
ξΦ(ω, ξ)| = |ωN |N−1 ≥ bN−1.

All the ξ-derivatives of a and Φ are uniformly bounded in ω in this region, so that
we may use the uniform stationary phase estimates of Alazard, Burq, and Zuily
[ABZ15] to infer that∣∣∣∣

∫
RN−1

eiλΦ(ω,ξ)a(ξ) dξ

∣∣∣∣ ≤ Ca,bλ
−(N−1)/2
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for all ω such that |ωN | ≥ b. In the region |ωN | ≤ b, we have |ω′| ≥ (1 − b2)1/2 and
hence

|∇ξΦ(ω, ξ)| ≥
√

1 − b2 − bR,

where R > 0 is such that supp a ⊂ B(0, R). Hence, if b is sufficiently small such that√
1 − b2/b > R, then the phase has no critical point and we have by integration by

parts
∣∣∣∣
∫
RN−1

eiλΦ(ω,ξ)a(ξ) dξ

∣∣∣∣ ≤ Cn(a)λ−n

for any n ∈ N, where Cn(a) is uniform in ω such that |ωN | ≤ b, since we have a
uniform lower bound on |∇ξΦ| in this region and uniform upper bounds on higher
ξ-derivatives of Φ.

We have to do the same thing when δ > 0, and all the bounds that were uniform
in ω should now be uniform in (ω, δ). In this case, the new phase function has the
form

Φ(δ, ω, ξ) = ω′ · ξζ1(δ|ξ|) − ωN
ξ2

2
ζ2(δ|ξ|),

and the amplitude has the form

a(δ, ξ) =
ψ̂(ξ)

(1 + δ2ξ2)N/4
.

The functions ξ �→ ζ1(δ|ξ|) and ξ �→ ζ2(δ|ξ|), and a are C∞ and satisfy ζ1(0) =
1 = ζ2(0). All the ξ-derivatives of Φ and a are uniformly bounded in (δ, ω), on the
support of a. First, consider the case |ωN | ≥ b. We have

D2
ξΦ(δ, ω, ξ) = ωNζ2(δ|ξ|) + O(δ),

where the O(δ) is uniform in (ω, ξ) ∈ S
N−1 × supp(a). Hence, there exists δ0 =

δ0(R) > 0 such that

| det D2
ξΦ(δ, ω, ξ)| ≥

(
b

2

)N−1

,

for all |ωN | ≥ b, 0 ≤ δ ≤ δ0, ξ ∈ supp(a). Using again the result of Alazard–Burq–
Zuily (notice here that we do not need to describe where the critical points are, a
lower bound on the determinant of the Hessian is enough to apply their result—we
could have done the same in the δ = 0 case actually), we obtain again that

∣∣∣∣
∫
RN−1

eiλΦ(δ,ω,ξ)a(δ, ξ) dξ

∣∣∣∣ ≤ Ca,bλ
−(N−1)/2
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for all ω such that |ωN | ≥ b and all 0 ≤ δ ≤ δ0. In the region |ωN | ≤ b, we use the
fact that

∇ξΦ(δ, ω, ξ) = ω′ζ1(δ|ξ|) − ωNξζ2(δ|ξ|) + O(δ),

and hence

|∇ξΦ(δ, ω, ξ)| ≥ 1
2

√
1 − b2 − 3

2
bR

for all 0 ≤ δ < δ1(b, R), |ωN | ≤ b, ξ ∈ supp(a). For b = b(R) small enough, this lower
bound is positive. Using again integration by parts with this uniform lower bound
on |∇Φ|, we deduce

∣∣∣∣
∫
RN−1

eiλΦ(ω,ξ)a(δ, ξ) dξ

∣∣∣∣ ≤ Cn(a)λ−n

for any n ∈ N, where Cn(a) is uniform in (ω, δ) such that |ωN | ≤ b and 0 ≤ δ ≤ δ1.
This finishes the proof of (4.4) and the proof of Proposition 4.1. �

4.2 Almost Everywhere Convergence. While in the previous subsection we
dealt with Lq convergence of Tδn

ψ when δn → 0, we will now deal with almost
everywhere convergence of Tδn

ψn when δn → 0 and ψn ⇀ 0 in L2(RN−1). The
purpose of this subsection is to prove the following convergence result.

Proposition 4.3. Let ψn ⇀ 0 in L2(RN−1) and δn → 0 in (0, ∞). Then Tδn
ψn → 0

in L2
loc(R

N ) and, in particular, there is a subsequence such that Tδnk
ψnk

→ 0 almost
everywhere on R

N .

The key ingredient in the proof of this proposition is the following analogue of
the local smoothing property of the Schrödinger equation.

Lemma 4.4. Let a ∈ S(RN−1) be radial. Then there is a constant Ca such that for
all ψ ∈ L2(RN−1) and all δ > 0

∫
RN

a(x′)

∣∣∣∣∣Tδ

(
−Δ

−δ2Δ + 1

)1/4

ψ

∣∣∣∣∣
2

dx ≤ Ca‖ψ‖2.

Let us show that this lemma implies the proposition.

Proof of Proposition 4.3. Let K ⊂ R
N be compact and let a ∈ S(RN−1) be radial

with infx∈K a(x′) > 0 (for instance a Gaussian). Moreover, let Λ > 0 and denote
by PΛ multiplication by the characteristic function of BΛ, the ball of radius Λ, in
Fourier space. We decompose, with P⊥

Λ = 1 − PΛ,

χKTδn
ψn = χKTδn

PΛψn + χKTδn
P⊥

Λ ψn.
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According to Lemma 4.4 we have

∥∥χKTδn
P⊥

Λ ψn

∥∥ ≤
(

inf
x∈K

a(x′)
)−1

∥∥∥∥∥aTδn

( −Δ
−δ2

nΔ + 1

)1/4
∥∥∥∥∥
∥∥∥∥∥
(−δ2

nΔ + 1
−Δ

)1/4

P⊥
Λ

∥∥∥∥∥ ‖ψn‖

≤
(

inf
x∈K

a(x′)
)−1

C
1/2
a2

(
δ2
n + Λ−2

)1/4
sup

n
‖ψn‖.

The right side can be made arbitrarily small by choosing Λ large, uniformly for
large n. Therefore it suffices to prove that χKTδn

PΛψn tends to zero for each fixed
Λ. We will deduce this using dominated convergence. In fact, we have for each fixed
x ∈ R

N ,

χBΛ(ξ)ei(ξ·x′ζ1(δ|ξ|)− 1
2
ξ2xNζ2(δ|ξ|))(1 + δ2ξ2)−N/4 → χBΛ(ξ)ei(ξ·x′− 1

2
ξ2xN)

strongly in L2
ξ(R

N−1). (This can also be proved with the help of dominated conver-
gence.) Thus, ψ̂n ⇀ 0 implies that for any fixed x ∈ R

N ,

Tδn
PΛψn(x) =

(
χBΛe−i(ξ·x′ζ1(δ|ξ|)− 1

2
ξ2xNζ2(δ|ξ|))(1 + δ2ξ2)−N/4, ψ̂n

)
→ 0.

Moreover, we have

|Tδn
PΛψn(x)| ≤

∥∥∥χBΛe−i(ξ·x′ζ1(δ|ξ|)− 1
2
ξ2xNζ2(δ|ξ|))(1 + δ2ξ2)−N/4

∥∥∥
∥∥∥ψ̂n

∥∥∥
≤ |BΛ|1/2 sup

n
‖ψn‖.

