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MAXIMIZERS FOR THE STEIN-TOMAS INEQUALITY

RupeErT L. FRANK, ELLIOTT H. LIEB AND JULIEN SABIN

@ CrossMark

Abstract. We give a necessary and sufficient condition for the precompactness
of all optimizing sequences for the Stein—Tomas inequality. In particular, if a well-
known conjecture about the optimal constant in the Strichartz inequality is true,
we obtain the existence of an optimizer in the Stein-Tomas inequality. Our result
is valid in any dimension.

1 Main Result

A fundamental result in harmonic analysis is the Stein-Tomas theorem [ST84,
TO75], which states that if f € L2(SV~1), N > 2, then the inverse Fourier transform
f of fdw, with dw the surface measure on SV~ that is,

§ 1 -
Fa) = s [, @) de

belongs to LI(RY) with
q:=2(N+1)/(N-1) (1.1)

and its L9(R") norm is bounded by a constant times the L?(SV~!) norm of f.
Moreover, it is well known that the exponent ¢ is optimal (smallest possible) for this
to hold for any f € L?(SV-1).

In this paper we are interested in the optimal Stein—Tomas constant,

v |fld
Ry = sup 7fR /] x’
ozferzsv-1y  1fI19

where || -|| denotes the norm in L?(SV~1). The value of Ry and optimizing functions
are only known in dimension N = 3 due to a remarkable work of Foschi [FO15]; see
[CFO15] for partial progress in N = 2. Our main concern here is whether the supre-
mum defining Ry is attained and, more generally, the description of maximizing
sequences for Ry. These questions were recently considered in fundamental papers
by Christ and Shao, where the existence of a maximizer for N = 3 [CS12a] and
N = 2 [SH15] was shown, as well as a precompactness result for maximizing se-
quences for N = 3 [CS12b]. What makes dimensions N = 2 and 3 special is that the
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exponent ¢ in (1.1) is an even integer, so that one can multiply out | f |2. Our results
will be valid in any dimension.

Christ and Shao discovered that for the problem of existence of an maximizer for
Rn a key role is played by the Strichartz inequality [ST77]. The optimal constant
in this inequality is

—(d+2)/d [ e €524 (2) 244 da dt
Sa = (2) sup e
0#£peL?(R?) |l ||2+4/

(Here || - || denotes the norm in L?(R%).) Note that 2 + 4/d = ¢ when d = N — 1.
The overall factor (27)~(4+2)/4 and the factor 1/2 in front of the Laplacian are not
important, but simplify some formulas below.

We say that a sequence (f,) C L2*(S™~!) is precompact in L2(SV~1) up to
modulations if there is a subsequence (f,,) and a sequence (a;) C RY such that
e~taww f converges in L2(SN1).

The following is our main result.

Theorem 1.1. Let N > 2. If
G
VT T(42)

then maximizing sequences for Ry, normalized in L?(SN~1), are precompact in
L2(SN~1) up to modulations and, in particular, there is a maximizer for Ry.

Sn_1, (1.2)

Clearly, the optimization problem for Ry is invariant under modulations, so
precompactness up to modulations is the best one can expect. Our theorem says
that assumption (1.2) is sufficient for this. In fact, it is easy to see that (1.2) is also
necessary for the precompactness modulo modulations of all maximizing sequences.
We will comment on this in Remark 2.5, where we will also see that (1.2) holds with
> instead of >.

As we will argue below, in dimensions N = 2 and N = 3, the strict inequality
(1.2) holds and so we recover the Christ—Shao results on the existence of optimizers
[CS12a,SH15] and precompactness in N = 3 [CS12b] and we obtain, for the first
time, precompactness of maximizing sequences for N = 2.

We believe, but cannot prove, that the strict inequality (1.2) holds in any di-
mension. To verify it, it seems natural to first compute Sy_1 and then to use a
perturbation argument to establish (1.2). In fact, by a remarkable work of Foschi
[FOO07] (see also [HZ06,BBC09]), the value of Sy_; is known for N =2 and N = 3.
We cite the following conjecture from [FOO07]; see also [HZ06].

CONJECTURE 1.2. Let d > 3. Then the supremum defining Sy is attained for 1(z) =
e_""”2/2, r € R%,

Assuming that this conjecture is true we can generalize an argument from [CS12a,
SH15] and obtain existence of a maximizer for the R441 problem.
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PROPOSITION 1.3. Let N > 4. If Conjecture 1.2 holds for d = N — 1, then (1.2)
holds and therefore the conclusions of Theorem 1.1 hold.

In connection with Conjecture 1.2 we would like to mention that the existence
and precompactness problem for the optimization corresponding to Sg was solved
by Kunze [KUO03| in d = 1 and by Shao [SH09] in d > 1. As we will explain
next, this problem is considerably easier than that for R since on the paraboloid
{(¢&,w) € R xR : |£]2 = w}, no points have parallel normal vectors (which is also a
consequence of the fact that the paraboloid can be written globally as a graph and
has non-vanishing curvature). In fact, our proof technique allows one to simplify the
proofs in [KU03,SH09].

Let us discuss some of the challenges in proving Theorem 1.1. As in most opti-
mization problems the key difficulty here is to find a weak limit of an optimizing
sequence which is non-zero. There is an obvious way how a maximizing sequence
can go weakly to zero, namely by modulations. However, potentially there is an-
other way, namely by concentration and, in fact, the largest part of our proof is
concerned with showing that concentration does not occur. If a sequence would con-
centrate at a point, we could approximate the sphere close to this concentration
point by a paraboloid and we are in the setting of the Strichartz inequality. (Note
that the Strichartz inequality is invariant under dilations.) Therefore, if a maxi-
mizing sequence concentrates at a point, one could naively expect that the largest
possible ‘energy’ it can have is Sy_1. What makes this problem interesting is that a
maximizing sequence can do better than concentrating at a single point! Namely, it

can concentrate at a pair of antipodal points. What we will show is that the largest
94/2 T(137)
VA ()

possible ‘energy’ in this case is Sy_1 with a factor

22 T()

V(1)

> 1.

From this and our assumption (1.2) we will deduce that maximizing sequences cannot
concentrate at two antipodal points and therefore will be precompact.

The fact that a strict ‘energy’ inequality leads to precompactness of minimizing
sequences is frequently used in the calculus of variations, for instance, in the linear
Schrodinger operator theory. In a non-linear context it seems to appear for the first
time in the Brézis—Nirenberg problem [BN83, Lem. 1.2]. (Existence of minimizers,
but not precompactness of minimizing sequences, under a strict ‘energy’ inequality
was shown earlier in the Yamabe problem [AU76].) We emphasize that both in
the Yamabe and in the Brézis—Nirenberg problem one has to deal with the loss of
compactness due to concentration around a point.

However, the fact that concentration at two points is better than concentration
at a single point is a non-local phenomenon and is a novel feature of the optimization
problem R . As far as we know, it does not appear in optimization problems related
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to Sobolev spaces (for instance, the Yamabe problem or the Brézis—Nirenberg prob-
lem mentioned before—mnot even in non-local versions of these problems) or in the
optimization problem related to the Strichartz inequality. In order to deal with this
non-local effect we have to modify existing strategies in the calculus of variations
and we hope that our techniques will be useful in problems with a similar flavor.
In particular, our method should yield a solution in the case of a general manifold
with positive Gauss curvature. In this case the role of antipodal points is played by
pairs of points with opposite normal vectors. For earlier results in the case of general
curves (N = 2), but with pairs of points with opposite normal vectors excluded, we
refer to [OL14].

The mechanism of antipodal concentration was discovered by Christ and Shao
in [CS12a]. In their analysis, however, the fact that ¢ is even plays a major role.
First, it allows them to restrict their attention to non-negative functions, which
eliminates the loss of compactness due to modulations. More importantly, however,
it also allows them to restrict their attention to antipodally symmetric functions. In
this way the concentration at antipodal points is built into their proof automatically
and, for instance, it is trivial in their case that the concentration happens with the
same profile at both points, whereas this is a non-trivial step in our proof.

In order to prove Theorem 1.1 we use the method of the missing mass (MMM)
which was invented in [LI83] and [BN83, Lem. 1.2]; see also [BL84, FLL86] for early
and [FL12,FL15] for more recent applications of this method. The basic idea is to
decompose a maximizing sequence into a main piece, which converges in a strong
sense, and a remainder piece, which vanishes in a suitable sense. The goal of the
decomposition is that each of the quantities involved in the maximization problem
splits into a contribution of the main piece and the remainder piece, without any
interaction between them. The crucial point is to not ignore the remainder piece
(i.e., the missing mass), but to treat it as a potential optimizer. Because of the non-
linear nature of the optimization problem, one can then conclude that the missing
mass is either everything (which is impossible, since the main piece does not vanish)
or nothing, which means that the maximizing sequence converges, in fact, strongly.

The MMM can deal both with exact symmetries (as in [BL84]) and with almost
symmetries (as in [BN83]). One novelty of our work is that we need to apply the
method twice, once to deal with the exact modulation symmetry (Proposition 2.2)
and once to deal with the almost dilation symmetry (Proposition 2.4).

The method relies on two main ingredients which have to be verified in each
problem. First, one needs to identify a main piece which does not vanish in the
limit. This usually comes from a compactness theorem. In our case we prove a
refinement of the Stein—Tomas inequality (Proposition 5.1) which relies on a deep
bilinear restriction theorem of Tao [TA03]. Our strategy here is reminiscent of Tao’s
proof of what he calls the ‘inverse Strichartz theorem’ [TA09]. We feel that this
approach is more direct than earlier approaches using X, spaces, which were used
in connection with refined Strichartz inequalities (and were also an ingredient in
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[KU03,SH09]). Refinements of the Stein-Tomas inequality in terms of these spaces
also play an important role in the works of Christ—Shao [CS12a] and Shao [SH15].

