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FUGLEDE–KADISON DETERMINANTS AND SOFIC
ENTROPY

Ben Hayes

Abstract. We relate Fuglede–Kadison determinants to entropy of finitely-prese-
nted algebraic actions in essentially complete generality. We show that if f ∈
Mm,n(Z(Γ)) is injective as a left multiplication operator on �2(Γ)⊕n, then the topo-
logical entropy of the action of Γ on the dual of Z(Γ)⊕n/Z(Γ)⊕mf is at most the
logarithm of the positive Fuglede–Kadison determinant of f, with equality if m = n.
We also prove that when m = n the measure-theoretic entropy of the action of Γ on
the dual of Z(Γ)⊕n/Z(Γ)⊕nf is the logarithm of the Fuglede–Kadison determinant
of f. This work completely settles the connection between entropy of principal alge-
braic actions and Fuglede–Kadison determinants in the generality in which dynam-
ical entropy is defined. Our main Theorem partially generalizes results of Li-Thom
from amenable groups to sofic groups. Moreover, we show that the obvious full gen-
eralization of the Li-Thom theorem for amenable groups is false for general sofic
groups. Lastly, we undertake a study of when the Yuzvinskǐı addition formula fails
for a non-amenable sofic group Γ, showing it always fails if Γ contains a nonabelian
free group, and relating it to the possible values of L2-torsion in general.
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1 Introduction

The goal of this paper is to relate Fuglede–Kadison determinants and entropy of
finitely-presented algebraic actions in the largest possible generality. Let Γ be a
countable discrete group, and let A be a Z(Γ)-module. We have a natural action of
Γ on ̂A, the Pontryagin dual of A, (i.e. the group of all continuous homomorphism
from A into T = R/Z) given by

(gχ)(a) = χ(g−1a), g ∈ Γ, χ ∈ ̂A, a ∈ A.

This action on ̂A by automorphisms is called an algebraic action. We are typically
interested in forgetting the algebraic structure of ̂A. That is, we wish to think of
Γ � ̂A as either an action of Γ on a compact metrizable space by homeomorphisms,
or an action of Γ on a probability measure space (using the Haar measure on ̂A,
which we denote by m

̂A) by measure-preserving transformations.
It is trivial by Pontryagin duality that any invariant of Γ � ̂A as either a

probability measure-preserving action or an action by homeomorphisms comes from
a Z(Γ)-module invariant. However, it is unclear what Z(Γ)-module invariants arise in
this manner, i.e. which Z(Γ) module-invariants only depend upon the action Γ � ̂A
when we view this as either a probability measure-preserving action or an action
by homeomorphisms. It turns out that most invariants which do only depend upon
the topological or measure-theoretic structure of Γ � ̂A are defined via functional
analysis. For instance, ergodicity, mixing, expansiveness can all be expressed in terms
of functional analytic objects associated to A (see [Sch95] Lemma 1.2, Theorem 1.6,
[CL15] Theorem 3.1).

The case of finitely presented Z(Γ)-modules is particularly enlightening. Given
f ∈ Mm,n(C(Γ)), letfpq =

∑

g∈Γ
̂fpq(g)g for1 ≤ p ≤ m, 1 ≤ q ≤ n. Define r(f) :

�2(Γ)⊕m → �2(Γ)⊕n, λ(f) : �2(Γ)⊕n → �2(Γ)m by

(r(f)ξ)(l)(h) =
∑

1≤s≤m

∑

g∈Γ

ξ(s)(hg−1)̂fsl(g), for 1 ≤ l ≤ n,

(λ(f)ξ)(l)(h) =
∑

1≤s≤n

∑

g∈Γ

̂fls(g)ξ(s)(g−1h), for 1 ≤ l ≤ m.

Every finitely-presented Z(Γ)-module is of the form Z(Γ)⊕n/r(f)(Z(Γ)⊕m). For f ∈
Mm,n(Z(Γ)), we will use Xf for the Pontryagin dual of Z(Γ)⊕n/r(f)(Z(Γ)⊕m). In
this case, the duality between functional analytic properties of Z(Γ)-modules and the
dynamics of algebraic actions translates to a duality between dynamics of Γ � Xf
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and operator theoretic properties or λ(f). Regarded as a representation of Γ we call
λ the left regular representation.

When m = n = 1, the action Γ � Xf is called a principal algebraic action. The
entropy of the action G � Xf has been well-studied, particularly in the principal
case. Entropy is an important numerical invariant of actions defined for Γ = Z

by Kolmogorov, Sinǎı, Adler–Konheim–MacAndrew (see [Kol85],[Sin15],[AKM65])
and for amenable groups by Kieffer and Ornstein-Weiss (see [Kie75],[OW87]). For a
probability measure-preserving action Γ � (X, μ) with Γ amenable, we use hμ(X, Γ)
for the entropy.

For Γ = Z
d we may identify, in a natural way, Z(Γ) as the Laurent polynomial ring

Z[u±1
1 , . . . , u±1

d ]. Under this identification, it is known that the entropy of Γ � Xf is
∫

Td

log |f(e2πiθ)| dθ. (1)

This was shown for Γ = Z by Yuzvinkšı in [Yuz67] and Γ = Z
d by Lind-Schmidt-

Ward in [LSW90] (both of these results in fact include a complete calculation of
entropy in the case of a finitely-presented Z(Γ) module for Γ = Z, Zd). This integral
is known as the logarithmic Mahler measure of f and is important in number theory.

It was Deninger in [Den06] who first realized that (1) has a natural generaliza-
tion to noncommutative Γ via Fuglede–Kadison determinants. The Fuglede–Kadison
determinant of f ∈ Mn(C(Γ)), denoted det+L(Γ)(f), is a natural generalization of the
usual determinant in finite-dimensional linear algebra. Here we are defining a deter-
minant of λ(f) and a priori it is not clear how one would do this, as λ(f) operators
on an infinite-dimensional space. The crucial analytic object that makes this possi-
ble is the group von Neumann algebra. The group von Neumann algebra, which we
denote by L(Γ), is a functional analytic object associated to Γ which “encodes” the
structure of the left regular representation. Deninger pointed out the possibility that

hmXf
(Xf , Γ) = det+L(Γ)(f)

and established that this is the case when f is positive (i.e. λ(f) is a positive oper-
ator), invertible in �1(Γ), and Γ is of polynomial growth. Then Deninger-Schmidt in
[DS07] show this equality in the principal case was true when Γ is amenable, resid-
ually finite and when f is invertible in �1(Γ). Li in [Li12] proved this equality when
Γ is amenable and λ(f) is invertible (equivalently f is invertible in L(Γ)). It was
only recently that the connection between entropy and determinants was completely
settled in the amenable case by Li-Thom in [LT14]. Li-Thom equated the entropy
of Γ � Xf to det+L(Γ)(f) when Γ is amenable and λ(f) is injective. We remark that
the results of Li-Thom are complete for the case of amenable Γ, as Chung-Li showed
(see [CL15] Theorem 4.11) that if λ(f) is not injective, and Γ is amenable, then the
entropy of Γ � Xf is infinite and thus cannot be equal to det+L(Γ)(f).

Seminal work of Bowen in [Bow10b] extended the definition of measure entropy
for actions of amenable groups to the much larger class of sofic groups assuming
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the action has a finite generating partition. Kerr-Li in [KL11] removed this gener-
ation assumption and also defined topological entropy for actions of sofic groups.
Roughly, soficity is the assumption of a sequence of “asymptotic homomorphisms”
Γ → Sdi

, where Sn is the symmetric group on n letters, which when regarded as
“almost actions” on {1, . . . , di} are “almost free.” Such a sequence is called a sofic
approximation. The class of sofic groups contains all amenable groups, all residually
finite groups, all linear groups and is closed under direct unions and free products
with amalgamation over amenable subgroups (see [ES11],[DKP13],[Pau11],[Pop14]).
Residually sofic groups are also sofic. Thus sofic groups are a significantly larger
class of groups than amenable groups. We remark that there is no known exam-
ple of a nonsofic group. We use hΣ,μ(X, Γ) for the entropy of a measure-preserving
Γ � (X, μ) on a standard probability space (X, μ) with respect to a sofic approxima-
tion Σ of Γ (see Section 5). We use hΣ(X, Γ) for the entropy of an action Γ � X by
homeomorphisms of a compact metric space X with respect to a sofic approximation
Σ of Γ (see Section 3).

Bowen in [Bow11] proved the equality between entropy and Fuglede–Kadison de-
terminants when f is invertible in �1(Γ) and Γ is residually finite. Kerr-Li in [KL11]
then proved this equality when Γ is residually finite and f is invertible in the full
C∗-algebra of Γ. Bowen-Li in [BL12] also proved this equality when Γ is residually
finite and f is a Laplacian operator. Notice that all of these results are only valid
when the group is residually finite and all of them require invertibility assumptions
on λ(f), or very specific structure of f. Thus they leave open the relationship be-
tween Fuglede–Kadison determinants and entropy for the general case of principal
algebraic actions of sofic groups.

In this paper, we completely settle the connection between Fuglede–Kadison
determinants and entropy for principal algebraic actions under the utmost minimal
hypotheses. This connection is a consequence of the following result (the principal
case being m = n = 1), which is the main Theorem of the paper.

Theorem 1.1. Let Γ be a countable discrete sofic group with sofic approximation
Σ. Fix a f ∈ Mm,n(Z(Γ)).

(i): The topological entropy of Γ � Xf (with respect to Σ) is finite if and only if
λ(f) is injective as an operator on �2(Γ)⊕n.

(ii): If m = n, and λ(f) is injective as an operator on �2(Γ)⊕n, then

hΣ(Xf , Γ) = hΣ,mXf
(Xf , Γ) = log det+L(Γ)(f).

(iii): If m �= n and λ(f) is injective, then

hΣ,mXf
(Xf , Γ) ≤ hΣ(Xf , Γ) ≤ log det+L(Γ)(f).

Since det+L(Γ)(f) is manifestly less than ∞, part (i) implies that if f ∈ Mm,n(Z(Γ))
and λ(f) is not injective, then the topological entropy of Γ � Xf for f ∈ Z(Γ) cannot
be equal to log det+L(Γ)(f). Combining this observation with part (i) of the Theorem
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settles the connection between entropy of principal algebraic actions and Fuglede–
Kadison determinants for actions of sofic groups (i.e. the class of groups for which
dynamical entropy is defined). Part (i) is a trivial consequence of the main results
of our results in [Hay] (see Theorem 6.16 of this paper). Thus we focus on (ii),(iii)
for most of the paper.

Let us mention why the above theorem is essentially optimal even in the non-
principal case. First, as previously mentioned, det+L(Γ)(f) is always less than ∞, so
by (i) there cannot be any connection to Fuglede–Kadison determinants and topo-
logical entropy if λ(f) is not injective as a left multiplication operator on �2(Γ)⊕n.
Secondly, hΣ(Xf , Γ) �= log det+L(Γ)(f) in general when m �= n even if λ(f) is injective.
For example, let n ∈ Z \ {0}, and α ∈ Z(Γ) and set

A =
[

α
n

]

∈ M2,1(Z(Γ)).

Then XA is a subgroup of (Z/nZ)Γ and hence the topological entropy of Γ � XA

is at most log n (the same is true for the measure-theoretic entropy). However, a
simple calculation shows that

log det+L(Γ)(A) =
1
2

log detL(Γ)(α
∗α + n2)

which is strictly bigger than log(n), if α �= 0. Thus, the inequality in (iii) is not
always an equality.

Lastly, sofic groups are the largest class of groups Γ for which det+L(Γ)(f) ≥ 1 for
all f ∈ Mm,n(Z(Γ)). The statement that det+L(Γ)(f) ≥ 1 for all f ∈ Mm,n(Z(Γ)) is
called the determinant conjecture. The fact that det+L(Γ)(f) ≥ 1 is key in the proof of
Theorem 1.1 as well as the Li-Thom Theorem. Let us suppose, for the sake of argu-
ment, that one develops a good definition of entropy for non-sofic groups. Such a defi-
nition would likely have similar nonnegative properties as sofic entropy. In particular
if there is a connection between entropy and Fuglede–Kadison determinants analo-
gous to Theorem 1.1 for nonsofic groups, then the determinant conjecture should be
true. As the proof of Theorem 1.1 as well as [LT14] rely on the fact that det+L(Γ)(f) ≥
1 for all f ∈ Mm,n(Z(Γ)), it is likely that any hypothetical version of entropy for
nonsofic groups would rely on knowing the determinant conjecture and would not be
a likely route to prove the determinant conjecture. Since it is unclear how to prove
this conjecture for any group which is not known to be sofic, it seems unlikely to
generalize Theorem 1.1 to any potential definition of entropy for a nonsofic group.

In the amenable case the results of [LT14] are more general as Li-Thom relate the
L2-torsion of A, when it is defined, to the entropy of Γ � ̂A. We use ρ(2)(A, Γ) for
the L2-torsion of a Z(Γ)-module A. The L2-torsion is one of several invariants which
fall under the name L2-invariants, all of which are functional analytic invariants of
Z(Γ)-modules defined via the group von Neumann algebra. See [Luc02] for a good
introduction to L2-invariants. Part (ii) of Theorem 1.1 is the “base case” for sofic
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groups of the results of Li-Thom. This begs the questions of whether our results
can be further generalized to show that the entropy of an algebraic action is the
L2-torsion of the dual module. The next proposition (a simple application of known
results on L2-torsion and basic facts about sofic entropy) shows that a generalization
of Theorem 1.1 in this direction is not possible for a totally general sofic group.

Proposition 1.2. Let Γ be a cocompact lattice in SO(n, 1) with n odd. Then:

(i): Γ is a sofic group,
(ii): the L2-torsion of the trivial Z(Γ)-module Z is defined,
(iii): for every sofic approximation Σ of Γ one has

hΣ(T, Γ) �= ρ(2)(Z, Γ),

hΣ,mT
(T, Γ) �= ρ(2)(Z, Γ).

In the case n is congruent to 1 modulo 4, we can in fact say that the measure-
theoretic entropy of Γ � T with respect to any random sofic approximation of Γ is
not ρ2(Z, Γ) (for a precise statement see Proposition 6.28). It may still be possible
to connect torsion to entropy with respect to a random sofic approximation when
n is congruent to 3 modulo 4, but these remarks show that such a connection is
completely impossible for n congruent to 1 modulo 4. Thus there is no possible
generalization of the Li-Thom theorem (using sofic entropy) for cocompact lattices
in SO(n, 1) for n congruent to 1 modulo .4

After establishing Theorem 1.1 in the amenable case, the remaining piece Li-
Thom use to complete the connection between entropy and L2-torsion for amenable
groups is the Yuzvinskǐı addition formula, which says that entropy is additive under
exact sequences of algebraic actions. We show that the Yuzvinskǐı addition formula
is false for many nonamenable groups in this paper. Our main result in this direction
is the following.

Theorem 1.3. Let Γ be a countable discrete sofic group with sofic approximation
Σ. Suppose that either Γ contains a nonabelian free group, or that Γ contains a
subgroup with defined and nonzero L2-torsion. Then Yuzvinskǐı’s addition formula
fails for Γ. That is, there is an exact sequence

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0,

of countable Z(Γ)-modules so that

hΣ( ̂B,Γ) �= hΣ( ̂A, Γ) + hΣ( ̂C, Γ).

Further, we can choose A, B, C to be finitely presented.

The main ingredients of the proof of the above Theorem are the arguments of
Li-Thom as well as a standard counterexample of the theory due to Ornstein-Weiss.
The only current version of nonamenable entropy for which there is some hope of
having a Yuzvinskǐı addition formula is the f -invariant entropy defined for actions
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of free groups by Bowen in [Bow10c]. For example, a Yuzvinskǐı addition formula is
known for f -invariant entropy for actions on totally disconnected abelian groups by
[BG14]. The f -invariant can be regarded as sofic entropy with respect to a random
sofic approximation and has many properties that general sofic entropy does not:
it satisfies a Rokhlin formula (see [BG14]), a subgroup formula (see [Sew14]) and
an ergodic decomposition formula (see [Sew]). Motivated by the properties that
f -invariant entropy enjoys, and the possibility of a Yuzvinsǩı addition formula, we
prove a version of Theorem 1.1 for Bowen’s f -invariant entropy. We use Fr for the
free group on r letters.

Theorem 1.4. Let h ∈ Mm,n(Z(Fr)) and suppose λ(h) is injective. Then

fmXh
(Xh, Fr) ≤ log det+L(Fr)(h),

with equality if m = n.

We remark that it follows automatically from the preceding theorem and the tech-
niques of Li-Thom that if one proves a totally general Yuzvinskǐı addition formula
for f -invariant entropy for actions of free groups, then automatically one equates the
f -invariant entropy of an algebraic action with the L2-torsion of the dual module.

Combining with our previous work in [Hay], as well as the techniques given in
[LL13], we have an application related to metric mean dimension of actions. For the
definition of metric mean dimension of an action Γ � X on a compact metrizable
space X, denoted mdimΣ,M (X, Γ), see [Li14]. It is clear from the definition that if
hΣ( ̂A, Γ) < ∞, then mdimΣ,M (X, Γ) = 0. It is an open problem as to whether or
not every action with zero metric mean dimension can be “built” out of actions with
finite entropy (to be precise, it is an open problem if every it is an open problem
if every action with zero metric mean dimension is an inverse limit of actions with
finite entropy). We use our results to show that for algebraic actions coming from
finitely presented Z(Γ)-modules zero metric mean dimension is equivalent to finite
topological entropy.

Theorem 1.5. Let Γ be a countable discrete sofic group with sofic approximation
Σ. Let A be a finitely presented Z(Γ)-module. Then hΣ( ̂A, Γ) < ∞ if and only if
mdimΣ,M ( ̂A, Γ) = 0.

In many cases, we can replace the assumption in the preceding theorem that A
is finitely presented with A being finitely generated. This is related to whether or
not Γ satisfies the Atiyah conjecture (see Section 6).

Let us briefly summarize the differences between our proof of Theorem 1.1 and
previous proofs of special cases of Theorem 1.1. To simplify the discussion, we stick
to the principal case, so fix a f ∈ Z(Γ). We only summarize the proof of

hΣ(Xf , Γ) ≥ det+L(Γ)(f),

as the upper bound is simpler. Given a sofic approximation σi : Γ → Sdi
extend σi

to a map σi : C(Γ) → Mdi
(C) by
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σi(α) =
∑

g∈Γ

α̂(g)σi(g), if α =
∑

g∈Γ

α̂(g)g.

In order to make sense of the above sum, we view Sdi
⊆ Mdi

(C) as permutation
matrices. Note that σi(Z(Γ)) ⊆ Mdi

(Z). Thus we can view σi(f) as a homomorphism
T

di → T
di .

Previous proofs consisted of a two step process. First, one bounds the entropy
from below by the exponential growth rate of the size of the kernel of σi(f) as a
homomorphism T

di → T
di . This either requires knowing that σi(f) ∈ GLdi

(R) or
having “good control” over the kernel of σi(f) as an operator C

di → C
di . This “good

control” of the kernel in previous results could only be achieved when f is either
a very specific operator (such as the Laplace operators consider by Bowen-Li) or
when Γ is amenable. In this step, both the invertibility hypothesis on f and the fact
that Γ was residually finite played an important role in the nonamenable case. For
instance, the fact that Γ is residually finite allowed one to take σi to be an honest
homomorphism.