Thus, dominated convergence implies χKTδn
PΛψn → 0 in L2(RN ), which proves

the first part of the proposition.
The second part follows by a standard diagonalization argument using a sequence

of balls with diverging radii and the fact that an L1 convergent sequence has an
almost everywhere convergent subsequence. �

It remains to give the

Proof of Lemma 4.4. Expanding the square, the left side of the term in the lemma
reads

2π

∫∫
RN−1×RN−1

ψ̂(ξ)
|ξ|1/2

(1 + δ2ξ2)(N+1)/4
â(ξζ1(δ|ξ|) − ξ′ζ1(δ|ξ′|))

×δ

(
ξ2

2
ζ2(δ|ξ|) − ξ′2

2
ζ2(δ|ξ′|)

)
|ξ′|1/2

(1 + δ2ξ′2)(N+1)/4
ψ̂(ξ′) dξ dξ′.

By the Schur test for boundedness, the lemma will follow if we can bound

sup
ξ

∫
RN−1

|ξ|1/2|ξ′|1/2

(1 + δ2ξ2)(N+1)/4(1 + δ2ξ′2)(N+1)/4
|â(ξζ1(δ|ξ|) − ξ′ζ1(δ|ξ′|))|

× δ

(
ξ2

2
ζ2(δ|ξ|) − ξ′2

2
ζ2(δ|ξ′|)

)
dξ′
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independently of δ. In order to perform the ξ′ integral we write ξ′ = kω with ω ∈
S

N−2 and k > 0. The function Φδ(k) = k2ζ2(δk)/2 = δ−2(1 − 1/
√

1 + δ2k2) is a
strictly increasing function, so we can change variables κ = Φδ(k). We use the fact
that
∫ ∞

0
F (k) δ(Φδ(|ξ|) − Φδ(k)) dk =

∫ δ−2

0
F (Φ−1

δ (κ)) δ(Φδ(|ξ|) − κ)
dκ

|Φ′
δ(Φ

−1
δ (κ))|

=
F (|ξ|)

|Φ′
δ(|ξ|)|

with Φ′
δ(k) = k(1 + δ2k2)−3/2. So Schur’s test amounts to estimating

sup
ξ

|ξ|N−2

(1 + δ2ξ2)(N−2)/2

∫
SN−2

|â((ξ − |ξ|ω)ζ1(δ|ξ|))| dω.

When N = 2, this is equal to

sup
ξ

(|â(0)| + |â(2ξζ1(δ|ξ|))|) ,

which is bounded since â is bounded.
In the remainder of the proof we assume N ≥ 3. Since a is assumed to be radial,

by rotation invariance we may choose ξ = |ξ|(0, . . . , 0, 1) and then the integral over
the sphere becomes

|SN−3|
∫ π

0
|â(2 sin(θ/2)|ξ|ζ1(δ|ξ|))|(sin θ)N−3 dθ.

We distinguish between two regions: when 2 sin(θ/2)|ξ|ζ1(δ|ξ|) ≥ 1, then we
estimate |â(ξ′)| ≤ cn|ξ′|−n for any n ∈ N and obtain

∫
2 sin(θ/2)|ξ|ζ1(δ|ξ|)≥1

|â(2 sin(θ/2)|ξ|ζ1(δ|ξ|))|(sin θ)N−3 dθ

≤ cn(2|ξ|ζ1(δ|ξ|))−n

∫
sin(θ/2)≥(2|ξ|ζ1(δ|ξ|))−1

(sin θ)N−3

(sin(θ/2))n
dθ,

Fix n ≥ N − 4. Then for large |ξ|, the integral blows up as
∫

sin(θ/2)≥(2|ξ|ζ1(δ|ξ|))−1

(sin θ)N−3

(sin(θ/2))n
dθ ∼ 2n

∫
θ≥(|ξ|ζ1(δ|ξ|))−1

θN−3−n dθ

=
2n

n − N + 3
(|ξ|ζ1(δ|ξ|))−(N−2−n).

Thus, we find that
∫

2 sin(θ/2)|ξ|ζ1(δ|ξ|)≥1
|â(2 sin(θ/2)|ξ|ζ1(δ|ξ|))|(sin θ)N−3 dθ �n (|ξ|ζ1(δ|ξ|))−(N−2).
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In the region 2 sin(θ/2)|ξ|ζ1(δ|ξ|) ≤ 1, we estimate |â| ≤ c and obtain∫
2 sin(θ/2)|ξ|ζ1(δ|ξ|)≤1

|â(2 sin(θ/2)|ξ|ζ1(δ|ξ|))|(sin θ)N−3 dθ

≤ c

∫
θ≤(|ξ|ζ1(δ|ξ|))−1

|θ|N−3 dθ � (|ξ|ζ1(δ|ξ|))−(N−2).

Inserting this bound into the supremum in Schur’s test, we obtain

sup
ξ

1
(1 + δ2ξ2)(N−2)/2

1
ζ1(δ|ξ|)N−2

= 1.

This proves the lemma. �

5 Compactness

In this section we prove a refinement of the Stein–Tomas inequality and deduce a
compactness theorem modulo modulations and concentrations. We recall that the
convergence fn ⇀conc was introduced in terms of the operators BR,δ with R ∈ O(N)
and δ > 0 which identify pairs of functions on L2(RN−1) with functions on L2(SN−1).
The parameter R ∈ O(N) determines the equator along which we cut the function
in L2(SN−1) into two pieces. The parameter δ > 0 corresponds to a scaling in
L2(RN−1). The precise definition of these operators is given in (2.5). The refined
Stein–Tomas inequality is stated in Section 5.1, where we also use it to deduce the
compactness theorem, and is proved in Section 5.2 (see also Appendix A).

5.1 Refinement of the Stein–Tomas Inequality. Our refined Stein–Tomas
inequality depends on a parameter ε ∈ (0, 1) that will be chosen small enough and
that will not always be reflected in the notation. Given this parameter we consider
for any θ ∈ S

N−1 the cap

C(θ) :=
{

ω ∈ S
N−1 : θ · ω >

√
1 − ε2

}
,

and we also pick an orthogonal matrix Rθ ∈ O(N) mapping the north pole to θ:

Rθ(0, . . . , 0, 1) = θ.

To formulate our refinement of the Stein–Tomas inequality we need an analogue of
dyadic cubes on the sphere. Let D denotes the set of all dyadic cubes in R

N−1, that
is, the union over j ∈ Z of all cubes of side length 2j with corners on (2j

Z)N−1. For
θ ∈ S

N−1 and Q ∈ D we let

Lθ(Q) := Rθ(L(Q)),

where L stands for “lift” and

L(Q) := {ω ∈ S
N−1 : ω′ ∈ Q , ωN > 0}.
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Notice that

Lθ(Q) = {ω ∈ S
N−1 : Pθ⊥(ω) ∈ Q, ω · θ > 0},

where Pθ⊥ : RN → R
N is the orthogonal projection on θ⊥. By compactness of the

sphere, there is a finite A ∈ N and points θα ∈ S
N−1, α = 1, . . . , A, such that

A⋃
α=1

C(θα) = S
N−1.

Correspondingly, we choose non-negative continuous functions χα, α = 1, . . . , A,
with

A∑
α=1

χα = 1 and suppχα ⊂ C(θα) for all α = 1, . . . , A.

