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KÄHLER–EINSTEIN METRICS ALONG THE SMOOTH
CONTINUITY METHOD

Ved Datar and Gábor Székelyhidi

Abstract. We show that if a Fano manifold M is K-stable with respect to spe-
cial degenerations equivariant under a compact group of automorphisms, then M
admits a Kähler–Einstein metric. This is a strengthening of the solution of the Yau–
Tian–Donaldson conjecture for Fano manifolds by Chen–Donaldson–Sun (Int Math
Res Not (8):2119–2125, 2014), and can be used to obtain new examples of Kähler–
Einstein manifolds. We also give analogous results for twisted Kähler–Einstein met-
rics and Kahler–Ricci solitons.

1 Introduction

Let M be a Fano manifold of dimension n. A basic problem in Kähler geome-
try is whether M admits a Kähler–Einstein metric. The Yau–Tian–Donaldson con-
jecture [Yau93,Tia97,Don02], confirmed recently by Chen–Donaldson–Sun [CDS14,
CDS15a,CDS15b,CDS15c], says that M admits a Kähler–Einstein metric if and only
if it is K-stable. In general it seems to be intractable at present to check K-stability
since in principle one must study an infinite number of possible degenerations of M
to Q-Fano varieties. One goal of this paper is to study some situations with large
symmetry groups, where the problem reduces to checking a finite number of possi-
bilities. This can then be used to yield new examples of Kähler–Einstein manifolds.

Suppose then that a compact group G acts on M by holomorphic automor-
phisms. Our main theorem is the following equivariant version of the result of Chen–
Donaldson–Sun.

Theorem 1. Suppose that (M, K−1
M ) is K-stable, with respect to special degen-

erations that are G-equivariant. Then M admits a Kähler–Einstein metric.

Here a G-equivariant special degeneration is a special degeneration X → C in
the sense of Tian [Tia97], together with a holomorphic G action which commutes
with the C∗-action, preserves the fibers, and restricts to the given action of G on
the generic fibers Xt = M for t �= 0. We also obtain an analogous result for Kähler–
Ricci solitons, and their twisted versions; see Definition 9 for detailed definitions,
and Proposition 10 for the most general result.

An important special case is when G is a torus. In particular if M is a toric
manifold, and G = Tn is the n-torus, then Proposition 10 implies that we only need
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to check special degenerations of the form X = M × C to ensure the existence of a
Kähler–Einstein metric or Kähler–Ricci soliton on M . In particular this recovers the
result of Wang–Zhu [WZ04] showing that all toric Fano manifolds admit a Kähler–
Ricci soliton. In addition we can recover the result of Li [Li11] on the greatest lower
bound on the Ricci curvature of toric Fano manifolds.

A more interesting situation is when G = Tn−1, i.e. M is a complexity-one T -
variety. In this case it is possible, in concrete examples, to check all G-equivariant
special degenerations of M , and as a consequence we can obtain new examples of
threefolds with Kähler–Einstein metrics and Kähler–Ricci solitons. Work of Ilten–
Süss [IS] shows that we obtain five new Kähler–Einstein threefolds. To our knowledge
these are the first examples where K-stability is used to obtain new Kähler–Einstein
manifolds.

Our method of proof of Theorem 1 is to use the classical continuity path

Ric(ωt) = tωt + (1 − t)α (1)

for t ∈ [0, 1] proposed by Aubin [Aub84], and its analog for Kähler–Ricci solitons
studied by Tian–Zhu [TZ00], and to show that if we cannot find a solution for t = 1,
then there must be a G-equivariant destabilizing special degeneration. In particular
we obtain a new proof of the result of Chen–Donaldson–Sun [CDS15c], without using
metrics with conical singularities. At the same time our arguments are analogous to
those in [CDS15c], using also the adaptation of some of those ideas to the smooth
continuity method in [Sze16].

A key advantage of the smooth continuity path is that it allows one to work
in a G-equivariant setting. In contrast, in [CDS15c] one considers Kähler–Einstein
metrics singular along a smooth divisor D ⊂ M , and such a divisor can not be G-
invariant unless G is finite (see Song–Wang [SW, Theorem 2.1]). The disadvantage
of the smooth continuity path is that in effect one must consider pairs (V, χ) of a
variety V together with a possibly singular current χ, as opposed to pairs (V, D) of a
variety and a divisor. In [CDS15c] a destabilizing special degeneration is obtained by
applying the Luna slice theorem, and for this we must restrict ourselves to a suitable
finite dimensional variety rather than the infinite dimensional space of currents. For
this the basic idea is to approximate a current χ by a sum of currents of integration
along divisors.

A brief outline of the paper is as follows. In Section 2 we collect some basic def-
initions and results on twisted Kähler–Ricci solitons. The proof of the main result,
Proposition 10, will then be given in Section 3. We give some examples of the ap-
plications of our results to toric manifolds and other manifolds of large symmetry
group in Section 4. In Section 5 we discuss how to adapt the methods of [Sze16] and
[PSS] to obtain the partial C0-estimates along the continuity method for solitons. A
crucial point is the reductivity of the automorphism group of the limiting variety.
This essentially follows from the work of Berndtsson [Ber15] as used in [CDS15c],
but since we did not find the exact statement that we need in the literature, we give
a brief exposition in Section 6.
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2 Twisted Kähler–Ricci Solitons

Suppose that W is a Q-Fano variety, with log terminal singularities. In particular a
power Kr

W0
of the canonical bundle on the regular set W0 extends as a line bundle

on W . We say that a metric h on K−1
W0

is continuous on W , if the induced metric on
K−r

W0
extends to a continuous metric on K−r

W . Fixing an open cover {Ui} and local
trivializing holomorphic sections σi of K−r

V |Ui∩W0 , we will write

|σi|2hr = e−rφi , (2)

for continuous functions φi on Ui. We will write the metric h simply as e−φ following
the notation in Berndtsson [Ber15]. In particular e−φ defines a volume form on W0,
given in a local chart Ui by

e−φ = |σi|2/r
hr (σi ∧ σi)−1/r. (3)

The log terminal condition says that this volume form has finite volume. We write
ωφ for the curvature current of the metric e−φ on W0, so in our local charts ωφ =√−1∂∂φi. Since the potentials φi are locally bounded, by Bedford–Taylor [BT76]
we can form the wedge product ωn

φ , which defines a measure on W0, and also on
W extending it trivially. The metric hφ is a weak Kähler–Einstein metric if ωφ is a
Kähler current, and we have

e−φ = ωn
φ . (4)

Berman and Witt-Nyström [BN] have studied the analogous notion of weak
Kähler–Ricci solitons. Suppose that v is a holomorphic vector field on W0, whose
imaginary part generates the action of a torus T on W (see Berman–Boucksom–
Eyssidieux–Guedj–Zeriahi [BBEGZ, Lemma 5.2] to see that one obtains an action
on W ). A Kähler–Ricci soliton on (W, v) is a T invariant continuous metric e−φ,
smooth on W0 with positive curvature current ωφ satisfying

e−φ = eθvωn
φ . (5)

Here eθvωn
φ is a measure defined in [BN] for general φ. If φ is smooth, then θv is

simply a Hamiltonian function for the vector field v, satisfying

Lvωφ =
√−1∂∂θv, (6)

with the normalization ∫
W0

eθvωn
φ =

∫
W0

ωn
φ = V. (7)

In particular θv depends on φ. For continuous metrics hφ (or more general metrics
with positive curvature current), the measure constructed in [BN] still satisfies the
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normalization (7). In addition by [BN, Corollary 2.9] we have some fixed constant
C (depending only on M, v), such that

C−1ωn
φ ≤ eθvωn

φ ≤ Cωn
φ . (8)

We now use this to define the twisted analogs of Kähler–Ricci solitons, which arise
naturally along the continuity method. Suppose that e−ψ is another metric on K−1

W0

which in our local charts is given by plurisubharmonic functions ψi ∈ L1
loc(Ui ∩W0).

Definition 2. For t ∈ (0, 1) we say that the pair (W, (1 − t)ψ) is klt, if in each
chart Ui ∩ W0 the function e−ψi is integrable, with respect to the volume form
(σi ∧ σi)−1/r. We will on occasion write (W, (1 − t)ωψ) for the pair, where as before
ωψ is the curvature of e−ψ.

Equivalently we can think of e−tφ−(1−t)ψ as a volume form on W0 with e−φ being
a continuous metric as above. The klt condition is then∫

W0

e−tφ−(1−t)ψ < ∞. (9)

Definition 3. A twisted Kähler–Ricci soliton on the triple (W, (1 − t)ψ, v), where
v is a holomorphic vector field as above, is a continuous metric e−φ such that

e−tφ−(1−t)ψ = eθvωn
φ . (10)

This equation is interpreted as an equality of measures on W0, and in particular e−φ

here need not be smooth on W0, so eθvωn
φ is the measure defined by Berman–Witt–

Nyström [BN]. Note that the existence of such a metric implies that (W, (1− t)ψ) is
klt. When t = 1 or v = 0, we will simply omit the corresponding term in the triple.
So we can talk about a Kähler–Einstein metric on W, a twisted Kähler–Einstein
metric on (W, (1 − t)ψ), or a Kähler–Ricci soliton on (W, v).

Remark 4. If W, φ, ψ are smooth, then the twisted Kähler–Ricci soliton equation
is equivalent (up to adding a constant to φ) to

Ric(ωφ) − Lvωφ = tωφ + (1 − t)ωψ, (11)

which is the natural continuity path for finding Kähler–Ricci solitons, used by Tian–
Zhu [TZ00] for instance.

Even when W is normal and φ is only continuous, it is useful to have an equation
for twisted Kähler–Ricci solitons in the form (11). For this the extra condition needed
is that the measure eθvωn

φ defines a singular metric e−τ on KW , with τ ∈ L1
loc. Then

φ defines a twisted Kähler–Ricci soliton on (W, (1 − t)ψ, v) if

ωτ = tωφ + (1 − t)ωψ, (12)

where ωτ is the curvature of e−τ . Note that by an argument similar to Berman–
Boucksom–Eyssidieux–Guedj–Zeriahi [BBEGZ, Proposition 3.8], if e−τ is only de-
fined outside a closed subset S ⊂ W with (2n − 2)-dimensional Hausdorff measure
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Λ2n−2(S) = 0, and Equation (11) holds on W \S, then e−φ is a twisted Kähler–Ricci
soliton. Indeed in this case e−τ extends as a singular metric with positive curvature
current over all of W (see Harvey–Polking [HP, Theorem 1.2], Demailly [Dem85]),
and then (12) implies that up to modifying ψ by a constant, we must have

eθvωn
φ = e−τ = e−tφ−(1−t)ψ, (13)

since (12) implies that f = τ −tφ−(1−t)ψ is a global L1 function with
√−1∂∂f = 0

on W .