The second step is to prove that

det+(σi(f))1/di → det+L(Γ)(f), (2)

we call this the determinant approximation. Here det+(A) for A ∈ Mn(C) is de-
fined to be the product of all nonzero singular values of A (with repetition). All
previous results on Fuglede–Kadison determinants and entropy use (2), however we
suspect that this approximation is false in general. We will discuss at the end of
the introduction why we believe that previous proofs of special cases of (2) rely on
various heavily simplifying assumptions, and do not indicate or even suggest that
the general result is true.

Because of the possibility that the determinant approximation is false, we must
avoid determinant approximations and so we need genuinely new techniques to prove
Theorem 1.1. Instead of bounding the entropy from below by the exponential growth
rate of the size of the kernel, our approach is to bound the entropy from below by
the exponential growth rate of the size of the “approximate kernel” of σi(f) as a
homomorphism T

di → T
di . This is achieved by a simple compactness argument, and

in this case the lower bound becomes an equality. No previous proof of the rela-
tionship between determinants and entropy used this method. The approach using
the “approximate kernel” has two main advantages. First, to compute the entropy,
we are allowed to replace the“approximate kernel” of σi(f) with the “approximate
kernel” of any operator “close” to σi(f). Using that λ(f) is injective we show that we
can choose such a perturbation of σi(f) to be in GLdi

(R), which simplifies many of
the technicalities involved. Most importantly, counting the size of the “approximate
kernel” instead of the actual kernel has the desirable effect of increasing previous
lower bounds on entropy. It turns out that these lower bounds are improved enough
to completely avoid approximations such as (2). This is the first proof of equality
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between Fuglede–Kadison determinants and entropy which does not use the deter-
minant approximation. We remark that perturbations of σi(f) were used in [Li12]
(for slightly different purposes) in the case where Γ is amenable and λ(f) is invert-
ible. However, [Li12] does not use our “approximate kernel” approach and so still
has to use (2).

As we mentioned before, we believe that previous results establishing special cases
of the determinant approximation are too specific to indicate its validity in general.
Most of these results require an invertibility hypothesis on f. These invertibility
hypotheses imply a uniform lower bound on the smallest singular value of σi(f) and
make (2) a simple consequence of weak∗ convergence of spectral measures. In the
presence of singular values close to zero, weak∗-convergence is not strong enough to
conclude (2). As all of these results implicitly assume an absence of small singular
values they do not indicate how to approach the determinant approximation when
λ(f) is injective and not invertible, since σi(f) will always have singular values close
to zero in this case.

There are essentially only three special cases where (2) has been established
without implicitly assuming any lower bounds on singular values, these cases are
the following (listed in chronological order):

(a): For a residually finite group, it is natural to consider the sofic approximation
given by the action on a chain of normal subgroups. We call this the resid-
ually finite sofic approximation. This is one of the nicest and most natural
sofic approximations, as the maps are honest homomorphisms. For this sofic
approximation, the only case where (2) is known for every f ∈ Z(Γ) is when Γ
is virtually cyclic, (see [Luc02] Lemma 13.53).

(b): If f is a Laplacian operator (2) is a consequence of a result of Lyons in [Lyo05],
as noted in Section 3 of [BL12].

(c): If Γ is amenable and the sofic approximation is by Følner sequences (2) is
proved in [LT14] using a variant of the Ornstein-Weiss Lemma (for Γ = Z this
is a classical result of Szegő in [Sze15]).

For (a) one reduces to Γ = Z and uses nontrivial number-theoretic facts to show
that there are “not many small singular values”. These results are very dependent
on the group being the integers. So we feel that the group is far too restricted in
this case and the tools required are far too strong to indicate any belief in the
determinant approximation. Case (b) is too specific to the structure of f, since for
a general f ∈ Z(Γ) there will be no connection between determinants and graph
theory. Case (c) is too specific to the structure of the group, as there is no analogue
of the Ornstein-Weiss Lemma beyond amenable groups.

On the other hand, we have a good reasons to disbelieve the general determinant
approximation. One reason for our disbelief is the fact that the determinant approx-
imation is extremely difficult even when the sofic approximation is very nice. The
residually finite sofic approximation may be the most natural sofic approximation
and the determinant approximation is unknown in this case even when Γ = Z

2.
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Our second reason is that there are “near counterexamples” to the determinant ap-
proximation. For instance, it is known that (2) fails for the residually finite sofic
approximations if f ∈ C(Z) (see the remarks after Lemma 13.53 in [Luc02]). This
failure indicates that these number theoretic techniques are necessary in the integer
case. As it is absolutely unknown how to generalize these techniques, we do not
anticipate being able to generalize to the case of a general residually finite group.
Another “near counterexample” is discussed in [Gra15] (see Remark 10) where it is
remarked that one can find counterexamples to the determinant approximation for
Laplacian operators if one replaces sofic approximations with graph convergence in
the Benjamimi–Schramm sense. In short, it is completely unclear how to prove a
determinant approximation for Γ sofic and λ(f) injective. Such approximations are
very difficult without implicitly assuming uniform lower bounds on singular values,
nor are they likely to be true in general. Given these difficulties, we strongly believe
that avoiding these approximations is a useful technique for studying entropy of
algebraic actions of general sofic groups.

2 Preliminaries

2.1 Notation and terminology. We will use e for the identity element of a
group, unless the group is assumed abelian, in which case we will use 0. Abelian
group operations will be written additively, unless otherwise stated. In particular,
we use T = R/Z with group operations written additively, and do not view it is as
the unit circle in the complex plane. If H, K are Hilbert spaces, we use B(H, K) for
the space of bounded linear operators from H → K. We often use B(H) instead of
B(H, H).

We will use standard functional calculus notation for normal operators. Func-
tional calculus will most often be used in the finite dimensional case, for which we
note the following: if φ : C → C is Borel, H is a finite-dimensional Hilbert space, and
T ∈ B(H) is normal, then

φ(T ) =
∑

λ∈spec(T )

φ(λ) Projker(T−λI) .

Here ProjK denotes the orthogonal projection onto the subspace K, and spec(T )
denotes the spectrum of T. For any operator on a Hilbert space (normal or not), we
use |T | = (T ∗T )1/2. For x ∈ R

n, we will typically use

‖x‖2
2 =

1
n

n
∑

j=1

|xj |2,

we shall usually not need to consider ‖x‖�2(n) (in fact we will only need ‖ · ‖�2(n) in
Section 5). We use trn : Mn(C) → C for 1

n Tr where

Tr(A) =
n
∑

j=1

Ajj .
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This will usually be more natural to use than Tr . We will often drop the subscript
n if it is clear from context. We let Tr⊗ trn : Mm(Mn(C)) → C be given by

Tr ⊗ trn(A) =
m
∑

j=1

trn(Ajj).

A pseudometric on a set X is a function d : X ×X → [0, ∞) satisfying symmetry
and the triangle inequality, but we might have that d(x, y) = 0 and x �= y. A set X
with a pseudometric d will be called a pseudometric space. If (X, d) is a pseudometric
space and A, B ⊆ X, and ε ≥ 0, we say that A is ε-contained in B, and write A ⊆ε B
if for all a ∈ A, there is a b ∈ B so that d(a, b) ≤ ε. We say A ⊆ X is ε-dense if
X ⊆ε A. We use Sε(X, d) for the smallest cardinality of an ε-dense subset of X. We
say that A ⊆ X is ε-separated if for all a �= b in A we have d(a, b) > ε. We use
Nε(X, d) for the largest cardinality of a ε-separated subset of X. We always have
the following inequalities:

Sε(X, d) ≤ Nε(X, d) ≤ Sε/2(X, d). (3)

If δ, ε ≥ 0, and A ⊆δ B we have

N2(ε+δ)(A, d) ≤ Sε(B, d). (4)

Lastly, we use un for the uniform probability measure on {1, . . . , n}, and if A is a
finite set, we use uA for the uniform probability measure on the finite set A.

2.2 Preliminaries on Sofic groups and spectral measures. We start by
defining the basic notions of the group von Neumann algebra and trace. For our
purposes, we will need to induce all of our operations to the matricial level, and this
will be done in quite a natural way. Let Γ be a countable discrete group. We define
the left regular representation λ : Γ → U(�2(Γ)) by

(λ(g)f)(x) = f(g−1x).

We extend this to a map λ : C(Γ) → B(�2(Γ)) in the usual way. We extend to a map

λ : Mm,n(C(Γ)) → B(�2(Γ)⊕n, �2(Γ)⊕m)

by

(λ(f)ξ)(j) =
n
∑

k=1

λ(fjk)ξ(k).

Then for f ∈ Mm,n(C(Γ)), g ∈ Mn,k(C(Γ)) we have λ(fg) = λ(f)λ(g). For
f =

∑

g∈Γ agg ∈ C(Γ) we let

f∗ =
∑

g∈Γ

ag−1g.
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If f ∈ Mm,n(C(Γ)), we define f∗ ∈ Mn,m(C(Γ)) by (f∗)jk = f∗
kj , then λ(f∗) = λ(f)∗.

We let L(Γ) be the closure of λ(C(Γ)) in the weak operator topology, this is
called the group von Neumann algebra of Γ. We can view Mm,n(L(Γ)) as operators
in B(�2(Γ)⊕n, �2(Γ)⊕m). Under this identification, λ(Mm,n(C(Γ))) ⊆ Mm,n(L(Γ)).
For x ∈ L(Γ), we define τ(x) = 〈xδe, δe〉. Additionally, we define

Tr ⊗τ : Mn(L(Γ)) → C

by

Tr ⊗τ(x) =
n
∑

j=1

τ(xjj).

To save time, we will identify Mm,n(C(Γ)) ⊆ Mm,n(L(Γ)) via λ, thus any construc-
tion which applies to Mm,n(L(Γ)) will apply to Mm,n(C(Γ)). If x ∈ Mm,n(L(Γ)) we
let x̂ : {1, . . . , m} × {1, . . . , n} × Γ → C be given by

x̂(j, k, g) = τ(xjkg
−1).

If Ejk ⊗g ∈ Mm,n(C(Γ)) is given by g in the jk position and zero elsewhere, we have
for any f ∈ Mm,n(C(Γ))

f =
∑

1≤j≤m,
1≤k≤n

∑

g∈Γ

̂f(j, k, g)Ejk ⊗ g.

For x ∈ Mm,n(L(Γ)) we use ‖x‖∞ for the operator norm of x. In particular,
since we will view C(Γ) ⊆ L(Γ), we use ‖f‖∞ for the operator norm of f ∈ C(Γ)
as an operator on �2(Γ), and a similar remark applies to elements in Mm,n(C(Γ)).
Additionally, for x ∈ Mm,n(L(Γ)), we will use

‖x‖2
2 = Tr ⊗τ(x∗x),

and similarly for f ∈ Mm,n(C(Γ)). We thus caution the reader that ‖f‖∞ does not
refer to the supremum of | ̂f(j, k, g)|, for this we will use ‖ ̂f‖∞. Note that this agrees
in the case Γ = Z

d with the usual practice of viewing elements of Z(Zd) as elements
of C(Td). For f ∈ Mm,n(L(Γ)),

‖f‖2 = ‖ ̂f‖2.

Similarly, we will use |f | ∈ Mn(L(Γ)) for the operator square root of f∗f if f ∈
Mm,n(C(Γ)), and not for the element of C(Γ) whose coefficients are the pointwise
absolute value of the coefficients of f. We leave it as an exercise to verify the following
properties (using 1 for the identity element of Mn(L(Γ))).

1: Tr ⊗τ(1) = n,
2: Tr ⊗τ(x∗x) ≥ 0, with equality if and only if x = 0,
3: Tr ⊗τ(xy) = Tr ⊗τ(yx), for all x, y ∈ Mn(L(Γ)),
4: Tr ⊗τ is weak operator topology continuous.
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Definition 2.1. Let Γ be a countable discrete group, and x ∈ Mn(L(Γ)) be a
normal element. We let μx be the Borel measure on the spectrum of x defined
by μx(E) = Tr ⊗τ(χE(x)), it is called the spectral measure of x with respect to τ.
Additionally, if A ∈ Mn(Mm(C)) is normal we define the spectral measure of A with
respect to trm by μA(E) = Tr ⊗ trm(χE(A)).

For a normal element x ∈ Mn(L(Γ)), we remark that μx is supported in

{z ∈ C : |z| ≤ ‖x‖∞}.

For readers less familiar with functional calculus, we note that we may characterize
the spectral measure of x in the following equivalent way:

∫

tn dμx(t) = Tr ⊗τ(xn).

For the definition of topological entropy, we need to restrict ourselves to the class of
sofic groups.

Definition 2.2. Let Γ be a countable discrete group. A sofic approximation of Γ
is a sequence Σ = (σi : Γ → Sdi

) of functions (not assumed to be homomorphisms)
such that (using udi

for the uniform measure on {1, . . . , di})

1: di → ∞,
2: udi

({j : (σi(g)σi(h))(j) = σi(gh)(j)}) → 1, for all g, h ∈ Γ,
3: udi

({j : σi(g)(j) �= σi(h)(j)}) → 1, for all g �= h ∈ Γ.

We say that Γ is sofic if it has a sofic approximation.

We could remove the condition di → ∞, and still have the same definition of
a sofic group. However, in order for the definition of topological entropy to be an
invariant we need di → ∞. The condition di → ∞ is also implied if Γ is infinite,
which will be the main case we are interested in anyway. It is known that the class
of sofic groups contain all amenable groups, all residually sofic groups, all locally
sofic groups, all linear groups and is closed under free products with amalgamation
over amenable subgroups. For more see [ES11],[Pau11],[DKP13],[Pop14].

Let Σ = (σi : Γ → Sdi
) be a sofic approximation. We extend σi to a map

σi : C(Γ) → Mdi
(C)

by

σi(f) =
∑

g∈Γ

̂f(g)σi(g),

and

σi : Mm,n(C(Γ)) → Mm,n(Mdi
(C))
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by
σi(f)jk = σi(fjk).

We shall present a Lemma from [Hay]. For terminology, if A ∈ Mm,n(C), we use
‖A‖2

2 = trn(A∗A), we shall use ‖A‖∞ for the operator norm of A.

Lemma 2.3 (Lemma 2.6 in [Hay]). Let Γ be a countable discrete sofic group wit sofic
approximation Σ = (σi : Γ → Sdi

). Let f ∈ Mm,n(C(Γ)), and let Ai ∈ Mm,n(Mdi
(C))

with supi ‖Ai‖∞ < ∞, and ‖σi(f) − Ai‖2 → 0. Then,

μ|Ai| → μ|f |

in the weak∗-topology.

We leave it as an exercise to verify that if x ∈ Mn(L(Γ)) is normal, and φ : C → C

is bounded and Borel, then

Tr ⊗τ(φ(x)) =
∫

φ(t) dμx(t).

This motivates the following definition.

Definition 2.4. Let Γ be a countable discrete group, and x ∈ Mn(L(Γ)). We define
the Fuglede–Kadison determinant of x by

detL(Γ)(x) = exp

(

∫

[0,∞)
log(t) dμ|x|(t)

)

.

With the convention that exp(−∞) = 0. Note that μ|x| is supported in a compact
set, so this definition makes sense. If x ∈ Mm,n(L(Γ) we define the positive Fuglede–
Kadison determinant of x by

det+L(Γ)(x) = detL(Γ)(|x| + χ{0}(|x|)) = exp

(

∫

(0,∞)
log(t) dμ|x|(t)

)

.

If A ∈ Mn(C), then the positive determinant of A, written det+(A) is equal to
det(|A|+χ{0}(|A|)) i.e. the product of the nonzero eigenvalues of |A|. We leave it as
an exercise to verify that

det+(A) = det+
C
(A)

where C is regarded as a tracial von Neumann algebra with its unique tracial state.
We need the following result of Elek-Lippner (see [EL10] Theorem 3 in Section 6),
which follows from the weak∗ convergence we have already shown.

Corollary 2.5. Let Γ be a countable discrete sofic group, and f ∈ Mm,n(Z(Γ)).
Then

det+L(Γ)(f) ≥ 1.

In particular, | log(t)| is integrable with respect to μ|f | on spec(|f |) \ {0}.
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Finally, we end with one more approximation Lemma which will be relevant for
our purposes. For this, we need some more functional analysis. Let ρ : Γ → �2(Γ) be
the right regular representation given by

[ρ(g)f ](x) = f(xg).

If K ⊆ �2(Γ)⊕n is a closed linear subspace which is invariant under ρ⊕n, it is known
that ProjK ∈ Mn(L(Γ)). We define the von Neumann dimension of K by

dimL(Γ)(K) = Tr ⊗τ(ProjK).

It is known that dimL(Γ)(K) = 0 if and only if K = 0, that K ∼= H as representations
of Γ implies that dimL(Γ)(K) = dimL(Γ)(H), and that for any x ∈ Mm,n(L(Γ)),

dimL(Γ)(im x) + dimL(Γ)(ker(x)) = n.

See Theorem 1.12 in [Luc02] for proofs of these facts. We need the following analogue
of Lück approximation valid for a general sofic group.

Lemma 2.6 ([ES05] Proposition 6.1). Let Γ be a countable discrete sofic group
with sofic approximation Σ = (σi : Γ → Sdi

). Let f ∈ Mm,n(Z(Γ)), and let Ai ∈
Mm,n(Mdi

(Z)) with supi ‖Ai‖∞ < ∞, and ‖σi(f) − Ai‖2 → 0. Then,

dimL(Γ)(kerλ(f)) = lim
i→∞

dimR(ker(Ai) ∩ (Rdi)⊕n)
di

.

We end this section with a proposition which should will translate our hypotheses
in terms of viewing f ∈ Mm,n(C(Γ)) as a “left” multiplication operator to that of
a “right” multiplication operator. This proposition is well-known, we only decide to
include it to clarify any potential confusion the reader might have between left and
right multiplication operators. For f ∈ C(Γ) we define

r(f) : �2(Γ) → �2(Γ)

by

(r(f)ξ)(g) =
∑

x∈Γ

ξ(gx−1) ̂f(x).

For A ∈ Mm,n(C(Γ)) define

r(A) : �2(Γ)⊕m → �2(Γ)⊕n

by

(r(A)ξ)(l) =
m
∑

s=1

r(Asl)ξ(s).

Proposition 2.7. Let Γ be a countable discrete group, and fix f ∈ Mm,n(Z(Γ)).
Consider the following conditions:
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(a) λ(f) is injective,
(b) λ(f) has dense image,
(c) r(f) is injective,
(d) r(f) has dense image.

Then

(i) (a) and (d) are equivalent,
(ii) (b) and (c) are equivalent,
(iii) (a) implies that n ≤ m,
(iv) (b) implies that m ≤ n,
(v) if m = n, then all of (a), (b), (c), (d) are equivalent.

Proof. To prove (i), consider the unitary

R : �2(Γ) → �2(Γ)

given by

(Rξ)(g) = ξ(g−1).