Proposition 5.1. There are ε ∈ (0, 1), C > 0 and σ ∈ (0, 1) such that for any
f ∈ L2(SN−1),

‖f̌‖Lq(RN ) ≤ C

(
sup

α
sup
Q∈D

|Q|−1/2
∥∥∥(1Lθα (Q)χαf

)∨∥∥∥
L∞(RN )

)1−σ

‖f‖σ. (5.1)

Note that this proposition implies the standard Stein–Tomas inequality: indeed,
for any α ∈ {1, . . . , A} and Q ∈ D we have

|Q|−1/2
∥∥∥(1Lθα (Q)χαf

)∨∥∥∥
L∞(RN )

≤(2π)−N/2|Q|−1/2
∥∥1Lθα (Q)χαf

∥∥
L1(SN−1)

≤(2π)−N/2|Q|−1/2
∥∥1Lθα (Q)χα

∥∥
L2(SN−1)

‖f‖L2(SN−1)

≤CN ‖f‖L2(SN−1) ,

so the right side of (5.1) is bounded by a constant times ‖f‖.
Other refinements of the Stein–Tomas inequality can be found in [MVV99, Thm.

4.2] in the case N = 3 or in [OL14, Prop. 2], [SH15, Prop. 4.1] in the case N = 2.
These refinements involve Xp-norms on f , but it is not obvious how to deduce
our compactness result (Corollary 5.3) from these Xp estimates. The key feature of
our refinement is the L∞ norm of the Fourier transform on the right side of (5.1),
leads almost immediately to Corollary 5.3. This is reminiscent of the route taken in
[TA09,KV13] in connection with the Strichartz inequality, where also L∞ bounds
on the Fourier transform are used instead of the original Xp-spaces approach of
[BO98,MV98,CK07,BV07].

We also point out a certain similarity with the description of lack of compactness
in homogeneous Sobolev spaces [GE98]. In this case analogous bounds in terms of
L∞ norms of the Fourier transform are due to [GMO96-97] (see also [KV13, Prop.
4.8]) and have been used to establish compactness results [GE98] (see also [KV13,
Prop. 4.9]).
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We defer the proof of Proposition 5.1 to Section 5.2 and use it now to deduce
our compactness theorem. The relation between our convergence notion fn ⇀conc 0
and the norm appearing in Proposition 5.1 is clarified in the following lemma.

Lemma 5.2. The following holds provided ε > 0 is sufficiently small. If (fn) is a
bounded sequence in L2(SN−1) with fn ⇀conc 0, then

lim
n→∞ sup

α
sup
Q∈D

|Q|−1/2
∥∥∥(1Lθα (Q)χαfn

)∨∥∥∥
L∞(RN )

= 0. (5.2)

Proof. We argue by contradiction: assume that there exists ε′ > 0, α ∈ {1, . . . , A},
sequences (xk) ⊂ R

N , (Qk) ⊂ D and a subsequence (fnk
) such that for all k

|Qk|−1/2
∣∣∣(1Lθα (Qk)χαfnk

)∨ (xk)
∣∣∣ ≥ ε′. (5.3)

We show that the left side converges to zero, obtaining the desired contradiction.
In the sequel, we forget about the subsequence and write (fn)n instead of (fnk

)k. We
may also assume that θα = (0, . . . , 0, 1) up to replacing fn by fn ◦ Rθα

, which does
not change the assumption fn ⇀conc 0. We thus write L(Q) and χ instead of Lθα

(Q)
and χα. We may assume that the sets L(Qn) intersect {ω ⊂ S

N−1 : ωN >
√

1 − ε2}
(which contains the support of χ), for otherwise the left side of (5.3) vanishes, and
therefore the cubes Qn all intersect {ξ ⊂ R

N−1 : |ξ| < ε}. Let Q̃n be the smallest
dyadic cube with 1L(Q̃n)χ = 1L(Qn)χ. Since

|Q̃n|−1/2

∣∣∣∣
(
1L(Q̃n)χfn

)∨
(xn)

∣∣∣∣ ≥ |Qn|−1/2
∣∣∣(1L(Qn)χfn

)∨ (xn)
∣∣∣ ,

it suffices to prove the convergence to zero with Q̃n in place of Qn. From now on we
will write again Qn instead of Q̃n. Let kn ∈ Z

N−1 and δn ∈ 2Z such that

Qn = δnkn + [0, δn)N−1,

and note that |Qn| = δN−1
n . The above redefinition of Qn guarantees that the se-

quence (δnkn) ⊂ R
N−1 belongs to a compact set (of diameter O(ε)) and that the

sequence (δn) ⊂ (0, ∞) is bounded (by O(ε)). Thus, after passing to a subsequence
if necessary, we may assume that (δnkn) and (δn) converge.

For any θ ∈ C(0, . . . , 0, 1), we define a rotation Oθ ∈ O(N) that sends (0, . . . , 0, 1)
to θ in the following fashion: if θ = (0, . . . , 0, 1), we take Oθ = Id, and if θ 	=
(0, . . . , 0, 1), we take Oθ = Id on the orthogonal complement of H = span((0, . . . , 0, 1),
θ) and on H we take

Oθ =
(

ωN −|ω′|
|ω′| ωN

)

in the orthonormal basis ((0, . . . , 0, 1), ω′/|ω′|) of H (with the notation ω = ω′ +
ωN (0, . . . , 0, 1), ω′ ∈ R

N−1 ×{0}). This definition ensures that θ �→ Oθ is continuous
on C(0, . . . , 0, 1). Next, we define

θn := (δnkn,
√

1 − δ2
n|kn|2) ∈ S

N−1



GAFA MAXIMIZERS FOR THE STEIN–TOMAS INEQUALITY 1117

and

(φ+
n , φ−

n ) := B−1
Oθn ,δn

(eixn·ωfn).

By choosing ε > 0 small enough (depending only on N) we can guarantee that
θn · ω > 0 for all n and all ω ∈ S

N−1 with ωN >
√

1 − ε2. We conclude that
(
1L(Qn)χfn

)∨ (xn) = (2π)−N/2

∫
SN−1

eixn·ωfn(ω)χ(ω)1Qn
(ω′) dω

= (2π)−N/2

∫
RN−1

φ+
n (ξ)hn(ξ) dξ

with

hn(ξ) := (1 + δ2
n|ξ|2)−N/4 χ

(
θn + Oθn

(δnξ, 0)√
1 + δ2

n|ξ|2

)
1Qn

(
P

(
θn + Oθn

(δnξ, 0)√
1 + δ2

n|ξ|2

))
.

and with the projection P : RN → R
N−1 defined by P (η′, ηN ) := η′.

Since φ+
n ⇀ 0 in L2(RN−1) by assumption, our claim (5.3) will follow if we

can prove that (hn) converges strongly in L2(RN−1). To do so, we prove that (hn)
converges almost everywhere and that 0 ≤ hn ≤ 1B for a centered ball B with
(finite) radius independent of n.

We begin with the almost everywhere convergence. Since (θn) and (δn) converge
and χ and θ �→ Oθ are continuous, the sequence

(1 + δ2
n|ξ|2)−N/4 χ

(
θn + Oθn

(δnξ, 0)√
1 + δ2

n|ξ|2

)

converges for all ξ. If the limit of (δn) is positive, then the cube Qn converges towards
a fixed cube, and thus the sequence

1Qn

(
P

(
θn + Oθn

(δnξ, 0)√
1 + δ2

n|ξ|2

))

converges almost everywhere in ξ. If limn δn = 0, then we use the fact that

P

(
θn + Oθn

(δnξ, 0)√
1 + δ2

n|ξ|2

)
∈ Qn

if and only if

P (Oθn
(ξ, 0)) ∈

(
1 − 1√

1 + δ2
n|ξ|2

)
kn + [0, 1)N−1. (5.4)

Since

lim
n→∞

(
1 − 1√

1 + δ2
n|ξ|2

)
kn = 0,



1118 R. L. FRANK ET AL. GAFA

we also have almost everywhere convergence in the case limn δn = 0.
Let us now show that 0 ≤ hn ≤ 1B for a centered ball B with (finite) radius

independent of n. Since Oθ → Id as θ → (0, . . . , 0, 1) and |θn − (0, . . . , 0, 1)| = O(ε)
uniformly in n, we choose ε > 0 small enough such that for all ξ ∈ R

N−1 and all n,

|POθn
(ξ, 0)| ≥ 1

2
|ξ|.