The second ingredient in the MMM is the decoupling of the main and the re-
mainder piece. While for a Hilbertian norm involved in the maximization problem
this follows simply from weak convergence, one usually uses almost everywhere con-
vergence and the Brézis—Lieb lemma [LI83,BL83] for an L? norm. Indeed, we are
able to verify almost everywhere convergence in our setting by proving an analogue
of the local smoothing property of the Schrédinger equation (Lemma 4.4). However,
we need a generalization of the Brézis-Lieb lemma (Lemma 3.1) since in our second
application of MMM the main piece will not be convergent. Nevertheless, we will be
able to separate its contribution from that of the remainder piece. The fact that the
main piece is not convergent is ultimately a consequence of the non-local interaction
between concentration points.

The outline of this paper is as follows. In Section 2 we present the overall strategy
of our argument in more detail and explain how the MMM works. Section 3 contains
the new generalization of the Brézis-Lieb lemma, Section 4 the results on almost
everywhere convergence and Section 5 (and Appendix A) the compactness result
mentioned before. In Section 6 we complete the computation of the compactness level
by showing that, if concentration at antipodal points happens, then it is energetically
favorable to have the same concentration profile on both points. Finally, Section 7
is devoted to the proof of Proposition 1.3.

2 OQOutline of the Proof: Method of the Missing Mass

In this section we explain the main steps in the proof of Theorem 1.1. In Proposi-
ga/2 D(414)

V7 (5 SN -1
on the right side of (1.2) is replaced by a certain quantity R}, which is abstractly
defined through certain sequences in L?(SV~1) that converge weakly to zero. In a

second step in Proposition 2.4 we will show that

tion 2.2 we will show that the conclusions of Theorem 1.1 hold if

Ry =Sn_1, (2.1)

where Sy _1 is a quantity defined in terms of pairs of functions in L>(RV=1) and is

a generalization of the Strichartz constant Sy_i. Finally, in Section 6 we will show
that .

5, 2T

VT D(457)

which will complete the proof of Theorem 1.1.

The proof of Proposition 2.4 will rely on Sections 3, 4 and 5. We present it already
at this point both in order to motivate the more technical work in these sections
and in order to emphasize the general nature of our argument.

We now present the steps in more detail.

S, (2.2)
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DEFINITION 2.1. Let (f,) C L2(SNV~1). We write

fn —mod 0
if for every sequence (a,) C RY one has
e~ @ 0 in LSV,

(Here and in the following, we slightly abuse notation and write e~ f for the
function w +— e~ f(w).)
Define

Rig = sup {limsup [ 1uf1des 15 =1 £y o 0}
RN
ProrosiTION 2.2. If
RN > R}(\/a

then mazimizing sequences for Ry, normalized in L?>(SN™1), are precompact in
L2(SN=1) up to modulations and, in particular, there is a mazimizer for Ry.

Proof. Let (f,) € L?>(SN¥~1) be a maximizing sequence with | f,,|| = 1. Since
hm/\ﬁﬁm—RN>R%
RN

we infer that f, A mod 0. That is, thereis an h € L?(SV~1) and a sequence (a,) € R
such that limsup,, .. | [he™" % f, dw| > 0. After passing to a subsequence we
may assume that inf, | [ he @ f, dw| > 0. By weak compactness, after passing
to another subsequence, we may assume that e« f, — ¢ in L?(SV~!). Then
[ he="< f, dw — [ hgdw and this is non-zero, so we conclude that g # 0.

Let us denote r,, := e~ f, — g. Then r, — 0 in L?(SV¥~!) and therefore

m = lim ||r,||? exists and satisfies 1 = ||g||*> 4+ m.
n—oo

Moreover, since €% ¢ L%(SV~1), weak convergence implies that 7, — 0 pointwise
and therefore, by the Brézis-Lieb lemma [LI83,BL83],

p= lim [|7, |7 exists and satisfies R = [|g[|Z + p.
n—oo

Since |7 | < R ||7nl|?, we have p < Rym?/? and therefore
R = glld+p < |gll§+Ram®? = g1 5+Rn (1 — 917> <||ll3 + Rx — Ruvllgl|*,

where we used the elementary inequality (1 —¢)%/2 < 1—t%/2 for t € [0,1]. Thus, we
have shown that 0 < ||g]|d — Rx||g||?, which means that g is a maximizer (recall that
g # 0) and that equality must hold everywhere. Since the elementary inequality is
strict unless t € {0,1}, we conclude that ||g||> = 1. Thus, m = 0, which means that
et w £ converges to g strongly in L?(SV~1). This completes the proof. O
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This proposition reduces the proof of our main theorem to showing that
1
I IN
N = =T q+2 -1
VT D(45)

which we will verify in two steps. For d > 1 (which will typically be N — 1 in our
application), let

Sy = (gﬂ)—(d+2)/d

24+4/d d dt

hm)\ﬂoo ff]Rx]Rd |eitA/21/)+(x) 4 ez‘/\a:Ne—itA/2w— (x)’
9 Sup 2 1l |2) 2
(0,0)(w+ =) L2 (RY)? U* 1+ =112)
It is easy to see that the limit A\ — oo exists. We discuss this in some more detail
before Lemma 6.1.

Our next goal is to prove equality (2.1). Intuitively, this equality says that for
the computation of R} we only need to consider sequences which concentrate on
a pair of antipodal points. Approximating the sphere near the concentration points
by a paraboloid, we arrive at Sy_;. (The factor of (2r)~(@+2)/d comes from the
normalization of the Fourier transform.)

In order to make this intuition precise we have to quantify the notion of con-
centration. We will introduce a family of maps Brs with R € O(N) and 6 > 0
which identifies pairs of functions on L?(RV~1) with a function on L?(SN~1). The
orthogonal matrix R € O(N) will determine the equator along which we cut the
function in L?(SY¥~1) into two pieces. The parameter § > 0 corresponds to a scaling
in LZ(RN-1).

We begin with the case R = Id, in which the equator along which we cut is
the standard equator. For ¢+, ¢~ € L?2(RV~!) and § > 0 we define a function
Bs(¢*,¢7) € L2(SV1) by

+ o § 1 ,: 2\N/4 s—(N—-1)/2 ,+
Bé(¢ 7¢ ) (\/1+§27 \/1+£2> : (1+§ ) J ¢ (5/5)7 (2 3)
£ -1 '

Bs(¢t,¢7) ( ) = (1+ )N 5~ N=D2 6= (¢ /5)

VI+E2 /14
for ¢ € RV~1 (It is inessential that Bs(¢*, ¢~ ) is not defined on the set {w € SV~ :
wy = 0} of measure zero.) A simple change of variables shows that

1Bs(&*, 671" = [l 1 + llo~ 1% (2.4)
The map Bs will be Br s with R = Id. Now for any R € O(N), ¢+, ¢~ € L2(RN1),
and § > 0 we define a function Brs(¢*,¢7) € L2(SV 1) by
Brs(¢",¢7)(w) = Bs(¢",¢7)(R™w). (2.5)

Since Bs concentrates as § — 0 around the north pole (0,...,0,1) and the south pole
(0,...,0,—1), Bgr,s concentrates around R(0,...,0,1) and R(0,...,0,—1) as 6 — 0.
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DEFINITION 2.3. Let (f,) C L2(SNV~1). We write

fn —conc O

if for all sequences (a,) C RY, (R,) C O(N) and (4,) C (0,00) with supé,, < 0o
one has

Brls, (€7 fa) = (0,0) in L2(RNTY) x L2(®N ).

(Recall that, with our slight abuse of notation, e~ f denotes the function
W e f())

Let us briefly comment on this definition. At first sight it might look unnecessary
to include a sequence of orthogonal maps (R,) in this definition since the space
O(N) is compact and hence, up to a subsequence, (R,) will converge to a fixed
orthogonal map. However, if §,, — 0, the sphere gets ‘blown-up’ and the maps (R,,)
might move a point on the sphere on a distance 1/4,, when looking around the
concentration point at the scale 1/6,. As a consequence, the (R,) play the role
of the v-translations (modulation symmetry) in the symmetries of the Strichartz
inequality (see the appendix of [TA09]). The importance of keeping these rotations
will become clear in the proof of Lemma 5.2. Let us also remark that the analogue
of our (a,) are (t,, z,)-translations in the Strichartz case.

Our definition of the convergence f, —conc 0 is specific to the sphere: we used
that any rotation stabilizes the sphere. If one tries to adapt our approach to a general
compact manifold with positive Gauss curvature one probably needs to work with
local versions of the B operators.

We introduce two auxiliary functions (1, (2 on [0, 00) by

1 2 1
Cl(k):\/ﬁv CQ(k):ﬁ <1—m) )

For ¢ € L?(RV~1) we define with z = (2/,zy) € RV"I xR

1 n i(E-x'Cq —L1e2p 06 d&
(To0) (0) 1= ooy |, 9O OGO G (20

The operators 75 arise naturally in this context since for any pair of functions
Yt~ € L2(RV~1) and any § > 0, setting

f = Bé(@ﬂ?)?

we find

6NN F(a! 8,0y /%) = (2m) M2 (BT (Tygt) (@) + TN (o) (2! —aw) )
2.7)

This follows by a simple change of variables.
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We are now able to carry out the second step in the proof of Theorem 1.1,
which is a variation of the argument used to prove Proposition 2.2 combined with
a compactness theorem for the f,, —conc 0 convergence (Corollary 5.3) and two
convergence theorems for the operators 75 (Propositions 4.1 and 4.3).