We need the following result, generalizing the classical results of Bando–Mabuchi
[BM85] and Matsushima [Mat57], which are essentially contained in Berndtsson
[Ber15], Boucksom–Berman–Eyssidieux–Guedj–Zeriahi [BBEGZ], Berman–Witt–
Nyström [BN] and Chen–Donaldson–Sun [CDS15c] (see also Yi [Yi]). We will give
an outline proof in Section 6.

Proposition 5. Suppose that e−φ0 , e−φ1 are two twisted Kähler–Ricci solitons on
(W, (1 − t)ψ, v). Then there exists a holomorphic vector field w on W, commuting
with v and satisfying ιwωψ = 0, such that the biholomorphisms Ft : W → W induced
by w satisfy F ∗

1 (ωφ1) = ωφ0 . In addition LIm wωφ = 0.

Definition 6. For any triple (W, (1 − t)ψ, v) we define the Lie algebra

gW,ψ,v = {w ∈ H0(TW ) : ιwωψ = 0 and [v, w] = 0}. (14)

As before, we may omit ψ or v from the notation if t = 1 or v = 0. In particular
gW = H0(TW ). We will also write gW,β = gW,ψ if β = ωψ is the curvature of e−ψ.
Using a projective embedding into PN , we can realize gW,ψ,v as a subalgebra of
sl(N + 1,C).

Note that for example gW,ψ is trivial if ωψ is strictly positive and t < 1. In fact
Berndtsson [Ber15, Proposition 8.2] implies that if e−ψ is integrable, then gW,ψ is
trivial. In our application, when (W, (1 − t)ψ) is klt, e−(1−t)ψ will be integrable, but
e−ψ will typically not be.

Note also that the Lie group with Lie algebra gW,ψ will usually be strictly smaller
than the identity component of the group of biholomorphisms of W preserving ωψ.
The difference comes from the fact that if v is a real vector field then Lvωψ = 0
does not imply LJvωψ = 0 for the complex structure J , whereas our Lie algebra
above is automatically closed under multiplication by

√−1. On the other hand
when ωψ = [D] is the current of integration along a divisor, then gW,ψ coincides
with the vector fields on W parallel to D. Indeed ιv[D] = 0 is equivalent to v being
parallel to D along the smooth part of D.

The following theorem generalizes [CDS15c, Theorem 6], which in turn is a gener-
alization of Matsushima’s theorem [Mat57] on the reductivity of the automorphism
group of a Kähler–Einstein manifold. We will give the proof in Section 6.
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Proposition 7. Suppose that (W, (1 − t)ψ, v) admits a twisted Kähler–Einstein
metric e−φ. Then gW,ψ,v is reductive. In addition if G is a group of biholomorphisms
of W, fixing ωφ and v, then the centralizer (gW,ψ,v)G is also reductive.

We finally recall some properties of the “twisted” Futaki invariant, generalizing
the log-Futaki invariant in [CDS15c] and the modified Futaki invariant of Tian–
Zhu [TZ00]. We will say that a metric e−φ is smooth on W if it is the restriction
of a smooth metric under a projective embedding of W . This is, in particular, a
stronger condition than just requiring e−φ to be smooth on W0. In practice we will
simply take the restriction of a suitable scaling of the Fubini–Study metric. For such
a smooth metric e−φ on W we define

Fut(1−t)ψ,v(W, w) = Futv(W, w) − 1 − t

V

[∫
W

θw(eθv − 1) ωn
φ

+ n

∫
W

θw(ωψ − ωφ) ∧ ωn−1
φ

]
, (15)

where Futv(W, w) is Tian–Zhu’s modified Futaki invariant, which we write in the
form

Futv(W, w) =
1
V

∫
W

θweθv ωn
φ −

∫
W θwe−φ∫

W e−φ
. (16)

This is shown to be equivalent to Tian–Zhu’s definition in terms of the Ricci poten-
tial, by He [He] (see Ding–Tian [DT, Section 1] for properties of the Ricci potential
for metrics of the form ωφ on singular varieties). One can check by direct calculation
that our definition of the twisted Futaki invariant is independent of the choice of
smooth metric e−φ, remembering that ιwωψ = 0.

We will on occasion write Fut(1−t)ωψ,v instead of Fut(1−t)ψ,v, when the curvature
of e−ψ is more natural. We will need the following:

Proposition 8. If (W, (1 − t)ψ, v) admits a twisted Kähler–Ricci soliton, then

Fut(1−t)ψ,v(W, w) = 0 (17)

for all w ∈ gW,ψ,v.

If W were smooth, and the twisted Kähler–Ricci soliton had smooth potential,
then this would follow directly from the definitions. In general we obtain the result
by relating the twisted Futaki invariant to the twisted Ding functional, and using
that the twisted Ding functional is bounded below if there exists a twisted KR-
soliton. This is analogous to an argument in [CDS15c], and the proof will be given
in Section 6.

Twisted stability. Suppose now that M is a smooth Fano manifold, with a holomor-
phic vector field v such that Im v generates a torus T . Suppose that G is a compact
group of automorphisms of M , containing T . We embed M ⊂ PN using G-invariant
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sections of K−m
M for some m. Let α = 1

mωFS |M , which we can write as the curva-
ture of a smooth metric e−ψα on K−1

M in the notation above. This metric will then
be G-invariant. It was shown by Dervan [Der] that twisted K-stability is a neces-
sary condition for the existence of a twisted KE metric on (M, (1 − t)α), while a
corresponding stability notion for Kähler–Ricci solitons was developed by Berman–
Witt–Nyström [BN]. We can combine these ideas to obtain a stability notion for
twisted Kähler–Ricci solitons as follows.

The vector field v on M is the restriction of a holomorphic vector field on PN ,
which we will also denote by v. The imaginary part Im v corresponds to a matrix in
u(N + 1), with eigenvalues μi, so that v has Hamiltonian function

θv =
∑

i μi|Zi|2∑
i |Zi|2 (18)

for suitable homogeneous coordinates Zi. We assume that θv is normalized as before
(i.e. eθv has average 1 on M).

Under our embedding the group G above can be thought of as a subgroup of
U(N + 1). Suppose that we have a C∗-action λ ⊂ GL(N + 1,C)G, generated by a
vector field w on PN , where GL(N + 1,C)G denotes the centralizer of G. Suppose
that the central fiber W = limt→0 λ(t) ·M is a Q-Fano variety. We can also take the
limit

β = lim
t→0

λ(t) · α, (19)

which is a closed positive current on W . The C∗-action λ defines a special degenera-
tion (in the terminology of Tian [Tia97]), and its twisted Futaki invariant is defined
to be

Fut(1−t)α,v(M, w) = Fut(1−t)β,v(W, w), (20)

again omitting α, β or v if t = 1 or v = 0. Here we are using the metric 1
mωFS

restricted to W for defining the twisted Futaki invariant.

Definition 9. We say that the triple (M, (1−t)α, v) is K-semistable (with respect to
G-equivariant special degenerations), if Fut(1−t)α,v(M, w) ≥ 0 for all w as above. The
triple is K-stable if in addition equality holds only when (W, (1−t)β) is biholomorphic
to (M, (1 − t)α), i.e. the pairs are in the same GLG-orbit.

The terminology more consistent with existing literature would be “twisted mod-
ified K-polystable”, but we hope no confusion is caused by simply using the ter-
minology “K-stable”. Dervan [Der] showed that if (M, (1 − t)α) admits a twisted
Kähler–Einstein metric then it is K-stable, while Berman–Witt–Nyström showed
that if (M, v) admits a Kähler–Ricci soliton, then it is K-stable in the sense of the
above definition. We expect that one can combine the arguments to show that if the
triple (M, (1− t)α, v) admits a twisted Kähler–Ricci soliton, then it is K-stable, but
we will not pursue that here. Our main result is a result in the converse direction,
the proof of which will be given in Section 3.
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Proposition 10. If (M, (1 − s)α, v) is K-semistable for all G-equivariant special
degenerations, then (M, (1 − t)α, v) admits a twisted Kähler–Ricci soliton for all
t < s. In addition if (M, v) is K-stable, then (M, v) admits a Kähler–Ricci soliton.

Note that we also expect that if (M, (1− t)α, v) is K-stable, then (M, (1− t)α, v)
admits a twisted Kähler–Ricci soliton, however this does not quite follow from our
arguments.

A key ingredient in our arguments is a comparison of the twisted and untwisted
Futaki invariants and from (15) it follows that

Fut(1−t)α,v(M, w) = Futv(M, w)

−1 − t

V

[∫
W

θw(eθv − 1) ωn
φ + n

∫
W

θw(β − ωφ) ∧ ωn−1
φ

]
. (21)

Recall here that (W, β) is the limit of the pair (M, α) under the C∗-action generated
by w. The following result builds on work in [LS] and Dervan [Der].

Proposition 11. Using the same setup as above, we have the formula

1
V

∫
W

θw

[
(n + 1)ωφ − nβ

]
∧ ωn−1

φ = max
W

θw. (22)

Here ωφ is the restriction of 1
mωFS to W, and θw is the corresponding Hamiltonian

function for w.

We will give the proof below, after Lemma 12. For now note that as a consequence
we have

Fut(1−t)α,v(M, w) = Futv(M, w) +
1 − t

V

∫
W

(max
W

θw − θw)eθv ωn
φ . (23)

In particular the difference is always positive, and is equal to zero only if θw is
constant on W , i.e. if we had a trivial degeneration. Note also that the right hand
side is independent of the choice of metric α on M , however as discussed in [Sze13]
(and can be seen from the proof below), if one replaces α by the current of integration
along a divisor, leading to the notion of log K-stability used in [CDS15c], the twisted
Futaki invariant might drop for special divisors.

For the proof of Proposition 11, and also for later use we will need to represent
α as an integral of currents of integration along divisors on M . The formula (22)
is invariant under scaling ωφ and ωψ, and so to simplify notation we will assume
that the cohomology classes [α], [ωφ] coincide with the classes of the hyperplane
divisors M ∩ H, W ∩ H. In particular we then have V = 1. We will also normalize
the Fubini–Study metric ωFS on PN to represent the same cohomology class as [H].