Now assume that ξ ∈ supp hn. Then (5.4) and the fact that 1 − (1 + x)−1/2 ≤
min{1, x} for all x ≥ 0 implies that

1
2
|ξ| ≤ |POθn

(ξ, 0)| ≤
(

1 − 1√
1 + δ2

n|ξ|2

)
|kn| + O(1) ≤ min{1, δ2

n|ξ|2} |kn| + O(1)

= min{δ−1
n |ξ|−1, δn|ξ|} δn|kn||ξ| + O(1) ≤ δn|kn||ξ| + O(1),

Recalling that δn|kn| ≤ Cε and choosing ε < 1/(2C), we conclude that |ξ| = O(1)
uniformly in n, which is what we want to prove. This concludes the proof of Lemma
5.2. �

Combining Proposition 5.1 with Lemma 5.2 we obtain immediately the following
compactness result.

Corollary 5.3. Let (fn) ⊂ L2(SN−1) with ‖fn‖ = 1 satisfy fn ⇀conc 0. Then
f̌n → 0 in Lq(RN ).

5.2 Proof of Proposition 5.1. Our goal in this subsection is to prove the re-
fined Stein–Tomas inequality (5.1). We will deduce this inequality from a refinement
of a ‘perturbed Strichartz inequality’, which we state next. We use the notation

T (E) := 1 −
√

1 − E for 0 ≤ E ≤ 1.

and define ψQ by ψ̂Q = χQψ̂ for Q ∈ D, the collection of all dyadic cubes. Moreover,
it is more natural to write d instead of N − 1, so that q = 2 + 4/d.

Proposition 5.4. There are ε ∈ (0, 1), C > 0 and σ ∈ (0, 1) such that for any
ψ ∈ L2(Rd) with supp ψ̂ ⊂ {|ξ| ≤ ε},

‖e−itT (−Δ)ψ‖Lq
t,x

≤ C

(
sup
Q∈D

|Q|−1/2‖e−itT (−Δ)ψQ‖L∞
t,x

)1−σ

‖ψ‖σ
L2

x
. (5.5)

This should be viewed as a perturbed Strichartz inequality since T (ξ2) ∼ ξ2/2 as
ξ → 0. The analogue of Proposition 5.4 with T (−Δ) replaced by −Δ/2 is essentially
due to [TA09] and appears in a slightly stronger form in [KV13]. (In this case the
restriction on the support of ψ̂ is not necessary.) Proposition 5.4 follows in the same
way, but for the sake of completeness we provide the details in the appendix. As in
[TA09,KV13] the crucial ingredient is Tao’s bilinear restriction estimate [TA03].

With the refinement of the perturbed Strichartz inequality, Proposition 5.4, at
hand it is easy to give the
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Proof of Proposition 5.1. We fix ε > 0 as given by Proposition 5.4. Let f ∈ L2(SN−1)
have support in the cap {ω : ωN >

√
1 − ε2} and define a function ψ ∈ L2(RN−1)

by

ψ̂(ξ) :=
f(ξ,

√
1 − ξ2)√

1 − ξ2
,

so that
f̌(x) = (2π)−1/2eixN

(
e−ixNT (−Δ)ψ

)
(x′)

Since supp ψ̂ ⊂ {|ξ| > ε} we can apply Proposition 5.4 and obtain

‖f̌‖Lq(RN ) ≤ (2π)−1/2C

(
sup
Q∈D

|Q|−1/2‖e−itT (−Δ)ψQ‖L∞
t,x

)1−σ

‖ψ̂‖σ
L2

ξ
.

We bound

‖ψ̂‖2
L2

ξ
≤ 1√

1 − ε2
‖f‖2

and note that
(1L(Q)f)∨(x) = (2π)−1/2eixN

(
e−ixNT (−Δ)ψQ

)
(x′).

Thus we conclude that

‖f̌‖Lq(RN ) ≤ C ′
(

sup
Q∈D

|Q|−1/2‖(1L(Q)f)∨‖L∞(RN )

)1−σ

‖f‖σ
L2(SN−1).

By rotation invariance of the sphere we obtain for f ∈ L2(SN−1) with supp f ⊂
C(θα) the same inequality with L(Q) replaced by Lθα

(Q).
Thus, for an arbitrary function f ∈ L2(SN−1) we obtain 8:02 am

‖f̌‖Lq(RN ) =

∥∥∥∥∥
A∑

α=1

(χαf)∨
∥∥∥∥∥

Lq(RN )

≤
A∑

α=1

‖(χαf)∨‖Lq(RN )

≤ C ′
A∑

α=1

(
sup
Q∈D

|Q|−1/2‖(1Lθα (Q)χαf)∨‖L∞(RN )

)1−σ

‖χαf‖σ
L2(SN−1)

≤ C ′
(

sup
α

sup
Q∈D

|Q|−1/2‖(1Lθα (Q)χαf)∨‖L∞(RN )

)1−σ A∑
α=1

‖χαf‖σ
L2(SN−1)

≤ C ′
(

sup
α

sup
Q∈D

|Q|−1/2‖(1Lθα (Q)χαf)∨‖L∞(RN )

)1−σ

× A1−σ/2

(
A∑

α=1

‖χαf‖2
L2(SN−1)

)σ/2

≤ C ′
(

sup
α

sup
Q∈D

|Q|−1/2‖(1Lθα (Q)χαf)∨‖L∞(RN )

)1−σ

A1−σ/2‖f‖σ
L2(SN−1).

This is the claimed inequality. �
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6 Equal Profiles

Our goal in this section is to prove (2.2), that is, we want to express the solution of
the minimization problem S̃d in terms of the solution of the minimization problem
Sd. This will follow from a general inequality that we describe next.

For f, g ∈ Lq(RN ) (in this section q can be any number ≥ 2) let

Φq(f, g) := lim
λ→∞

∫
RN

∣∣∣f(x) + eiλxN g(x)
∣∣∣q dx.

It is easy to see that this limit exists and is given by

Φq(f, g) =
1
2π

∫
RN

∫ π

−π

∣∣∣f(x) + eiθg(x)
∣∣∣q dθ dx.

A simple proof of this fact can be found, for instance, in [AL92, Lem. 5.2]. Note
that for fixed x ∈ R

N , the function

θ �→
∣∣∣f(x) + eiθg(x)

∣∣∣q =
(
|f(x)|2 + |g(x)|2 + 2 Re eiθf(x)g(x)

)q/2

is continuous and has maximum (|f(x)|+|g(x)|)q. This maximum belongs to L1(RN )
as function of x. Therefore, Allaire’s result applies in the above setting.

Lemma 6.1. If q ≥ 2, then

Φq(f, g) ≤ 2q/2

√
π

Γ( q+1
2 )

Γ( q+2
2 )

(
‖f‖2

q + ‖g‖2
q

)q/2
.

The importance of the constant on the right side is that we get equality if |f | =
|g|. In fact, the proof below shows that if q > 2, then the inequality is strict unless
|f | = |g| almost everywhere.