PROPOSITION 2.4. R = Sy_1.

Proof. We begin with the proof of <. Let (f,) € L*(SV~!) be a sequence with
[ fall = 1, fr —moa 0 and || f]|4 — R4 We may assume that RY, > 0, for otherwise
there is nothing to prove, and therefore f,, 4 0 in LI(RY). According to Corollary
5.3 and weak compactness, after passing to a subsequence, we may assume that
there are sequences (a,) C RY, (R,) € O(N) and (8,) C (0,00) with supé, < oo
and functions ¢+, ¢~ € L2(RN~1) with

o2+l |I> # 0 (2.8)

such that Béi 5n(e_i“"'“’fn) — (@ﬁ, @F) in L2(RN 1) x L2(RV~1). Since f,, —mod 0,
we have §, — 0. Because of rotation and modulation invariance of the problem, we
may assume that R, = Id and a,, = 0 for all n and we write B;, instead of Bg, s, .
We define
Pn = B5n(¢+7¢_) and 7y = fn_Bén(w+7w_)'

We shall show that

m:= lim ||r,||? exists and satisfies 1 = |[ob"||* + || 7| + m (2.9)
n—oo
and
p= lim |7n|?dx  exists and satisfies Ry = P + p, (2.10)
n—oo Jpn
where
P := lim |70 |9 dx
n—oo RN
and

Tn(@) == (277)_1/2 (ez’mN/ég (eixNA/2¢+) () + o—iTN /62 (e—imNA/2w—) (az’)) ‘

(The fact that the limit definining P exists is again a consequence of the arguments
before Lemma 6.1. In fact, we do not really need here the existence of the limit, but
could simply work with the limsup in the definitions of both p and P.)

Before proving (2.9) and (2.10), let us show that they imply the proposition.
Since d,, — 0 we have B, (1}1, @\_) —mod 0, and since f,, —moa 0 by assumption, we
have r,, —=n0q 0. Thus,

1< Riy mi/?, (2.11)
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(In fact, if m = 0, this follows from the Stein—-Tomas inequality and, if 0 < m < 1,
it follows by using the definition of R} for the sequence ry,/||ry||.) Combining (2.9),
(2.10) and (2.11) and recalling the elementary inequality used in the proof of Propo-
sition 2.2 we obtain

Ry = Pt p< Pt Rym"” = P+ Ry (1— [t | — o [?)"”
* . 2
< P+Ry (1= (lwt 2+ w7 13)""),
that is,
* _ 2
Riy (lo* 2+ lo~ )" < P
Because of (2.8) this is the claimed upper bound on R} .
It remains to prove (2.9) and (2.10). For the proof of (2.9) we recall the unitarity

relation (2.4) for Bs, . Thus, the weak convergence Bgnlrn — 0 implies

L=l = 185l = ([ 670+ Byt | = | @ 0|+ 1Bkl o(1).

Using once again HBgﬂlrnH2 = ||rn||?, we obtain (2.9).

For the proof of (2.10) we denote (171%, 12,}) = Bgﬂlfn and decompose, using (2.7),

5;(N_1)/2fn(x//5na xN/(S%) = Wn(x) + pn(x) + Un(@?
where we have set

pu() = (2m) V2 (1% ot (af o) + e/ g (! —ay))

with
pr (@) ="T5, (v — %) (@)
and
on(z) = (27) /2 (ei”ﬂN/‘squf;f(:c/7 TN+ e g (2 —xN))
with

oi(2) i= (T, 0%) (2) = (e222/20%) (o).

It follows from Proposition 4.3 that, after passing to a subsequence if necessary,

Pt — 0 almost everywhere and from Proposition 4.1 that o;f — 0 in L?. Moreover,

)] < (2m) 72 (| (e 2t ) (@) + | (72207 ) ()

Therefore, the generalized Brézis—Lieb Lemma 3.1 implies

[ [t o) do = [ ma@itde s [ ool da+ o)
RN RN RN

) € Li(RY).
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By scaling, the left side equals || f,,[|4 and, since
o) = 8 NI ([0, /57),

the second term on the right side equals ||7,||4. Taking the limit as n — oo and using
the fact that the limit definining P exists we obtain (2.11). This completes the proof
of the inequality < in the proposition.

The proof of the inequality > is similar, but simpler. Indeed, pick any pair of
functions (¢7,17) € L2(RV~12 such that 97| + [[1v~||> = 1 and any sequence
(0p,) of positive numbers converging to zero. Then, the sequence f, := B;, (zzjr , 1? )
satisfies || fn|| = 1 and f,, —mod 0. As a consequence,

limsup/ |ful?dz < Ry
n—0o0 RN
On the other hand, by the same method as in the proof of the inequality <, we have
lim inf/ | | da
RN

n—oo

> (271')7‘1/2 lim dz ,

(ei:cNA/2¢+) () + o= 2iwn 52 (efimNA/2w7> (') a

showing that ngl <Ry O

To complete the proof of Theorem 1.1 it suffices to show equality (2.2). This is
the content of Corollary 6.2.

REMARK 2.5. Similar arguments to those used before show that

(2.12)

which is the non-strict version of (1.2). In fact, we clearly have Ry > R}, so that
(2.12) follows from Proposition 2.4 and (2.2). Moreover, by definition there is a
sequence (f,,) C L2(SN=1) with || f,|| = 1 and || f||§ — R% which is not precompact
in L2(SN=1). Thus, the strict inequality (1.2) is necessary for the precompactness
of all maximizing sequences.

3 A Generalization of the Brézis—Lieb Lemma

The following abstract lemma decouples the main piece from a remainder piece that
converges to zero almost everywhere.

LEMMA 3.1. Let (X,dx) be a measure space and p > 0. Let («a,) be a bounded
sequence in LP(X) such that

Qpn = T + pp + On,
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where, for some Il € LP(X),

|mn| <II for alln
and where

pn — 0 almost everywhere and o, — 0 in LP(X).

Then
/\an\pdx:/ \ﬂn\pdﬁ/ pulP dz + 0(1) asn — co.
X X X

Note that, if m, is independent of n and ¢, = 0, this is the result from [LI83]
which was generalized in [BL83]. Our lemma follows by similar arguments as in
[BLS3].

Proof. As a preliminary step we show that the asymptotics are independent of o,,.
By the triangle inequality we have for p > 1,

[lanll, = llmn + pally| < ol
and for 0 <p <1

< lonllp-

[lowl? = llm + pall?
We conclude that

/|an|pd:p:/ | + pn|P dz + o(1).
X b's

(For p > 1 we also use the fact that sup,, |||/, and sup,, ||7, + pn ||, are finite; see
the proof below.) Thus, the lemma will follow if we can prove that

/ [+ pal? — [mal? — |pal?| dz = 0(1) asn — oo. (3.1)
X
Let € > 0 and put

Ry, = (||mn + pn|p - |7Tn|p - |pn’p| — € ‘pn|p)+ .
Then

/Hwn+pnrp—|wn|p—|pn|”|dee/ pul? dw+/ R, dz,
X X X

and asymptotics (3.1) will follow if we can prove that

limsup/ |pn|P dx < oo (3.2)
X

n—oo
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and

/ R,dx =0(1) asn — co. (3.3)
b's
For the proof of (3.2) we simply bound

[pal? < Cp (lan]” + [7a]” + |on|?) < Cp (lan[” + 117 + |ow[?)

with C, = 37"1if p > 1 and C, = 1 if p < 1. Thus, by assumption,

limsup/ lpn|P dz < C), limsup/ (lap|P +11P) dx < oo,
n—oo X n—oo X
which gives (3.2).

We will prove (3.3) by dominated convergence. Clearly, there is a C, such that
for all a,b € C,

lla + 0" = [blP] < €[b]” + Ceplal”.
Thus,
7n + pul” = [mnl” = lpnl”] < |17 + pnl” = lonl"| + [m0l” < €|pnl” + (Cep + 1) [mal?
and so
R, < (Cep+ 1) |mp|P < (Cep+1)IIP.

By assumption, the right side is integrable.

To complete the proof we show that R, — 0 almost everywhere. Note that
pn, — 0 almost everywhere and that |m,| < II. The set {p, — 0} N{II < oo} has full
measure and on this set we have R,, — 0 almost everywhere. This simply follows
from the fact that for sequences (ay,), (b,) C C with sup|a,| < oo and b, — 0, we
have |a,, + by [P — |an,|P — 0 for any p > 0. This proves the lemma. 0

4 Some A-Priori Estimates and Convergence Results

In this section we discuss the convergence properties of the operators 75 from (2.6) as
0 — 0. These properties were used in the proof of Proposition 2.4. As we have already
seen in Section 2, the operators 75 appear naturally in our problem for functions
on SV~ which concentrate near the north pole with the parameter 6 denoting the
scale on which the functions live.
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4.1 L7 Convergence. We recall that we always assume ¢ = 2(N +1)/(N —1).
The purpose of this subsection is to prove the following convergence result.

PROPOSITION 4.1. Let 1) € L>(RVN=1). Then, as § — 0,
(To0) () = (e2/2p) (&) in LIRY),
We begin with an a-priori bound for 7y.

LEMMA 4.2. 75 is a bounded operator from L?>(RV~1) to L4(RN) and ||75||z>— 1« is
independent of § > 0.