Fix α ∈ Z(Γ) and ξ ∈ �2(Γ). Then for any h ∈ Γ:

(λ(α)R(ξ))(h) =
∑

x∈Γ

α̂(x)(R(ξ))(x−1h)

=
∑

x∈Γ

α̂(x)ξ(h−1x)

=
∑

x∈Γ

α̂(x−1)ξ(h−1x−1)

=
∑

x∈Γ

̂α∗(x)ξ(h−1x−1)

=
∑

x∈Γ

ξ(h−1x−1)̂α∗(x)

= (r(α∗)ξ)(h−1)
= R(r(α∗)ξ)(h),

so λ(α)R = Rr(α∗). Now fix ζ ∈ �2(Γ)⊕n, we then have for all 1 ≤ l ≤ m:

(λ(f)R⊕n(ζ))(l) =
n
∑

j=1

λ(flj)R(ζ(j)) =
n
∑

j=1

R(r(f∗
lj)ζ(j))

= R

⎛

⎝

n
∑

j=1

r((f∗)jl)ζ(j)

⎞

⎠ = R((r(f∗)ζ)(l)),



536 B. HAYES GAFA

where we use that we already showed that λ(α)R = R(r(α∗)) for all α ∈ Z(Γ). We
can summarize the above computation by saying that

λ(f)R⊕n = R⊕nr(f∗) = R⊕nr(f)∗.

Statements (i), (ii) now follow from the functional analytic fact that (ker(T ))⊥ =
im(T ∗) for any bounded linear operator T between two Banach spaces. Statements
(iii),(iv) are consequences of the Rank-Nullity Theorem for von Neumann dimension
(see [Luc02] Theorem 1.12 (2)), and (v) also follows from the Rank-Nullity Theorem
for von Neumann dimension. ��

3 The Main Reduction

Let f ∈Mm,n(Z(Γ)), we will use Xf for the Pontryagin dual of Z(Γ)⊕n/r(f)(Z(Γ)⊕m)
The goal of this section is to give an alternate formula for the entropy of Γ � Xf ,
which will be simpler for us to deal with and will reduce the problem to (a limit of)
finite-dimensional analysis. The essential idea, as we stated before, is that instead
of dealing with microstates

{1, . . . , di} → Xf

we deal with microstates

{1, . . . , di} → (TΓ)n,

which are “small” on r(f)(Z(Γ)⊕m) (viewing (TΓ)n as the dual of Z(Γ)⊕n) and note
that these have to be “close” to microstates which actually take values in Xf .

We first recall the definition of topological entropy for a sofic group, throughout
whenever X is a set we identify Xn with all functions {1, . . . , n} → X. If (X, d) is a
pseudometric on X and 1 ≤ p ≤ ∞, we let dp be the pseudometric on Xn defined
by

dp(φ, ψ)p =
1
n

n
∑

j=1

d(φ(j), ψ(j))p,

with the usual modification if p = ∞.

Definition 3.1. Let Γ be a countable discrete sofic group with sofic approximation
Σ = (σi : Γ → Sdi

). Let X be a compact metrizable space with Γ � X by homeo-
morphisms. If ρ is a continuous pseudometric on X, δ > 0 and F ⊆ Γ finite we let
Map(ρ, F, δ, σi) be all maps φ : {1, . . . , di} → X such that ρ2(φ ◦ σi(g), gφ) < δ for
all g ∈ F.

We will typically refer to the elements of Map(ρ, F, δ, σi) as “microstates”. This
is only a heuristic term and will not be defined rigorously.
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Definition 3.2. Let Γ be a countable discrete group and Γ � X by homeomor-
phisms. We say that a continuous pseudometric ρ on X is dynamically generating if
whenever x �= y in X, then there is a g ∈ Γ so that ρ(gx, gy) > 0.

Definition 3.3. Let Γ be a countable discrete sofic group with sofic approximation
Σ = (σi : Γ → Sdi

). Let X be a compact metrizable space and Γ � X by homeo-
morphisms and fix a dynamically generating pseudometric ρ on X. We define the
topological entropy of Γ � X by

hΣ(ρ, F, δ, ε) = lim sup
i→∞

log Sε(Map(ρ, F, δ, σi), ρ2)
di

hΣ(ρ, ε) = inf
F⊆Γfinite,

δ>0

hΣ(ρ, F, δ, ε)

hΣ(X, Γ) = sup
ε>0

hΣ(ρ, ε).

By Theorem 4.5 in [KL11], and Proposition 2.4 in [KL13] this does not depend on
the choice of dynamically generating pseudometric.

A few remarks about the definition. First in [KL13] Kerr-Li use Nε instead of
Sε, however by inequality (3) in Section 1 this does not matter. We will actually use
both Nε and Sε. Secondly, in [KL13], Kerr-Li typically use

Nε(Map(ρ, F, δ, σi), ρ∞).

We will prefer to use ρ2 instead of ρ∞, firstly because we will use a large amount
of Borel functional calculus, which is much nicer in a Hilbert-space, even in the
finite dimensional setting. Secondly, we will get our lower estimates on topological
entropy by using a perturbation argument. Essentially, we will include our space X
in a larger space Y, and consider microstates {1, . . . , di} → Y which are “close” to
X, our methods will necessitate this closeness being with respect to ρ2, not ρ∞. If
we use Sε(. . . , ρ2) instead of Sε(. . . , ρ∞), then it is significantly easier to show that
this method gives the topological entropy. The idea of using ρ2 instead of ρ∞ goes
back to Hanfeng Li in [Li12], it was also used in the proof of Lemma 7.12 in [BL12].

Let us formulate the perturbation ideas more precisely, in the case of algebraic
actions. For notation, if x ∈ R, we use

|x + Z| = inf
k∈Z

|x + k|.

Definition 3.4. Let Γ be a countable discrete sofic group with sofic approximation
Σ = (σi : Γ → Sdi

). Let B ⊆ A be countable Z(Γ)-modules. Let ρ be a dynamically
generating pseudometric on ̂A, and D ⊆ B be any set so that ΓD generates B as an
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abelian group. For F ⊆ Γ finite, E ⊆ D finite, and δ > 0, we let Map(ρ|E, F, δ, σi)
be the set of all φ ∈ Map(ρ, F, δ, σi) so that

1
di

di
∑

j=1

|φ(j)(a)|2 < δ2

for all a ∈ E. We set

hΣ(ρ|E, F, δ, ε) = lim sup
i→∞

1
di

log Sε(Map(ρ|E, F, δ, σi), ρ2),

hΣ(ρ|D, ε) = inf
F⊆Γ finite,

E⊆Dfinite,
δ>0

hΣ(ρ|E, F, δ, ε),

hΣ(ρ|D) = sup
ε>0

hΣ(ρ|D, ε).

Let us motivate the definition a little. Intuitively, a microstate is a finitary model
of our dynamical system. Given the algebraic structure of A/B, a microstate for Γ �

Â/B can be thought of in two different ways: one is an element of Map(ρ|
Â/B

, F, δ, σi)

(recall that Â/B can be viewed as a subspace of ̂A). But, since Â/B are all elements
in ̂A which are zero on B, we may also think of a microstate for Γ � Â/B, as a
microstate for Γ � ̂A which is small on B. Thus, Map(ρ|E, F, δ, σi) can be simply be
viewed as another microstates space for the action of Γ on Â/B. We now reformulate
topological entropy in terms of this new microstates space.

Lemma 3.5. Let Γ be countable discrete sofic group with sofic approximation Σ. Let
B ⊆ A be countable Z(Γ)-modules, let ρ be a dynamically generating pseudometric
on ̂A, and let D ⊆ B be such that ΓD generates B as an abelian group. Then,

hΣ(Â/B, Γ) = hΣ(ρ|D, Γ).

Proof. We use ρ
∣

∣

Â/B
to compute the entropy of Γ � Â/B. A compactness argument

implies that for all F ⊆ Γ finite, δ > 0, there are finite E ⊆ D, F ′ ⊆ Γ, and a δ′ > 0
so that if χ ∈ ̂A, and |χ(ga)| < δ′ for all g ∈ F ′, a ∈ E, then there is a χ̃ ∈ Â/B so
that

sup
g∈F

ρ(gχ, gχ̃) < δ.

The proof now follows in the same way as Proposition 4.3 in [Hay]. ��

We will apply this to the situation when A = Z(Γ)⊕n, B = r(f)(Z(Γ)⊕m), where
f ∈ Mm,n(Z(Γ)), but first we need more notation. If x ∈ R

n we will always use ‖x‖2
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for the �2-norm of x with respect to the uniform probability measure. If Λ ⊆ R
n is

a lattice we set

‖x‖2,Λ = inf
λ∈Λ

‖x − λ‖2,

and we use

θ2,Λ(x, y) = ‖x − y‖2,Λ.

Finally, if T ∈ Mm,n(Z), and δ > 0, we set

Ξδ(T ) = {ξ ∈ R
n : ‖Tξ‖2,Zm < δ}.

Proposition 3.6. Let Γ be a countable discrete sofic group with sofic approxima-
tion Σ = (σi : Γ → Sdi

). Let f ∈ Mm,n(Z(Γ)), then

hΣ(Xf , Γ) = sup
ε>0

inf
δ>0

lim sup
i→∞

1
di

log Sε(Ξδ(σi(f)), θ2,(Zdi )⊕n).

Proof. Set A = Z(Γ)⊕n, B = r(f)(Z(Γ)⊕m). We shall view ̂A = (TΓ)n, by

〈ζ, α〉 =
∑

1≤l≤n,
g∈Γ

ζ(l)(g)α̂(l)(g),

for ζ ∈ (TΓ)n, α ∈ Z(Γ)⊕n.
Let ρ be the dynamically generating pseudometric on ̂A given by

ρ(χ1, χ2)2 =
1
n

n
∑

k=1

|χ1(k)(e) − χ2(k)(e)|2.

Given x ∈ Ms,t(L(Γ)), we let x̃ ∈ Mt,s(L(Γ)) be defined by

(x̃)ij = xji.

Write

f =

⎡

⎢

⎢

⎢

⎣

˜f1

˜f2
...
˜fm

⎤

⎥

⎥

⎥

⎦

,

where fj ∈ Mn,1(Z(Γ)), and view Z(Γ)⊕n = Mn,1(Z(Γ)). Lastly, set D={f1, . . . , fm}.
We now apply Lemma 3.5 for this A, B, ρ, D. For ξ ∈ Ξδ(σi(f)), define

φξ : {1, . . . , di} → (TΓ)n
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by

φξ(j)(k)(g) = ξ(σi(g)−1j)(k) + Z.

By a simple computation

〈φξ(j), fl〉 = (σi(fl)ξ)(j) + Z

(recall that we are viewing (TΓ)n as the dual of Z(Γ)⊕n). As

1
m

m
∑

l=1

‖σi(fl)ξ‖2
2,Zdi = ‖σi(f)ξ‖2

2,(Zdi )⊕m ,

ρ2(φξ, φξ′) = ‖ξ − ξ′‖2,(Zdi )⊕n ,

by the preceding Lemma we find that

sup
ε>0

inf
δ>0

lim sup
i→∞

1
di

log Sε(Ξδ(σi(f)), θ2,(Zdi )⊕n) ≤ hΣ(Xf , Γ).

For the reverse inequality, given φ ∈ Map(ρ|D, F, δ, σi), let ζφ ∈ (Tdi)n be given by

ζφ(k)(j) = φ(j)(k)(e),

and let ξφ ∈ (Rdi)n be any lift of ζφ under the quotient map

(Rdi)n → (Tdi)n.

Viewing (TΓ)n as the dual of Z(Γ)⊕n,

〈φ(j), fl〉 =
n
∑

k=1

∑

g∈Γ

̂fl(k, g)φ(j)(k)(g)

=
n
∑

k=1

∑

g∈Γ

̂fl(k, g)[g−1φ](j)(k)(e),

and

(σi(fl)ζφ)(j) =
n
∑

k=1

∑

g∈Γ

̂fl(k, g)φ(σi(g)−1(j))(k)(e).

Thus it is not hard to see that

1
di

di
∑

j=1

|〈φ(j), fl〉 − (σi(fl)ζφ)(j)|2 ≤ η(F, δ),

with

lim
(F,δ)

η(F, δ) = 0,
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(Here the pairs are ordered by (F, δ) ≤ (F ′, δ′) if δ′ ≤ δ, F ′ ⊇ F ).
Since

1
di

di
∑

j=1

|〈φ(j), fl〉|2 < δ2,

we have that

‖σi(fl)ξφ‖2,Zdi ≤ δ + η(F, δ)1/2.

As

‖σi(f)ξφ‖2
2,(Zdi )⊕m =

1
m

m
∑

l=1

‖σi(fl)ξφ‖2
2,Zdi ,

if we are given a δ′ > 0, we can find a finite F ⊆ Γ, and a δ > 0 so that

ξφ ∈ Ξδ′(σi(f))

for all φ ∈ Map(ρ|D, F, δ, σi). As

‖ξφ − ξψ‖2,(Zdi )⊕n = ρ2(φ, ψ),

for all ψ, φ ∈ Map(ρ|D, F, δ, σi) we have

Sε(Map(ρ|D, F, δ, σi), ρ2) = Sε({ξφ : φ ∈ Map(ρ|D, F, δ, σi)}, θ2,(Zdi )⊕n).

By our choice of F, δ we have

{ξφ : φ ∈ Map(ρ|D, F, δ, σi)} ⊆ Ξδ′(σi(f)),

so for any ε > 0 we have (by (3)):

Sε(Map(ρ|D, F, δ, σi), ρ2) = Sε({ξφ : φ ∈ Map(ρ|D, F, δ, σi)}, θ2,(Zdi )⊕n)
≤ Sε/2(Ξδ′(σi(f)), θ2,(Zdi )⊕n).

Thus the reverse inequality follows. ��

The above proposition will be our main tool to evaluate the topological entropy of
Γ � Xf . Let us remark on the advantage of our approach. Previously, the techniques
in sofic entropy of algebraic actions have been as follows: take ξ ∈ σi(f)−1(Zdi), and
consider φξ as in the above proposition. If Γ is residually finite, and σi comes from
a sequence of finite quotients, then φξ maps into Xf instead of just (TΓ)n. Similar
remarks apply if Γ is amenable (and not necessarily residually finite). Now, one is
led to estimate

∣

∣

∣

∣

σi(f)−1(Zdi)
Zdi

∣

∣

∣

∣

.
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If σi(f) is invertible, we will see later that this is

| det(σi(f))|,

and if we have reasonable control over ker(σi(f)), then this expression is close to

det+(σi(f)).

Now to get the lower bound, one has to establish

lim
i→∞

det+(σi(f))1/di = detL(Γ)(f), (5)

when n = m. Equivalently,
∫

(0,∞)
log(t) dμ|σi(f)|(t) →

∫

(0,∞)
log(t) dμ|f |(t).

However, this is far from obvious given that all we know is that

μ|σi(f)| → μ|f |

weak∗. In the case when Γ is residually finite and σi come from a sequence of finite
quotients, such a statement amounts to counting entropy as a growth rate of periodic
points. In [KL11], Kerr and Li assume an invertibility hypothesis on f, which implies
that μ|σi(f)|, μ|f | have support inside [C, M ], for some C, M > 0, and so (5) does
follow by weak∗ convergence. In [BL12], Bowen-Li consider the case when f is a
Laplacian operator, Γ is residually finite, and σi come from a sequence of finite
quotients. This specific structure allows them to control the kernel of f and the
asymptotics of distributions of periodic points is true by some nontrivial graph-
theoretic facts. In [LT14], Li-Thom prove a result analogous to (5) for amenable
groups, using quasi-tiling arguments and a statement similar to the Ornstein–Weiss
Lemma. This argument is very special to the case of amenable groups.

It is our opinion that the approximation results (5) are too difficult to establish in
the nonamenable case without an invertibility hypothesis (for which the entropy has
already been computed), or very specific information about f. Further, we do not
expect (5) is true for general sofic approximations. Thus we seek a method of proof
avoiding such an approximation result. This is the main advantage of our approach:
first to produce microstates one can use not only vectors ξ ∈ σi(f)−1(Zdi), but
also vectors ξ ∈ (Rdi)⊕n so that ‖σi(f)ξ‖2 < δ. This creates more elements in our
microstates space, making it simpler to get a lower bound. Further since the methods
are perturbative in nature, one is allowed more flexibility in perturbing the operator
and this will allow greater control over the kernel. We remark that the idea of
perturbing σi(f) has already seen some applications to entropy of algebraic actions,
see e.g. Theorem 7.1 of [Li12]. We now make precise the notion of perturbation that
we are using. For notation, if j, k ∈ N with j ≤ k, we use ej ∈ R

k for the vector
which is 1 in the jth coordinate and zero elsewhere. If V is a vector space l, n ∈ N,
with l ≤ n, and v ∈ V, we use v ⊗ el ∈ V ⊕n, for the element which is v in the lth

coordinate and zero elsewhere.
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Definition 3.7. Let Γ be a countable discrete sofic group with sofic approximation
σi : Γ → Sdi

. Extend σi to σi : Mm,n(Z(Γ)) → Mm,n(Mdi
(Z)) by

(σi(f))st =
∑

g∈Γ

̂fst(g)σi(g).

Fix f ∈ Mm,n(Z(Γ)), a sequence xi ∈ Mm,n(Mdi
(Z)) is said to be a rank perturbation

of σi(f) if

sup
i

‖xi‖∞ < ∞,

udi
({1 ≤ j ≤ di : xi(el ⊗ ej) = σi(f)(el ⊗ ej) for all 1 ≤ l ≤ n}) → 1.

The main relevance of rank perturbations is that often we have a much stronger
control on images or kernels of rank perturbations than we do of the original oper-
ator. This will be clear from the following proposition. For the proof, we define

mφ : �2(n, un) → �2(n, un)

for φ ∈ �∞(n) by

mφ(ξ)(l) = φ(l)ξ(l).

Proposition 3.8. Let Γ be a countable discrete sofic group, and let σi : Γ → Sdi

be a sofic approximation. Let f ∈ Mm,n(Z(Γ)).

(i): If λ(f) has dense image as on operator on �2(Γ)⊕n (so that necessarily n ≥
m by Proposition 2.7), then there is a rank perturbation xi of σi(f) so that
im(xi) = R

Ai , for some Ai ⊆ {1, . . . , di}m with

lim
i→∞

|Ai|
di

= m.

(ii): If λ(f) has dense image as on operator on �2(Γ)⊕n and is injective as an operator
on �2(Γ)⊕n (so that necessarily m = n by Proposition 2.7), then there is a rank
perturbation xi of σi(f) with xi ∈ GLn(Mdi

(R)).
(iii): If xi is any rank perturbation of σi(f) we have

sup
ξ∈Rdi

‖(xi − σi(f))ξ‖2,(Zdi )⊕m →i→∞ 0.