Let us write PN∗ for the dual projective space of hyperplanes. Since α is the
restriction of ωFS to M , we have (see e.g. Shiffman–Zelditch [SZ99])

α =
∫
PN∗

[M ∩ H] dμ(H), (24)
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where dμ is simply the Fubini–Study volume form, scaled to have volume 1. It follows
that the limit β = limt→0 λ(t)∗α is given by

β =
∫
PN∗

[W ∩ H0] dμ(H), (25)

where for each hyperplane H we wrote

H0 = lim
t→0

λ(t) · H. (26)

In this formula for the limit β it is important that W is not contained in a hyperplane,
otherwise we would not necessarily have the relation

lim
t→0

λ(t) · (M ∩ H) =
(
lim
t→0

λ(t) · M
)

∩
(
lim
t→0

λ(t) · H
)

, (27)

used above. It follows that∫
W

θwβ ∧ ωn−1
FS =

∫
PN∗

∫
W∩H0

θw ωn−1
FS dμ(H). (28)

A key point is that there is a subspace Pw ⊂ PN∗
, depending on w, such that for

all H �∈ Pw the integral ∫
W∩H0

θw ωn−1
FS (29)

has the same value. The following lemma gives a formula for this integral, and in
particular shows this independence. This formula is essentially contained in [LS,
proof of Theorem 12], and was made more explicit by Dervan [Der].

Lemma 12. Let us normalize the Fubini–Study metric so that [ωFS ] = [H] in
H2(PN ). Then there is a subspace Pw ⊂ PN∗

such that for H �∈ Pw we have∫
W∩H0

θw ωn−1
FS =

1
n

∫
W

[
(n + 1)θw − max

W
θw

]
ωn

FS . (30)

Proof. Let us write R =
⊕

Rk for the graded coordinate ring of W . In suitable
homogeneous coordinates the function θw on PN is given by

θw(Z) =
∑

i μi|Zi|2∑
i |Zi|2 , (31)

where the μi are the weights of the C∗-action λ(t) induced by θw, on the linear
functions R1. For a generic hyperplane H, the limit H0 = limt→0 λ(t)·H has equation
Zmax = 0, where μmax is the largest weight (if there are several equal largest weights,
then Zmax can denote any of the corresponding coordinates). Indeed this is the case
for all hyperplanes not passing through the set where θw achieves its maximum. This
can be seen from the fact that the effect of acting by λ(t) as t → 0 is the same as
flowing along the negative gradient flow of θw.
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Denoting by S =
⊕

Sk the graded coordinate ring of W ∩ H0, we have S =
R/ZmaxR, i.e. Sk = Rk/ZmaxRk−1. Let us write wk for the total weight of the
action λ on Rk, and w′

k for the weight of the action on Sk. From the equivariant
Riemann–Roch theorem we have

dim Rk = kn

∫
W

ωn
FS

n!
+ O(kn−1), (32)

and

wk = kn+1

∫
W

θw
ωn

FS

n!
+ ckn + O(kn−1) (33)

for some constant c. Similarly

w′
k = kn

∫
W∩H0

θw
ωn−1

FS

(n − 1)!
+ O(kn−1). (34)

From the description Sk = Rk/ZmaxRk−1 we get

w′
k = wk − wk−1 − μmax dim Rk−1

= (n + 1)kn

∫
W

θw
ωn

FS

n!
− μmaxkn

∫
W

ωn
FS

n!
. (35)

Combining this with (34) we get

∫
W∩H0

θw ωn−1
FS =

1
n

∫
W

[
(n + 1)θw − μmax

]
ωn

FS . (36)

The fact that W is invariant under the action of λ(t) and not contained in a hyper-
plane implies that maxW u = μmax = maxPN u. �


Proposition 11 follows from this lemma together with the formula (28). Indeed,
the lemma together with (28) implies that

∫
W

θw β ∧ ωn−1
FS =

1
n

∫
W

[
(n + 1)θw − max

W
θw

]
ωn

FS , (37)

since the set of hyperplanes in Pw has measure zero. At the same time, the metric
ωφ in (22) is taken to be 1

mωFS . We then need to scale θw by the same factor as
well, and possibly add a constant to have the correct normalization. Equation (37)
remains valid after these scalings, and Proposition 11 follows directly from this.
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3 Proof of the Main Result

In this section we give the proof of our main result, Proposition 10. The setup is
that we have a smooth Fano manifold M with the holomorphic action of a compact
group G. We have a G-invariant Kähler metric α ∈ c1(M), and for simplicity we
assume that α is the restriction of 1

mωFS to M , under an embedding M ⊂ PNm

using a basis of sections of K−m
M , for some m > 0. We are also given a vector field

v on M , invariant under the action of G. In order to find a Kähler–Ricci soliton on
(M, v) we try to solve the equations

Ric(ωt) − Lvωt = tωt + (1 − t)α, (38)

for t ∈ [0, 1]. From Zhu [Zhu00] we know that there is a solution for t = 0 and by
Tian–Zhu [TZ00] the possible values of t form an open set. We therefore have a
solution for t ∈ [0, T ) and we need to understand the limit of a sequence of solutions
as t → T .

3.1 The case T < 1. We first focus on the case T < 1, and we assume that the
triple (M, (1 − s)ψα, v) is K-stable with respect to G-equivariant special degenera-
tions, for some s ∈ (T, 1], We show that in this case the continuity method cannot
blow up at time T , i.e. we can solve our equation for t = T as well. The strategy is
the same as that in [CDS15c].

We first show that along a sequence tk → T , the Gromov–Hausdorff limit of
(M, ωtk

) has the structure of a Q-Fano variety W , together with a metric ψ on
KW , and a vector field v such that the triple (W, (1 − T )ψ, v) admits a twisted
Kähler–Ricci soliton. We then need to show that W is the central fiber of a special
degeneration for M . One difficulty, when comparing this to the analogous result in
[CDS15c], is that we are not able to show that the pair (W, (1 − T )ψ) is the central
fiber of a special degeneration for (M, (1 − T )ψα) since we are not able to use the
Luna slice theorem on the infinite dimensional space of pairs consisting of a variety
and a positive current. Instead we use an argument approximating α with a convex
combination of hyperplane sections.

The key ingredient to understanding the Gromov–Hausdorff limit of a sequence
(M, ωtk

) is the partial C0-estimate, first introduced by Tian [Tia90]. This was estab-
lished in [Sze16] in the case when v = 0, using the method in Chen–Donaldson–Sun
[CDS15b], and it was shown by Phong–Song–Sturm [PSS] for Kähler–Ricci solitons
(i.e. v is non-zero, but t = 1), generalizing the work of Donaldson–Sun [DS14]. A
modest combination and generalization of these ideas gives the analogous result
for the equation (38), and we will give a brief outline of the necessary changes in
Section 5.

For each t, the metric ωt introduces Hermitian inner products on H0(K−m
M ) for

all m > 0, moreover these inner products are G-invariant (by the uniqueness of
solutions to (38) for t < 1). The partial C0-estimate says that we can find a uniform
m, and κ > 0, independent of t, such that an orthonormal basis {s0, . . . , sNm

} of
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H0(K−m
M ) satisfies

κ <

Nm∑
i=0

|si|2(x) < κ−1 (39)

for all x ∈ M . Let us write N = Nm for this choice of m from now.
Let us now write Vt = H0(K−m

M ) for the unitary G-representation, with metric
induced by ωt. Note that Vt are equivalent G-representations, and hence they are
unitarily equivalent as well. It follows that we have G-equivariant unitary maps ft :
V0 → Vt. In other words if we pick an orthonormal basis {s0, . . . , sN} for H0(K−m

M )
with respect to the metric ω0, then for all t > 0 we can find an orthonormal basis
{s

(t)
0 , . . . , s

(t)
N } with respect to ωt, by applying the map ft. Using these bases, we

have embeddings Ft : M → PN , such that for s �= t we have Fs = ρ ◦ Ft with
ρ ∈ GL(N +1)G, i.e. ρ commutes with G. In particular the vector field (Ft)∗v along
the image Ft(M) is induced by a fixed holomorphic vector field v on PN , since v is
G-invariant.

We can choose a subsequence tk → T , such that Ftk
(M) converges to a limit

W ⊂ PN , and as shown in Donaldson–Sun [DS14], the partial C0-estimate implies,
up to replacing m by a multiple, that W is a normal Q-Fano variety, homeomorphic
to the Gromov–Hausdorff limit Z of the sequence (M, ωtk

). Moreover the maps
Ftk

: M → PN converge to a Lipschitz map FT : Z → PN under this Gromov–
Hausdorff convergence, such that FT : Z → W is a homeomorphism. Note that by
choosing a further subsequence we can assume that the currents (Ftk

)∗α converge
weakly to a current β, which is necessarily supported on W and is invariant under
the action of Im v. Let us write β as the curvature ωψ of a singular metric e−ψ on
K−1

W . We can similarly define a weak limit ωT of the metrics (Ftk
)∗(ωtk

), which is
also supported on W . Note that if we write

ωtk
=

1
m

(Ftk
)∗ωFS +

√−1∂∂φk, (40)

then the partial C0-estimate implies that we have bounds |φk|, |∇φk|ωtk
< C. This

in particular implies that the φk converge to a Lipschitz function φT on (Z, dZ), and
since Z is homeomorphic to W , this means that φT is continuous on W (using the
topology induced from PN ). This implies that ωT is the curvature of a continuous
metric e−φT on K−1

W (recall that we might need to take a power K−m
W here). We

need the following.

Proposition 13. The triple (W, (1−T )ψ, v) admits a twisted Kähler–Ricci soliton,
and in particular (W, (1−T )ψ) has klt singularities. In fact the twisted Kähler–Ricci
soliton is given by the metric e−φT .

Proof. Let us decompose the Gromov–Hausdorff limit as Z = R ∪ D ∪ S2. Here R
is the regular set, and D is the set of points which admit a tangent cone of the form
Cn−1 × Cγ , where Cγ is the standard cone with cone angle 2πγ. See Section 5 for
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more details. From the results of Cheeger–Colding [CC97] and Cheeger–Colding-
Tian [CCT02] we know that S2 is a set of Hausdorff dimension at most 2n−4. Since
FT is Lipschitz, we know that FT (S2) is also a set with Hausdorff dimension at most
2n−4. Let us write W ′ = W0 \FT (S2), where as before W0 is the regular part of the
algebraic variety W . We will construct the twisted Kähler–Ricci soliton on an open
set U containing W ′. Note that W \ U is then a closed set of Hausdorff dimension
at most 2n − 4. As explained in Remark 4, it is enough to show that the measure
eθvωn

T corresponding to the metric e−φT defines a singular metric e−τ on KU with
τ ∈ L1

loc such that its curvature satisfies

ωτ = TωT + (1 − T )ψ. (41)

To simplify notation we will identify Z with W , and so on W in addition to the
metric ωFS induced by the Fubini–Study metric we have the metric dZ inducing the
same topology. For simplicity let us also write dk for the metric on M induced by ωtk

,
and Mk for the metric space (M, dk). Thus we have Mk → (W, dZ) in the Gromov–
Hausdorff sense. The maps Fk : Mk → PN are compatible with the convergence in
the sense that if pk → p with pk ∈ Mk and p ∈ W , then Fk(pk) → p in PN .