Proof of Lemma 4.2. We claim that for all ¢» € L>(RV~1) and for all z € RY,
(Tsw)(x) = (2m)' 2™ (VP BUs ) (<) (4.1)

where Vs and Us are isometric isomorphisms in L4(RY) and L?(RY), respectively,
F denotes the Fourier transform and B is a unitary operator from L?(R¥~1) to
L? (Sﬁ ) (Sﬁ ~1 denoting the northern hemisphere). Thus,

15112220 = @m)2IF o ey-1) 2 oy

which is finite by the Stein—Tomas theorem. The operators Vs-1 and Us are simply
defined by

(VoF) (x) = 6~ WHVAE@E 5,25 /0%),  Use) (€) = 5~ D20(¢/0).
The operator B is defined by

£ 1
(Bo) :
VI+E /148
The fact that B is a unitary operator from L?(RN~1) to Lz(Sf_l) follows by a

simple change of variables. The claimed identity (4.1) follows by the same change of
variables. O

) = (1+ )M g(©). (4.2)

We now use this lemma to prove the proposition.

Proof of Proposition 4.1. Because of Lemma 4.2 it suffices to prove the proposition
for ¢ € L2(RN=1) with ¢ € C®(RM~1). For such ¢ we shall show that for all
(z',zn) € RY,

lim (T53) (o', 2) = (7¥2/%) (@), (4.3)

[(To) (@ aw)| + | (794/20) (@)

for some constant C' > 0 independent of § (but dependent of ). The limit (4.3)
follows immediately from Lebesgue’s dominated convergence theorem, since we have
the correct limit under the integral and ) € L*(RV~!). Assume for the moment the

< Clz|~N-D/2 (4.4)
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decay estimate (4.4) and let us show that this implies the claimed L7 convergence.
We have for some C” and all § > 0

(T50) ()] + | (555729 (o) ol
z|>R

q)dxg T

This can be made arbitrarily small, uniformly in § > 0, by choosing R > 0 large.
Thus, it suffices to prove that for any fixed R > 0

X8 () (T50) (@) = B, (@) (25420 (@) in L(RY),

where Br denotes the ball of radius R > 0. This follows immediately by dominated
convergence from the pointwise convergence (4.3) together with the uniform bound

(T50) ()] < (2m) Y2 [ i) de < oc,
RN—l
Thus, it thus remains to prove the decay estimate (4.4), which follows from
stationary phase estimates as in Stein [ST93, p. 349]. Let us recall how it is done
when there is no dependence on §. The integral

TN no_ 1 iz’ -E—iznE? /2,7,
(¢=22) &) = Grymverm /R e g

can be written as an oscillatory integral

/ ei)\q)(w,f)a(é-) df
RN-1

with a large parameter A = ||, a smooth phase function ®(w, &) = W' - &€ — wnE?/2,
where w = (&', wy) € SV¥71, and an amplitude a = ¢/(27)N"1 € C°(RN-1). We
distinguish two cases: when w is close to the poles, then the phase has critical points
but we have a uniform lower bound on the determinant of the Hessian, so we may
use stationary phase. Away from the poles, there is no critical point and we have a
uniform lower bound on |V®|, so that we may use integration by parts.

First, when |wy| > b for some 0 < b < 1 to be determined later (that is, when w
is close to the poles), then the phase is stationary at the points where

Ved(w, &) =w' —wné =0,
that is for £ = &' /wy. Furthermore, we have Dg@(w, ¢) = wn, meaning that
| det DE®(w, &) = Jwn |V =0V

All the &-derivatives of a and ® are uniformly bounded in w in this region, so that
we may use the uniform stationary phase estimates of Alazard, Burq, and Zuily
[ABZ15] to infer that

/ ei)\@(w,ﬁ)a(&-) dé— < Ca’bA—(N—l)/Q
RN-1



1110 R. L. FRANK ET AL. GAFA

for all w such that |wy| > b. In the region |wy| < b, we have || > (1 — b?)'/2 and
hence

\Vg@(w,{ﬂ Z \% - b2 - bRa

where R > 0 is such that supp a C B(0, R). Hence, if b is sufficiently small such that
V1 —=10%/b > R, then the phase has no critical point and we have by integration by
parts

/ A6 de| < Cola)A
RN—I

for any n € N, where C,(a) is uniform in w such that |wy| < b, since we have a
uniform lower bound on |V¢®| in this region and uniform upper bounds on higher
&-derivatives of ®.

We have to do the same thing when § > 0, and all the bounds that were uniform
in w should now be uniform in (w,d). In this case, the new phase function has the
form

2
B(5,,6) =o' - €01 — on S G0,
and the amplitude has the form

()
a(évf) - (1 _1_5252)]\[/4‘

The functions £ — (1(0|¢]) and & — (2(0]¢]), and a are C*° and satisfy (;(0) =
1 = (2(0). All the &-derivatives of ® and a are uniformly bounded in (d,w), on the
support of a. First, consider the case |wy| > b. We have

Dg@(d,w,f) = wnG2(d[¢]) + O(0),

where the O(§) is uniform in (w,&) € SV~! x supp(a). Hence, there exists dy =
do(R) > 0 such that

b

N-1
der D200 > (5)

for all |wy| > b, 0 < § < g, £ € supp(a). Using again the result of Alazard—Burqg—
Zuily (notice here that we do not need to describe where the critical points are, a
lower bound on the determinant of the Hessian is enough to apply their result—we
could have done the same in the § = 0 case actually), we obtain again that

/ eik@(é,w,f)a(é’é) df‘ < Ca,b)\_(N_l)/Q
RN-1
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for all w such that |wy| > b and all 0 < § < §y. In the region |wy| < b, we use the
fact that

Ve®(d,w, &) = w'C1(8[€]) — wnéCa(d]E]) + O(9),
and hence
Ve (5, w, )| > %\/1 e gbR

for all 0 < § < 61(b, R), |wn| < b, € € supp(a). For b = b(R) small enough, this lower
bound is positive. Using again integration by parts with this uniform lower bound
on |V®|, we deduce

/ MW (5, €) de| < Cp(a)A™"
RN-1

for any n € N, where C),(a) is uniform in (w,d) such that |wy| < b and 0 < § < 6.
This finishes the proof of (4.4) and the proof of Proposition 4.1. O

4.2 Almost Everywhere Convergence. While in the previous subsection we
dealt with L? convergence of 75 1 when 6, — 0, we will now deal with almost
everywhere convergence of 7 1, when &, — 0 and ¢, — 0 in L?(RV~1). The
purpose of this subsection is to prove the following convergence result.

PROPOSITION 4.3. Let 1, — 0 in L2(RVN~Y) and 6, — 0 in (0,00). Then Ts, b, — 0

m LIQOC(RN) and, in particular, there is a subsequence such that ’Z:;nk Yp, — 0 almost

everywhere on RN .

The key ingredient in the proof of this proposition is the following analogue of
the local smoothing property of the Schrodinger equation.

LEMMA 4.4. Let a € S(RN™1) be radial. Then there is a constant C, such that for
all € L2 (RN=1) and all § > 0

[ a@)

Let us show that this lemma implies the proposition.

N /4 |?
s <—52A+1> 1/" dx < Colly||.

Proof of Proposition 4.3. Let K C RY be compact and let a € S(RV~!) be radial
with inf e a(z’) > 0 (for instance a Gaussian). Moreover, let A > 0 and denote
by Px multiplication by the characteristic function of By, the ball of radius A, in
Fourier space. We decompose, with PAL =1— Py,

& T5, 0 = XK Ts, PAtn + X5 T5, P ihn.
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According to Lemma 4.4 we have

. A AN\l -02Aa +1 MPL
o\ —02A +1 -A A

-1
< <inf am) CY2 (82 + A=2) sup [l

zeK

—1
s, P < (juf ate)) ||

The right side can be made arbitrarily small by choosing A large, uniformly for
large n. Therefore it suffices to prove that xx 75, Pat)y, tends to zero for each fixed
A. We will deduce this using dominated convergence. In fact, we have for each fixed
x e RY,

x5, (€)e(ETCEIEN =38 enGOIEN) (1 4 §2¢2)=N/4 g (€)ei(60 —38%n)

strongly in LE(RN ~1). (This can also be proved with the help of dominated conver-
gence.) Thus, ¥ — 0 implies that for any fixed z € RV,

Ty, Pathn(a) = (xp,e (600D =3 n G (1 1 62¢2)=V/1, 4, ) — o,
Moreover, we have
1T, Pata()| < [y (66 06D 2emcaie) (4 g2y ||,
< |BalY/2 sup [¢n]-
n
Thus, dominated convergence implies x k75, Prnton, — 0 in LZ(RN ), which proves
the first part of the proposition.
The second part follows by a standard diagonalization argument using a sequence

of balls with diverging radii and the fact that an L' convergent sequence has an
almost everywhere convergent subsequence. O

It remains to give the

Proof of Lemma 4.4. Expanding the square, the left side of the term in the lemma
reads

_ 1/2
on ([ e e (D) -~ €€ )

52 5/2 ! |£/‘1/2 el /
0 (G lole) — Sa0leD) ) dede-
By the Schur test for boundedness, the lemma will follow if we can bound
€1/2¢/
sup/ a
¢ Jrvor (1+ 0282)(N+D/A(1 4 §2¢2)(N+1)/4

2 12
<§ Gl - 5@(&5'\)) ae

(£C1(01€]) = € (01EN)]
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independently of 4. In order to perform the & integral we write & = kw with w €
SN=2 and k > 0. The function ®5(k) = k%G (0k)/2 = 672(1 — 1/V/1 +62k2) is a
strictly increasing function, so we can change variables k = ®5(k). We use the fact
that

) - B 62 . . . diﬁ
[ o) - wstinan = [ Pt a@steh - gt
_ F(e)
|25 (1€])]

with ®%(k) = k(1 + 62k2)~%/2. So Schur’s test amounts to estimating

€1

sup

e G

When N = 2, this is equal to

sgp (la(0)] + la(26¢(81EN)D)

which is bounded since a is bounded.