Proof. (i): Let Ai ⊆ {1, . . . , di}m be such that

Projim(σi(f))⊥
∣

∣

R
Ac

i

is an isomorphism onto im(σi(f))⊥. By Lemma 2.6 we have

lim
i→∞

|Ac
i |

di
= lim

i→∞
dimR(ker(σi(f)∗) ∩ (Rdi)⊕m)

di
= dimL(Γ)(ker λ(f∗)) = 0.
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Set xi = mχAi
σi(f), then xi is a rank perturbation of σi(f) and

|Ai|
di

→ m.

Clearly, xi((Rdi)⊕n) ⊆ R
Ai . Suppose that ξ ∈ R

Ai , choose a ζ ∈ R
Ac

i so that

Projim(σi(f))⊥(ζ) = Projim(σi(f))⊥(ξ).

Thus there is an η ∈ (Rdi)⊕n so that σi(f)η = ξ − ζ. So xiη = ξ and therefore
xi((Rdi)⊕n) = R

Ai .

(ii): Let Ai ⊆ {1, . . . , di}n, Bi ⊆ {1, . . . , di}n be such that

Projim(σi(f))⊥
∣

∣

R
Ac

i
,

Projker(σi(f))⊥
∣

∣

RBi
,

are isomorphisms onto im(σi(f))⊥, ker(σi(f))⊥, respectively. Set

xo
i = mχAi

σi(f)mχBi
.

As in (i) we have that xo
i is a rank perturbation of σi(f). Moreover, |Bi| = |Ai|.

We claim that ker(xo
i )∩(Rdi)⊕n = R

Bc
i , xo

i ((R
di)⊕n) = R

Ai . To see this, suppose
that ξ ∈ (Rdi)⊕n and that xo

i ξ = 0. So

σi(f)(χBi
ξ) ∈ R

Ac
i ,

but

Projim(σi(f))⊥(σi(f)(χBi
ξ)) = 0,

so our choice of Ai forces σi(f)(χBi
ξ) = 0. So

Projker(σi(f))⊥(χBi
ξ) = 0,

and our choices of Bi forces χBi
ξ = 0, i.e. ξ∈R

Bc
i . The proof that xo

i ((R
di)⊕n) =

R
Ai is similar to (i). Let Vi ∈ Mdi

(Z) be such that

V ∗
i Vi = mχBc

i
,

ViV
∗
i = mχAc

i
,

(e.g. let Vi be the natural operator induced by a bijection Bc
i → Ac

i ). Set

xi = xo
i + Vi.

It is easy to check that xi is a rank perturbation of σi(f), and that xi ∈
GLdi

(Mdi
(R)).
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(iiii): Let

Ji = {j : xi(el ⊗ ej) = σi(f)(el ⊗ ej) for 1 ≤ l ≤ n}.

For ξ ∈ (Rdi)⊕n we have

‖(xi − σi(f))ξ‖2
2,(Zdi )⊕n =

1
n

n
∑

l=1

‖((xi − σi(f))ξ)(l)‖2
2,Zdi

=
1
n

n
∑

l=1

‖[(xi − σi(f))(χJc
i
(ξ))](l)‖2

2,Zdi .

For any ζ ∈ R
di we have

‖χJc
i
ζ‖2

2,Zdi ≤ udi
(Jc

i ).

So

‖(xi − σi(f))ξ‖2
2,(Zdi )⊕n ≤ (‖xi‖∞ + ‖ ̂f‖1)2udi

(Jc
i )

from the definition of rank perturbation we have

sup
i

‖xi‖∞ < ∞,

udi
(Jc

i ) → 0,

which proves the proposition. ��

4 Fuglede–Kadison Determinants and Topological Entropy

4.1 The entropy of Xf when f ∈ Mn(Z(Γ)). The aim of this section is to
prove that when f ∈ Mn(Z(Γ)) with λ(f) injective, then

hΣ(Xf , Γ) = log detL(Γ)(f).

As stated before, when f ∈ Mm,n(Z(Γ)) is injective as an operator on �2(Γ)⊕n we
have the upper bound

hΣ(Xf , Γ) ≤ log det+L(Γ)(f),

however the proof of this uses more advanced operator algebraic techniques so we
will postpone it until the next subsection.

Before we proceed to the proof of the main theorem, we will need a few more
technical lemmas. The first of these Lemmas is essentially the same as Lemma 7.10
in [BL12], and is equivalent to the statement of Lemma 4.6 in [LT14]. To state it, let
H, K be finite dimensional Hilbert spaces, and T ∈ B(H, K) be invertible. If δ > 0,
we let detδ(T ) be the product of eigenvalues of |T | in the interval (0, δ], counted
with multiplicity. If H is a Hilbert space, we let Ball(H) be the closed unit ball of
H.
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Lemma 4.1. Let H, K be finite dimensional Hilbert spaces, and T ∈ B(H, K) be
injective. Let δ, ε > 0. If 4δ < ε, then

Nε(T−1(δ Ball(K)), ‖ · ‖H) ≤ det 4δ

ε
(T )−1.

Proof. Since

‖|T |ξ‖ = ‖Tξ‖,

we have

T−1(δ Ball(K)) = |T |−1(δ Ball(H)).

The Lemma is now equivalent to Lemma 4.6 in [LT14]. ��

The next Lemma goes back to Rita Solomyak in [Sol98]. It has subsequently been
used many times in the computation of entropy of algebraic actions (see e.g. Lemma
3.1 in [Li12]).

Lemma 4.2. Let n ∈ N, and T ∈ Mn(Z) ∩ GLn(R). Then

|T−1(Zn)/Z
n| = | det(T )|.

We need some good control on the number of small integers.

Lemma 4.3. We have that

inf
ε>0

lim sup
n→∞

1
n

log |Zn ∩ ε Ball(�1(n, un))| = 0.

Proof. Let

Ω =

⎧

⎨

⎩

(F1, . . . , F�nε) : Fj ∈ N,
∑

j

jFj ≤ nε

⎫

⎬

⎭

,

for F ∈ Ω, set

F0 = n −
∑

j

Fj .

Given x ∈ Z
n ∩ ε Ball(�1(n, un)), and 1 ≤ j ≤ nε, j ∈ N, set

Fj(x) = |{l : |x(l)| = j}|.

For x ∈ Z
n ∩ ε Ball(�1(n, un)), we have that (F1(x), . . . , F�nε(x)) ∈ Ω, and given

(F1, . . . , F�nε) ∈ Ω, there are at most

2nε n!
F0!F1! · · ·F�nε!
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possible x ∈ Z
n ∩ ε Ball(�1(n, un)) with Fj(x) = Fj , for j = 1, . . . , n. Thus

|Zn ∩ ε Ball(�1(n, un))| ≤ 2nε
∑

F∈Ω

n!
F0!F1! · · ·F�nε!

.

We have that

Ω ⊆
�nε
∏

j=1

{

F ∈ Z : 0 ≤ F ≤
⌊

nε

j

⌋}

.

So

|Ω| ≤ (nε + 1)
(nε

2
+ 1

)(nε

3
+ 1

)

· · ·
(

nε

�nε� + 1
)

≤ 2nε(nε)
(nε

2

)(nε

3

)

· · ·
(

nε

�nε�

)

≤ 2nε (nε)nε

(�nε�)! ,

and by Stirling’s formula there is some C > 0 so that

|Ω| ≤ Cenε2nε

√
4πnε

. (6)

We thus only have to bound

n!
F0!F1! · · ·F�nε!

for F ∈ Ω. By elementary calculus

1
k!

≤ k−keke−1,

for all k ∈ N. Thus by Stirling’s Formula, there is a κ(n) with

lim
n→∞

1
n

log κ(n) = 0

so that

n!
F0!F1! · · ·F�nε!

≤ κ(n)nne−�nε
�nε
∏

j=0

F
−Fj

j

≤ κ(n)e−nε+1

(

F0

n

)−F0

exp

⎛

⎝−n

�nε
∑

j=1

Fj

n
log

Fj

n

⎞

⎠

≤ κ(n)e−nε+1(1 − ε)−n(1−ε) exp

⎛

⎝−n

�nε
∑

j=1

Fj

n
log

Fj

n

⎞

⎠ , (7)
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as F0 ≥ n(1 − ε). It thus suffices to estimate

−
�nε
∑

j=1

Fj

n
log

Fj

n
.

It is then enough to estimate the maximum of

φ(x) = −
�nε
∑

j=1

xj log xj ,

on

D =

⎧

⎨

⎩

x ∈ R
�nε : xj ≥ 0,

∑

j

jxj ≤ ε

⎫

⎬

⎭

.

It is easy to see that the maximum occurs at a point where
∑

j

jxj = ε.

Let x be a point where φ achieves its maximum. By the method of Lagrange multi-
pliers, we see that if ε < 1

e , then there is a λ > 0 so that

− log xj = λj + 1,

whenever xj �= 0. Thus

φ(x) = −
∑

j:xj �=0

xj log(xj)

=
∑

j:xj �=0

(λj + 1)xj

= λε +
∑

j

xj

≤ (λ + 1)ε.

But,

ε =
∑

j:xj �=0

jxj

= e−1
∑

j:xj �=0

je−λj

≤ e−1
∞
∑

j=1

je−λj

= e−1 e−λ

(1 − e−λ)2
.
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We need to get an upper bound on λ. If e−λ ≥ 1/2, then we are done. Otherwise,

eε ≤ 4e−λ,

which implies that

λ ≤ log(4) − 1 − log(ε).

So

φ(x) ≤ max (ε log(4) − ε log(ε), ε + ε log(2)) .

Therefore

max
F∈Ω

−
�nε
∑

j=1

Fj

n
log

Fj

n
≤ max (ε log(4) − ε log(ε), ε + log(2)ε) .

Now applying (6) and (7) we see that

1
n

log |Zn ∩ ε Ball(�1(n, un))| ≤ δ(n) + log(2)ε − (1 − ε) log(1 − ε)

+ max (ε log(4) − ε log(ε), ε + 2 log(2)ε) ,

where

lim
n→∞

δ(n) = 0.

This estimate is good enough to prove the Lemma. ��

We are now ready to evaluate the topological entropy of Γ � Xf , when f ∈
Mn(Z(Γ)).

Theorem 4.4. Let Γ be a countable discrete sofic group with sofic approximation
Σ. Let f ∈ Mn(Z(Γ)) and suppose that λ(f) is injective. Then

hΣ(Xf , Γ) = log detL(Γ)(f).

Proof. We will apply Proposition 3.6. In order to use Lemma 4.2 we need to have
good control over the kernel of σi(f), for this we perturb σi(f) slightly. By Propo-
sition 3.8 we may find a rank perturbation xi of σi(f) with xi ∈ GLdi

(Mn(R)). By
Proposition 3.8 we have

sup
ξ∈(Rdi)⊕n

‖xiξ − σi(f)ξ‖2,(Zdi )⊕n → 0.

So

hΣ(Xf , Γ) = sup
ε>0

inf
δ>0

lim sup
i→∞

log Sε(Ξδ(xi), θ2,(Zdi )⊕n)
di

.

Let M = supi ‖xi‖∞.
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Let

N ⊆ x−1
i ((Zdi)⊕n) ∩ (Rdi)⊕n

be a section for the quotient map

x−1
i ((Zdi)⊕n) → x−1

i ((Zdi)⊕n) ∩ (Rdi)⊕n

(Zdi)⊕n
.

By Lemma 4.2 we have

|N | = | det(xi)|. (8)

Let

M ⊆ x−1
i (δ Ball(�2

R
(din, udin))) ∩ (Rdi)⊕n

be a maximal ε-separated subset. Then by Lemma 4.1, we know that if 4δ < ε, then

|M| ≤ det4δ/ε(xi)−1. (9)

Now let ξ ∈ Ξδ(xi). Perturbing ξ by an integer point we may assume that ‖ξ‖2 ≤
1. As ξ ∈ Ξδ(xi), we can find some l ∈ (Zdi)⊕n so that

‖xiξ − l‖2 < δ.

Let ζ ∈ N , k ∈ (Zdi)⊕n be such that

xiζ + xik = l.

Then

‖xi(ξ − ζ − k)‖2 < δ.

Hence, we may find some η ∈ M so that

‖ξ − ζ − η − k‖2 ≤ ε.

So

‖ξ − ζ − η‖2,(Zdi )⊕n ≤ 2ε.

Hence, by inequalities (8),(9), we know that

1
di

log S2ε(Ξδ(xi), θ2,(Zdi )⊕n) ≤ 1
di

log(|M||N |) ≤
∫

[4δ/ε,∞)
log(t) dμ|xi|(t).

Since μ|xi| → μ|f | weak∗,

lim sup
i→∞

1
di

log S2ε(Ξδ(xi), θ2,(Zdi )⊕n) ≤
∫

(4δ/ε,∞)
log(t) dμ|f |(t).
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Letting δ → 0 and applying the Monotone convergence theorem, we find that

hΣ(Xf , Γ) ≤ log detL(Γ)(f).

We now turn to the proof of the lower bound. For this, fix ε, δ > 0. Let η > 0
depend upon ε in a manner to be determined shortly. Let

N ⊆ x−1
i ((Zdi)⊕n) ∩ (Rdi)⊕n

be such that {xiξ}ξ∈N is a maximal η-separated family with respect to θ2,xi((Zdi )⊕n).

Let p = χ(0,δ/ε](|xi|), set W = p(Rdi)⊕n, and let

M ⊆ W ∩ x−1
i (δ Ball(�2(din, udin)))

be a maximal ε-separated subset with respect to θ2,(Zdi )⊕n .
Suppose ξ1, ξ2 ∈ N , ζ1, ζ2 ∈ M and

‖ξ1 + ζ1 − ξ2 − ζ2‖2,(Zdi )⊕n ≤ ε, (10)

then

‖xi(ξ1 − ξ2)‖2,xi(Zdi )⊕n ≤ εM + 2δ.

Hence if we choose η = 2εM, and δ is sufficiently small we find that ξ1 = ξ2 by our
choice of N . Then by inequality (10), and our choice of M, we find that ζ1 = ζ2.
Therefore,

Nε(Ξδ(xi), θ2,(Zdi )⊕n) ≥ |N ||M|. (11)

We now have to get a lower bound on |M|, |N |. For this, set for r > 0

ωn(r) = |Zn ∩ r Ball(�1(n, un))|.

For all ξ ∈ x−1
i ((Zdi))⊕n ∩ (Rdi)⊕n, there exists a ζ ∈ N , k ∈ (Zdi)⊕n such that

‖xiξ − xiζ − xik‖2 ≤ 2εM.

Hence there exists a section S ⊆ x−1
i ((Zdi)⊕n) ∩ (Rdi)⊕n of the quotient map

x−1
i ((Zdi)⊕n) ∩ (Rdi)⊕n → x−1

i ((Zdi)⊕n) ∩ (Rdi)⊕n

(Zdi)⊕n

such that for all ξ ∈ S, there is a ζ ∈ N with

‖xi(ξ − ζ)‖2 ≤ 2εM.

From this, it is easy to see that

| det(xi)| = |S| ≤ ωdin (2εM) |N |. (12)
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To bound |M| note that for all ξ ∈ W ∩ x−1
i (δ Ball(�2(din, udin)), there is a

ζ ∈ M, k ∈ (Zdi)⊕n so that

‖ξ − ζ − k‖2 ≤ ε.

This implies that

‖xik‖2 ≤ εM + 2δ, (13)

and

‖ξ − pζ − pk‖2 ≤ ε. (14)

Let

T ⊆ (Zdi)n ∩ x−1
i ((εM + 2δ) Ball(�2(din, udin)))

be a section of the map

(Zdi)n ∩ x−1
i ((εM + 2δ) Ball(�2(din, udin)))

→ p[(Zdi)n ∩ x−1
i ((εM + 2δ) Ball(�2(din, udin)))],

given by multiplication by p. As xi

∣

∣

T is injective, we have

|T | ≤ ωdin(εM + 2δ)

and by (14),

W ∩ x−1
i (δ Ball(�2(din, udin)) ⊆

⋃

ζ∈M,
l∈T

pζ + pl + ε Ball(W, ‖ · ‖2).

Computing volumes,

detδ/ε(xi)−1δTr(p) ≤ |M|ωdin(εM + 2δ)εTr(p). (15)

Applying (12),(15),(11), we see that

1
di

log Nε(Ξδ(xi), θ2,(Zdi )⊕n) ≥
∫

(δ/ε,∞)
log(t) dμ|xi|(t) + log(δ/ε)μ|xi|((0, δ/ε])

− 1
di

log ωdin(εM + 2δ) − 1
di

log ωdin (2εM) .

Using Lemma 4.3 and that μ|xi| → μ|f | weak∗,

hΣ(Xf , Γ) ≥ log detL(Γ)(f) + sup
ε>0

inf
δ>0

log(δ/ε)μ|f |((0, δ/ε)).

But,

− log(δ/ε)μ|f |((0, δ/ε)) ≤
∫

(0,δ/ε)
− log(t) dμ|f |(t) → 0,

as δ → 0, by the dominated convergence theorem and Corollary 2.5. ��
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4.2 The general upper bound for hΣ(Xf ,Γ) by ultraproduct techniques.
We will now establish that for f ∈ Mm,n(Z(Γ)) with λ(f) injective,

hΣ(Xf , Γ) ≤ log det+L(Γ)(f). (16)

We could have given a proof of the upper bound in Theorem 4.4, but we decided
to postpone the proof until now, as the operator algebra machinery involved in the
proof of (16) is considerably more technical than in the proof of Theorem 4.4.

Definition 4.5. Let H be a Hilbert space. A von Neumann algebra is a weak opera-
tor topology closed, unital, subalgebra of B(H) which is closed under taking adjoints.
A tracial von Neumann algebra is a pair (M, τ) where M is a von Neumann algebra,
and τ : M → C is a linear functional such that

1: τ(1) = 1,
2: τ(x∗x) ≥ 0, with equality if and only if x = 0,
3: τ(xy) = τ(yx), for all x, y ∈ M,
4: τ

∣

∣

{x∈M :‖x‖∞≤1} is weak operator topology continuous.

As before ‖x‖∞ is the operator norm of x. The pairs (L(Γ), τ), and (Mdi
(C), trdi

)
are the most natural examples for our purposes. The definition of Tr⊗τ, spectral
measure, and Fuglede–Kadison determinant as in Section 2.2 work for elements in
Mm,n(M). For x ∈ Mm,n(M), we use

‖x‖2 = (Tr ⊗τ(x∗x))1/2.

Definition 4.6. Let (Mn, τn) be a sequence of tracial von Neumann algebras, and
let ω ∈ βN \ N be a free ultrafilter. Set

M =
{(xn)∞

n=1 : xn ∈ Mn, supn ‖xn‖∞ < ∞}
{(xn) : xn ∈ Mn, supn ‖xn‖∞ < ∞, limn→ω ‖xn‖2 = 0} .

If xn ∈ Mn, and supn ‖xn‖∞ < ∞, we use (xn)n→ω for the image in M of the
sequence (xn)∞

n=1 under the quotient map. Let

τω : M → C

be given by

τω((xn)n→ω) = lim
n→ω

τn(xn).