Proof. Let us write the above formula for Φq(f, g) as

Φq(f, g) =
∫
RN

(
|f(x)|2 + |g(x)|2

)q/2
φ(|α(x)|) dx

with

α(x) :=
2f(x)g(x)

|f(x)|2 + |g(x)|2 .

and, for t ∈ [0, 1],

φ(t) =
1
π

∫ π

0
(1 + t cos θ)q/2 dθ.
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We claim that φ is increasing in [0, 1]. In fact,

φ′(t) =
q

2
1
π

∫ π

0
(1 + t cos θ)(q−2)/2 cos θ dθ

=
q

2
1
π

∫ π/2

0

(
(1 + t cos θ)(q−2)/2 − (1 − t cos θ)(q−2)/2

)
cos θ dθ.

For q ≥ 2, the integrand on the right side is pointwise non-negative, which proves
the monotonicity.

Since |α(x)| ≤ 1, we deduce that

Φq(f, g) ≤ φ(1)
∫
RN

(
|f(x)|2 + |g(x)|2

)q/2
dx

and therefore, by the triangle inequality in Lq/2,

Φq(f, g)2/q ≤ φ(1)2/q
∥∥|f |2 + |g|2

∥∥
q/2

≤ φ(1)2/q
(∥∥|f |2

∥∥
q/2

+
∥∥|g|2

∥∥
q/2

)

= φ(1)2/q
(
‖f‖2

q + ‖g‖2
q

)
.

Thus, to complete the proof of the lemma it remains to compute the value of
φ(1). Using the integral representation of the beta function, we find

φ(1) =
1
π

∫ π

0
(1 + cos θ)q/2 dθ =

2q/2

π

∫ π

0
cosq(θ/2) dθ =

2(q+2)/2

π

∫ π/2

0
cosq θ dθ

=
2q/2

π
B(

1
2
,
q + 1

2
) =

2q/2

√
π

Γ( q+1
2 )

Γ( q+2
2 )

. (6.1)

This completes the proof. �

Corollary 6.2. S̃d = 2q/2√
π

Γ( q+1
2

)

Γ( q+2
2

)
Sd with q = 2 + 4/d.

Proof. Let ψ+, ψ− ∈ L2(Rd). By the lemma (with N = d + 1) and the Strichartz
inequality,

lim
λ→∞

∫∫
R×Rd

∣∣∣eitΔ/2ψ+(x) + eiλxN e−itΔ/2ψ−(x)
∣∣∣q dx dt

≤ 2q/2

√
π

Γ( q+1
2 )

Γ( q+2
2 )

(
‖eitΔ/2ψ+‖2

q + ‖e−itΔ/2ψ−‖2
q

)q/2

≤ 2q/2

√
π

Γ( q+1
2 )

Γ( q+2
2 )

(2π)(d+2)/dSd

(
‖ψ+‖2 + ‖ψ−‖2

)q/2
.

This proves the inequality ≤ in the corollary. The opposite inequality follows by
choosing ψ+ = ψ− to be almost maximizers for Sd and recalling that equality holds
in Lemma 6.1 if f = g. �
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7 Perturbative Analysis

In this section we prove Proposition 1.3 which verifies the main assumption of The-
orem 1.1 provided Conjecture 1.2 holds. Let

ψG(x) := e−x2/2

and

SG
d := (2π)−(d+2)/d

∫∫
R×Rd |eitΔ/2ψG(x)|2+4/d dx dt

‖ψG‖2+4/d
,

so that Conjecture 1.2 is equivalent to the identity Sd = SG
d . In view of this identity,

Proposition 1.3 is an immediate consequence of Proposition 7.1 below.
As explained in Remark 2.5, the non-strict analogue of inequality (1.2) is ob-

tained by glueing two Gaussians on the sphere that concentrate on two antipodal
points. We now compute the next order of the ‘energy’ of this trial function. Thus,
for any ε > 0, consider the trial function

fε(ω) := χ(ωN )e− 1−ωN
ε2 + χ(−ωN )e− 1+ωN

ε2 ∀ω ∈ S
N−1,

where χ ∈ C∞
c (R) is such that χ ≡ 1 in a neighborhood of 1 and χ ≡ 0 in a

neighborhood of (−∞, 0]. As ε → 0, the functions (fε) concentrate on the north and
south pole and the limiting profiles are, indeed, Gaussians.

Proposition 7.1. We have
∫
RN |f̌ε|q dx

‖fε‖q
=

⎛
⎝2q/2

√
π

Γ
(

q+1
2

)

Γ
(

q+2
2

) SG
d

⎞
⎠
(

1 +
1
4
ε2 + oε→0(ε2)

)
. (7.1)

In particular, for all sufficiently small ε > 0,

∫
RN |f̌ε|q dx

‖fε‖q
>

2q/2

√
π

Γ
(

q+1
2

)

Γ
(

q+2
2

) SG
d .

An ingredient in the proof of this proposition is the following result about the
simpler trial function

gε(x) := χ(ωN )e− 1−ωN
ε2 ∀ω ∈ S

N−1, (7.2)

which concentrates only at the north pole. Similar results appear in [CS12a,SH15]
for N = 2, 3.

Lemma 7.2. We have

log

∫
RN |ǧε|q dx

‖gε‖q
= log SG

d +
1
4
ε2 + oε→0(ε2). (7.3)
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Before proving the lemma, let us use it to give the

Proof of Proposition 7.1. With gε from (7.2) we shall show that

∫
RN |f̌ε|q dx

‖fε‖q
=

2q/2

√
π

Γ
(

q+1
2

)

Γ
(

q+2
2

)
∫
RN |ǧε|q dx

‖gε‖q
+ O(ε4). (7.4)

This, together with Lemma 7.2, implies the proposition.
Clearly, we have

‖fε‖q = 2q/2‖gε‖q. (7.5)

We also note the rough bound

‖gε‖q ≥ cεd+2. (7.6)

(We will prove something much more precise in the proof of Lemma 7.2.) Moreover,
let

φε(x) :=
1

(2π)N/2

∫
Rd

eix′·η−ε−2(1−
√

1−ε2|η|2)(1+ixN ) χ(
√

1 − ε2|η|2)√
1 − ε2|η|2

dη (7.7)

and note that

ε−df̌ε(x′/ε, xN/ε2) = 2 Re
(
eixN/ε2φε(x)

)
and ε−dǧε(x′/ε, xN/ε2) = eixN/ε2φε(x).

We claim that∫
RN

∣∣∣Re
(
eixN/ε2φε(x)

)∣∣∣q dx =
1
2π

∫
Rd

∫ π

−π

∣∣∣Re
(
eiθφε(x)

)∣∣∣q dθ dx + O(ε4). (7.8)

Since, as in (6.1), for any a ∈ C,

1
2π

∫ π

−π

∣∣∣Re
(
eiθa

)∣∣∣q dθ =
1
2π

∫ π

−π
| cos θ|q dθ |a|q =

1√
π

Γ( q+1
2 )

Γ( q+2
2 )

|a|q,

we infer from (7.8) that after scaling
∫
RN

|f̌ε|q dx =
2q

√
π

Γ( q+1
2 )

Γ( q+2
2 )

∫
RN

|ǧε|q dx + O(ε4+(d+2)).

This, together with (7.5) and (7.6), implies (7.4).
Let us prove (7.8). We introduce the function

a(x, θ) =
∣∣∣Re

(
eiθφε(x)

)∣∣∣q ∀(x, θ) ∈ R
N × [−π, π].

Differentiating in θ, we find that there is a C > 0 such that for all x ∈ R
N and all

ε > 0,
‖a(x, ·)‖L∞

θ
+ ‖∂2

θa(x, ·)‖L∞
θ

≤ C|φε(x)|q. (7.9)
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As a consequence, we may expand a as an absolutely convergent Fourier series

a(x, θ) =
∑
n∈Z

cn(x)einθ, ∀(x, θ) ∈ R
N × [−π, π]

with

cn(x) :=
∫ π

−π
a(x, θ)e−inθ dθ

2π
.