In the remainder of the proof we assume N > 3. Since a is assumed to be radial,
by rotation invariance we may choose £ = |£](0,...,0,1) and then the integral over
the sphere becomes

Sh /W |a(2sin(0/2)|€[¢1(51€])) | (sin 0)N 3 6.
0

We distinguish between two regions: when 2sin(0/2)|£|¢1(6€]) > 1, then we
estimate |a(£')| < ¢,[&'|7™ for any n € N and obtain

/ a(2sin(0/2) €11 (51¢])) | (sin 6)¥ df
2sin(6/2)[€|¢:(d]€])>1

sin §)N—3
< catzlelca (i)™ [ (sin )

S e,
sin(0/2)> (21¢]¢: (3¢ -1 (sin(6/2))"

Fix n > N — 4. Then for large ||, the integral blows up as

: N-3
/ Lm0 g g / oV =3
sin(0/2)>(21€(: (5lel))— (sin(0/2)) 6> (€], (31€]))
2’)’1
_ —(N—2—n)
(el le) .

Thus, we find that

| a(2sin(8/2)[€[1(316)) | (sin )~ dB <, (1€]6a(31e])) V2.
2sin(0/2)[£|¢:(01€))>1
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In the region 2sin(6/2)[£[¢1(6[¢]) < 1, we estimate |a| < ¢ and obtain

/ a(2sin(8/2) €1C1 (41¢1))|(sin 0) = df
2sin(0/2)[€1¢: (6]€])<1

<ec / 0193 do < (J€lc(s1e]) D).
0<(1€]¢1(01€))

Inserting this bound into the supremum in Schur’s test, we obtain

1 1
=1.
slgp (1+ 52£2)(N—2)/2 C1(5|§DN_2
This proves the lemma. O

5 Compactness

In this section we prove a refinement of the Stein—Tomas inequality and deduce a
compactness theorem modulo modulations and concentrations. We recall that the
convergence f, —conc Was introduced in terms of the operators Br s with R € O(N)
and & > 0 which identify pairs of functions on L?(R™~1) with functions on L2(SV~1).
The parameter R € O(N) determines the equator along which we cut the function
in L2(SN ~1) into two pieces. The parameter § > 0 corresponds to a scaling in
L*(RN~1). The precise definition of these operators is given in (2.5). The refined
Stein—Tomas inequality is stated in Section 5.1, where we also use it to deduce the
compactness theorem, and is proved in Section 5.2 (see also Appendix A).

5.1 Refinement of the Stein—Tomas Inequality. Our refined Stein—Tomas
inequality depends on a parameter ¢ € (0,1) that will be chosen small enough and
that will not always be reflected in the notation. Given this parameter we consider
for any # € SV~ the cap

C(8) == {wGSN_l 0w \/1—62},
and we also pick an orthogonal matrix Ry € O(N) mapping the north pole to 6:
Ry(0,...,0,1) =6.

To formulate our refinement of the Stein—Tomas inequality we need an analogue of
dyadic cubes on the sphere. Let D denotes the set of all dyadic cubes in RV~1, that
is, the union over j € Z of all cubes of side length 27 with corners on (2/Z)N~1. For
6 c SV and Q € D we let

Lo(Q) := Ro(L(Q)),
where L stands for “lift” and

LQ) ={wesV ! W eqQ, wy >0}
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Notice that
Ly(Q) ={we SV Pp(w) €Q, w-6>0},

where Py. : RV — RY is the orthogonal projection on #+. By compactness of the
sphere, there is a finite A € N and points 6, € S¥~1, a =1,..., A, such that

A
U C(6a) =s™.
a=1

Correspondingly, we choose non-negative continuous functions y,, o = 1,..., A,
with

A
Zxa =1 and suppxa C C(0,) foralla=1,..., A.
a=1

PROPOSITION 5.1. There are € € (0,1), C > 0 and o € (0,1) such that for any
feL2(shh),

l1—0o
o (RN)) FAANCRY

Note that this proposition implies the standard Stein—Tomas inequality: indeed,
for any o € {1,..., A} and @ € D we have

Q2 H (]nga(Q)Xaf)VH

Il oy < © <sup sup Q12| (L4, @ v
a QeD

<(@m) M2QIT 2 |11, @) Xaf |l 1y gn oy

< @n) " MQIT2 |11, @) Xall gy £ L2en 1)
<ON 11l 2y

so the right side of (5.1) is bounded by a constant times || f]|.

Other refinements of the Stein-Tomas inequality can be found in [MVV99, Thm.
4.2] in the case N = 3 or in [OL14, Prop. 2], [SH15, Prop. 4.1] in the case N = 2.
These refinements involve X,-norms on f, but it is not obvious how to deduce
our compactness result (Corollary 5.3) from these X, estimates. The key feature of
our refinement is the L> norm of the Fourier transform on the right side of (5.1),
leads almost immediately to Corollary 5.3. This is reminiscent of the route taken in
[TA09,KV13] in connection with the Strichartz inequality, where also L> bounds
on the Fourier transform are used instead of the original X,-spaces approach of
[BO98,MV98,CK07,BV07].

We also point out a certain similarity with the description of lack of compactness
in homogeneous Sobolev spaces [GE98]. In this case analogous bounds in terms of
L* norms of the Fourier transform are due to [GM096-97] (see also [KV13, Prop.
4.8]) and have been used to establish compactness results [GE9S] (see also [KV13,
Prop. 4.9]).

Lo (RN)
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We defer the proof of Proposition 5.1 to Section 5.2 and use it now to deduce
our compactness theorem. The relation between our convergence notion f,, —conc 0
and the norm appearing in Proposition 5.1 is clarified in the following lemma.

LEMMA 5.2. The following holds provided e > 0 is sufficiently small. If (f,) is a
bounded sequence in L?(SN=1) with f,, —conc 0, then

(]nga(Q)Xafn)VHLm(RN) =0. (5.2)

lim sup sup |Q\_1/2 ‘
n—o o QeD

Proof. We argue by contradiction: assume that there exists ¢ > 0, a € {1,..., A},
sequences (x) C RY, (Q) C D and a subsequence ( f,,, ) such that for all k

Q™2 | (11, @uyxafu) ()

We show that the left side converges to zero, obtaining the desired contradiction.
In the sequel, we forget about the subsequence and write (f,,),, instead of (fy, ). We
may also assume that 6, = (0,...,0,1) up to replacing f,, by f, o Ry, which does
not change the assumption f,, —conc 0. We thus write L(Q) and x instead of Ly_(Q)
and Y. We may assume that the sets L(Q,,) intersect {w € SN71: wy > V1 — €2}
(which contains the support of x), for otherwise the left side of (5.3) vanishes, and
therefore the cubes @, all intersect {£ € RN~1: |¢] < €}. Let Q,, be the smallest
dyadic cube with ]lL(Q,L)X =17.,)x- Since

> €. (5.3)

> ‘Qnrlﬂ ‘(]IL(Q,,,)an)v (xn)

‘Qnrlﬂ <1L(Qn)Xf") ’ (n)

)

it suffices to prove the convergence to zero with Qn in place of @,,. From now on we
will write again @,, instead of Q. Let k,, € ZN-1 and 6,, € 2% such that

Qn = 5nkn + [07 6n)N_1a

and note that |@Q,| = §¥~1. The above redefinition of @, guarantees that the se-
quence (8,k,) € RV~1 belongs to a compact set (of diameter O(¢)) and that the
sequence (9,,) C (0,00) is bounded (by O(e)). Thus, after passing to a subsequence
if necessary, we may assume that (d,ky) and (6,) converge.

For any § € C(0,...,0, 1), we define a rotation Oy € O(N) that sends (0,...,0,1)
to 0 in the following fashion: if § = (0,...,0,1), we take Oy = Id, and if 6 #
(0,...,0,1), we take Oy = Id on the orthogonal complement of H = span((0,...,0,1),

0) and on H we take
_ (@~ =l
OG - <w/| WN >

in the orthonormal basis ((0,...,0,1),w'/|w']) of H (with the notation w = W’ +
wn(0,...,0,1), " € RV=1x {0}). This definition ensures that 6 — Oy is continuous
on C(0,...,0,1). Next, we define

O = (Opkn, /1 — 02|kp|2) € SV1
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and
(0 0n) =B, 5. (€77 fu).

By choosing € > 0 small enough (depending only on N) we can guarantee that
0, -w >0 for all n and all w € SV~ with wy > V1 — €2. We conclude that

(Lu@uh) o) = a2 [ e w)(w)lg, () de

n

with

_ Hn OOn (5n§70> 077, 09n (6n€70)
hy, = (1 + 82|¢|>) N4 1 P .

and with the projection P : RY — RN=1 defined by P(1/,nn) := 1.

Since ¢;7 — 0 in L2(RN~1) by assumption, our claim (5.3) will follow if we
can prove that (h,) converges strongly in L?(R¥~1). To do so, we prove that (h,,)
converges almost everywhere and that 0 < h,, < 1p for a centered ball B with
(finite) radius independent of n.