We call the pair (M, τω) the tracial ultraproduct of (Mn, τn) and we will denote it by

∏

n→ω

(Mn, τn).
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A remark about the definition, it is not hard to show that M is a ∗-algebra with
the operations being given coordinate-wise. We clearly have a inner product on M
given by

〈x, y〉 = τω(y∗x),

let L2(M, τω) be Hilbert space completion of M under this inner product. We have
a representation

λ : M → B(L2(M, τω))

given by left multiplication. It turns out that this representation is faithful, and that
λ(M) is weak-operator topology closed in B(L2(M, τω)), (see [BO94] Lemma A.9)
so we may regard (M, τω) as a tracial von Neumann algebra.

Here is the main example of relevance for us. Let Γ be a countable discrete
sofic group with sofic approximation Σ = (σi : Γ → Sdi

), and let ω ∈ βN \ N be
a free ultrafilter. Then we have a trace-preserving injective ∗-homomorphism (i.e.
preserving multiplication and adjoints)

σ : C(Γ) →
∏

i→ω

(Mdi
(C), trdi

)

given by

σ(f) = (σi(f))i→ω.

It turns out that because C(Γ) is weak operator topology dense, this embedding
extends uniquely to a trace-preserving injective ∗-homomorphism

σ : L(Γ) →
∏

i→ω

(Mdi
(C), trdi

).

Lemma 4.7. Let Γ be a countable discrete sofic group with sofic approximation
σi : Γ → Sdi

, and let f ∈ Mm,n(Z(Γ)) with λ(f) injective. Let Ai ⊆{1, . . . , di}m, Bi ⊆
{1, . . . , di}n be subsets so that

Pim(σi(f))⊥
∣

∣

R
Ac

i
, Pker(σi(f))⊥

∣

∣

RBi

are isomorphisms onto im(σi(f))⊥, ker(σi(f))⊥. Set xi = χAi
σi(f)χBi

, then

inf
0<δ<1

lim sup
i→∞

∫

(δ,∞)
log(t) dμ|xi|(t) ≤ log det+L(Γ)(f).

Proof. We claim that it suffices to show that for all ω ∈ βN \ N,

inf
0<δ<1

lim
i→ω

∫

(δ,∞)
log(t) dμ|xi|(t) ≤ log det+L(Γ)(f). (17)
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Suppose we can show (17), but that

α = inf
0<δ<1

lim sup
i→∞

∫

(δ,∞)
log(t) dμ|xi|(t) > log det+L(Γ)(f).

Let δn < 1 be a decreasing sequence of positive real numbers converging to zero.
Choose a strictly increasing sequence of natural numbers in so that

∫

(δn,∞)
log(t) dμ|xin |(t) ≥ α − 2−n.

Let ω ∈ βN \ N be such that {in : n ∈ N} ∈ ω. Note that if m ≥ n, then

α − 2−m ≤
∫

(δm,∞)
log(t) dμ|xim |(t)

=
∫

(δn,∞)
log(t) dμ|xim |(t) +

∫

(δm,δn]
log(t) dμ|xim |(t)

≤
∫

(δn,∞)
log(t) dμ|xim |(t).

Hence,

lim
i→ω

∫

(δn,∞)
log(t) dμ|xi|(t) ≥ α.

So

inf
0<δ<1

lim
i→ω

∫

(δ,∞)
log(t) dμ|xi|(t)= lim

n→∞
lim
i→ω

∫

(δn,∞)
log(t) dμ|xi|(t)≥α> log det+L(Γ)(f),

and this contradicts (17).
We now proceed to prove (17). Fix ω ∈ βN \ N, and let

(M, τ) =
∏

i→ω

(Mdi
(C), trdi

),

let

σ : L(Γ) → M

be defined as before the statement of the Lemma, and extend by the usual methods
to a map

σ : Mm,n(L(Γ)) → Mm,n(M).

Let

x = (xi)i→ω ∈ Mm,n(M).
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First note that for every φ ∈ C(R),
∫

φdμ|x|(t) = Tr ⊗τω(φ(|x|)) = lim
i→ω

Tr ⊗ trdi
(φ(|xi|)) = lim

i→ω

∫

φdμ|xi|(t). (18)

By Lemma 2.6,

|Bc
i |

di
=

dim(ker(σi(f)))
di

→ 0

as i → ∞, so

x = (χAi
σi(f))i→ω.

Thus

0 ≤ x∗x ≤ σ(f)∗σ(f) ∈ Mn(M). (19)

By operator monotonicity of logarithms and the Monotone Convergence Theorem
we have:

log det+M (x) =
1
2

lim
ε→0

τω(log(x∗x + ε)) ≤ 1
2

lim
ε→0

τω(log(σ(f)∗σ(f) + ε))

=
1
2

log det+M (σ(f)∗σ(f))

=
1
2

log det+L(Γ)(f
∗f)

= log det+L(Γ)(|f |)
= log det+L(Γ)(f),

here we have used that the inclusion L(Γ) → M is trace-preserving. By (18), we
have

log det+M (x) = inf
0<δ<1

lim
i→ω

∫

(δ,∞)
log(t) dμ|xi|(t),

so we have proved (17). ��

Theorem 4.8. Let Γ be a countable discrete sofic group with sofic approximation
Σ. Let f ∈ Mm,n(Z(Γ)) be injective as an operator on �2(Γ)⊕n, then

hΣ(Xf , Γ) ≤ log det+L(Γ)(f).

Proof. Let xi be defined as in the preceding Lemma. It follows as in Proposition 3.8
that

ker(xi) ∩ (Rdi)⊕n = R
Bc

i ,

xi((Rdi)⊕n) = R
Ai ,
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|Bi|
di

→ 0.

Let ξ ∈ Ξδ(σi(f)). We may assume that ‖ξ‖2 ≤ 1. As

|Bc
i |

di
→ 0,

it follows that

sup
ζ∈(Rdi)⊕n

‖σi(f)χBi
ζ − σi(f)ζ‖2,(Zdi )⊕m → 0.

So for all large i, we have

‖σi(f)χBi
ξ‖2,(Zdi )⊕m ≤ 2δ.

So we can find an l ∈ (Zdi)⊕m so that

‖σi(f)χBi
ξ − l‖2 ≤ 2δ.

Thus,

‖xiξ − χAi
l‖2 ≤ 2δ. (20)

Let

N ⊆ x−1
i (ZAi) ∩ R

Bi

be a section for the quotient map

x−1
i (ZAi) → x−1

i ((ZAi) ∩ R
Bi

ZBi
.

By Lemma 4.2 we have

|N | = | det+(xi)|. (21)

Let

M ⊆ x−1
i (2δ Ball(�2

R
(dim, udim))) ∩ R

Bi ,

be a maximal ε-separated subset. By Lemma 4.1 we know that if 8δ < ε, then

|M| ≤ det8δ/ε(xi)−1. (22)

Since

‖ξ − χBi
ξ‖2,(Zdi )⊕n ≤ |Bc

i |
di

→ 0,

xi((Rdi)⊕n) = R
Ai
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inequalities (20),(21),(22) allows us to follow the first half of the proof of Theorem
4.4 to see that

S8ε(Ξδ(σi(f)) ≤ |M||N |.

It now follows as in the proof of the first half of Theorem 4.4 that

hΣ(Xf , Γ) ≤ inf
0<δ<1

lim sup
i→∞

∫

(δ,∞)
log(t) dμ|xi|(t),

and so the Theorem follows automatically from the preceding Lemma. ��

5 Fuglede–Kadison Determinants and Measure-Theoretic Entropy

If X is a compact group, we use mX for the Haar measure on X. The following is
the main result of this section.

Theorem 5.1. Let Γ be a countable discrete non-amenable sofic group with sofic
approximation Σ. Let f ∈ Mn(Z(Γ)) be injective as a left multiplication operator
on �2(Γ)⊕n. Then,

hΣ,mXf
(Xf , Γ) = log detL(Γ)(f).

Our techniques will be general enough to be adaptable to a slightly different
situation. Namely, suppose that f ∈ Mm,n(Z(Γ)) and that λ(f) has dense image
as an operator on �2(Γ)⊕n, and that m �= n (it necessarily follows that m < n
by Proposition 2.7) we will be able to show that the measure-theoretic entropy of
Γ � (Xf , mXf

) is infinite.
We focus solely on the non-amenable case, the amenable case is covered by the

results in [LT14]. Let us recall the definition of measure-theoretic entropy in the case
of a topological model.

Definition 5.2. Let X be a compact metrizable space and Γ � X by homeomor-
phisms. Let μ be a Borel probability measure on X preserved by Γ. Let ρ be a
dynamically generating pseudometric on X. For F ⊆ Γ finite, L ⊆ C(X) finite, and
δ > 0, we let Map(ρ, F, L, δ, σi) be set of all φ ∈ Map(ρ, F, δ, σi) so that

∣

∣

∣

∣

∣

∣

1
di

di
∑

j=1

f(φ(j)) −
∫

f dμ

∣

∣

∣

∣

∣

∣

< δ.

Define the measure-theoretic entropy of Γ � (X, μ) by

hΣ,μ(ρ, F, L, δ, ε) = lim sup
i→∞

1
di

log Sε(Map(ρ, F, L, δ, σi), ρ2),
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hΣ,μ(ρ, ε) = inf
F⊆Γ finite,

L⊆C(X) finite,
δ>0

hΣ,μ(ρ, F, L, δ, ε)

hΣ,μ(X, Γ) = sup
ε>0

hΣ,μ(ρ, ε).

By Proposition 3.4 in [KL13], and Proposition 5.4, we know measure-theoretic en-
tropy does not depend upon the pseudometric and if Γ � (X, μ), Γ � (Y, ν) are
probability measure preserving actions, and φ : X → Y is a bimeasurable bijection
such that φ∗μ = ν, then hΣ,μ(X, Γ) = hΣ,ν(Y,Γ).

5.1 Main technical lemmas. We begin to collect a few technical lemmas
needed for the proof. The idea of the proof of Theorem 5.1 is that we can already pro-
duce enough microstates for the topological action Γ � Xf to get the lower bound
on topological entropy. So if we can prove that “most” of these are microstates for
the measure-preserving action Γ � (Xf , mXf

), this will be enough to get the lower
bound on measure-theoretic entropy. Since topological entropy always dominates
measure-theoretic entropy this will prove the main theorem. To ease the work in-
volved in this probabilistic argument, it will be helpful to prove a “concentration”
result (albeit a soft one) which will essentially reduce our work to prove that our
microstates approximately pushforward the uniform measure to the Haar measure
“on average”. Similar techniques have been used by Lewis Bowen (see the proof of
Theorem 4.1 in [Bow11]), as well as Lewis Bowen and Hanfeng Li (see [BL12] Lemma
7.3). However, we wish to first formulate the technique in a more abstract setting.
This setting is close to that of Lemma 6.1 in [BD13]. In fact, the following Lemma
may be regarded as a mild generalization of Lemma 6.1 in [BD13].

We first need to recall some facts about integrals of vector valued functions in a
locally convex space. Suppose that X is a separable, locally convex space, and that
K ⊆ X is a compact, metrizable, convex set. If μ ∈ Prob(K), then there is a unique
point p ∈ K so that for all φ ∈ X∗

p(x) =
∫

K
φ(x) dμ(x),

see [Rud91] Theorem 3.27. We write

p =
∫

K
x dμ(x),

the point p is called the barycenter of μ. The gist of the following lemma is that if a
probability measure on such a compact, convex set has a barycenter which is close
to an extreme point, then “most” of the mass of the measure is concentrated near
the extreme point.
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Lemma 5.3 (Abstract Automatic Concentration). Let X be a separable, locally con-
vex space, let K ⊆ C be compact, metrizable, convex subsets of X and p an extreme
point of K. Then for any open neighborhood U of 0 in X and ε > 0, there is a
neighborhood V in X of 0 so that if μ ∈ Prob(C) and

μ((K + V ) ∩ C) = 1,

p −
∫

C
x dμ(x) ∈ V,

then

μ({x ∈ C : x − p ∈ U}) ≥ 1 − ε.

Proof. Fix an open neighborhood U of 0 in X. By metrizability, we may find a
decreasing sequence Vn of open neighborhoods of 0 with

K =
∞
⋂

n=1

(K + Vn) ∩ C.

Assuming the lemma is false for this U, we can find an ε > 0 and a sequence μn of
Borel probability measures on C so that

μn((K + Vn) ∩ C) = 1,

p −
∫

C
x dμn(x) ∈ Vn,

but

μn({x ∈ C : x − p ∈ U}) ≤ 1 − ε.

We may assume, by passing to a subsequence, that there is a μ ∈ Prob(C) with
μn → μ in the weak∗-topology. It is easy to see that

∫

C x dμn(x) → p, and thus for
every φ ∈ X∗ we have

φ(p) = lim
n→∞

∫

C
φ(x) dμn(x) =

∫

C
φ(x) dμ(x),

so

p =
∫

C
x dμ(x).

Suppose that W is a neighborhood of K in C and choose a neighborhood W0 of K
in C with C ⊆ W0 ⊆ W. Since μn → μ weak∗, we have

μ(W ) ≥ μ(W0) ≥ lim sup
n→∞

μn(W0) = 1,
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since for all sufficiently large n it is true that (K + Vn) ∩ C ⊆ W0. Infimizing over
all neighborhoods W of K we see that μ(K) = 1 and thus

p =
∫

K
x dμ(x).

By extremality of p we find that μ = δp. Since μn → δp weak∗ we must have that

1 = δp(p + U) ≤ lim inf
n→∞

μn(p + U) ≤ 1 − ε,

a contradiction. ��

We use the Lemma to state a more technical version of a concentration Lemma,
which is more specific to our situation.

Lemma 5.4 (The Automatic Concentration Lemma). Let Γ be a countable discrete
sofic group with sofic approximation Σ. Let X be a compact metrizable space and
Γ � X by homeomorphisms, let ρ be a dynamically generating pseudometric on X.
Let I be a directed set, and let (Ωi,α, Pi,α)i∈N,α∈I be standard probability spaces.
Let

Φi,α : {1, . . . , di} × Ωα,i → X

be Borel measurable maps, and for ξ ∈ Ωα,i define

φξ : {1, . . . , di} → X

by

φξ(j) = Φi,α(j, ξ).

Suppose that for all g ∈ Γ,

lim
α

lim sup
i→∞

‖ρ2(φξ ◦ σi(g), gφξ)‖L∞(ξ) = 0,

and that there is a Borel probability measures μ on X so that for all f ∈ C(X)

lim
α

lim sup
i→∞

∣

∣

∣

∣

∫

f d(Φi,α)∗(udi
⊗ Pi,α) −

∫

f dμ

∣

∣

∣

∣

= 0.

Then

(a) μ is Γ-invariant,
(b) if Γ � (X, μ) is ergodic, then for all F ⊆ Γ finite, L ⊆ C(X) finite, δ > 0 we

have

lim
α

lim inf
i→∞

Pi,α({ξ : φξ ∈ Map(ρ, F, L, δ, σi)}) = 1.

Proof. (a): This will be left as an exercise.
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(b): Let C = Prob(X) ⊆ C(X)∗, and K ⊆ C be the weak∗ compact, convex set
consisting of Γ-invariant measures. The ergodicity of Γ � (X, μ) is equivalent
to saying that μ is an extreme point of K. Given finite F ⊆ Γ, L ⊆ C(X), and
δ, κ > 0, set

U =
⋂

f∈L

{

η ∈ Prob(X) :
∣

∣

∣

∣

∫

X
f dη −

∫

X
f dμ

∣

∣

∣

∣

< δ

}

.

Given a finite L′ ⊆ C(X), δ′ > 0, let VL,δ′ ⊆ C(X)∗ consist of all (complex)
measures η so that

max
f∈L′

∣

∣

∣

∣

∫

X
f dη

∣

∣

∣

∣

< δ′.

The preceding Lemma allows us to find a finite L′ ⊆ C(X) and κ′ > 0 so that
if ν ∈ Prob(C), and

μ −
∫

C
η dν(η) ∈ VL′,δ′ ,

ν((K + VL′,δ′) ∩ C) = 1,

then

ν({η ∈ Prob(X) : η ∈ U}) ≥ 1 − κ.

By a compactness argument, we may find a finite F ′ ⊆ G with F ⊆ F ′ and a
δ ∈ (0, δ′) so that for all i ∈ N and all φ ∈ Map(ρ, F, δ, σi) we have φ∗(udi

) ∈
K + VL′,δ′ .
Our assumptions allow us to find an α0 ∈ I so that if α ≥ α0, then

max
g∈F ′

lim sup
i→∞

‖ρ2(φξ ◦ σi(g), gφξ)‖L∞(ξ) < δ′,

max
f∈L′

lim sup
i→∞

∣

∣

∣

∣

∫

f d(Φi,α)∗(udi
⊗ Pi,α) −

∫

f dμ

∣

∣

∣

∣

< κ′.

Fix α ≥ α0. As F and L′ are finite, the above limiting statements allow us to
find a i0 ∈ N so that if i ≥ i0, then

max
g∈F ′

‖ρ2(φξ ◦ σi(g), gφξ)‖L∞(ξ) < δ′, (23)

and

max
f∈L′

∣

∣

∣

∣

∫

f d(Φi,α)∗(udi
⊗ Pi,α) −

∫

f dμ

∣

∣

∣

∣

< κ′.
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Define

Ψi,α : Ωα,i → C

by

Ψi,α(ξ) = (φξ)∗(udi
),

and let

ηi,α = (Ψi,α)∗(Pi,α).

Then for all f ∈ C(X),
∫

C

∫

X
f dν dηi,α(ν) =

∫

Ωi,α

∫

X
f d(φξ)∗(udi

) dPi,α(ξ)

=
∫

f d(Φi,α)∗(udi
⊗ Pi,α).

Thus for all i ≥ i0,

max
f∈L′

∣

∣

∣

∣

∫

C

∫

X
f dν dηi,α −

∫

X
f dμ

∣

∣

∣

∣

< κ′.

By (23), and our choice of F ′, δ′, we have for all i ≥ i0

Pi,α({ξ : φξ ∈ Map(ρ, F, δ, σi)}) = 1,

ηi,α((K + VL′,δ′) ∩ C) = 1.

So for all i ≥ i0

Pi,α({ξ : φξ ∈ Map(ρ, F, L, δ, σi)})
= Pi,α({ξ : (φξ)∗(udi

) ∈ U}) = ηi,α({ν : ν ∈ U}) ≥ 1 − κ,

by choice of κ′, L′. Thus

lim inf
α

lim inf
i→∞

Pi,α({ξ : φξ ∈ Map(ρ, F, L, δ, σi)}) ≥ 1 − κ.

The lemma is completed by letting κ → 0. ��

Let us explain why we call this Lemma the “Automatic Concentration Lemma.”
The assumption

(Φi,α)∗(udi
× Pi,α) → μ

can be thought of as saying that

(φξ)∗(udi
) → μ
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“in expectation.” When one is dealing with limits of large probability spaces (for
example, uniform probability measures on large finite sets, or normalized Lebesgue
measure on the ball of a large finite-dimensional Banach space), there is a principle
called the “concentration of measure phenomenon.” This roughly says that (nice
enough) functions have a very small deviation from their expectation. This principle
is used to great effect, e.g. in the theory of random graphs, geometric functional
analysis, and random matrix theory. The conclusion of the Lemma, i.e. that

Pi,α

({

ξ :
∣

∣

∣

∣

∫

f d(φξ)∗udi
−
∫

f dμ

∣

∣

∣

∣

< δ

})

→ 1,

can be interpreted as the statement that (φξ)∗udi
“concentrates” near its expec-

tation. So this Lemma can be thought of as an automatic concentration result,
provided that Γ � (X, μ) is ergodic.