For each p ∈ W ′ we will obtain the required property of the measure eθvωn
T on an

open neighborhood of p. If p ∈ W ′, then either p ∈ R or p ∈ D. We will only deal with
the case p ∈ D since the other case is easier. We can write p = lim pk for pk ∈ Mk,
such that for a sufficiently small r > 0 the balls Bdk

(pk, r), scaled to unit size are
very close in the Gromov–Hausdorff sense to the unit ball in a cone Cn−1 ×Cγ , for
large k. As discussed in [Sze16], based on the ideas in [CDS15b], this implies that
we have biholomorphisms Hk : Ωk → B2n, where Ωk ⊂ Mk contain a ball around pk

of a fixed size, such that the metric ω̃k = r−2ωtk
on B2n is well approximated by the

standard conical metric on B2n. More precisely, we have coordinates (u, v1, . . . , vn−1)
such that if we write

ηγ =
√−1

du ∧ dū

|u|2−2γ
+

√−1
n−1∑
i=1

dvi ∧ dv̄i, (42)

then for some fixed constant C (independent of k)

1. ω̃k =
√−1∂∂φk with 0 ≤ φk ≤ C, |r2vk(φk)| < C, where vk is the soliton

vector field in this chart.
2. ωEuc < Cω̃k,
3. Given any δ > 0 and compact set K away from {u = 0}, we can assume (by

taking r above smaller and k larger if necessary), that |ω̃k − ηγ |C1,α < δ on K.

We will also write αk for the form α in this chart.
It is shown in [CDS15c, Proposition 22] that the biholomorphisms Hk : Ωk → B2n

converge to a homeomorphism H∞ : Ω∞ → B2n. In addition Ω∞ necessarily contains
a ball BdZ

(p, ε) ⊂ W for some small ε > 0, since all the sets Ωk contain balls of a
uniform size around pk. It follows that Ω∞ also contains a ball B around p in
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the topology on W induced from PN , and so H∞ defines a holomorphic chart on
W in a neighborhood of p. These charts can be used to define holomorphic maps
ftk

: B → Ftk
(M), biholomorphic onto their image, such that the ftk

converge to
the identity map as k → ∞. In this formulation β is given as the weak limit of
f∗

tk
(Ftk

)∗α, which in terms of our charts amounts to saying that β is the weak limit
of the forms αk. In the same vein ωT is the weak limit of ωtk

= r2ω̃k.
The metrics ω̃k satisfy the equations

er2vk(φk)(
√−1∂∂φk)n = e−r2tkφk−(1−tk)ψkωn

Euc, (43)

for suitable local potentials ψk of the forms αk restricted to this chart. Note that
r2vk(φk) is a Hamiltonian for vk with respect to ωtk

. The bound ωEuc < C
√−1∂∂φk

together with |φk|, |r2vk(φk)| < C and (43) implies an upper bound for ψk (note
that tk is bounded away from 1). In addition since we control ω̃k on compact sets
away from {u = 0}, on any such set we have a lower bound for ψk as well. It
follows that up to choosing a further subsequence, we have ψk → ψ∞ in L1

loc, for
some plurisubharmonic ψ∞, and then necessarily β =

√−1∂∂ψ∞. In addition we
can assume that r2tkφk converge uniformly to Tφ∞ for a continuous φ∞ such that
ωT =

√−1∂∂φ∞. It follows that

− r2vk(φk) − log
(
√−1∂∂φk)n

ωn
Euc

= r2tkφk + (1 − tk)ψk (44)

are plurisubharmonic functions converging in L1
loc. The bound on v(φk) implies then

that the limit ωn
T gives a singular metric on KB2n with locally integrable potential,

and therefore by (8), we have that eθvωn
T also defines such a singular metric e−τ . The

convergence above then shows that (41) holds, which is what we wanted to show.�

One important conclusion that we need to draw from this is that according to

Proposition 7 the Lie algebra gW,β,v is reductive. In addition the twisted Futaki
invariant vanishes, Fut(1−T )β,v(W, w) = 0, for any w ∈ gW,β,v.

Let us now identify M with its image F0(M) ⊂ PN , and write α = (F0)∗α. From
the above discussion, for each k, we have Ftk

(M) = ρk(M) for some ρk ∈ GLG, and
ρk(M) → W , ρk(α) → β. As before, we can write

α =
∫
PN∗

[M ∩ H] dμ(H), (45)

since α is a scaling of the restriction of the Fubini–Study metric. Note that

ρk(α) =
∫
PN∗

[ρk(M) ∩ ρk(H)] dμ(H), (46)

and the following lemma implies that we can choose a subsequence of the ρk, such
that the limit

ρ∞(H) = lim
k→∞

ρk(H) (47)
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exists for all H ∈ PN∗
. Note that we write ρ∞(H) just as a notation, rather than

suggesting that an automorphism ρ∞ of PN exists.

Lemma 14. Up to choosing a subsequence, we can assume that ρk(H) converges for
all H ∈ PN∗

.

Proof. Write PN∗
= P(V ) for an N + 1-dimensional vector space V . Thinking of

the ρk as matrices, let us scale each of them in such a way that all entries are in
{z : |z| ≤ 1}, and at least one entry equals 1. We can choose a subsequence such
that as matrices, we have

lim
k

ρk = ρ, (48)

where ρ is not necessarily invertible. Let W1 = Ker ρ. For any x ∈ P(V ) \P(W1) we
can then take the limit

lim
k

ρk(x) = ρ(x). (49)

Now let us restrict the ρk to W1, thinking of them as linear maps ρk : W1 → V .
Once again, taking matrix representatives, we can normalize each to have entries in
the unit disk, with at least one entry equal to 1. Just as above, up to choosing a
further subsequence, we will have a limiting, nonzero linear map ρ : W1 → V with
kernel W2 ⊂ W1. For x ∈ P(W1) \ P(W2) the limit will exist as above.

Repeating this process a finite number of times we will have a subsequence ρk

such that ρk(x) converges for all x ∈ P(V ). �


It follows that we have

β =
∫
PN∗

[W ∩ ρ∞(H)] dμ(H), (50)

where as before it is important to note that W is irreducible and not contained in a
hyperplane.

In the spirit of Definition 6, for any current τ on PN , let us denote by gW,τ ⊂
sl(N + 1,C) the space of those holomorphic vector fields v, which are tangent to
W and satisfy ιvτ = 0. If τ = [S], the current of integration along a subvariety S,
we will write gS = g[S]. Note that in this case gS is simply the Lie algebra of the
stabilizer of S in SL(N + 1,C).

Lemma 15. We can find H1, . . . , Hd for some d such that

gW,β = gW ∩
d⋂

i=1

g[W∩ρ∞(Hi)]. (51)
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Proof. Suppose that v is a holomorphic vector field, which does not vanish along
W , and let ξ = ιv̄ω

n
FS . This is an (n, n − 1)-form such that ιvξ is a non-negative

(n − 1, n − 1)-form. If A ⊂ TpPN is a complex (n − 1)-dimensional subspace, then
ιvξ vanishes on A only if v ∈ A.

If ιvβ = 0, then we have∫
H∈P∗

∫
W∩ρ∞(H)

ιvξ dμ = 0, (52)

and so for almost every H we must have∫
W∩ρ∞(H)

ιvξ = 0. (53)

In particular, for almost every H we must have v ∈ A for all tangent planes
A = Tp(W ∩ ρ∞(H)) at all smooth points p ∈ W ∩ ρ∞(H). It follows that ιv[W ∩
ρ∞(H)] = 0, i.e.

gβ ⊂ g[W∩ρ∞(H)]. (54)

If we choose one such H, say H1, it may happen that g[W∩ρ∞(H1)] is too large,
i.e. there is a w ∈ g[W∩ρ∞(H1)] such that ιwβ �= 0. But we have

ιwβ =
∫

H∈P∗
ιw[W ∩ ρ∞(H)] dμ, (55)

so we must have a positive measure set of H for which ιw[W ∩ ρ∞(H)] �= 0. We can
thus choose an H2, so that we still have

gβ ⊂ g[W∩ρ∞(H1)], (56)

but g[W∩ρ∞(H1)] ∩ g[W∩ρ∞(H2)] is strictly smaller than g[W∩ρ∞(H1)]. Repeating this a
finite number of times, we obtain the required result. �


It follows from this result that we can choose H ′
1, . . . , H

′
l for some l such that the

Lie algebra of the stabilizer of the (l + 1)-tuple (W, W ∩ ρ∞(H ′
1), . . . , W ∩ ρ∞(H ′

l))
in GLG, for the action on a product of Hilbert schemes, is equal to the G-invariant
part of gW,β , and so according to Proposition 7 it is reductive. Using a result similar
to Luna’s slice theorem [Lun73] as in [Don, Proposition 1] (as in [CDS15c] as well),
we can therefore find a C∗-subgroup λ ⊂ GLG and an element g ∈ GLG such that

(W, W ∩ ρ∞(H ′
1), . . . , W ∩ ρ∞(H ′

l)) = lim
t→0

λ(t)g · (M, M ∩ H ′
1, . . . , M ∩ H ′

l).

(57)

In addition for a subset of E ⊂ PN∗
of measure zero, if H1, . . . , HK �∈ E, then

the stabilizer of

(W, W ∩ ρ∞(H ′
1), . . . , W ∩ ρ∞(H ′

l), W ∩ ρ∞(H1), . . . W ∩ ρ∞(HK)) (58)
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will still be the same as that of (W, β), and so we can still find a corresponding
C∗-subgroup λ and g ∈ GLG which will satisfy (57) as well as

W = lim
t→0

λ(t)g · M

W ∩ ρ∞(Hi) = lim
t→0

λ(t)g · (M ∩ Hi), for i = 1, . . . , K. (59)

Note that all of these λ must fix W , but the λ may vary as we change the collection
(H1, . . . , HK).

Each of the C∗-actions λ is generated by a vector field w commuting with v, with
Hamiltonian function θw. We will assume that θw is normalized so that∫

W
θw ωn

FS = 0. (60)

Let us write ‖w‖ = supW |θw|, although note that any two norms on the finite
dimensional space of such w are equivalent.