We begin with the almost everywhere convergence. Since (6,,) and (d,,) converge
and x and 0 — Oy are continuous, the sequence

14 82(¢12)~NV/4 On + O, (60§, 0)
(1 +0,[¢[%) x( ViR

converges for all £. If the limit of (d,,) is positive, then the cube Q,, converges towards
a fixed cube, and thus the sequence

1o, [ (frt 000080
V14 alElR
converges almost everywhere in €. If lim, d,, = 0, then we use the fact that

Hn + 097,, (57157 0)
P< V1+2[EP ) “Gn

if and only if
1

P(0s,(€,0)) € (1 1t 2R

) Ky + [0, HNL (5.4)

Since

fm [1—— 2 g, = 0,
=\ T BEP
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we also have almost everywhere convergence in the case lim,, d,, = 0.

Let us now show that 0 < h,, < 1p for a centered ball B with (finite) radius
independent of n. Since Oy — Id as § — (0,...,0,1) and |6, — (0,...,0,1)| = O(e)
uniformly in n, we choose € > 0 small enough such that for all £ € RN~! and all n,

1
POp(£.0)] > el
Now assume that ¢ € supp h,,. Then (5.4) and the fact that 1 — (1 +2)~1/2 <
min{l,z} for all > 0 implies that
ot
V1+07IER
= min{d, €71, 0nl€]} Gnlknl €] + O(1) < GalkalE] + O(1),

Recalling that d,|k,| < Ce and choosing € < 1/(2C'), we conclude that |{] = O(1)
uniformly in n, which is what we want to prove. This concludes the proof of Lemma
5.2. O

;MSNUM&W§<%- )ka+@D§mML@WH%H0m

Combining Proposition 5.1 with Lemma 5.2 we obtain immediately the following
compactness result.

COROLLARY 5.3. Let (f,) € L*(SN') with ||f,| = 1 satisfy fn —conc 0. Then
fn — 0 in LY(RN).

5.2 Proof of Proposition 5.1.  Our goal in this subsection is to prove the re-
fined Stein—Tomas inequality (5.1). We will deduce this inequality from a refinement
of a ‘perturbed Strichartz inequality’, which we state next. We use the notation

T(E)=1-V1—-FE for0O<E<I.

and define ¥ by 1[1@ = XQzﬂ for @ € D, the collection of all dyadic cubes. Moreover,
it is more natural to write d instead of N — 1, so that ¢ = 2+ 4/d.

PROPOSITION 5.4. There are € € (0,1), C > 0 and o € (0,1) such that for any
€ LA(R?) with supptp C {[¢] < e},

l1-0o
”efitT(fA)wHLh <C (52% |Q,1/2H€¢tT(A)¢QHm> 1|7z (5.5)

This should be viewed as a perturbed Strichartz inequality since T'(£2) ~ £2/2 as
¢ — 0. The analogue of Proposition 5.4 with T'(—A) replaced by —A/2 is essentially
due to [TA09] and appears in a slightly stronger form in [KV13]. (In this case the
restriction on the support of 1[1 is not necessary.) Proposition 5.4 follows in the same
way, but for the sake of completeness we provide the details in the appendix. As in
[TA09,KV13] the crucial ingredient is Tao’s bilinear restriction estimate [TA03].

With the refinement of the perturbed Strichartz inequality, Proposition 5.4, at
hand it is easy to give the
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Proof of Proposition 5.1. We fix ¢ > 0 as given by Proposition 5.4. Let f € L?(SV—!
have support in the cap {w: wy > V1 — €} and define a function ¢ € L2(IRN*1

by
Ji-¢
so that
f(x) _ (QW)_l/QeiIN <€_iINT(_A),(/}) (1‘/)
Since supp v C {|¢| > €} we can apply Proposition 5.4 and obtain
l1-0o
£l Lan) < (2m)72C (Cgup QI [le™ TR pg | e ) 1912

We bound

Iz, < 1112

1
Ve
and note that |

(BL(Q)f)v(m) = (271-)—1/2(9/2@\1 (e_””NT wQ) (o).

Thus we conclude that

1—0o
1l agny < C’ (CS;;I;)@\1/2||(]1L(Q)f)v||Lw(RN)> [F 1Tz sn-1y-

1119

By rotation invariance of the sphere we obtain for f € L?(SNV~1) with supp f C

C(6,) the same inequality with L(Q) replaced by Ly (Q).
Thus, for an arbitrary function f € L?(SV~1) we obtain 8:02 am
A

A
1) = || 32 (al)” <310 h) oy
a=1 La(RN) a=1
A -0
<oy (SE% |Q-1/2||<11L9a(Q)Xwaan(RN)) X F 2o
a=1

1—-0c A
< <supgé% |Q1/2||<1LQQ<Q)xaf>V||Lm<RN>) 3 Ixeflnens

1—0o
< (SUP sup |Q_1/2”(]nga(Q)Xaf)v”Lw(RN))
a QEeD

A c/2
x Alme/? (Z ||Xaf||2L2(SN1)>
a=1

1—0o
<c <sup5u% QY2 )Xafwnmw)) AP T .
« S

This is the claimed inequality.
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6 Equal Profiles

Our goal in this section is to prove (2.2), that is, we want to express the solution of
the minimization problem Sd in terms of the solution of the minimization problem
Sg. This will follow from a general inequality that we describe next.

For f,g € LY(RY) (in this section ¢ can be any number > 2) let

D,(f,g):= lim

A—oo JpN

. q
f(z)+ ev‘m’\’g(x)’ dx.
It is easy to see that this limit exists and is given by

ro =5 [ [ e

A simple proof of this fact can be found, for instance, in [AL92, Lem. 5.2]. Note
that for fixed € RY, the function

)+ eg(x )‘ df dzx.

0| @)+ ()| = (IF @ + o) + 2Re“Talox)) "

is continuous and has maximum (| f(z)|+|g(z)|)?. This maximum belongs to L!(R")
as function of x. Therefore, Allaire’s result applies in the above setting.

LEMMA 6.1. If ¢ > 2, then

NG
2al1:9) < p )

The importance of the constant on the right side is that we get equality if | f| =
lg|. In fact, the proof below shows that if ¢ > 2, then the inequality is strict unless
|| = |g| almost everywhere.

o[+

(112 + lgl2)

=)
w‘—&-

Proof. Let us write the above formula for ®,(f,g) as

®(19)= [ (F@F +1o@))" (o) do

with

and, for ¢ € [0, 1],
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We claim that ¢ is increasing in [0, 1]. In fact,

1 ™
d'(t) = gﬁ/ (1+tcos0) 922 cos 0 db

/2
— g;‘/o ((1 + t cos 9)(‘]_2)/2 — (]_ — tcos 9)(q_2)/2) cos B do.

For ¢ > 2, the integrand on the right side is pointwise non-negative, which proves
the monotonicity.
Since |a(z)| < 1, we deduce that

Py(f.9) < ¢>(1)/ (1F @) + lg(x)2) " da
RN
and therefore, by the triangle inequality in L%/2,
u(f, 917 < X [[112 4 19, < 60X (1721, o+ [ll92]l,)
= o2 (1712 + lgl2)

Thus, to complete the proof of the lemma it remains to compute the value of
¢(1). Using the integral representation of the beta function, we find

1 /7 ) 24/2 7 2(q+2)/2 /
o(1) = / (14 cos@)q/ do = / cos?(6/2) df = / cos? 6 db
T Jo ™ Jo T 0
+1
_ 2 1, ety 2q/2r(ng) (6.1)
) T AT
This completes the proof. O
COROLLARY 6.2. Sy = 2&; ?EZ? Sq with ¢ =2+ 4/d.

Proof. Let ¢+, ¢~ € L?(R?). By the lemma (with N = d + 1) and the Strichartz

inequality,
lim / /
A—00 RxRd

2q/2 F( g+l )

2‘1/2 (%)

- \/> T quQ)

This proves the inequality < in the corollary. The opposite inequality follows by

choosing ¥ = 1)~ to be almost maximizers for Sy and recalling that equality holds
in Lemma 6.1 if f =7. O

eitA/21/}+(x) + ei)‘xNe_itA/21/}_(1;)‘q du dt

(H 1tA/2w+”2_’_ || 7ztA/21/] H )

[\')

(2m) D/, ([ + [l |2) .



1122 R. L. FRANK ET AL. GAFA

7 Perturbative Analysis

In this section we prove Proposition 1.3 which verifies the main assumption of The-
orem 1.1 provided Conjecture 1.2 holds. Let

Ya(z) = e "/
and

~(as2yja Jrspa €22 0a (@) P da dt

G .
Si = (2m) ToaZH7 ’

so that Conjecture 1.2 is equivalent to the identity Sy = Sf. In view of this identity,
Proposition 1.3 is an immediate consequence of Proposition 7.1 below.

As explained in Remark 2.5, the non-strict analogue of inequality (1.2) is ob-
tained by glueing two Gaussians on the sphere that concentrate on two antipodal
points. We now compute the next order of the ‘energy’ of this trial function. Thus,
for any € > 0, consider the trial function

fe(w) = X(wN)e_l_e# + x(—wN)e_H—e# Vw e SV
where x € C°(R) is such that x = 1 in a neighborhood of 1 and x = 0 in a
neighborhood of (—o0, 0]. As € — 0, the functions (f) concentrate on the north and
south pole and the limiting profiles are, indeed, Gaussians.