Note that this differs in spirit from most concentration results. Typically one
needs some concrete estimates (e.g. a log Sobolev inequality) and gets explicit results
on the deviation from the mean (typically exponential decay). For this lemma, the
techniques, results, and assumptions are much softer. No concrete estimates is need
for the proof of this concentration result, however the result also gives no concrete
estimates on deviations from the mean. To apply this result, we need ergodicity as
well as weak∗ convergence. For ergodicity, we state a Theorem due to Hanfeng Li,
Klaus Schmidt, and Jesse Peterson. They only state this result for f ∈ Z(Γ), however
the proof works for f ∈ Mm,n(Z(Γ)).

Theorem 5.5 (Theorem 1.3 in [LSP15]). Let Γ be a non-amenable group, and
let f ∈ Mm,n(Z(Γ)) be such that λ(f) has dense image. Then Γ � (Xf , mXf

) is
ergodic.

We thus focus on proving the weak∗ convergence necessary to apply the Auto-
matic Concentration Lemma. In many respects, this is the most difficult and techni-
cal part of the paper. To help illuminate the ideas, let us roughly outline the proof.
Fix f ∈ Mn(Z(Γ)) such that λ(f) is injective. First, let us analyze the proof of The-
orem 4.4. Let xk ∈ GLn(Mdk

(R)) be the rank perturbation considered in the proof
of Theorem 4.4. We see that the ξ ∈ Ξδ(xk) we used to compute the topological
entropy come in two types. Setting

Gk = x−1
k ((Zdk)⊕n)/((Zdk)⊕n),

Ωδ,ε = x−1
k (δ Ball(�2

R
(dkn, udkn))) ∩ χ[0,δ/ε](|xk|)((Rdk)⊕n),

every v ∈ Ξδ(xk) is of the form

v + (Zdk)⊕n = ξ + ζ + (Zdk)⊕n,

for some ξ ∈ Gk, ζ ∈ Ωδ. For ξ ∈ (Tdi)⊕n define

φξ : {1, . . . , di} → (TΓ)⊕n,
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by

φξ(j)(l)(g) = ξ(l)(σi(g)−1(j)).

Let mGk
be the Haar measure on Gk and μδ,ε the normalized Lebesgue measure on

χ[0,δ/ε](|xk|)((Rdk)⊕n) chosen so that μδ(Ωδ,ε) = 1. In order to apply the Automatic
Concentration Lemma, we are left trying to argue that

∫

Ωδ,ε

∫

Gk

(φξ+ζ+(Zdk )⊕n)∗(udk
) dmGk

(ξ) dμδ,ε(ζ) ≈ mXf

in the weak∗ topology. By abstract Fourier analysis, it is enough to verify this con-
dition by integrating both sides of this approximate equality against the continuous
function

evα : (TΓ)⊕n → C

for α ∈ (ZΓ)⊕n given by

evα(Θ) = exp(2πi〈Θ, α〉).

For A ∈ Ms,t(L(Γ)), let ˜A ∈ Mt,s(L(Γ)) be given by ( ˜A)ij = Aji. We are then
naturally led to show that

1
dk

dk
∑

j=1

∫

Ωδ,ε

∫

Gk

exp(2πi(σk(α̃)ξ)(j)) exp(2πiσk(α̃)ζ)(j)) dmGk
(ξ) dμδ,ε(ζ) ≈ 0

for α ∈ Z(Γ)⊕n \ r(f)(Z(Γ)⊕m). The integral
∫

Gk

exp(2πi(σk(α̃)ξ)(j)) dmGk
(ξ)

will be zero if and only if ξ �→ (σk(α̃)ξ)(j) + Z is a nontrivial homomorphism on
Gk, and will be one otherwise. It is simple to describe when the homomorphism
ξ �→ (σk(α̃)ξ)(j) + Z is trivial. By Lemma 5.6 below this will occur only when
σk(α̃)∗ej = x∗

krj,k for some rj,k ∈ (Zdk)⊕n. We would like to argue that this forces α ∈
r(f)(Z(Γ)⊕m), but can only do this when we have a uniform bound on ‖rj,k‖�2(dkn)

(see Lemma 5.7).
We will then see that in order to prove the statement

∫

Ωδ,ε

∫

Gk

(φξ+ζ+(Zdk )⊕n)∗(udi
) dmGk

(ξ) dμδ,ε(ζ) ≈ mXf

we are left with analyzing
∫

Ωδ,ε

exp(2πi(σk(α̃)ζ)(j)) dμδ,ε(ζ) =
∫

Ωδ,ε

exp(2πi〈xkζ, rj,k〉�2(dkn)) dμδ,ε(ζ)
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for α ∈ Z(Γ)⊕n \ r(f)(Z(Γ)⊕m), and where ‖rj,k‖�2(dkn) is large. The fact that
‖rj,k‖�2(dkn) is large makes the integrand exp(2πi〈xkξ, rj,k〉�2(dkn))) highly oscillatory
and we exploit this to argue that

∫

Ωδ,ε

exp(2πi(σk(α̃)ζ)(j)) dμδ,ε(ζ) ≈ 0.

In order to give certain examples of algebraic actions with infinite measure-theoretic
entropy (see Theorem 5.11) we will state our methods so that they work in a slightly
more general setting than having λ(f) be injective on �2(Γ)⊕n.

Lemma 5.6. Let T ∈ Mm,n(Z) and v ∈ Z
n. The homomorphism

T−1(Zm)/Z
n → R/Z

given by

ξ �→ 〈ξ, v〉�2(n) + Z

is identically zero if and only if

v ∈ T ∗(Zm).

Proof. One direction is obvious. We thus focus on showing that if ξ �→ 〈ξ, v〉�2(n)+Z is
identically zero, then v ∈ T ∗(Zm). So suppose that v ∈ Z

n and the homomorphisms
ξ �→ 〈ξ, v〉�2(n)+Z is identically zero for ξ ∈ T−1(Zm). We clearly have that ker(T ) ⊆
T−1(Zm) and thus for every ξ ∈ ker(T ) ∩ R

n we have

〈ξ, v〉�2(n) ∈ Z.

Thus the linear functional on ker(T ) ∩ R
n defined by ξ �→ 〈ξ, v〉�2(n) is Z-valued. A

linear functional on a real vector space can only be Z-valued if it is zero and this
proves that v ∈ ker(T )⊥ ∩R

n = T ∗(Rm). So we can let r ∈ R
m be such that v = T ∗r.

Thus

〈Tξ, r〉�2(m) ∈ Z

for all ξ ∈ T−1(Zm). Equivalently,

〈ξ, r〉�2(m) ∈ Z

for all ξ ∈ Z
m ∩ T (Rn).

By Smith normal formal, we may find matrices A ∈ GLm(Z), B ∈ GLn(Z), D ∈
Mm,n(Z) so that

ATB = D,



GAFA FUGLEDE–KADISON DETERMINANTS AND SOFIC ENTROPY 567

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

α1 0 0 0 · · · 0 · · · 0
0 α2 0 · · · 0 0 · · · 0
0 0 α3 · · · 0 0 · · · 0
...

...
. . . · · ·

...
... · · ·

...
0 0 · · · · · · αd 0 · · · 0
0 0 0 0 · · · 0 · · · 0
...

...
...

. . . · · ·
...

. . .
...

0 0 0 0 · · · 0 · · · 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where α1, . . . , αd are not zero. It is easy to see that Z
m ∩ T (Rn) = A−1(Zd ⊕ {0}).

Thus for all l ∈ Z
d we have

〈A−1(l ⊕ 0), r〉�2(n) ∈ Z

equivalently

〈l ⊕ 0, (A−1)∗r〉�2(n) ∈ Z

for all l ∈ Z
d. Thus (A−1)∗r = s + t where s ∈ Z

d ⊕ {0}, and t ∈ {0} ⊕ R
n−d. So

r = A∗s + A∗t.

Thus

v = T ∗r = T ∗A∗s + T ∗A∗t.

Since

B∗T ∗A∗ = D

it is not hard to show that T ∗A∗t = 0. Thus

v = T ∗A∗s ∈ T ∗(Zm). ��

The above Lemma will be useful when combined with the following Lemma. The
following Lemma can be thought of as giving a way to “test”, in terms of a given sofic
approximation, if a given α ∈ Z(Γ)⊕n is an element of the submodule r(f)(Z(Γ)⊕m).
Recall that if A ∈ Ms,t(L(Γ)) we let ˜A ∈ Mt,s(L(Γ)) be defined by

( ˜A)ij = Aji.
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Lemma 5.7 (The Submodule Test). Let Γ be a countable discrete sofic group with
sofic approximation Σ = (σi : Γ → Sdi

). Extend Σ to a map σi : Ms,t(Z(Γ)) →
Ms,t(Mdi

(Z)) in the usual way. Let f ∈ Mm,n(Z(Γ)) and suppose xi is a rank per-
turbation of σi(f). Let α ∈ Z(Γ)⊕n and regard Z(Γ)⊕n = Mn,1(Z(Γ)). Suppose that
there is some C > 0 so that

lim sup
i→∞

|{1 ≤ j ≤ di : σi(α̃)∗ej ∈ x∗
i ((Z

di)⊕m ∩ C Ball(�2(dim)))}|
di

> 0.

Then α ∈ r(f)(Z(Γ)⊕m).

Proof. Passing to a subsequence, we may assume that there is some β > 0 so that

β ≤ |{j : σi(α̃)∗ej ∈ x∗
i ((Z

di)⊕m ∩ C Ball(�2(dim)))}|
di

for all i. For x ∈ L(Γ)⊕p, set

‖x‖2
2 = Tr ⊗τ(x∗x)

for θ ∈ �2(Γ)⊕p we use the norm

‖θ‖2
2 =

∑

j,g

|θ(j)(g)|2.

We claim the following is true.
Claim: For every finite E ⊆ Γ, there is an R ∈ Z(Γ)⊕m so that

((f∗R)(l))̂(g) = α̂(l)∗(g) for all g ∈ E, 1 ≤ l ≤ n,

‖R‖2 ≤ C.

Suppose we grant the claim for now. Let Ek be an increasing sequence of non-
empty finite subsets of Γ whose union is Γ. Choose an Rk ∈ Z(Γ)⊕m so that

((f∗Rk)(l))̂(g) = α̂(l)∗(g) for all g ∈ Ek, 1 ≤ l ≤ n,

‖Rk‖2 ≤ C.

Passing to a subsequence, we may assume that R̂k(l)(g) converges pointwise to some
r(l, g). By Fatou’s Lemma, we see that

‖r‖�2(Γ)⊕m ≤ C.

Thus r ∈ �2(Γ, Z)⊕m = cc(Γ, Z)⊕m. So we may define R ∈ Z(Γ)⊕m by

̂R(l)(g) = r(l, g).
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It is easy to see that

̂(f∗R)(l)(g) = α̂(l)∗(g)

and hence if we let Q ∈ Z(Γ)⊕m be given as Q(l) = R(l)∗, we have that

r(f)Q = α.

Thus α ∈ r(f)(Z(Γ)⊕m), which proves the Lemma.
We now turn to the proof of the claim. So fix a finite subset E of Γ. Let

S =
⋃

1≤r≤m,1≤s≤n

supp(̂frs) ∪ {e} ∪ supp(̂frs)−1

K = (E ∪ E−1 ∪ {e})(2015)!S(E ∪ E−1 ∪ {e})(2015)!.

We may find Ci ⊆ {1, . . . , di} so that

udi
(Ci) → 1,

σi(g1)ε1 · · ·σi(gl)εl(j) = σi(gε1
1 · · · gεl

l )(j) for all
j ∈ Ci, 1 ≤ l ≤ (2015)!, ε1, . . . , εl ∈ {−1, 1}, g1, . . . , gl ∈ K,

xi(er ⊗ eσi(g)(j)) = σi(f)(er ⊗ eσi(g)(j)) for all j ∈ Ci, 1 ≤ r ≤ n, g ∈ E,

σi(g)(j) �= σi(h)(j) if g, h ∈ (K ∪ {e} ∪ K−1)(2015)!, and g �= h.

Let

Bi = {j : σi(α̃)∗ej ∈ x∗
i ((Z

di)⊕m ∩ C Ball(�2(dim)))},

so that

lim inf
i→∞

udi
(Bi ∩ Ci) ≥ β > 0,

and hence for all large i, we have Bi ∩ Ci is not empty. For j ∈ Bi ∩ Ci, choose
rj,i ∈ (Zdi)⊕m so that

σi(α̃)∗ej = x∗
i rj,i

‖rj,i‖�2(dim) ≤ C.

Fix a j ∈ Bi ∩ Ci, by our previous comments such a j exists if i is sufficiently
large. Define R ∈ Z(Γ)⊕m by

̂R(l)(g) =

{

0, if g ∈ Γ \ K

〈rj,i, el ⊗ eσi(g)(j)〉�2(dim), if g ∈ K
.
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Since σi(g)(j) �= σi(h)(j) for g �= h in K we have

‖R‖2 ≤ C.

For g ∈ E, j ∈ Ci and 1 ≤ l ≤ n we have

〈σi(α̃)∗ej , el ⊗ eσi(g)(j)〉�2(din) = α̂(l)∗(g).

As K ⊇ SE, we have for j ∈ Ci ∩ Bi, g ∈ E that

α̂(l)∗(g) = 〈σi(α̃)∗ej , el ⊗ eσi(g)(j)〉�2(din)

= 〈x∗
i rj,i, el ⊗ eσi(g)(j)〉�2(din)

= 〈rj,i, xi(el ⊗ eσi(g)(j))〉�2(dim)

= 〈rj,i, σi(f)(el ⊗ eσi(g)(j))〉�2(dim)

=
∑

1≤s≤m

∑

h∈Γ

(̂f∗)ls(h−1)〈rj,i, es ⊗ eσi(hg)(j)〉�2(dim)

=
∑

1≤s≤m

∑

h∈Γ

(̂f∗)ls(h−1)R̂(s)(hg)

= ((f∗R)(l))̂(g). ��

As stated before, the last step in our weak∗ convergence argument will be to
argue that a certain oscillatory integral is close to zero. The following lemma will be
key in the proof of this fact.

Lemma 5.8. Let nk be a sequence of positive integers, and let ck, Rk be a sequence
of positive real numbers with ck → 0. Then

lim
k→∞

sup
ξ∈R

nk ,

‖ξ‖�2(nk)≤
ckRk√

nk

vol(Rk Ball(�2
R
(nk)) \ (Rk Ball(�2

R
(nk)) + ξ))

vol(Rk Ball(�2
R
(nk))

= 0.

Proof. The claim is easy if nk is bounded, so passing to a subsequence we may
assume that nk → ∞. Without loss of generality Rk = 1 for all k. Let mk be the
normalized Lebesgue measure on Ball(�2

R
(nk)) chosen so that mk(Ball(�2

R
(nk))) = 1.

Let νk be the unique probability measure on Snk−1 invariant under the action of
O(nk, R). Then for all measurable f : Ball(�2

R
(n)) → [0, ∞) we have

∫

Ball(�2
R
(nk))

f(x) dmk(x) = nk

∫ 1

0

∫

Snk−1
rnk−1f(rx) dνk(x) dr.

We have for any T ∈ Mnk
(C),

∫

Sn−1

〈Tξ, ξ〉�2(nk) dνk(x) = trn(T ).
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Indeed, if we consider the left-hand side of the above equality to be a linear functional
on Mnk

(C) then it is invariant under conjugation by elements of O(nk, R) and takes
the value 1 on Id, and this uniquely defines trn(T ). Thus if v ∈ R

nk , ‖v‖�2(nk) = 1,
we may apply the above discussion to the operator Tξ = 〈ξ, ζ〉ζ, and see that

∫

Snk−1
|〈ξ, v〉�2(nk)|2 dνk(ξ) =

1
nk

. (24)

Now let ξ ∈ R
nk , ‖ξ‖�2

R
(nk) ≤ ck√

nk
, set

v =
ξ

‖ξ‖�2(nk)
.

Let C > 1 and let

B =
{

ζ ∈ Ball(�2
R
(nk)) : ‖ζ − ξ‖�2(nk) ≥ 1, |〈ζ, v〉�2(nk)| ≤ C√

nk
‖ζ‖�2

R
(nk)

}

.

Then by (24),

mk(Ball(�2
R
(nk)) \ (Ball(�2

R
(nk)) + ξ)) ≤ 1

C2
+ mk(B). (25)

Now if ζ ∈ B, then

1 ≤ ‖ζ − ξ‖2
�2(nk)

= ‖ζ‖2
�2(nk) − 2‖ξ‖2 Re(〈ζ, v〉�2(nk)) + ‖ξ‖2

�2(nk)

≤ ‖ζ‖2
�2(nk) + 2

ckC

nk
‖ζ‖�2(nk) +

c2
k

nk

≤
(

‖ζ‖�2(nk) +
ckC

nk

)2

+
c2
k

nk
.

Thus

‖ζ‖�2(nk) ≥ ω(k)

where

ω(k) =
(

1 − c2
k

nk

)1/2

− ckC

nk
.

So

mk(B) ≤ nk

∫ 1

ω(k)
rnk−1 dr = 1 − ω(k)nk . (26)
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We have

nkω(k) − nk = (n2
k − c2

knk)1/2 − nk − ckC = −ckC − c2
knk

(n2
k − c2

knk)1/2 + nk
→ 0

since ck → 0, and nk → ∞.
Thus given ε > 0, we have

ω(k) ≥ 1 − ε

nk

for all large k. Applying the above to (25), and (26), and using that nk → ∞, we
find that

lim sup
k→∞

sup
ξ∈R

nk ,
‖ξ‖�2(nk)≤

ck√
nk

vol(Ball(�2
R
(nk)) \ (Ball(�2

R
(nk)) + ξ))

vol(Ball(�2
R
(nk))

≤ 1
C2

+ 1 − e−ε.

As C > 1, ε > 0 are arbitrary the Lemma is proved. ��

We now prove the necessary weak∗ convergence result needed to apply the Au-
tomatic Concentration Lemma.

Lemma 5.9. Let Γ be a countable discrete sofic group with sofic approximation
Σ = (σk : Γ → Sdk

). Let f ∈ Mm,n(Z(Γ)) be such that the image of λ(f) is
dense. Extend σk to a map σk : Ms,t(Z(Γ)) → Ms,t(Mdk

(Z)) in the usual way.
Let xk ∈ Mm,n(Mdk

(Z)) be a rank perturbation of σk(f) such that there exists
Ak ⊆ {1, . . . , dk}m with xk((Rdk)⊕n) = R

Ak and

lim
k→∞

|Ak|
dkm

= 1

(this is possible by Proposition 3.8 (i)).
For δ, ε > 0, let

Gk =
x−1

k ((Zdk)⊕m)
(Zdk)⊕n

,

pδ/ε = χ(0,δ/ε](|xk|),

Wk,δ,ε = pδ/ε(�
2
R
(dkn, udkn)) ∩ x−1

k (δ Ball(�2
R
(dkm, udkm))).