By integration by parts and (7.9), we find the bound

|cn(x)| ≤ C

1 + n2
|φε(x)|q.

By standard stationary phase arguments one can show that φε is bounded in
Lq(RN ) uniformly for small ε > 0 and we obtain∫

RN

∣∣∣Re
(
eixN/ε2φε(x)

)∣∣∣q dx =
∫
RN

a(x, xN/ε2) dx =
∑
n∈Z

∫
RN

einxN/ε2cn(x) dx.

Hence, in order to prove (7.8) we will prove
∑
n�=0

∫
RN

einxN/ε2cn(x) dx = O(ε4). (7.10)

Integrating by parts, we have∫
RN

einxN/ε2cn(x) dx = − ε4

n2

∫
RN

einxN/ε2∂2
xN

cn(x) dx,

and thus it is sufficient to bound ‖∂2
xN

cn‖L1
x

uniformly in n and ε. This bound again
follows from stationary phase arguments, which imply that φε, ∂xN

φε, and ∂2
xN

φε

are bounded in Lq(RN ), uniformly for small ε > 0. In this way we obtain (7.10) and
therefore (7.8) and (7.4). �

Finally, we prove Lemma 7.2. We will make repeated use of the Gaussian integrals
∫
Rd

eix′·η− s

2
|η|2 dη =

(
2π

s

)d/2

e− 1
2s

|x′|2 , (7.11)

∫
Rd

eix′·η− s

2
|η|2 |η|2 dη =

[
d

s
− |x′|2

s2

](
2π

s

)d/2

e− 1
2s

|x′|2 , (7.12)

∫
Rd

eix′·η− s

2
|η|2 |η|4 dη =

[
d(d + 2)

s2
− 2(d + 2)|x′|2

s3
+

|x′|4
s4

](
2π

s

)d/2

e− 1
2s

|x′|2 ,

(7.13)

as well as the identities∫
R

dxN

1 + x2
N

= π and
∫
R

dxN

(1 + x2
N )2

=
π

2
. (7.14)
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Proof of Lemma 7.2. With φε from (7.7) we note that

Ψ(ε2) := log

∫
RN |ǧε|q dx

‖gε‖q
= log

∫
RN |φε|q dx

‖ε−d/2gε‖q
.

We begin by studying ‖ε−d/2gε‖q. Expanding

ε−2(1 −
√

1 − ε2|η|2) =
1
2
|η|2 +

1
8
ε2|η|4 + O(ε4|η|6) (7.15)

and
χ(
√

1 − ε2|η|2)√
1 − ε2|η|2

= 1 +
1
2
ε2|η|2 + O(ε4|η|4) (7.16)

(with the same expansion when χ is replaced by χ2), we obtain

ε−d

∫
Sd

|gε(ω)|2 dω =
∫
Rd

e−2ε−2(1−
√

1−ε2|η|2) χ(
√

1 − ε2|η|2)2√
1 − ε2|η|2

dη

=
∫
Rd

e−|η|2 dη + ε2

∫
Rd

e−|η|2
[
1
2
|η|2 − 1

4
|η|4
]

dη + O(ε4).

Using the formulas for Gaussian integrals (7.11), (7.12) and (7.13) we find that

ε−d

∫
Sd

|gε(ω)|2 dω = πd/2 +
d(2 − d)

16
πd/2ε2 + O(ε4). (7.17)

Note that the leading term coincides with∫
Rd

|ψG(x)|2 dx =
∫
Rd

e−x2
dx = πd/2. (7.18)

Next, we discuss the asymptotics of ‖φε‖q. Using expansions (7.15) and (7.16)
and routine stationary phase arguments we obtain

φε(x) =
1

(2π)N/2

∫
Rd

eix′·η− 1
2
|η|2(1+ixN ) dη + oLq

x(RN )(1)

=
1

(2π)1/2

(
1

1 + ixN

)d/2

e
− |x′|2

2(1+ixN ) + oLq
x(RN )(1).

The last identity used again (7.11). Thus,

lim
ε2→0

∫
RN

|φε(x)|q dx =
1

(2π)q/2

∫
RN

(1 + x2
N )−dq/4e

− q|x′|2
2(1+x2

N
) dx

=
1

(2π)q/2

∫∫
R×Rd

∣∣∣
(
eitΔ/2ψG

)
(y)
∣∣∣q dy dt, (7.19)

where the last identity used the Gaussian integral (7.11). Note that (7.17), (7.18)
and (7.19) imply that

lim
ε2→0

Ψ(ε2) = log SG
d ,
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which gives us the leading term in the lemma.
We claim that ε2 �→

∫
RN |φε(x)|q dx is differentiable at ε2 = 0 and that

∂ε2

(∫
RN

|φε|q dx

)
|ε2=0 =

1
(2π)q/2

(
2π

q

)d/2 πqd

2(d + 2)

[
1
2

− d2

16

]
. (7.20)

We will discuss this below in some detail. Once this claim is shown, it is easy to
complete the proof of the lemma. In fact, we note that

∂ε2Ψ(ε2)|ε2=0 =
∂ε2
(∫

RN |φε|q dx
)
|ε2=0

limε2→0

∫
RN |φε|q dx

− q

2
∂ε2
(
‖ε−d/2gε‖2

)
|ε2=0

limε2→0 ‖ε−d/2gε‖2
, (7.21)

and we recall from (7.17) that

∂ε2
(
‖ε−d/2gε‖2

)
|ε2=0

limε2→0 ‖ε−d/2gε‖2
=

d(2 − d)
16

. (7.22)

By the first identity in (7.14) and the Gaussian integral (7.11), we compute from
(7.19)

lim
ε2→0

∫
RN

|φε|q dx =
1

(2π)q/2

(
2π

q

)d/2

π, (7.23)

which, combined with (7.20), gives

∂ε2
(∫

RN |φε|q dx
)
|ε2=0

limε2→0

∫
RN |φε|q dx

=
q

2
d

d + 2

[
1
2

− d2

16

]
=

1
2

− d2

16
. (7.24)

Inserting (7.22) and (7.24) into (7.21) leads to

∂ε2Ψ(ε2)|ε2=0 =
1
2

− d2

16
− q

2
d(2 − d)

16
=

1
2

− d2

16
− 4 − d2

16
=

1
4
,

which is the result stated in the lemma.
Thus, it remains to justify the claim (7.20). Using stationary phase arguments

one can show that, for any σ > 0,

|φε(x)| ≤ Cσ(1 + |x|)−d/2+σ for all x ∈ R
N , ε > 0

and
∣∣Re(φε∂ε2φε(x))

∣∣ ≤ Cσ(1 + |x|)−d+2σ for all x ∈ R
N , ε > 0.

(The crucial point here is the real part which leads to a cancellation. Without the real
part one can only obtain a similar bound with an additional factor of |xN |, which
is not good enough to prove differentiability.) These bounds imply by dominated
convergence that ε2 �→

∫
RN |φε(x)|q dx is differentiable at any ε2 ≥ 0 and that

∂ε2

(∫
RN

|φε|q dx

)
= q

∫
RN

|φε|q−2 Re
(
φε∂ε2φε

)
dx. (7.25)
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Recalling (7.7), (7.15) and (7.16) we expand pointwise

φε(x) =
1

(2π)N/2

∫
Rd

eix′·η− 1
2
|η|2(1+ixN ) dη

+
ε2

(2π)N/2

∫
Rd

eix′·η− 1
2
|η|2(1+ixN )

[
1
2
|η|2 − 1

8
|η|4(1 + ixN )

]
dη + o(ε2)

=
1

(2π)1/2

(
1

1 + ixN

)d/2

e
− |x′|2

2(1+ixN )

+
ε2

(2π)1/2

[
d(2−d)

8(1 + ixN )
+

d|x′|2
4(1+ixN )2

− |x′|4
8(1+ixN )3

](
1

1+ixN

)d/2

e
− |x′|2

2(1+ixN )

+ o(ε2).