PRrROPOSITION 7.1. We have

. +1
Jen |fel? dx 20/2 1 (%) S¢ (
d

s~ \ Ve (s52)

1
1+ 162 + O€_>()(62)> . (7.1)

In particular, for all sufficiently small € > 0,

fon 7 dr 20T (%)
7 VR ()

An ingredient in the proof of this proposition is the following result about the
simpler trial function

ge(z) == X(wN)e_l_egN Vw e SN (7.2)
which concentrates only at the north pole. Similar results appear in [CS12a,SH15]
for N = 2,3.

LEMMA 7.2. We have

~ |gel? dx 1
m =1og 8§ + =€ + 0c_o(€?). (7.3)

1
og 1
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Before proving the lemma, let us use it to give the

Proof of Proposition 7.1. With g. from (7.2) we shall show that

< q+1
for lltde 202 T (52) [ |l da

= +O(e*). 7.4
Il VEr(m) Tl O 7
This, together with Lemma 7.2, implies the proposition.
Clearly, we have
el = 292l ge )% (7.5)
We also note the rough bound
gell® > ce® 2. (7.6)

2. ,
(We will prove something much more precise in the proof of Lemma 7.2.) Moreover
let

o 1 iac’-nfe‘Q(lf\/1752\n|2)(1+ixl\7)X(\/ 1 —€2[n|?) d
Pe() : ~5 | € S dp (7.7)
(2m)N/ V1 —€2n)?

and note that
e_dfe(x//e,xN/GQ) = 2Re (em"/eque(:c)) and e_dg}(x//e,xN/g) = emN/€2¢e(1:).

We claim that

/ Re (ei“/€2¢e(x dx = / /
RN R

Since, as in (6.1), for any a € C,

Re (¢ ( ))‘q 0 de + O(Y).  (7.8)

—_

1
o

'1

(43)

q 1 (" 1
(e a)‘ do = 27r/ | cos0|9dO |a|? = ﬁf(é) la|?,

2

we infer from (7.8) that after scaling
. 2¢ T(LH) g
fllde = 22— 2~ / G.|? dz + O(e*H(d+2)),
Jo Ve = g [ g+ o)
This, together with (7.5) and (7.6), implies (7.4).
Let us prove (7.8). We introduce the function
a(x,0) = ’Re (ewqﬁg(a})) ‘q V(z,0) € RY x [—m, 7).

Differentiating in 6, we find that there is a C' > 0 such that for all z € RY and all
€ >0,

la(z, )Lz + 105al@, )|z < Clée(w)|?. (7.9)
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As a consequence, we may expand a as an absolutely convergent Fourier series

= calx)e™, V(x,0) € RN x [~

nez
with

cn(x) ::/ a(x,@)efm(;;l—e.
™

—T

By integration by parts and (7.9), we find the bound

len(2)] < 1—|—n2|¢6( )|

By standard stationary phase arguments one can show that ¢, is bounded in
L4(RY) uniformly for small € > 0 and we obtain

/RN Re (eizN/enge(x))‘qu:A a(z, 2N /€ dl‘_Z/ N/ o (2 d.

Hence, in order to prove (7.8) we will prove
Z/ N/ e (1) do = O(e%). (7.10)
RN

n#0
Integrating by parts, we have

=

. 2 . 2
/ Nl e, (z) do = —— "N cn() da,
RN RN

and thus it is sufficient to bound [|02 ¢, ||r; uniformly in n and e. This bound again
follows from stationary phase arguments, which imply that ¢, 05, ¢, and 8§N De
are bounded in L(R™Y), uniformly for small € > 0. In this way we obtain (7.10) and
therefore (7.8) and (7.4). 0

Finally, we prove Lemma 7.2. We will make repeated use of the Gaussian integrals

/2
/ eix’-n—%\nﬁ dn = <2ﬂ-> 6_2715‘90/‘2, (7.11)
R §

vy s 2 "2 2 d/2 1 12
/ e’ =3l ’m2dn: [d _ |x2| ] <7r> e~ 2: 17l , (7.12)
Rd s s s
2 4 /2
/ eiz’-nfg\n|2’m4 dn = |:d(d_2‘_2) _ 2(d+ g)‘x/| + ’CLJ4| :| <27T> 672715‘33,‘2,
Rd s s S s
(7.13)

as well as the identities

d d
/ xNz =T and /x]\;2 = E (714)
r 1+z%5 r (1+2%) 2
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Proof of Lemma 7.2. With ¢, from (7.7) we note that

o Ll fyn 67 e
AL e 72g.]f

T (e?) := log

We begin by studying ||e~%?g.||9. Expanding

- 1 1
(1 —V1-en?) = §|17|2 + §62\77|4 +O('nl°) (7.15)

1 —€2|n|? 1
M= gy L+ o (7.16)
V1=en? 2
(with the same expansion when Y is replaced by x?), we obtain
—d 2 g — Cae-2(1—/ime) X(V1 = €[n[?)? d
¢ ge(W)["dw = [ e ——5—dn
s¢ R V1—eln

_Ip|2 oz |1 1
=/ e~ dn+62/ e [2|nl2—4!n\4} dn + O(").
Rd R4

Using the formulas for Gaussian integrals (7.11), (7.12) and (7.13) we find that

_ d2—d
d/ |ge(w)]? dw = 72 + (16 ) 722 4+ O(h). (7.17)

and

Note that the leading term coincides with

/Rd [ (x)|? de = /Rd e do = 72, (7.18)

Next, we discuss the asymptotics of ||¢c||q. Using expansions (7.15) and (7.16)
and routine stationary phase arguments we obtain

1 iz’ -m—Lin|? TN
¢e(z) = (277)]\[/2/]1@(16 n—3[*(1+ )d77+0Lg(RN)(1)

1 I N ,
— 2(1+iw q .

en2 \1+izy ) © +orsmn) (1)
The last identity used again (7.11). Thus,

!
E

1 __a
; q —dq/4,7 20423
lim o |pe(x)]|? dx (27r)q/2 / (1+2%) +230 da:

2—0
1 //
27 / RxR4

where the last identity used the Gaussian integral (7.11). Note that (7.17), (7.18)
and (7.19) imply that

(*206) )| ayar,  (7.19)

lim W(e?) = log SY,

e2—0
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which gives us the leading term in the lemma.
We claim that €® — [5y |¢e(x)|? d is differentiable at ¢* = 0 and that

1 o\ /2 mqd 1 42
Oez </]RN |pe dx) lee—0 = W (q) m |:2 - 16} . (7.20)

We will discuss this below in some detail. Once this claim is shown, it is easy to
complete the proof of the lemma. In fact, we note that

O (Jpx 16l d) =0 g 0ex (Ile=gel|*) 2o

92V (€?)] 2= = , 7.21
(€7)]e2=0 lime g f]RN |be|? da 2 lime_q|[e=4/2g,|? ( )

and we recall from (7.17) that
00 (1) lo=o _ d2—d) 2)

limez_q ||e=%/2g||2 N 16

By the first identity in (7.14) and the Gaussian integral (7.11), we compute from
(7.19)

1 27\ 4/
i L
6121m0 . |pe|? dx = 2 )q/2 < p > , (7.23)

which, combined with (7.20), gives

0 (fo [6d7dz) lo<y _q 4 [1_#]_1 & (7.21)
lime o [pn [@e|?dz — 2d+2 |2 16] ' '

Inserting (7.22) and (7.24) into (7.21) leads to

Do U()amg = 5 — 5= — o 16 2 16 16 1

which is the result stated in the lemma.
Thus, it remains to justify the claim (7.20). Using stationary phase arguments
one can show that, for any o > 0,

10e(z)| < Co(1+ |2)~¥?* forallz e RN, € >0
and
[Re(¢e0e2¢e(z))| < Co(1 4 |2]) "2 for allz € RY, € > 0.

(The crucial point here is the real part which leads to a cancellation. Without the real
part one can only obtain a similar bound with an additional factor of |z x|, which
is not good enough to prove differentiability.) These bounds imply by dominated
convergence that €2 — [y [¢c(2)|? dx is differentiable at any € > 0 and that

= —2 GO,z . .
O (/]RN ‘¢€’q d$> = Q/RN |¢e|q Re (¢eae ¢6) dx (7 25)
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Recalling (7.7), (7.15) and (7.16) we expand pointwise

]. N 7 1 2 .
_ iz’ n—3[n*(1+izy)
00) = Gy /R ¢ o

2

_c i’ -n—g[nl* (1+izy) oo 1y . 9
MCONE /Rde Sn* = gInl* (1 +iw)| dn+ o(e?)

1 1 d/2 e
fr— 2 1+'i;tN
2m)/2 \1+izn ¢

L@ [de-d | de? T L\ s
(2m)1 /2 [8(1 +izn)  4(1+izn)?  8(1+izy)3 ] \1+izy

+ o(€%).

Here we used the Gaussian integral formulas (7.11), (7.12) and (7.13). We obtain

1 1 d/2 _ (|m/|2 ;
2(1+iz
(27‘(’)1/2 14y ©

9 _ /|12 /14
SN LR RO T

’¢E’q72 Re (@862(%) |62=0 =

8(1+i$N) 4(1—|-i.1‘N)2 8(1+i$N)3

1 1 dq/4 el
— < 5 ) e 2(142%;)
(2m)9/2 \1+ 2%

[ d2—d)  dPA-a3) )0 - 3fﬂ?v)]

8(1 + z%) 4(1 4 2%;)? 8(1 + x%)3

Finally, we integrate this identity over z € R? and recall (7.25). We change
variables 2’ = (1 + 2%)'/?y, compute Gaussian integrals and use (7.14) to obtain

_ 22,2y
862 eqd e2=0 — d d 1 2y
(/RN““ “””) 0 <27r>q/2//Rxwl o dy (1 +wy) e

d2—d)  dyf1-a%) |yl*(—323)
X[ st 1 s N]

2t d/2 B
g (y) [
y [d(2—d) P(1—a%) d(d+2)(1—3a;§v)]

8 + 4q 8q?