Let μδ,ε be the normalized Lebesgue measure on pδ/ε(�2
R
(dkn, udkn)), chosen so that

μδ,ε(Wk,δ,ε) = 1. Let mGk
be the Haar measure on Gk. Define

Φk : {1, . . . , dk} × Gk × Wk,δ,ε → (TΓ)⊕n

by

Φk(j, ξ, ζ)(l)(x)=ξ(l)(σ−1
k (x)(j))+ζ(l)(σ−1

k (x)(j))+Z, for 1≤ l≤n, 1≤j ≤dk, x∈Γ.
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Then, for all g ∈ C((TΓ)n) and for all ε > 0,

lim sup
δ→0

lim sup
k→∞

∣

∣

∣

∣

∫

g d(Φk)∗(udk
⊗ uGk

⊗ μδ,ε) −
∫

g dmXf

∣

∣

∣

∣

= 0.

Proof. We use η = δ
ε . For α ∈ Z(Γ)⊕n, let evα ∈ C((TΓ)n) be defined by

evα(ζ) = e2πi〈ζ,α〉

where

〈ζ, α〉 =
∑

1≤l≤n

∑

g∈Γ

ζ(l)(g)α̂(l)(g).

Identify Z(Γ)⊕p with Mp,1(Z(Γ)). We let Ms,t(Mdi
(Z)) act as operators (Tdi)t →

(Tdi)s in the usual way. It is straightforward to see that

evα(Φk(j, ξ, ζ)) = exp(2πi[σk(α̃)(ξ + ζ)](j)).

By abstract Fourier analysis, it is enough to assume that g = evα for some
α ∈ Z(Γ)⊕n. We are thus required to show that

lim sup
δ→0

lim sup
k→∞

∣

∣

∣

∣

1 −
∫

evα d(Φk)∗(udk
⊗ uGk

⊗ μδ,ε)
∣

∣

∣

∣

= 0,

if α ∈ r(f)(Z(Γ)⊕m), and

lim sup
δ→0

lim sup
k→∞

∣

∣

∣

∣

∫

evα d(Φk)∗(udk
⊗ uGk

⊗ μδ,ε)
∣

∣

∣

∣

= 0,

when α ∈ Z(Γ)⊕n\r(f)(Z(Γ)⊕m). The desired claim is easy when α ∈ r(f)(Z(Γ)⊕m),
so we will focus on the case when α ∈ Z(Γ)⊕n \ r(f)(Z(Γ)⊕m).

If A is a compact abelian group and θ ∈ Hom(A, R/Z) is not identically zero,
then

∫

A
exp(2πiθ(a)) dmA(a) = 0. (27)

Let

Bk = {j : ξ �→ [σk(α̃)ξ](j) is trivial on Gk}.

Then by (27)
∫

f d(Φk)∗(udk
⊗ uGk

⊗ μδ,ε) =
1
dk

∑

j∈Bk

∫

Wk,δ,ε

e2πi[σk(α̃)ζ](j) dμδ,ε(ζ). (28)

If

lim
k→∞

|Bk|
dk

= 0,
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then our clam is easy. Passing to a subsequence we assume that

|Bk|
dk

→ β > 0. (29)

By Lemma 5.6 we have

Bk = {j : σk(α̃)∗ej ∈ x∗
k((Z

dk)⊕m)}.

For j ∈ Bk, let rj,k ∈ (Zdk)⊕m be such that

σk(α̃)∗ej = x∗
krj,k. (30)

Since ker(x∗
k)

⊥ = im(xk) = R
Ak , replacing rj,k with χAk

rj,k we may assume that
rj,k ∈ Z

Ak . Since α /∈ r(f)(Z(Γ)⊕m), Lemma 5.7 and (30) implies that we can find a
sequence of positive real numbers Ck tending to ∞, so that

|{j ∈ Bk : ‖rj,k‖�2(dkn) ≤ Ck}|
dk

→ 0.

We claim that for all large k, pη �= 0. To prove this, set

qη = χ(0,η](|x∗
k|).

By functional calculus and the fact that rj,k ⊥ ker(x∗
k),

‖rj,k − qηrj,k‖2
�2(dkm) = ‖χ(η,∞)(|x∗

k|)rj,k‖2
�2(dkm)

= 〈χ(η,∞)(|x∗
k|)rj,k, rj,k〉�2(dkm)

≤ 1
η2

〈|x∗
k|2rj,k, rj,k〉�2(dkm)

=
1
η2

‖x∗
krj,k‖2

�2(dkn)

=
1
η2

‖σk(α̃)∗ej‖2
�2(dkn)

≤ ‖α̂‖2
1

η2
. (31)

Since Ck → ∞ and Bk �= ∅ for all large k, we see that qηrj,k �= 0 for all large k then
and thus that qη �= 0. Let xk = uk|xk| be the polar decomposition. We leave it as an
exercise to show that for all Borel f : [0, ∞) → R with

f(0) = 0

we have

f(|x∗
k|) = ukf(|xk|)u∗

k.
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Indeed, this is easy when f(t) = t2n for some n ∈ N, and the general case follows by
approximation. Thus

qη = χ(0,η](|x∗
k|) = ukpηu

∗
k.

So

tr(qη) = tr(ukpηu
∗
k) = tr(pη),

as

u∗
kuk = Projker(xk)⊥ ≥ pη.

Thus the fact that qη �= 0 for all large k implies that pη �= 0 for all large k. Let

Vk,δ,ε = xkpη(�2
R
(dkn, udk

n)) ∩ δ Ball(�2
R
(dkn, udkm)),

and let νδ,ε be the normalized Lebesgue measure on Vk,δ,ε chosen so that νδ,ε(Vk,δ,ε) =
1. By the change of variables ζ �→ xkζ, it is not hard to see that

∫

Wk,δ,ε

e2πi[σk(α̃)ζ](j) dμδ,ε(ζ) =
∫

Vk,δ,ε

e2πi〈ζ,rj,k〉�2(dkn) dνδ,ε(ζ). (32)

Since

xkpη(�2
R
(dkn, udkn))=uk|xk|χ(0,η](|xk|)(�2

R
(dkn, udkn))=ukχ(0,η](|xk|)(�2

R
(dkn, udkn)),

it is not hard to see that

Projxkpη(�2
R
(dkn,udkn)) = ukχ(0,η](|xk|)u∗

k = qη. (33)

By (31),

‖qηrj,k − rj,k‖�2(dkm) ≤ ‖α̂‖1

η
.

So if we set Mk = Ck − ‖α̂‖1

η , it follows that

|{j ∈ Bk : ‖qηrj,k‖�2(dkm) ≤ Mk}|
dk

→ 0. (34)

Set

Mk = {j ∈ Bk : ‖qηrj,k‖�2(dkm) ≥ Mk},

then

lim
k→∞

1
dk

∑

j∈Bk

∫

Vk,δ,ε

e2πi〈ζ,rj,k〉�2(dkm) dνδ,ε(ζ)

= lim
k→∞

1
dk

∑

j∈Mk

∫

Vk,δ,ε

e2πi〈ζ,rj,k〉�2(dkm) dνδ,ε(ζ).
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Applying (33) and the fact that Vk,δ,ε ⊆ xkpη(�2
R
(dkn, udkn)) we have

lim
k→∞

1
dk

∑

j∈Bk

∫

Vk,δ,ε

e2πi〈ζ,rj,k〉�2(dkm) dνδ,ε(ζ)

= lim
k→∞

1
dk

∑

j∈Mk

∫

Vk,δ,ε

e2πi〈qηζ,rj,k〉�2(dkm) dνδ,ε(ζ)

= lim
k→∞

1
dk

∑

j∈Mk

∫

Vk,δ,ε

e2πi〈ζ,qηrj,k〉�2(dkm) dνδ,ε(ζ) (35)

For j ∈ Mk, let

vj,k =
qηrj,k

‖qηrj,k‖�2
R
(dkm)

,

ζj,k =
1

2‖qηrj,k‖�2
R
(dkm)

vj,k.

Since 〈ζj,k, qηrj,k〉 = 1/2,
∫

Vk,η

e2πi〈ζ,qηrj,k〉�2(dkm) dνη(ζ)

=
1
2

(

∫

Vk,η

e2πi〈ζ,qηrj,k〉�2(dkm) dνη(ζ) −
∫

Vk,η+ζj,k

e2πi〈ζ,qηrj,k〉�2(dkm) dνη(ζ)

)

.

Hence,
∣

∣

∣

∣

∣

∫

Vk,δ,ε

e2πi〈ζ,qηrj,k〉�2(dkm) dνδ,ε(ζ)

∣

∣

∣

∣

∣

(36)

=
1
2

∣

∣

∣

∣

∣

∫

Vk,δ,ε

e2πi〈ζ,qηrj,k〉�2(dkm) dνδ,ε(ζ) −
∫

Vk,δ,ε+ζj,k

e2πi〈ζ,qηrj,k〉�2(dkm) dνδ,ε(ζ)

∣

∣

∣

∣

∣

≤ νδ,ε(Vk,δ,ε \ (Vk,δ,ε + ζj,k)).

Let wk = Tr(pη). Then

‖ζj,k‖�2(dkm) ≤ 1
2Mk

=
δ
√

dkm√
wk

·
(

1
2δMk

√

wk

dkm

)

.

Since

wk > 0, (as we have already shown that pη �= 0),

lim
k→∞

wk

dk
≤ μ|f |((0, η]),
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and

Mk → ∞,

we may apply Lemma 5.8 with

nk = wk, Rk = δ
√

dkm, ck =
(

1
2δMk

√

wk

dkm

)

and find that

sup
j∈Mk

νδ,ε(Vk,δ,ε \ (Vk,δ,ε + ζj,k)) → 0.

Applying (35),(36) completes the proof. ��

5.2 The main result. We now prove that the measure theoretic entropy of
Γ � (Xf , mXf

) is log detL(Γ)(f) if f ∈ Mn(Z(Γ)) is injective as a left multiplication
operator on �2(Γ)⊕n.

Theorem 5.10. Let Γ be a countable discrete non-amenable sofic group. Let f ∈
Mn(Z(Γ)) be injective as a left-multiplication operator on �2(Γ)⊕n. Then for any
sofic approximation Σ of Γ we have

hΣ,mXf
(Xf , Γ) = log detL(Γ)(f).

Proof. From Theorem 4.4 and the variational principle, it is enough to show that

hΣ,mXf
(Xf , Γ) ≥ log detL(Γ)(f).

Identify Xf ⊆ (TΓ)n as usual. We may regard mXf
as a measure on (TΓ)n. Trivially

we have

Γ � (Xf , mXf
) ∼= Γ � ((TΓ)n, mXf

)

as measure-preserving actions of Γ. We use the pseudometric ρ on Xf given by

ρ(χ1, χ2)2 =
1
n

∑

1≤l≤n

|χ1(l)(e) − χ2(l)(e)|2,

let θ2,(Zm)⊕n be the pseudometric defined on (Tm)n as before. Let

Σ = (σk : Γ → Sdk
),

be a sofic approximation. By Proposition 3.8, we may find a rank perturbation
xk ∈ GLn(Mdk

(R)). Let

M = sup
k

‖xk‖∞.

Set

Gk = x−1
k ((Zdk)⊕n)/((Zdk)⊕n),
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by Lemma 4.2 we know that Gk is a finite abelian group and that

|Gk| = | det(xk)|.
Let ε > 0, for δ > 0, k ∈ N, let Gk, Wk,δ,ε, μδ,ε, pδ/ε, Φk be as in Lemma 5.9. For

(ξ, ζ) ∈ Gk × Wk,δ,ε set

φξ+ζ(j) = Φk(j, ξ, ζ).

Let L ⊆ C((TΓ)n), F ⊆ Γ be finite, and η > 0. By Proposition 2.7, we know that
λ(f) has dense image. By Lemma 5.9, Theorem 5.5 and the Automatic Concentration
Lemma (Lemma 5.4)

lim inf
δ→0

lim inf
k→∞

(uGk
⊗ μδ,ε)({(ξ, ζ) : φξ+ζ ∈ Map(ρ, F, L, η, σi)}) = 1.

Fix κ > 0, and choose δ0 > 0 sufficiently small so that

lim inf
k→∞

(uGk
⊗ μδ,ε)({(ξ, ζ) : φξ+ζ ∈ Map(ρ, F, L, η, σi)}) > 1 − κ

if δ < δ0. Let

Ek = {ξ ∈ Gk : μδ,ε({ζ : φξ+ζ ∈ Map(ρ, F, L, η, σi)}) ≥ 1 −
√

κ}.

Then for all δ < δ0, and all large k we have

|Ek|
|Gk|

≥ 1 −
√

κ,

so as in Theorem 4.4

|Ek| ≥ (1 −
√

κ)| det(xk)|.
For ξ ∈ Ek, let

Ωξ = {ζ ∈ Wk,δ,ε : φξ+ζ ∈ Map(ρ, F, L, η, σi)},

so that

μδ,ε(Ωξ) ≥ 1 −
√

κ.

Let N be such that {xkξ}ξ∈N is a maximal 2εM separated subset of Ek with
respect to θ2,xk((Zdi )⊕n . And for ξ ∈ N , let Mξ be a maximal ε-separated subset of
Ωξ with respect to θ2,(Zdk )⊕n . Let ωn(·) be defined as in the proof of Theorem 4.4. It
follows as in the proof of Theorem 4.4, that for δ < δ0,

Nε(Map(ρ, F, L, η, σi), ρ2) ≥
∑

ξ∈N
|Mξ|,

|Mξ| ≥ (1 −
√

κ)
detδ/ε(xk)−1δTr(p)

εTr(p)ωn(εM + δ)
,

|N | ≥ (1 −
√

κ)
| det(xk)|
ωn (2εM)

.

The rest of the proof follows as in Theorem 4.4. ��
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We can also use our techniques to give examples of algebraic actions with infinite
measure-theoretic entropy.

Theorem 5.11. Let Γ be a countable discrete non-amenable sofic group, and Σ =
(σk : Γ → Sdk

) a sofic approximation. Let f ∈ Mm,n(Z(Γ)) and suppose that λ(f) is
not injective, but has dense image (so necessarily m < n by Proposition 2.7). Then

hΣ,mXf
(Xf , Γ) = ∞.

Proof. Let ρ be the dynamical generating pseudometric on (TΓ)⊕n given by

ρ(θ1, θ2)2 =
1
n

n
∑

l=1

|θ1(l)(e) − θ2(l)(e)|2.

For E ⊆ Γ finite, and θ1, θ2 ∈ (TΓ)⊕n set

ρE(θ1, θ2) = max
g∈E

ρ2(gθ1, gθ2).

Fix 0 < ε < 1. By Theorem 5.5 the action Γ � (Xf , mXf
) is ergodic, and so we

may apply the Automatic Concentration Lemma. By Proposition 3.8, we may find
a rank perturbation xk ∈ Mm,n(Mdk

(Z)) so that xk((Rdk)⊕n) = R
Ak for some

Ak ⊆ {1, . . . , dk}m

with

lim
k→∞

|Ak|
dk

= m.

Let Gk, μδ,ε, Wk,δ,ε, Φ be as in Lemma 5.9. For ξ ∈ (Tdi)⊕n define

φξ : {1, . . . , di} → (TΓ)⊕n

by

φξ(j)(l)(g) = ξ(l)(σk(g)−1(j)).

For 1 ≤ j ≤ dk, let Φj : Gk × Wk,δ,ε → (TΓ)⊕n be given by

Φj(ξ, ζ) = Φ(j, ξ, ζ).

We remark that the proof of Lemma 5.9 shows that for α ∈ Z(Γ)⊕n and η > 0 we
have

lim
δ→0

lim
k→∞

udk

({

j :

∣

∣

∣

∣

∣

∫

evα d(Φj)∗(mGk
⊗ μδ,ε) −

∫

Xf

evα dmXf

∣

∣

∣

∣

∣

> η

})

= 0. (37)

Let Ωk = ker(xk) ∩ Ball(�2
R
(dkn, udkn)), and let ν be the normalized Lebesgue

measure on Ωk so that ν(Ωk) = 1. Define

Ψ: {1, . . . , dk} × Ωk × Gk × Wk,δ,ε → (TΓ)⊕n
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by

Ψ(j, v, ξ, ζ)(l)(g) = v(l)(σk(g)−1(j)) + ξ(l)(σk(g)−1(j)) + ζ(l)(σk(g)−1(j)) + Z.

Note that for all g ∈ Γ and finite E ⊆ Γ

sup
v∈Ωk

ρE,2(φv, X
⊕dk

f ) →k→∞ 0. (38)

This follows as any v ∈ Ωk is in Ξδ(xk) for any δ > 0, and xk is rank perturbation
of σk(f). From (37) and (38) and the fact that

∫

Xf

evα dmXf
=

{

0, if α /∈ r(f)(Z(Γ)⊕m),
1, if α ∈ r(f)(Z(Γ)⊕m),

it is not hard to see that

lim sup
δ→0

lim sup
k→∞

∣

∣

∣

∣

∫

h dΨ∗(udk
⊗ ν ⊗ mGk

⊗ μδ,ε) −
∫

h dmXf

∣

∣

∣

∣

= 0,

for all h ∈ C(Xf ). Thus by the Automatic Concentration Lemma,

lim sup
δ→0

lim sup
k→∞

(ν ⊗ mGk
⊗ μδ,ε) ({(v, ξ, ζ) : φv+ξ+ζ ∈ Map(ρ, F, δ, L, σk)}) = 1.

So we may fix a δ0 > 0 so that if 0 < δ < δ0, then

lim sup
k→∞

(ν ⊗ mGk
⊗ μδ,ε) ({(v, ξ, ζ) : φv+ξ+ζ ∈ Map(ρ, F, δ, L, σk)}) > 1/2.

Thus for all sufficiently large k, we can find (ξ, ζ) ∈ Gk × Wk,δ,ε so that

ν({v : φv+ξ+ζ ∈ Map(ρ, F, δ, L, σk)}) > 1/2.

Set

B = {v : φv+ξ+ζ ∈ Map(ρ, F, δ, L, σk)}.

Let S ⊆ B be ε-dense with respect to Θ2,(Zdk )⊕n of minimal cardinality. Since

ρ2(φξ, φζ) = θ2,(Zdk )⊕n(ξ, ζ)

for all ξ, ζ ∈ (Tdi)⊕n we have

Nε/4(Map(ρ, F, δ, L, σi), ρ2) ≥ |S|.

For all v ∈ B, we can find a w ∈ S and an l ∈ (Zdk)⊕n so that

‖v − w − l‖2,(Zdk )⊕n < ε.

Thus

B + pξ + pζ ⊆
⋃

w∈S,
l∈(Zdk )⊕n∩3Ball(�2

R
(dkn,udkn))

w + ξ + ζ + l + ε Ball(�2
R
(dk, udkn).
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Let p be the projection onto the kernel of xk. Thus

B + ξ + ζ ⊆
⋃

w∈S,

l∈(Zdk )⊕n∩3Ball(�2
R
(dkn,udkn))

w + pξ + pζ + pl + ε Ball(ker(xk) ∩ (Rdk )⊕n, ‖ · ‖�2(dkn,udk
n)).