Because of (50), for any ε > 0 we can choose K large, and H1, . . . , HK �∈ E, such
that no N + 1 of the Hi lie on a hyperplane in PN∗

, and for all vector fields w as
above we have

∫
W

θw β ∧ ωn−1
FS ≤ ε‖w‖ +

1
K

K∑
j=1

∫
W∩ρ∞(Hj)

θw ωn−1
FS . (61)

Applying this to the w corresponding to the C∗-action λ that we obtain for (H1, . . . ,
HK), we have

∫
W

θw β ∧ ωn−1
FS ≤ ε‖w‖ +

1
K

K∑
j=1

lim
t→0

∫
λ(t)·(M∩Hj)

θw ωn−1
FS . (62)

Using Lemma 12, and the fact that no N + 1 of the Hi are in a hyperplane, we
obtain, using also the normalization of θw, that

∫
W

θw β ∧ ωn−1
FS ≤

(
ε +

NC

K

)
‖w‖ − K − N

Kn

∫
W

max
W

θw ωn
FS , (63)

for some fixed constant C. Choosing K sufficiently large (depending on ε), we obtain
a C∗-action generated by a vector field w, with Hamiltonian function θw as above,
such that ∫

W
θw β ∧ ωn−1

FS ≤ 2ε‖w‖ − 1
n

∫
W

max
W

θw ωn
FS . (64)

Moreover this C∗-action satisfies W = limt→0 λ(t)g · M , but not necessarily β =
limt→0 λ(t)g · α. Nevertheless the vector field v satisfies ιvβ = 0 by construction.

Since (W, (1 − T )β) admits a twisted Kähler–Ricci soliton, we know that

Fut(1−T )β,v(W, w) = 0, (65)
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and so

Futv(M, w) − 1 − T

V

[∫
W

θweθv ωn
FS +

∫
W

θwnβ ∧ ωn−1
FS

]
= 0. (66)

At the same time we are assuming that for some s > T , the triple (M, (1 − s)ψ, v)
is K-semistable, which, using Proposition 11, implies that we have

Futv(M, w) − 1 − s

V

[∫
W

θweθv ωn
FS − V max

W
θw

]
≥ 0. (67)

Together (66) and (67) imply
s − T

V

∫
W

θweθv ωn
FS + (1 − s) max

W
θw +

1 − T

V

∫
W

θwnβ ∧ ωn−1
FS ≥ 0. (68)

Using also (64) we then get

0 ≤ 1 − T

V
2nε‖w‖ +

s − T

V

∫
W

(θw − max
W

θw)eθv ωn
FS . (69)

Since s > T and T < 1, this is a contradiction if ε is sufficiently small, unless
‖w‖ = 0. For this, note that there is a uniform constant c > 0 such that∫

W
(max

W
θw − θw)eθv ωn

FS ≥ c‖w‖ (70)

for all possible w that we have, since these form a finite dimensional space.
It follows that we must have ‖w‖ = 0, which means that θw is constant on W .

This implies that the corresponding C∗-action λ is trivial, and so in fact by (59) we
have

(W, W ∩ ρ∞(H1), . . . , W ∩ ρ∞(HK)) = g · (M, M ∩ H1, . . . , M ∩ HK) (71)

for some g ∈ SLG. If follows that

lim
k→∞

ρk(Hi) = ρ∞(Hi) = g(Hi). (72)

We can assume that H1, . . . , HN+1 are in general position in PN∗
, and then each

ρk is determined by the hyperplanes ρk(Hi) for i = 1, . . . , N + 1. In particular (72)
then implies that ρk → g in SLG, which in turn implies that the sequence ρk ∈ SLG

is bounded. If we write
1
m

(Fk)∗ωFS = ω0 +
√−1∂∂φk (73)

for the pullbacks of the Fubini–Study metrics to M under our embeddings Fk, we
then have a uniform bound |φk| < C. The partial C0-estimate implies that then we
also have

ωtk
= ω0 +

√−1∂∂φ′
k (74)

with |φ′
k| < C ′ for a uniform constant, for the metrics ωtk

along the continuity path.
It is then standard using the estimates of Yau [Yau78] that we have uniform C l,α

bounds for ωtk
, and so we can obtain a solution of Equation (38) for t = T (see also

Zhu [Zhu00] for the C2-estimate in the soliton case).
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3.2 The case T = 1. Suppose now that T = 1, i.e. we can solve Equation (38)
for all t < 1. This case is much more similar to the work of Chen–Donaldson–
Sun [CDS15c], since the “current part” of the equation disappears as t → 0. The
case of Kähler–Ricci solitons was also studied by Jiang–Wang–Zhu [JWZ]. We briefly
describe the argument for the sake of completeness. Just as in the case T < 1, we
have embeddings Ft : M → PN using suitable orthonormal bases for H0(K−m

M ) with
respect to the metric ωt, for some large m. The partial C0-estimate is still valid, in the
Kähler–Einstein case by [Sze16] based on the method in [CDS15c], and in the soliton
case due to Jiang–Wang–Zhu [JWZ]. It follows that as before, up to increasing m and
choosing a sequence tk → 1 we have the algebraic convergence Ftk

(M) → W ∈ PN

to a normal Q-Fano variety, homeomorphic to the Gromov–Hausdorff limit (Z, dZ)
of the sequence (M, ωtk

). As before, we identify (M, α) = (F0(M), (F0)∗α) and so
(Ftk

(M), (Ftk
)∗α) = ρk · (M, α) for ρk ∈ SLG. The vector field v on each Ftk

(M)
is induced by a fixed vector field v on PN , which is also tangent to the limit W .
We can also choose a further subsequence of tk if necessary to have a weak limit
(Ftk

)∗ωtk
→ ω1. We have the following, see [JWZ, Corollary 1.4]. A proof can also

be given in the spirit of the proof of Proposition 13.

Proposition 16. The pair (W, v) admits a Kähler–Ricci soliton, and in fact this
soliton is given by the current ω1.

It follows from [BN, Corollary 3.6] that the stabilizer of W in SLG is reductive,
and so we can find a C∗-subgroup λ ∈ SLG generated by a vector field w commuting
with v, and an elements g ∈ SLG such that

W = lim
t→0

λ(t)g · M. (75)

This is a special degeneration for M , whose central fiber is W . Since W admits a
Kähler–Ricci soliton, the corresponding Futaki invariant Futv(W, w) = 0. By as-
sumption (M, v) is K-stable, and so W must be biholomorphic to M . This means
that ω1 is a Kähler–Ricci soliton on M , which is what we wanted to obtain.

4 Some Applications

In this section, we look at some applications of Theorem 1 to existence of Kähler–
Einstein metrics on Fano manifolds with large symmetry groups.

Toric manifolds. A compact Kahler manifold M of complex dimension n is toric if
the compact torus Tn acts by isometries on M and the extension of the action to
the complex torus (C∗)n acts holomorphically with a free, open, dense orbit. We
can then recover the following theorem of Wang–Zhu [WZ04] as a consequence of
Theorem 1.

Theorem 17. There exists a Kähler–Ricci soliton, which is unique up to holomor-
phic automorphisms, on every toric Fano manifold. As a consequence, there exists a
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Kähler–Einstein metric on a toric Fano manifold if and only if the Futaki invariant
vanishes.

Proof. Let M be a toric manifold with dimCM = n. We wish to apply Theorem 1
with G = Tn with a fixed identification as a subgroup of GL(N + 1,C). The key
observation is that if v is a toric vector field, then any (C∗)n-equivariant special
degeneration of (M, v) is necessarily trivial. Indeed, if λ : C∗ → GL(N + 1,C)G is
a test configuration and if M0 = limt→0 λ(t) · M is not in the GL(N + 1,C)-orbit
of M , then the stabilizer of M0 must contain a (C∗)n+1. On the other hand, since
M0 is irreducible and not contained in any hyperplane, the action of this stabilizer
on M0 must also be effective. This is a contradiction since any torus acting on an
n-dimensional normal variety cannot have a dimension greater than n. The upshot
is that M0 must be bi-holomorphic to M and the test configuration is induced by a
toric vector field w on M . To verify K-stability of (M, v), it then suffices to check
that the modified Futaki invariant vanishes: Futv(M, w) = 0, for all toric vector
fields w on M .

Next, recall that any toric manifold M with an ample line bundle corresponds to
a unique (up to translations) polytope P ⊂ Rn defined by a finite collection of affine
linear inequalities lj(x) ≥ 0. This polytope is in fact the image of the free (C∗)n

orbit in M under the moment map. Since M is Fano, one can normalize the polytope
so that lj(0) = 1 for all j. Any toric vector field can be written as w =

∑n
j=1 cjzj

∂
∂zj

for some c ∈ R
n where (z1, · · · , zn) are the usual complex coordinates on (C∗)n. In

terms of the polytope data, for a vector field v =
∑n

j=1 ajzj
∂

∂zj
, equation (16) then

reduces to

Futv(M, w) = c ·
∫
P x ea·x dx

V
,

where V = V ol(P ) is the volume of M . But then, as in Tian–Zhu [TZ00], by min-
imizing the functional F (a) =

∫
P ea·x dx, one can find a vector a such that the

integral on the right vanishes, and hence Futv(M, w) vanishes identically for the
corresponding toric vector field v. �


If M does not admit a Kähler–Einstein metric and α ∈ c1(M) is a Kähler form,
then

R(M) = sup{t | ∃ω ∈ c1(M) such that Ric(ω) = tω + (1 − t)α},

provides a natural obstruction. It follows from the work of the second author [Sze11]
that R(M) is in fact independent of the choice of α. We can then recover the following
result of Li [Li11], expressing R(M) in terms of the corresponding polytope.

Theorem 18. Let M be toric, Fano, and P be the canonical polytope as above
with barycenter PC . Let Q be the point of intersection of the ray −sPC , s ≥ 0 with
∂P . If O denotes the origin,

R(M) =
|QO|
|QPC | .
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Proof. By the above discussion and Proposition 10 it is enough to find the maximum
t such that Fut(1−t)ψ(M, w) ≥ 0 for all toric holomorphic vector fields w where
α =

√−1∂∂ψ. We once again write w =
∑n

j=1 cjzj
∂

∂zj
for some c ∈ R

n. Then the
twisted modified Futaki invariant (Equation (16)) takes the form

Fut(1−t)ψ(M, w) = tc · Pc + (1 − t) max
x∈P

c · x.

Now let the face of the polytope containing Q be given by the vanishing of the
affine linear functional l(x) := u · x + 1. Note that since l(0) = 1, it follows from
elementary arguments that |QO|/|QPC | = 1/l(PC). We also remark that l(PC) ≥ 1.

Claim. For any c ∈ R
n,

c · PC

max
x∈P

c · x ≥ 1 − l(PC).

Assuming this, for t ≤ 1/l(PC) and any holomorphic toric vector field w, it is
easily seen that Fut(1−t)w(M, w) ≥ 0, and hence R(M) ≥ 1/l(PC). On the other
hand, if w is a special holomorphic vector field corresponding to −u ∈ R

n, then
maxx∈P (−u) · x = 1, and hence

Fut(1−t)ψ(M, w) = 1 − t · l(PC).