Here we used the Gaussian integral formulas (7.11), (7.12) and (7.13). We obtain

|φε|q−2 Re
(
φε∂ε2φε

)
|ε2=0 =

∣∣∣∣∣
1

(2π)1/2

(
1

1 + ixN

)d/2

e
− |x′|2

2(1+ixN )

∣∣∣∣∣
q

× Re
[

d(2 − d)
8(1 + ixN )

+
d|x′|2

4(1 + ixN )2
− |x′|4

8(1 + ixN )3

]

=
1

(2π)q/2

(
1

1 + x2
N

)dq/4

e
− q|x′|2

2(1+x2
N

)

×
[

d(2 − d)
8(1 + x2

N )
+

d|x′|2(1 − x2
N )

4(1 + x2
N )2

− |x′|4(1 − 3x2
N )

8(1 + x2
N )3

]
.

Finally, we integrate this identity over x ∈ R
d and recall (7.25). We change

variables x′ = (1 + x2
N )1/2y, compute Gaussian integrals and use (7.14) to obtain

∂ε2

(∫
RN

|φε|q dx

)
|ε2=0 =

q

(2π)q/2

∫∫
R×RN−1

dxN dy (1 + x2
N )−2e− q

2
|y|2

×
[
d(2 − d)

8
+

d|y|2(1 − x2
N )

4
− |y|4(1 − 3x2

N )
8

]

=
q

(2π)q/2

(
2π

q

)d/2 ∫
R

dxN (1 + x2
N )−2

×
[
d(2 − d)

8
+

d2(1 − x2
N )

4q
− d(d + 2)(1 − 3x2

N )
8q2

]

=
1

(2π)q/2

(
2π

q

)d/2

× πqd

2(d + 2)

[
1
2

− d2

16

]
.

This proves (7.20). �
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Appendix A : Refinement of a Perturbed Strichartz Inequality

In this appendix we show that the method from [TA09,KV13] can be used to prove the
refinement of the perturbed Strichartz inequality in Proposition 5.4. We actually prove it in
the setting of elliptic-type phases as defined in [TVV98], thus we do not restrict ourselves
to the case of the sphere with the function T . Instead, let Φ a smooth real function defined
on a neighborhood of the origin in R

d, satisfying Hess Φ(0) = Id. We consider the general
phase ξ �→ Φ(ξ) instead of ξ �→ T (|ξ|2) = 1 −

√
1 − |ξ|2. We also recall that we denote the

dimension by d ≥ 1 and that

q = 2 + 4/d.

As we mentioned before, the main ingredient is a deep bilinear restriction estimate due
to Tao. To state this result we introduce the notation

Q ∼ Q′

for two dyadic cubes Q,Q′ ∈ D to mean that they have the same side length and are not
adjacent (i.e., their closures do not intersect), but their parents are adjacent. In the sequel,
we use the shortcut notation for any ψ ∈ L2

x(Rd) and any (t, x) ∈ R × R
d,

ΨQ(t, x) :=
(
e−itΦ(−i∇)ψQ

)
(x),

where we recall that ψ̂Q := 1Qψ̂.

Theorem A.1. Let d+3
d+1 < p < d+2

d . There are ε > 0 and C > 0 such that for all ψ ∈ L2(Rd)
with supp ψ̂ ⊂ {|ξ| ≤ ε} and for all Q ∼ Q′ we have

‖ΨQΨQ′‖Lp
t,x

≤ C|Q|1− d+2
pd ‖ψQ‖L2

x
‖ψQ′‖L2

x
. (A.1)

This theorem follows by a rather standard parabolic rescaling argument from Tao’s sharp
bilinear estimates on the paraboloid [TA03] and from earlier bilinear estimates due to Tao–
Vargas–Vega [TVV98]. We present this derivation for the sake of completeness. We also
remark that the assumption p > d+3

d+1 is sharp, but that for our purpose the inequality with
any p satisfying p < d+2

d would be sufficient.

Proof. Let Q = δk+[0, δ)d and Q′ = δk′ +[0, δ)d with δ ∈ 2Z, k, k′ ∈ Z
d, 0 < |k−k′| = O(1)

and δk = O(ε), δk′ = O(ε), δ = O(ε). The parabolic rescaling leads to

δ−d/2ΨQ(t/δ2, x/δ) = (2π)−d/2

∫
Rd

eix·ξ−itδ−2Φ(δ(k+ξ))uQ(ξ) dξ,
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δ−d/2ΨQ′(t/δ2, x/δ) = (2π)−d/2

∫
Rd

eix·ξ−itδ−2Φ(δ(k+ξ))uQ′(ξ) dξ,

where

uQ(ξ) := δd/2ψ̂(δ(k + ξ))1[0,1)d(ξ),

uQ′(ξ) := δd/2ψ̂(δ(k + ξ))1k′−k+[0,1)d(ξ).

As a consequence, we may write

‖ΨQΨQ′‖Lp
t,x

= δd− d+2
p ‖TuQTuQ′‖Lp

t,x
,

where

Tg(t, x) =
∫

Q0

eix·ξ−itΦδ,k(ξ)g(ξ) dξ,

Q0 is some big cube independent of Q and Q′ containing both [0, 1)d and k′ − k + [0, 1)d,
and

Φδ,k(ξ) = δ−2 [Φ(δ(k + ξ)) − Φ(δk) − δ∇Φ(δk) · ξ] .

By a Taylor formula and the fact that δk = O(ε), δ = O(ε), all the smooth norms of
Φδ,k are bounded uniformly in (δ, k) on Q0. Furthermore,

Hess Φδ,k − Id = O(ε),

also uniformly in (δ, k) on Q0. We are thus in the setting the bilinear estimates of Tao [TA03]
(see the third remark at the end of the article), for elliptic-type compact surfaces as defined
in [TVV98, Sec. 2]. We deduce that if ε > 0 is small enough, there exists C > 0 independent
of Q, Q′ and g such that

‖ΨQΨQ′‖Lp
t,x

≤ Cδd− d+2
p ‖uQ‖L2(Rd)‖uQ′‖L2(Rd).

Undoing all the change of variables that we performed, we find that

‖uQ‖L2(Rd)‖uQ′‖L2(Rd) = ‖ψQ‖L2
x
‖ψQ′‖L2

x
,

which implies the desired estimate. �

The next ingredient in the proof of Proposition 5.4 is the following improvement over
the triangle inequality.

Lemma A.2. For ε > 0 small enough, there is a C > 0 such that for all ψ ∈ L2(Rd) with

supp ψ̂ ⊂ {|ξ| ≤ ε}, ∥∥∥∥∥∥
∑

Q∼Q′
ΨQΨQ′

∥∥∥∥∥∥
q∗

L
q/2
t,x

≤ C
∑

Q∼Q′
‖ΨQΨQ′‖q∗

L
q/2
t,x

(A.2)

with q∗ := min{q/2, (q/2)′}.
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Proof of Lemma A.2. We apply the result of Tao–Vargas–Vega [TVV98], or more precisely
the version of [KV13, Lem. A.9 & Proof of Prop. 4.24]. The space-time Fourier transform
Ft,x of ΨQΨQ′ satisfies

supp Ft,x[ΨQΨQ′ ] ⊂ {(η + η′,Φ(η) + Φ(η′)), η ∈ Q, η′ ∈ Q′}.