_ L\ mad 1 &
~(2m)2 \ ¢ 2(d+2) [2 16]°

This proves (7.20). 0
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Appendix A : Refinement of a Perturbed Strichartz Inequality

In this appendix we show that the method from [TA09,KV13] can be used to prove the
refinement of the perturbed Strichartz inequality in Proposition 5.4. We actually prove it in
the setting of elliptic-type phases as defined in [TVV98], thus we do not restrict ourselves
to the case of the sphere with the function 7T'. Instead, let ® a smooth real function defined
on a neighborhood of the origin in RY, satisfying Hess ®(0) = Id. We consider the general
phase & — ®(€) instead of & — T(|€]?) = 1 — /1 — [£]2. We also recall that we denote the
dimension by d > 1 and that

g=2+4/d.

As we mentioned before, the main ingredient is a deep bilinear restriction estimate due
to Tao. To state this result we introduce the notation

Q~Q

for two dyadic cubes ), Q" € D to mean that they have the same side length and are not
adjacent (i.e., their closures do not intersect), but their parents are adjacent. In the sequel,
we use the shortcut notation for any v € L2(R%) and any (¢,z) € R x R4,

o(t,2) i= (7T ) (@),

where we recall that 1/;@ = ]leﬁ.

Theorem A.1. Let g—ﬂ <p< ‘%‘2. There are e > 0 and C > 0 such that for all ) € L*(R%)

with supp ) C {|¢] < €} and for all Q ~ Q" we have

1_d+2

eUallpy < ClRI 7 l[vellzllverllez- (A1)

This theorem follows by a rather standard parabolic rescaling argument from Tao’s sharp
bilinear estimates on the paraboloid [TA03] and from earlier bilinear estimates due to Tao—
Vargas—Vega [TVV98]. We present this derivation for the sake of completeness. We also

remark that the assumption p > 9433 is sharp, but that for our purpose the inequality with

d+1
any p satisfying p < dff would be sufficient.

Proof. Let Q = 0k+[0,0)% and Q' = 5k’ +[0,6)? with § € 2%, k, k' € Z4,0 < |k—K'| = O(1)
and 0k = O(e), 6k’ = O(e), 6 = O(e). The parabolic rescaling leads to

52U (t/8%,2/8) = (2) /2 / a0 Dy &) de,
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52 (1/6%,2/8) = (2m) 42 / eir TRy 0, () dE,
Rd
where
uq(€) = 82 (5(k + €))1Ljg,1)4(£),
uq(§) = 5d/21/;(5(k + )Lk —k0,1)2(£)-

As a consequence, we may write
19QUqrll,y = 6% | TuqTug iy,
where
Ty(t,x) = / eirETi RS g(¢) de,
0
Qo is some big cube independent of @ and @’ containing both [0,1)? and &' — k + [0,1)9,
and
D5u(€) = 62 [B(5(k +€)) — P(5k) — OV L(3k) - £].

By a Taylor formula and the fact that dk = O(e), 6 = O(e), all the smooth norms of
®5 1, are bounded uniformly in (J, k) on Qp. Furthermore,

Hess s, — Id = O(e),

also uniformly in (§, k) on Qg. We are thus in the setting the bilinear estimates of Tao [TA03]
(see the third remark at the end of the article), for elliptic-type compact surfaces as defined
in [TVV98, Sec. 2]. We deduce that if € > 0 is small enough, there exists C' > 0 independent
of @, Q' and g such that

d—dat2
WeUarlly < OO 7 |lugllr2 @y lluqrllLe ey
Undoing all the change of variables that we performed, we find that
g
luQllL2mayllug Iz ®ay = ¥l [[¥q Iz,
which implies the desired estimate. a

The next ingredient in the proof of Proposition 5.4 is the following improvement over
the triangle inequality.

LEMMA A.2. For € > 0 small enough, there is a C' > 0 such that for all ¢» € L*(RY) with
supp ) C {[¢] < e},
.
Yool <C Y ¥Vl (A.2)
t,x
Qe Lz @~

with ¢* := min{q/2, (¢/2)'}.
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Proof of Lemma A.2. We apply the result of Tao—Vargas—Vega [TVV98], or more precisely
the version of [KV13, Lem. A.9 & Proof of Prop. 4.24]. The space-time Fourier transform
Fio of oW satisfies

supp Fr2[YoWq ] C{(n+7n,2(1n) + (1)), n€ @, n' € Q'}.

We include this last set into a similar parallelepided as in [KV13, Proof of Prop. 4.24],
which is then enough to obtain orthogonality. Taylor expansions leads to the formula

n+n
®(0) + 20) =22 (5 ) + atn i)l - o',

P (”;”/) =0 (C(Q;m) + %V(I) (C(Q;Q/)) i+ = dQ+ Q)

+b(n+7'e(Q+ Q)+ —c(Q+ Q)P
where ¢(Q + Q') denotes the center of the cube @ + Q’, for two functions a and b satisfying

3/8 <a(n,n) <1/8, 3/16 <bn+7n',c(Q+Q")) <1/16,

assuming that € > 0 is small enough. We deduce that
supp Fi.[VqUq | C R(Q+Q'),

where

R = {m,w), peq, 0 o2 (") Zdivai(&/cff ) (1=e@1) _ ;}

Again by a Taylor formula, we have
21e@") — o < @ (5e(@)) ~ @ (n) - V@ (5e@) - 5@ ) < 1(@") P
1 ="z 2! 2 2 W=7 U
We deduce that for any (n,w) € R(Q"), we have

869 3 . 1\2 1 1 : 1\2
2242 <w-—-d(=n) < .
( ol + 2> (diam Q")* < w 2<I) U (diam Q")
This means that if two pairs of close cubes @ ~ @, Q ~ Q' are such that R(Q + Q') and
R(Q + Q') intersect, they must have a similar diameter. The same holds for the dilates
(14 a)R(Q + Q') for some small «, by the same argument. If the diameters are in a finite
number, the cubes are also in a finite number since their centers verify

Q") = e(Q")] < [e(Q") = nl +[e(Q") — n| < diam Q"

We are thus in the same situation as in [KV13, Proof of Prop. 4.24], and Lemma A.2
follows. ]

As a final ingredient in the proof of Proposition 5.4 we cite a bound of sums of local
norms over dyadic cubes in terms a global norm. For a simple proof we refer to [TA09, Proof
of Thm. A.1]; see also [BV07, Thm. 1.3] and [KV13, Proof of Prop. 4.24].



GAFA MAXIMIZERS FOR THE STEIN-TOMAS INEQUALITY 1131

LeEMMA A.3. Let d > 1 and 1 < p < v. Then there is a constant Cg,,, such that for all
fe LHRY),

1/v

Z QI #1171 < CapwllfllLemay-

QeD
After these preliminaries we are in position to give the

Proof of Proposition 5.4. We follow rather closely Tao’s arguments [TA09, Proof of Thm.
A.1]; see also [KV13, Proof of Prop. 4.24]. We observe that for any ¢, &' € RY there is a pair
of cubes Q,Q’ € D with Q ~ @’ such that £ € Q and ¢’ € Q. Consequently, if we let

U(t,x) = (e‘”é(_iv)z/)) (),

we find
V=Y Wl
Q~Q’
Therefore Lemma A.2 yields
1/q"
2 * -
191z, = 1920 = X Wo¥or||  <CYT{ > [¥el],:
Q~Q La/? Q~Q
t,x
1/q"
<OV sup [[WoUorllf,s | D I1WePerllyys (A.3)
Q~Q T Q~Q’ ’

for every r < g*. We will later choose r > 1. We now estimate ||[WoW¢||, /> in two different
t,x

ways. They both rely on the bilinear estimate from Theorem A.1. Since

1Yqllee < [[¥llcz,

the bilinear estimate (A.1) implies that for all % <p< % and all Q ~ @',

2p
q

1—2p
190l ,0m < (107 1We¥ally ) * (11 [20val,, )

’ 1/2 =% 1—1/2 =% 0
<, (1721l ) " (1172 1% ) " Il

This bound implies

2(1—-22)

2p 4p
sup [WQUo | ue < Crty ( sup Q|2 [Worl ol (A4
QNQ/ t,x Q”GD , x

On the other hand, one can also interpolate the bilinear estimate (A.1) with the trivial
estimate

WQPq s, < @m)~vellrllvelle:
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to obtain

2,7 h
1QWqr a2 < Civ QI+ [Vallug VeIl

for some 1 < s < 2 (whose value is not important here). This implies that

S 1%l <C 3[R F el lbarllz:] < S [IRFFIdal3;]
Q~Q’ ’ Q~Q Q~Q’
=S IQI el (A5)

Q

In the last equality we used the fact that the number of Q' € D satisfying Q' ~ Q is
finite and independent of Q. Finally, according to Lemma A.3 (with f = |12)|5, w=2/s and
v =2r/s;note 1 < u < vsince s < 2 and r > 1), the right side of (A.5) is bounded by a
constant times i) i% = ||¢||2L% Combining this with (A.3) and (A.4) completes the proof

of Proposition 5.4. O
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