This is negative when t > 1/l(PC), which implies that R(M) = 1/l(PC), completing
the proof of the theorem. To prove the claim, we first normalize c so that maxx∈P c ·
x = 1. If we now let l̃(x) = −c · x + 1, then l̃(x) ≥ 0 for all x ∈ P . Moreover, since
c · PC = 1 − l̃(PC) it is enough to show that l(PC) ≥ l̃(PC). Once again consider the
ray −sPC with s ≥ 0. If this does not intersect the hyperplane {l̃ = 0}, then clearly
c · PC ≥ 0, and hence l̃(PC) ≤ 1 ≤ l(PC). On the other hand, suppose the ray does
intersect the hyperplane, at say a point Q′. Since the polytope P lies entirely on one
side of the hyperplane, we have |QPC | < |Q′PC |. In fact, since l̃(0) = l(0) = 1,

l̃(PC) =
|Q′PC |
|Q′O| =

|QQ′| + |QPC |
|QQ′| + |QO| ≤ |QPC |

|QO| = l(PC),

and the claim is proved. �

T-varieties. Relaxing the toric condition, we consider Fano manifolds M with an
effective action of the torus Tm for some m < n = dimM . The simplest case is
that of a complexity-one action, where m = n − 1. Kähler–Einstein metrics on such
manifolds, in particular Fano 3-folds with 2-torus actions, was studied by Süss [Sus13,
Sus14]. In particular in [Sus14, Theorem 1.1] a list of 9 such manifolds is given
with vanishing Futaki invariant, for 5 of which it was not known whether they
admit a Kähler–Einstein metric or not. Using Theorem 1 one only needs to check
T -equivariant special degenerations, and such degenerations can be classified using
combinatorial data. [Sus14, Section 5] lists all such degenerations to canonical toric
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Fano varieties, while the more general degenerations to log-terminal toric Fanos
are classified by Ilten–Süss [IS]. The conclusion is that all 9 Fano threefolds with
vanishing Futaki invariant in [Sus14, Theorem 1.1] admit a Kähler–Einstein metric.
Other manifolds with large symmetry group We expect that Theorem 1 can be used
to show the existence of Kähler–Einstein metrics on many other classes of Fano
manifolds with large symmetry group. One interesting class is that of reductive
varieties, studied by Alexeev–Brion [AB04a,AB04b]. Let G be a connected compact
group, T ⊂ G a maximal torus, and W the corresponding Weyl group. Denote by Λ
the character group of T , which is a lattice in the real vector space ΛR. To every W -
invariant maximal dimensional convex lattice polytope P ⊂ ΛR one can associate a
variety VP , which is a Gc × Gc-equivariant compactification of Gc, the action being
left and right multiplication. As shown in [AB04b] (see also Alexeev–Katzarkov
[AK05]), the equivariant degenerations of VP correspond to convex, rational, W -
invariant, piecewise linear functions f on P , in analogy to the toric case studied in
Alexeev [Ale02], Donaldson [Don02]. If we have an equivariant special degeneration,
then in particular the central fiber is irreducible, and this will only happen when f
is linear on P ∩ Λ+

R, where Λ+
R ⊂ ΛR is a positive Weyl chamber corresponding to a

Borel subgroup of Gc, containing T c. It follows that there are only a finite number
of degenerations that need to be checked in order to apply Theorem 1.

In the case when P ∩ Λ+
R is a maximal set on which f is linear, then the central

fiber of the corresponding special degeneration is a horospherical variety. These are
the homogeneous toric bundles studied by Podesta–Spiro [PS10], who showed that
all such Fano manifolds admit a Kähler–Ricci soliton. This also follows from the
above discussion together with our main result, since the polytope P can not be
subdivided further, and so a horospherical variety has no non-trivial equivariant
special degenerations, just as the toric manifolds discussed above.

5 The Partial C0-Estimate for Solitons

In this section we briefly outline the changes that have to be made to the arguments
in [Sze16], using also techniques in Zhang [Zha10], Tian–Zhang [TZ12] and Phong–
Song–Sturm [PSS], to prove the partial C0-estimate for the family of metrics ωt ∈
c1(M) solving

Ric(ωt) − Lvωt = tωt + (1 − t)α, (76)

where t ∈ [0, T ) with T < 1. The case when T = 1 has been established by Jiang–
Wang–Zhu [JWZ]. Here v is a holomorphic vector field, such that Im v generates a
compact torus of isometries of the metric α. In particular ωt will also be invariant
under this torus. To simplify notation, we will drop the subscript t, and so in what
follows, ω denotes a solution of (76) for some t ∈ [0, T ).

Recall that we have the Hamiltonian function θv of v, with respect to the metric
ω, defined by

ιvω =
√−1∂θv, (77)
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with the normalization ∫
M

eθv ωn =
∫

M
ωn. (78)

From Zhu [Zhu00], and Wang–Zhu [WZ, Lemma 6.1] we know that we have estimates

|θv| + |∇θv|ω + |Δωθv| < C. (79)

The Equation (76) implies that

Ric(ω) − Lvω ≥ 0. (80)

In addition as soon as t is bounded away from 0, the volume comparison and Myers
type theorem in Wei–Wylie [WW09] implies that the diameter of (M, ω) is bounded,
and we have the non-collapsing property

Vol(B(p, 1), ω) ≥ c > 0. (81)

There are two basic approaches to studying metrics satisfying this lower bound
for the Bakry–Émery Ricci curvature, generalizing the theory of Cheeger–Colding
[CC97] in the case when v = 0. One approach is to study the conformally related
metrics g̃jk̄ = e− 1

n−1
θvgjk̄, where gjk̄ is the metric with Kähler form ω. This approach,

similar to that used in Zhang [Zha10] and Tian–Zhang [TZ12] (who used the Ricci
potential instead of θv), effectively reduces the problem to studying non-collapsed
metrics with a lower Ricci curvature bound so that the theory of Cheeger–Colding
can be applied. Indeed, in real coordinates the Ricci tensor of g̃ satisfies

R̃ij = Rij + ∇i∇jθv +
1

2(n − 1)
∇iθv∇jθv − 1

2(n − 1)
[|∇θv|2g − Δgθv

]
gij , (82)

and so (80), (79) together with the fact that v is holomorphic, and so ∇i∇jθv is of
type (1, 1), imply that g̃ has a Ricci lower bound. In addition it is clear that g̃ is
uniformly equivalent to g. The other approach is to build up the Cheeger–Colding
theory using the bound (80) on the Bakry–Émery Ricci curvature. This approach is
executed by Wang–Zhu [WZ]. We summarize the main conclusions from these works
that we need.

If we have a sequence (M, ωi), satisfying (79), (80) and (81), then up to choosing
a subsequence, the Riemannian manifolds (M, gi) converge in the Gromov–Hausdorff
sense to a length space (Z, d). At each point p ∈ Z there exists a tangent cone C(Y )
which is a metric cone. We can stratify the space Z as

Sn ⊂ Sn−1 ⊂ · · · ⊂ S1 = S ⊂ Z, (83)

where Sk consists of those points, where no tangent cone is of the form Cn−k+1 ×
C(Y ).

The regular part of Z is defined to be R = Z \ S, and at p ∈ R every tangent
cone is Cn. We also write D = S \ S2. The following is analogous to Anderson’s
regularity result [And90], showing that we have good control of the metrics on the
regular set if we also have an upper bound of the Bakry–Émery Ricci curvature.
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Proposition 19. Suppose that B(p, 1) is a unit ball in Kähler manifold (M, ω),
together with a holomorphic vector field v with Hamiltonian θ, satisfying bounds of
the form

1. supM |θ| + |∇θ| + |Δθ| < K
2. 0 ≤ Ric(ω) − Lvω ≤ Kω.

There are constants δ, κ > 0 depending on K such that if dGH(B(p, 1), B2n) < δ,
then for each q ∈ B(p, 1

2), the ball B(q, κ) is the domain of a holomorphic coordinate
system in which the components of ω satisfy

1
2
δjk < ωjk̄ < 2δjk,

‖ωjk̄‖L2,p < 2, for all p. (84)

Proof. We use the conformal scaling g̃ = e− 1
n−1

θg, so that by (82) g̃ satisfies two-
sided Ricci curvature bounds. Suppose that dGH((B(p, 1), g), B2n) < δ. The bound
on ∇θ implies that if q ∈ B(p, 1

2) and r is sufficiently small, then

dGH((B(q, r), g̃), rλB2n) < 2δ, (85)

for a suitable scaling factor λ (depending on the value θ(q)).
If δ is sufficiently small, then Colding’s volume convergence result [Col97] com-

bined with Anderson’s gap theorem implies that there is a harmonic coordinate
system on the ball B(q, rθλ, g̃) in which the metric g̃ is controlled in L2,p for any
p. The metrics g̃ and g are C1-equivalent, so we also control the components of g
in C1. The Laplacian bound on θ then implies that we have L2,p estimates on θ
so in fact g and g̃ are equivalent in L2,p. In particular in our harmonic coordinates
(harmonic for g̃) we control the coefficients of g in L2,p. Using that the complex
structure is covariant constant, this allows us to find holomorphic coordinates on a
possibly smaller ball, in which the coefficients of g are controlled in L2,p. �


Following Chen–Donaldson–Sun, define

I(Ω) = inf
B(x,r)⊂Ω

V R(x, r), (86)

where Ω is any domain in a Kähler manifold, and V R(x, r) is the ratio of vol-
umes of the ball B(x, r) in Ω and the Euclidean ball rB2n. If the Ricci curvature is
non-negative, the Bishop-Gromov comparison theorem and Colding’s volume con-
vergence implies that if B is a unit ball in Ω, then 1 − I(B) controls dGH(B, B2n),
and conversely dGH(B, B2n) controls 1 − I(B). In our setting, with the bound (80),
a similar statement will only hold once the metrics are scaled up by a sufficient
amount. We have the following.

Proposition 20. Suppose that B is a unit ball in a Kähler manifold (M, ω) satis-
fying

Ric(ω) − Lvω ≥ 0, (87)
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as well as

sup
B

|∇θ| + |Δθ| ≤ δ, (88)

where θ is a Hamiltonian of X. Then

dGH(B, B2n) = Ψ(δ, 1 − I(B)), (89)

and for any λ < 1,

1 − I(λB) = Ψ(δ, dGH(B, B2n), 1 − λ), (90)

where Ψ(ε1, . . . , εk) denotes a function converging to zero as εi → 0. We have sup-
pressed the dependence of Ψ on the dimension n.

Proof. We can assume that θ(0) = 0. Use the conformal metric g̃ = e− 1
n−1

θg. Then
under our assumptions we have Ric(g̃) > −C ′δg̃ and the metric g̃ is very close in
C0 to the metric g. We can then apply the volume convergence under lower Ricci
curvature bounds to the metric g̃. �


We now return to our original setup, of a metric ω on M satisfying

Ric(ω) − Lvω = tω + (1 − t)α, (91)

for some t ∈ [0, T ), and T < 1. The vector field v and background metric α is fixed.
As before we can assume that the metrics are non-collapsed, and in addition the
Hamiltonian θv of v satisfies

sup
M

(|∇θv|2 + |Δθv|) ≤ K, (92)

for some fixed constant K. The square is inserted for scaling reasons. Note that for
any point p ∈ M we can choose the θv so that θv(p) = 0. We will exploit the fact that
α is a fixed metric. In particular we can assume that K is chosen such that on any
ball of radius at most K−1 with respect to α we can find holomorphic coordinates
in which the coefficients of α are controlled in C2.