We include this last set into a similar parallelepided as in [KV13, Proof of Prop. 4.24],
which is then enough to obtain orthogonality. Taylor expansions leads to the formula

Φ(η) + Φ(η′) = 2Φ
(

η + η′

2

)
+ a(η, η′)|η − η′|2,

Φ
(

η + η′

2

)
= Φ

(
c(Q + Q′)

2

)
+

1
2
∇Φ

(
c(Q + Q′)

2

)
· (η + η′ − c(Q + Q′))

+ b(η + η′, c(Q + Q′))|η + η′ − c(Q + Q′)|2,

where c(Q + Q′) denotes the center of the cube Q + Q′, for two functions a and b satisfying

3/8 ≤ a(η, η′) ≤ 1/8, 3/16 ≤ b(η + η′, c(Q + Q′)) ≤ 1/16,

assuming that ε > 0 is small enough. We deduce that

supp Ft,x[ΨQΨQ′ ] ⊂ R(Q + Q′),

where

R(Q′′) =

{
(η, ω), η ∈ Q′′,

869
64

≤
ω − 2Φ

(
1
2c(Q′′)

)
− ∇Φ

(
1
2c(Q′′)

)
· (η − c(Q′′))

(diam Q′′)2
≤ 1

2

}
.

Again by a Taylor formula, we have

3
4
|c(Q′′) − η|2 ≤ Φ

(
1
2
c(Q′′)

)
− Φ

(
1
2
η

)
− ∇Φ

(
1
2
c(Q′′)

)
· 1
2
(c(Q′′) − η) ≤ 1

4
|c(Q′′) − η|2.

We deduce that for any (η, ω) ∈ R(Q′′), we have
(

869
64

+
3
2

)
(diam Q′′)2 ≤ ω − 1

2
Φ
(

1
2
η

)
≤ (diam Q′′)2.

This means that if two pairs of close cubes Q ∼ Q′, Q̃ ∼ Q̃′ are such that R(Q + Q′) and
R(Q̃ + Q̃′) intersect, they must have a similar diameter. The same holds for the dilates
(1 + α)R(Q + Q′) for some small α, by the same argument. If the diameters are in a finite
number, the cubes are also in a finite number since their centers verify

|c(Q′′) − c(Q̃′′)| ≤ |c(Q′′) − η| + |c(Q̃′′) − η| ≤ diam Q′′.

We are thus in the same situation as in [KV13, Proof of Prop. 4.24], and Lemma A.2
follows. �

As a final ingredient in the proof of Proposition 5.4 we cite a bound of sums of local
norms over dyadic cubes in terms a global norm. For a simple proof we refer to [TA09, Proof
of Thm. A.1]; see also [BV07, Thm. 1.3] and [KV13, Proof of Prop. 4.24].
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Lemma A.3. Let d ≥ 1 and 1 < μ < ν. Then there is a constant Cd,μ,ν such that for all
f ∈ Lμ(Rd),

⎛
⎝∑

Q∈D
|Q|−ν/μ′‖f‖ν

L1(Q)

⎞
⎠

1/ν

≤ Cd,μ,ν‖f‖Lμ(Rd).

After these preliminaries we are in position to give the

Proof of Proposition 5.4. We follow rather closely Tao’s arguments [TA09, Proof of Thm.
A.1]; see also [KV13, Proof of Prop. 4.24]. We observe that for any ξ, ξ′ ∈ R

d there is a pair
of cubes Q,Q′ ∈ D with Q ∼ Q′ such that ξ ∈ Q and ξ′ ∈ Q′. Consequently, if we let

Ψ(t, x) :=
(
e−itΦ(−i∇)ψ

)
(x),

we find

Ψ2 =
∑

Q∼Q′
ΨQΨQ′ .

Therefore Lemma A.2 yields

‖Ψ‖2
Lq

t,x
=
∥∥Ψ2

∥∥
L

q/2
t,x

=

∥∥∥∥∥∥
∑

Q∼Q′
ΨQΨQ′

∥∥∥∥∥∥
L

q/2
t,x

≤ C1/q∗

⎛
⎝ ∑

Q∼Q′
‖ΨQΨQ′‖q∗

L
q/2
t,x

⎞
⎠

1/q∗

≤ C1/q∗
sup

Q∼Q′
‖ΨQΨQ′‖q∗−r

L
q/2
t,x

⎛
⎝ ∑

Q∼Q′
‖ΨQΨQ′‖r

L
q/2
t,x

⎞
⎠

1/q∗

(A.3)

for every r ≤ q∗. We will later choose r > 1. We now estimate ‖ΨQΨQ′‖
L

q/2
t,x

in two different
ways. They both rely on the bilinear estimate from Theorem A.1. Since

‖ψQ‖L2
x

≤ ‖ψ‖L2
x
,

the bilinear estimate (A.1) implies that for all N+2
N < p < N+1

N−1 and all Q ∼ Q′,

‖ΨQΨQ′‖
L

q/2
t,x

≤
(
|Q|−1 ‖ΨQΨQ′‖L∞

t,x

)1− 2p
q
(
|Q|q/(2p)−1 ‖ΨQΨQ′‖Lp

t,x

) 2p
q

≤ C
2p
q

N,p,ε

(
|Q|−1/2 ‖ΨQ‖L∞

t,x

)1− 2p
q
(
|Q′|−1/2 ‖ΨQ′‖L∞

t,x

)1− 2p
q ‖ψ‖

4p
q

L2
x
.

This bound implies

sup
Q∼Q′

‖ΨQΨQ′‖
L

q/2
t,x

≤ C
2p
q

N,p,ε

(
sup

Q′′∈D
|Q′′|−1/2 ‖ΨQ′′‖L∞

t,x

)2(1− 2p
q )

‖ψ‖
4p
q

L2
x
. (A.4)

On the other hand, one can also interpolate the bilinear estimate (A.1) with the trivial
estimate

‖ΨQΨQ′‖L∞
t,x

≤ (2π)−d‖ψ̂Q‖L1
ξ
‖ψ̂Q′‖L1

ξ
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to obtain
‖ΨQΨQ′‖

L
q/2
t,x

≤ C ′
N,ε|Q|1− 2

s ‖ψ̂Q‖Ls
ξ
‖ψ̂Q′‖Ls

ξ

for some 1 < s < 2 (whose value is not important here). This implies that
∑

Q∼Q′
‖ΨQΨQ′‖r

L
q/2
t,x

≤ C
∑

Q∼Q′

[
|Q|1− 2

s ‖ψ̂Q‖Ls
ξ
‖ψ̂Q′‖Ls

ξ

]r
≤ C

∑
Q∼Q′

[
|Q|1− 2

s ‖ψ̂Q‖2
Ls

ξ

]r

= C ′∑
Q

[
|Q|1− 2

s ‖ψ̂Q‖2
Ls

ξ

]r
. (A.5)

In the last equality we used the fact that the number of Q′ ∈ D satisfying Q′ ∼ Q is
finite and independent of Q. Finally, according to Lemma A.3 (with f = |ψ̂|s, μ = 2/s and
ν = 2r/s; note 1 < μ < ν since s < 2 and r > 1), the right side of (A.5) is bounded by a
constant times ‖ψ̂‖2r

L2
ξ

= ‖ψ‖2r
L2

x
. Combining this with (A.3) and (A.4) completes the proof

of Proposition 5.4. �
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