To understand the tangent cones of the Gromov–Hausdorff limit of a sequence
of metrics satisfying these conditions, we need to study very small balls in (M, ω),
scaled up to unit size. Let (B, η) be a small ball in (M, ω) scaled to unit size, so that
η = Λω for some large Λ. Let w = Λ−1v. Then η satisfies

Ric(η) − Lwη = λη + (1 − t)α, (93)

for some λ ∈ (0, 1] and t ∈ (0, T ). In addition we can choose the Hamiltonian θw for
w relative to η such that θw(0) = 0, and

sup
M

(|∇θw|2η + |Δηθw|) ≤ Λ−1K. (94)

The following is the generalization of Proposition 8 in [Sze16], showing that
on the regular set the Gromov–Hausdorff limit behaves as if we had a two-sided
Ricci curvature bound. Note that as in Proposition 20 we need an extra assumption
ensuring that we have scaled our metrics up by a sufficient amount.
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Proposition 21. There is a δ > 0 depending on K above, such that if 1−I(B) < δ,
and the scaling factor Λ > δ−1 then

α < 4η in
1
2
B. (95)

Proof. The method of proof is the same as in [Sze16]. Suppose that

sup
B

d2
x|α(x)|η = M, (96)

where dx is the distance of x to the boundary of B with respect to η, and suppose
that the supremum is achieved at q ∈ B. If M > 1 then we can consider the ball

B

(
q,

1
2
dqM

−1/2

)
, (97)

scaled to unit size B̃, with scaled metric η̃ = 4Md−2
q η. Note that η̃ satisfies the same

estimates as η, but in addition |α|η̃ ≤ 1 on B̃. If δ is sufficiently small, then we can
apply Propositions 19 and 20 to find holomorphic coordinates zi on a small ball τB̃,
in which the components of η̃ are controlled in C1,α.

The metric η̃ satisfies

Ric(η̃) = Lwη + λη + (1 − t)α
≥ (4Md−2

q )−1Lwη̃ + (1 − t)α, (98)

and for any ε > 0 we can choose the scaling factor Λ large enough, so that the
Hamiltonian of w satisfies |∇θw|2η < ε, which implies |w|2η̃ < 4Md−2

q ε. Since w is a
holomorphic vector field, we obtain that in the coordinates zi, on the half ball τ

2B,
the components of w, along with their derivatives are bounded by (4Md−2

q ε)1/2. It
follows that on this ball we have

|Lwη|η̃ < Cε1/2(4Md−2
q )−1/2, (99)

for some fixed constant C. In particular if δ is chosen sufficiently small, then we will
have Lwη < εη̃ and so

Ric(η̃) ≥ −εη̃ + (1 − t)α. (100)

Using this, the rest of the proof is essentially identical to that in [Sze16]. �

Together with Proposition 19 it follows from this that in the Gromov–Hausdorff

limit of a sequence of metrics ω satisfying (91), with t < T < 1, the regular set is
open and smooth, and the convergence of the metrics is C1,α on the regular set. In
addition the same holds for iterated tangent cones.

What remains is to study tangent cones of the form Cγ × Cn−1, i.e. the points
in the set D in the Gromov–Hausdorff limit. The arguments in [Sze16, Proposition
11, 12, 13] can be followed closely with a couple of remarks. First of all the results
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of Chen–Donaldson–Sun [CDS15b] on good tangent cones can be applied. The main
difference here is that a variant of the L2-estimates in [DS14, Proposition 2.1] needs
to be used, following [PSS, Proposition 4.1], with the Hamiltonian θv replacing the
Ricci potential u. This implies that if a scaled up ball (B, η) as above is sufficiently
close to the unit ball in Cγ × Cn−1, then on a smaller ball we have holomorphic
coordinates, in which the metric η satisfies the conditions (1), (2), (3) in the proof
of Proposition 13.

An additional important fact used several times is that by Cheeger–Colding-
Tian [CCT02], no tangent cone of the form Cγ × Cn−1 can form in the Gromov–
Hausdorff limit of a sequence of Kähler metrics with bounded Ricci curvature. The
analogous result with the bound on Ricci curvature replaced by a bound on Ric(ω)−
Lvω was shown by Tian–Zhang [TZ12]. It also follows from the more recent work of
Cheeger–Naber [CN] in the general Riemannian case using a conformal change as in
(82), together with the bounds (1) in Proposition 19. With these observations the
proof of the partial C0-estimate for solutions of (76) follows the argument in [Sze16]
closely.

6 Reductivity of the Automorphism Group and Vanishing of the
Futaki Invariant

In this section we briefly outline the proofs of Propositions 5 and 7 following [Ber15,
CDS15c,BN]. As before, let W be the normal Q-Fano variety obtained as the
Gromov–Hausdorff limit along the continuity method, and v ∈ H0(W, TW ) such
that Im(v) generates the action of a torus T on W . We let Hv denote the space
of continuous T -invariant metrics hφ = e−φ on −KW with non-negative curvature.
Then the twisted Ding functional is defined as

D(1−t)ψ,v(φ) = −tEv(φ) − log
(∫

W
e−tφ−(1−t)ψ

)
, (101)

where Ev is defined by its variation at φ in the direction φ̇ by

d

ds
Ev(φ) =

1
V

∫
W

φ̇eθv ωn
φ , (102)

as in Berman–Witt–Nyström [BN]. Next, we recall the definition of a geodesic in
the path of Kähler metrics. We let R = {s ∈ C | Re(s) ∈ [0, 1]}. Recall that a
path φs ∈ Hv is called a geodesic if Φ : W × R → R defined by Φ(x, s) = φRe(s)(x)
satisfies

√−1∂∂̄s,W (Φ) ≥ 0 and

(
√−1∂∂̄s,W Φ)n+1 = 0,

where the ∂∂̄ is taken in both W and R directions. Then the following is proved in
[Ber15].
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Lemma 22. For any φ0, φ1 ∈ Hv, there exists a geodesic φs ∈ Hv connecting them
such that

‖φs′ − φs‖L∞(W ) < C|s′ − s|
The key point is that the Ding functional is convex along these geodesics. It is

proved in Berman–Witt–Nyström [BN, Proposition 2.17] that the functional Ev(φ)
is affine along geodesics and continuous up to the boundary. So the convexity of the
Ding functional is a consequence of the following result of Bendtsson [Ber15].

Proposition 23. Let φs be a geodesic as above. Then the functional

F(s) = − log
(∫

W
e−tφs−(1−t)ψ

)
(103)

is convex. Moreover, if F(s) is affine, then there exists a holomorphic vector fields
ws on W with iws

√−1∂∂ψ = 0, and such that the flow Fs satisfies

F ∗
s (

√−1∂∂φs) =
√−1∂∂φ0.

This was proved on compact Kähler manifolds by Berndtsson [Ber15] and ex-
tended to normal varieties by Chen–Donaldson–Sun [CDS15c] when

√−1∂∂ψ is the
current of integration along a divisor (see also [BBEGZ]). Though the above state-
ment does not seem to follow directly from either of the works, the arguments can
be easily adapted, and we briefly provide an outline of the proof.

Proof. For ease of notation, we let τs = tφs + (1 − t)ψ. Let p : W ′ → W be a log-
resolution and ω′ be a fixed Kähler metric on W ′. Since W has only log terminal
singularities, one has the following adjunction formula

− KW ′ = −p∗KW − E + Δ, (104)

where E and Δ are effective divisors, and Δ =
∑

ajEj with aj ∈ (0, 1). Suppose first
that e−τs is a smooth family of metrics on −KW , inducing a smooth family of pull-
back metrics on −p∗KW with curvature ωτ ′

s
=

√−1∂∂τ ′
s. We write L = K−1

W ′ ⊗ E.
Then from (104) it is clear that

τ ′
s = p∗τs +

∑
aj log |sj |2,

where sj is the defining function of Ej , induces a family of singular metrics e−τ ′
s on

L. Moreover, if u is a holomorphic L-valued (n, 0) form with zero divisor E (which
is unique up to multiplication by a constant) it can be easily checked that up to
scaling u by a constant,

F(s) = − log
∫

W ′
u ∧ ū e−τ ′

s .
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Let us pretend for the moment that the metrics e−τ ′
s are smooth. Consider the

equation

∇sνs = Ps

(
dτ ′

s

ds
u

)
, (105)

where ∇s = ∂ − ∂τ ′
s ∧ · is the Chern connection of e−τ ′

s and Ps is the projection
onto the orthogonal complement of L-valued holomorphic (n, 0) forms. As argued
in [Ber15], it can be shown that there always exists a smooth solution νs to (105)
satisfying ∂̄νs ∧ ω′ = 0. Next, the Hessian of F is given by ([Ber15, Theorem 3.1],
[CDS15c, Lemma 14])

‖u‖2
τ ′

s

√−1∂∂F(s) =
∫

W ′
ω′

s ∧ ũ ∧ ¯̃u e−τ ′
s + ‖∂νs‖2

τ ′
s

√−1ds ∧ ds̄, (106)

where ũ = u − ds ∧ νs and ω′
s =

√−1∂∂s,W ′(τ ′
s). This is in fact a special case of

the general positivity of direct image sheaves discovered by Bendtsson [Ber09]. For
smooth geodesics, the convexity follows directly from this formula.

In our case the metrics τ ′
s are not smooth, and hence we first need to use a regu-

larization. First, if we let η = ω′ +
√−1ds ∧ ds̄, then by the approximation theorem

of Demailly [Dem92] (see also Blocki–Kolodziej [BK07]) there exists a decreasing
sequence of smooth metrics ρs,ε ↘ p∗τs such that

√−1∂∂s,W ′(ρs,ε) ≥ −Cη. By av-
eraging we can also suppose that ρs,ε are independent of Re(s) and T -invariant. To
approximate τ ′

s we then let τ ′
s,ε = ρs,ε + log hε where

log hε =
∑

aj(log (|sj |2hj
+ ε) − log hj) (107)

and hj is a metric on the line bundle generated by Ej . Clearly e−τ ′
s,ε are metrics on

L with τ ′
s,ε ↘ τ ′

s and
√−1∂∂s,W ′(τ ′

s,ε) > −Cη for some C > 0. Moreover, for any
neighborhood U of Δ there exists a constant CU such that

√−1∂∂s,W ′(τ ′
s,ε) > −εCUη, on W ′ \ U.

We then let νs,ε be the solutions to (105) corresponding to τs,ε. The key point now
is the following lemma of Berndtsson which guarantees uniform estimates for these
solutions independent of s and ε.

Lemma 24. [Ber15, Lemmas 6.3, 6.5], [CDS15c, Lemmas 17, 19]

• There exists a constant C (independent of s, ε) such that

‖νs,ε‖L2(τ ′
s,ε)

≤ C

∥∥∥∥
dτ ′

s,ε

ds
u

∥∥∥∥
L2(τ ′

s,ε)

.

• For every δ-neighborhood Uδ of Δ, there exists a constant cδ such that cδ → 0
as δ → 0 and ∫

Uδ

|νs,ε|2τ ′
s,ε

≤ cδ

(∫
W ′

|νs,ε|2τ ′
s,ε

+ |∂̄νs,ε|2τ ′
s,ε

)
.
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Note that the norms of νs,ε also involve a Kähler metric on W ′ which we take to be
the fixed metric ω′. We also remark that this was proved by Berndtsson for metrics
e−ξ where ξ is only upper bounded, and hence is applicable in our situation since
τ ′
s,ε are easily seen to be upper bounded. Once we have this uniform L2 estimate,

the rest of the argument in [CDS15c] can be followed almost verbatim. That is, if
we write for Fε(s) for the functional corresponding to τ ′

s,ε, then Fε ↘ F . Moreover,
using the Hessian formula above one can show that for any r ∈ (0, 1) on [r, 1− r] we
have

d2Fε

ds2
> −cε → 0.

This shows that F is indeed convex.
Suppose now that F is affine linear. Observe that since τ ′

s,ε decrease to τ ′
s and

τ ′
s,ε are uniformly Lipschitz in s, ‖νs,ε‖L2(τ ′

s,ε)
are uniformly bounded. Hence νs,ε con-

verges weakly in L2(τ ′
s) to an L-valued (n−1, 0) form νs with ∂̄νs = 0. Integrating by

parts, it can be shown that νs solves (105) weakly on W ′\{ψ = −∞} or equivalently,
∇sνs − u dτ ′

s/ds is holomorphic on {ψ �= ∞}, and it is in L2. But since pluripolar
sets are removable for L2 holomorphic forms, ∇sνs − u dτ ′

s/ds is also holomorphic
globally. Using the formula ∂̄∇sνs + ∇s∂̄νs = ωτ ′

s
∧ νs it follows that

ωτ ′
s
∧ νs =

√−1∂̄

(
dτ ′

s

ds

)
∧ u. (108)

A family of holomorphic vector fields w′
s can now be defined on W ′ \ E by

ιw′
s
u = νs,

so that away from E we have ιw′
s
ωτ ′

s
= −√−1 ∂τ̇ ′

s. Then ws = p∗w′
s is a holomor-

phic vector field on W0 which by normality of W extends to a global time-dependent
holomorphic vector field on W . Next, note that p−1 is a biholomorphism when re-
stricted to W0, and ωτs

= (p−1)∗ωτ ′
s
. It then follows that on Wo, ιws

ωτs
= −√−1 ∂τ̇s

and hence,

Lws
ωτs

= − ∂

∂s
ωτs

, (109)

as currents. Moreover, it can be shown that ∂ws/∂s̄ = 0, and hence ws generates a
holomorphic flow Fs (see [BBEGZ, Lemma 5.2]). Also, note that w′

s has uniform L2

bound (independent of s) away from E, and hence the flow Fs extends continuously
to s = 0, 1 such that F0 is the identity. From (109) it follows that on W0,

∂

∂s
F ∗

s ωτs
= F ∗

s

(
∂

∂s
ωτs

+ Lws
ωτs

)
= 0.

In particular F ∗
s ωτs

= ωτ0 on W0, and hence globally on W by unique extension of
closed positive (1, 1) currents over sets of Hausdorff co-dimensions greater than two.
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Now, if we define a holomorphic vector field Ws = ∂/∂s − ws on W × R, following
the same line of argument as in [Ber15, Lemma 4.3] we can show that

ιWs

√−1∂∂s,W (τs) = 0.

Again following [Ber15]

0 = ιWs
ιWs

√−1∂∂s,W (τs) = t ιWs
ιWs

√−1∂∂s,W (φs) + (1 − t)ιws
ιws

√−1∂∂ψ.

Since both the (1, 1) currents on the right are non-negative, each has to be zero.
Again, since

√−1∂∂ψ ≥ 0, by Cauchy’s inequality for any (1, 0) vector field ξ,
ιξιws

√−1∂∂ψ = 0, and hence ιws

√−1∂∂ψ = 0. In particular, Lws

√−1∂∂ψ = 0, and
hence F ∗

s

√−1∂∂φs = φ0, which completes the proof of the proposition. �

Proof of Proposition 5. Let e−φ0 and e−φ1 be two soliton metrics on (W, (1− t)ψ, v)
and φs ∈ Hv be a bounded geodesic connecting φ0 and φ1. Since solitons are the
stationary points of D(1−t)ψ,v, the one sided derivatives at s = 0 and s = 1 (which
exist by convexity of the Ding functional) are zero. As a consequence D(1−t)ψ,v(φs),
and hence F(s), is affine, and by Proposition 23 there exists a family of holomorphic
vector fields ws with flow Fs such that F ∗

s ωφs
= ωφ0 . Next, note that φj for j = 0, 1

satisfies

Ric(ωφj
) = tωφj

+ (1 − t)
√−1∂∂ψ + Lvωφj

(110)

on W0. So on the one hand, since φs are stationary points of D(1−t)ψ,v, ωφs
also

satisfies (110), while on the other hand ωφs
satisfies (110) with v replaced by (Fs)∗v.

Hence if we set ξs = (Fs)∗v − v, then Lξs
ωφs

= 0. This implies that if hs is the
hamiltonian of ξs with respect to ωφs

, then
√−1∂∂hs = 0 and consequently v =

(Fs)∗v. To show the time-independence of the vector fields, arguing as in the proof
of [Ber15, Proposition 4,5], we can show that

ι(F −1
s )∗ws−w0

ωφ0 = 0.

Since φ0 is bounded, and hence in particular e−φ0 is integrable, by Berndtsson [Ber15,
Proposition 8.2] the above equation forces (F−1

s )∗ws = w0. This shows that the
vector fields are independent of time, and in fact Fs is just the flow generated by
w0. Finally since ιw0ωφ0 = −√−1 ∂φ̇0 and φ0 is real valued, Im(w0) is also a Killing
field for ωφ0 . This completes the proof of the proposition with w = w0. �

Proof of Proposition 7. As shown in [CDS15c] reductivity follows from uniqueness,
and we reproduce their arguments. Suppose ω is the twisted Kähler–Ricci soliton on
the triple (W, (1− t)ψ, v), and let H be the connected group with Lie algebra gW,ψ,v

naturally identified as a subgroup of SL(N + 1,C). Let K ⊂ H be the subgroup of
isometries of ω with the corresponding Lie sub-algebra of gW,ψ,v given by

kW,ψ,v = {w ∈ H0(W, T 1,0W ) : LRe(w)ω = 0, ιwωψ = 0, [w, v] = 0},
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which can naturally be identified as a sub-algebra of su(N + 1,C). Moreover, since
the trace form on su(N + 1,C) given by B(x, y) = tr(xy) is negative definite. it’s
restriction to kW,ψ,v is a non-degenerate bilinear form, and hence kW,ψ,v is a reductive
Lie algebra. Next, if Kc ⊂ SL(N + 1,C) is the connected complexification of K,
then clearly Kc ⊂ H. Conversely, for any h ∈ H, it can be checked that h∗ω is also a
twisted Kähler–Ricci soliton for the triple (W, (1− t)ψ, v), and hence by Proposition
4 there exists an element F ∈ Kc such that h∗ω = F ∗ω. But then h ◦ F−1 ∈ K, and
hence H = Kc. As a consequence gW,ψ,v = kW,ψ,v ⊗R C, and is reductive. The same
proof suitably modified shows that the centralizer gG

W,ψ,v is also reductive. �

Proof of Proposition 8. Suppose that e−φ is a smooth metric on K−1

W , and ft ∈
Aut(W ) is a one-parameter group of biholomorphisms, generated by w ∈ gW,ψ,v. In
particular since f∗

t ωψ = ωψ, we must have f∗
t (e−ψ) = cte

−ψ for some constants ct.
Similarly to [CDS15c, Lemma 12], we consider the quantity

I(e−φ) =
1
V

∫
W

log

(∫
W e−φ

)−1
e−φ

(∫
W e−tφ−(1−t)ψ

)−1
e−tφ−(1−t)ψ

ωn
φ

= log

∫
W e−tφ−(1−t)ψ∫

W e−φ
− 1 − t

V

∫
W

(φ − ψ)ωn
φ , (111)

where we note that φ − ψ is a globally defined integrable function. We have
I(f∗

t (e−φ)) = I(e−φ), and differentiating this at t = 0 we obtain (using φ̇ = θw),
that ∫

W θwe−φ∫
W e−φ

−
∫
W tθwe−tφ−(1−t)ψ∫

W e−tφ−(1−t)ψ
− 1 − t

V

∫
W

θwωn
φ

−n
1 − t

V

∫
W

(φ − ψ)
√−1∂∂θw ∧ ωn−1

φ = 0. (112)

Integrating by parts in the last integral, and using the definition (15) of the twisted
Futaki invariant, we obtain

Fut(1−t)ψ,v(W, w) =
t

V

∫
W

θweθvωn
φ − t

∫
W θwe−tφ−(1−t)ψ∫

W e−tφ−(1−t)ψ
. (113)

Note that this formula is not well defined if e−(1−t)ψ is not integrable, but we only
need it in that case, since by assumption (W, (1 − t)ψ, v) admits a twisted Kähler–
Ricci soliton.

By the convexity of D(1−t)ψ,v, twisted Kähler–Ricci solitons minimize the twisted
Ding functional, we know that D(1−t)ψ,v is bounded below. At the same time (113)
implies that

d

dt
D(1−t)ψ,v(f

∗
t φ) = −Fut(1−t)ψ,v(W, w), (114)

and as a result the twisted Futaki invariant must vanish. �
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d’une certaine variété kählérienne. Nagoya Mathematical Journal, 11 (1957),
145–150

[PSS] D.H. Phong, J. Song, and J. Sturm. Degenerations of Kähler–Ricci solitons
on Fano manifolds. Universitatis Iagellonicae Acta Mathematica, 52 (2015), 29–
43.

http://arxiv.org/abs/1412.0648
http://arxiv.org/abs/1208.1020
http://arxiv.org/abs/1507.04442
http://arxiv.org/abs/1401.6542
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