Computing volumes, we have

1
2

≤ ν(B) ≤ εdimR(ker(xk)∩(Rdk )⊕n)|S||(Zdk)⊕n ∩ 3 Ball(�2
R
(dkn, udkn))|.

Note that

4 Ball(�2
R
(dkn, udkn)) ⊇

⋃

l∈(Zdk )⊕n∩3 Ball(�2
R
(dkn,udkn))

l + [−1/2, 1/2)dkn

and this union is a disjoint union. From this it follows that

4dkn vol(Ball(�2
R
(dkn, udkn))) ≥ |(Zdk)⊕n ∩ 3 Ball(�2

R
(dkn, udkn))|.

and so (see page 11 of [Pis89]) we may find a C > 0 with

|(Zdk)⊕n ∩ 3 Ball(�2
R
(dkn, udkn))| ≤ Cdkn.

Hence, we see that

|S| ≥ 1
2
ε− dimR(ker(xk)∩(Rdk )⊕n)C−dkn.

Therefore, by Lemma 2.6

hΣ,mXf
(ρ, F, L, δ, ε/4, σk) ≥ dimL(Γ)(ker λ(f)) log(1/ε) − n log C.

Since λ(f) is not injective,

dimL(Γ)(ker λ(f)) > 0.

Thus we can take the infimum over F, L, δ and let ε → 0 to complete the proof. ��

6 Applications of the Results

6.1 Random Sofic entropy and f-invariant entropy of algebraic actions.
In this section, we extend our results on sofic entropy of algebraic actions to Lewis
Bowen’s f -invariant entropy. We use Fr for the free group on r generators. Typically
the following notions are defined in terms of countable partitions, we will prefer to
use measurable maps α : X → A, where A is a countable set. Such a map induces
a partition with elements α−1({a}) for a ∈ A. We leave it as an exercise to the
informed reader to check that all our definitions agree with the usual definitions for
partitions.
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Definition 6.1. Let (X, μ) be a standard probability space, and Fr � (X, μ) a
probability measure-preserving action. Let K be a standard Borel space, a measur-
able map α : X → K is said to be a generator if for every measurable subset E ⊆ X,
ε > 0, there exists a finite subset F ⊆ Γ, a natural number n and (Ag,)g∈F,1≤j≤n

measurable subsets of K so that

μ

⎛

⎝EΔ
n
⋃

j=1

⋂

g∈F

gα−1(Ag,j)

⎞

⎠ < ε.

Let (X, μ) be a standard probability space. An observable is defined to be a
measurable map α : X → A, with A a countable set. If A is finite, we say that α is
a finite observable.

If α : X → A, β : X → B are two observables, we say that α ≤ β, if there is a
π : B → A so that α(x) = π(β(x)) for almost every x ∈ X.

Recall that if A is a countable set, (X, μ) is a standard probability space, and
α : X → A is a measurable observable then the entropy of α is defined by

H(α) = −
∑

a∈A

μ(α−1({a})) log μ(α−1({a})).

If α : X → A, β : X → B are observables we define

(α ∨ β) : X → A × B

by

(α ∨ β)(x) = (α(x), β(x)),

and we define H(α|β) by

H(α|β) = H(α ∨ β) − H(β).

If Γ � (X, μ) and g ∈ Γ define gα : X → A by (gα)(x) = α(g−1x). Let us recall the
definition of Lewis Bowen’s f -invariant entropy. For n ∈ N, we use B(e, n) for the
ball of radius n in Fr with respect to the standard word metric.

Definition 6.2. Let (X, μ) be a standard probability space and Fr � (X, μ) a
measure preserving action, let a1, . . . , ar be free generators for Fr. Let α : X → A
be an observable with finite Shannon entropy. Define

F (α) = (1 − 2r)H(α) +
r
∑

i=1

H(α ∨ aiα),

f(α) = inf
n>0

F

⎛

⎝

∨

g∈B(e,n)

gα

⎞

⎠ .
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Lewis Bowen proved (see [Bow10c] Theorem 1.3) that if α, β are two finite gen-
erators, then f(α) = f(β). So we can define

fμ(X, Fr) = f(α)

if there is a finite generator α for the action. We prove in this section that if h ∈
Mm,n(Z(Fr)) is injective as a left multiplication operator on �2(Fr)⊕n, then assuming
the action Fr � (Xh, mXh

) has a finite generator,

fmXh
(Xh, Fr) ≤ log det+L(Fr)(h)

with equality if m = n. To do this, we will use a relation due to Lewis Bowen between
f -invariant entropy and sofic entropy with respect to a random sofic approximation.
Let us recall the definition of a random sofic approximation. If X is a standard Borel
space, we use Prob(X) for the space of Borel probability measures on X.

Definition 6.3. Let Γ be a countable discrete group, a sequence κi ∈ Prob(SΓ
di

) is
said to be a random sofic approximation of Γ if

1: di → ∞,
2: for all g, h ∈ Γ, δ > 0, there is an i0 so that i ≥ i0 implies

κi({σ : udi
({j : (σ(g)σ(h))(j) = σ(gh)(j)}) ≥ 1 − δ}) = 1,

3: κi ⊗ udi
({(σ, j) : σ(g)(j) �= σ(h)(j)}) → 1, for all g, h ∈ Γ with g �= h.

Property 2 may seems like an unnaturally strong assumption, but it turns out
to be necessary for the definition of random sofic entropy to be an invariant. We
now state the definition of entropy of an action with respect to a random sofic
approximation.

Definition 6.4. Let Γ be a countable discrete group, and κ = (κi) a random sofic
approximation of Γ with κi ∈ Prob(SΓ

di
). Let X be a compact metrizable space and

Γ � X by homeomorphisms. Let ρ be a dynamically generating pseudometric on
X. Define the topological entropy with respect to κ by

hκ(ρ, F, δ, ε) = lim sup
i→∞

1
di

log
∫

SΓ
di

Sε(Map(ρ, F, δ, σ), ρ2) dκi(σ),

hκ(ρ, ε) = inf
F⊆Γ finite,

δ>0

hκ(ρ, F, δ, ε),

hκ(X, Γ) = sup
ε>0

hκ(ρ, ε).
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If μ is a Γ-invariant Borel probability measure on X, define the measure theoretic
entropy of Γ � (X, μ) by

hκ,μ(ρ, F, L, δ, ε) = lim sup
i→∞

1
di

log
∫

Sε(Map(ρ, F, L, δ, σ), ρ2) dκi(σ),

hκ,μ(ρ, ε) = inf
F⊆Γfinite,

L⊆C(X)finite,
δ>0

hκ(ρ, F, L, δ, ε),

hκ,μ(X, Γ) = sup
ε>0

hκ,μ(ρ, ε).

It was shown by Bowen in [Bow14] Theorems 6.7 and 9.4 that hκ, hκ,μ are indepen-
dent of the choice of dynamically generating pseudometric. We will also need the
definition of measure-theoretic entropy without using a topological model (essen-
tially due to Kerr in [Ker13] as a generalization of Bowen’s definition in [Bow10b]).

Definition 6.5. Let Γ be a countable discrete group and σ : Γ → Sd a function.
Let (X, B, μ) be a standard probability space, and S ⊆ B a subalgebra of B. Let
α : X → A be a finite S-measurable observable. For φ ∈ Ad, and a finite F ⊆ Γ, let
αF : X → AF , φF

σ : {1, . . . , d} → AF be defined by

αF (x)(g) = α(g−1x),
φF

σ (x)(g) = φ(σ(g)−1x).

For F ⊆ Γ finite, ε > 0, let AP(α, F, ε, σ) be all φ ∈ Ad so that
∑

a∈AF

|(αF )∗(μ)({a}) − (φF
σ )∗(ud)({a})| < ε.

Definition 6.6. Let Γ be a countable discrete group with random sofic approxi-
mation κ = (κi) with κi ∈ M(SΓ

di
). Let (X, B, μ) be a standard probability space

with Γ � (X, B, μ) by measure-preserving transformations. Let S ⊆ B be a subal-
gebra which is generating under the action of Γ. Let α : X → A, β : X → B be finite
S-measurable observables (i.e. α−1({a}) ∈ S, β−1({b}) ∈ S for a ∈ A, b ∈ B) and
assume that α ≤ β, and π is as in the definition of α ≤ β, set

hκ,μ(α; β, F, ε) = lim sup
i→∞

1
di

log
∫

SΓ
di

|πdi(AP(β, F, ε, σ))| dκi(σ),

hκ,μ(α; β) = inf
F⊆ finite,

ε>0

hκ,μ(α; β, F, ε),

hκ,μ(α) = inf
β

hκ,μ(α; β),

hκ,μ(X, Γ) = sup
α

hκ,μ(α).

Where the infimum and supremum in the last two lines are over all finite S-measur-
able observables α, β with α ≤ β.
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It is show in [Bow14] Theorem 7.5 that this definition is independent of the choice
of generating subalgebra, and in Theorem 9.5 that it agrees with the definition in
the case of a topological model.

Theorem 6.7 (Theorem 1.3 in [Bow10a]). Let (X, μ) be a standard probability
space, and Fr � (X, μ) by measure-preserving transformations. Suppose that the
action has a finite generator. Let U = (uHom(Fr,Sn)), then

hU,μ(X, Fr) = fμ(X, Fr).

Using additional results of Lewis Bowen, one can replace the assumption of having
a generator with having a generator with finite Shannon entropy. Since we cannot
find a proof in the literature, we include the simple proof below.

Proposition 6.8. Let (X, μ) be a standard probability space, and Fr � (X, μ) by
measure-preserving transformations. Suppose that the action has a generator with
finite Shannon entropy. Let U = (uHom(Fr,Sn)), then

hU,μ(X, Fr) = fμ(X, Fr).

Proof. Let α be a generator with finite Shannon entropy. By the preceding Theorem,
we may assume that α has range N. Let

πn : N → {1, . . . , n}

be defined by πn(k) = k if 1 ≤ k ≤ n, and πn(k) = n if k ≥ n. Let αn = πn ◦ α. Let
Σm be the smallest Γ-invariant σ-algebra of measurable sets containing α−1

m ({j}) for
1 ≤ j ≤ m, and S the subalgebra of measurable sets (not necessarily a sub-sigma
algebra) generated by {α−1

n ({k}) : n, k ∈ N, k ≤ n}. It suffices to show that

fμ(αn) → fμ(X, Fr)
fμ(αn) → hU,μ(X, Fr).

For the first result, we know by [Bow10c] that f is upper semi-continuous on the
space of partitions, in particular that

fμ(X, Fr) = fμ(α) ≥ lim sup
n→∞

fμ(αn).

On the other hand by [BG14] Theorem 1.3,

fμ(α) = fμ(αn) + fμ(α|Σn),

(see [BG14] 1.2 for the definition of fμ(α|Σn)) and by [BG14] Proposition 5.1,

fμ(α|Σn) ≤ H(α|Σn) ≤ H(α|αn) → 0.

So

fμ(α) ≤ lim inf
n→∞

fμ(αn),
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and thus

fμ(αn) → fμ(α) = fμ(X, Fr).

For the second claim, note that the smallest Γ-invariant complete sub-sigma
algebra of measurable sets containing S is all measurable subsets of X. So we may
use S to compute hU,μ(X, Fr). By a method of proof analogous to Lemma 5.1 in
[Bow10b], we have

hU,μ(α; γ) ≤ hU,μ(β; γ) + H(α|β) (39)

if β ≤ α ≤ γ are finite observables. Thus if α ≤ γ, β ≤ γ are observables, then

hU,μ(α; γ) ≤ hU,μ(α ∨ β; γ) ≤ hU,μ(β; γ) + H(α|β).

From this it follows that

hU,μ(X, Fr) = sup
m

hU,μ(αm).

Now

hU,μ(αm) ≤ hU,μ(αm; αm) = fμ(αm)

by the preceding Theorem. Thus,

hU,μ(X, Fr) ≤ lim inf
m→∞

fμ(αm).

On the other hand, for n ≥ m we have by (39),

hU,μ(αn; αn) ≤ hU,μ(αm; αn) + H(αn|αm).

If β is any finite S-measurable observable, then β ≤ αn for some n, so

hU,μ(αm) = inf
n

hU,μ(αm; αn).

Thus

lim sup
n→∞

fμ(αn) ≤ hU,μ(αm) + H(α|αm),

and letting m → ∞ proves that

lim sup
n→∞

fμ(αn) ≤ hU,μ(X, Fr)

thus

fμ(αn) → hU,μ(X, Fr). ��

We first relate random sofic entropy to deterministic sofic entropy.



GAFA FUGLEDE–KADISON DETERMINANTS AND SOFIC ENTROPY 587

Proposition 6.9. Let Γ be a countable discrete group, and X a compact metrizable
space with Γ � X by homeomorphisms. Let κ be a random sofic approximation of
Γ, and ρ a dynamically generating pseudometric on X. Then for any ε > 0

inf
Σ

hΣ(ρ, ε) ≤ hκ(ρ, ε)

where the infimum is over all sofic approximations Σ of Γ.
If μ is a Γ-invariant Borel probability measure on X, then

inf
Σ

hΣ,μ(ρ, ε) ≤ hκ,μ(ρ, ε),

again with the infimum being over all sofic approximations Σ of Γ.

Proof. We do the proof only in the topological case, the proof for the measure-
theoretic case is the same. Let κ = (κi) with κi ∈ Prob(SΓ

di
). Since

inf
Σ

hΣ(ρ, ε) = inf
F,δ

inf
Σ

hΣ(ρ, F, δ, ε)

it suffices to show that if F ⊆ Γ is finite, δ > 0 then

inf
Σ

hΣ(ρ, F, δ, ε) ≤ hκ(ρ, F, δ, ε).

Let Fn be an increasing sequence of finite subsets of Γ so that

Γ =
∞
⋃

n=1

Fn.

Let in be an increasing sequence of integers so that

1
di

log
∫

Sε(Map(ρ, F, δ, σ), ρ2) dκi(σ) ≤ hκ(ρ, F, δ, ε) + 2−n, for i ≥ in

udi
({j : σ(g)σ(h)(j) = σ(gh)(j)}) ≥ 1 − 2−n, for all g, h ∈ Fn, for all i ≥ in

and κi-almost every σ

κi({σ : udi
({j : σ(g)(j) �= σ(h)(j)}) ≥ 1 − 2−n for all g �= h in Fn}) ≥ 1 − 2−n

for all i ≥ in.

Let

An,i =
⋂

g,h∈Fn

{σ : udi
({j : σ(g)σ(h)(j) = σ(gh)(j)}) ≥ 1 − 2−n}

Bn,i =
⋂

g,h∈Fn,g �=h

{σ : udi
({j : σ(g)(j) �= σ(h)(j)}) ≥ 1 − 2−n},

Cn,i = An,i ∩ Bn,i.
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Then for all i ≥ in

1
κi(Cn,i)

∫

Cn,i

Sε(Map(ρ, F, δ, σ), ρ2) dκi(σ) ≤ 1
1 − 21−n

exp(dihκ(ρ, F, δ, ε) + di2−n).

So we can find a σn ∈ Cn,in
so that

1
din

log Sε(Map(ρ, F, δ, σn), ρ2) ≤ 1
din

log
(

1
1 − 21−n

)

+ hκ(ρ, F, δ, ε) + 2−n.

Then Σ = (σn)∞
n=1 is a sofic approximation with

hΣ(ρ, F, δ, ε) ≤ hκ(ρ, F, δ, ε). ��

The above statement may seem obvious, and even though the proof is simple, let
us point out that it is not clear how to prove the analogous statement for supremums.
Indeed, suppose we try to repeat the proof and find an increasing sequence of integers
in so that

κin
(Cn,in

) ≥ 1 − 21−n

and
1

din

log
∫

Sε(Map(ρ, F, δ, σ), ρ2) dκi(σ) ≥ hκ(ρ, F, δ, ε) − 2−n.

Then the best we can conclude is that
∫

Cn,in

Sε(Map(ρ, F, δ, σ), ρ2) dκi(σ) ≥ exp(din
[κ(ρ, F, δ, ε) − 2−n]) − 21−nSε(X, ρ)din .

And so there is some σn ∈ Cn,in
with

Sε(Map(ρ, F, δ, σn), ρ2) ≥ exp(din
[hκ(ρ, F, δ, ε) − 2−n]) − 21−nSε(X, ρ)din .

However, this estimate is not good enough to show that

hκ(X, Γ) ≤ sup
Σ

hΣ(X, Γ),

in fact

exp(din
[hκ(ρ, F, δ, ε) − 2−n]) − 21−nSε(X, ρ)din

could be negative.
The difficulty here is that we need to control Sε(Map(ρ, F, δ, ε), ρ2) on the set

where our random sofic approximations fails to be free. We shall prove that this can
be done for measure-theoretic entropy if the action is essentially free. Recall that an
action Γ � (X, μ) is essentially free if

μ({x ∈ X : gx = x}) = 0

for all g ∈ Γ \ {e}. The idea is basically clear: if a sequence of almost multiplicative
maps fails to be asymptotically free, then one cannot use them to model an essentially
free action.
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Lemma 6.10. Let Γ be a countable discrete group, and X a compact metrizable
space with Γ � X by homeomorphisms. Let ρ be a compatible metric on X. Let μ
be a Γ-invariant Borel probability measure on X. Suppose that the action Γ � (X, μ)
is essentially free. Then, for all E ⊆ Γ\{e} finite, η > 0, there is an L ⊆ C(X) finite,
δ > 0, F ⊆ Γ finite, so that if σ : Γ → Sd is a function, and Map(ρ, F, δ, σ) �= ∅,
then for all g ∈ E,

|{j : σ(g)(j) = j}| ≤ dη.

Proof. It suffices to assume E = {g} for some g ∈ Γ \ {e}. Then,

{x ∈ X : gx = x} =
⋂

δ>0

{x ∈ X : ρ(gx, x) < δ}.

Hence, we may find a δ′ > 0 so that

μ({x ∈ X : ρ(gx, x) < δ′}) < η.

Let

V = {x ∈ X : ρ(gx, x) < δ′}

K =
{

x ∈ X : ρ(gx, x) ≤ δ′

2

}

.

Choose f ∈ C(X) so that

χK ≤ f ≤ χV .

If φ ∈ Map(ρ, {g}, δ, {f}, σ), then

1
d

∣

∣

∣{j : ρ(gφ(j), φ(σ(g)(j))) ≥
√

δ}
∣

∣

∣ ≤
√

δ.

Further,

1
d

∣

∣

∣

∣

{j : ρ(gφ(j), φ(j)) ≤ δ′

2
}
∣

∣

∣

∣

= φ∗(ud)(K)

≤ δ +
∫

f dμ

≤ δ + μ(V )
≤ δ + η.

Thus,

1

d
|{j : σ(g)(j) = j}| ≤ δ + η +

√
δ

+
1

d

∣

∣

∣

∣

{

j : σ(g)(j)=j, ρ(gφ(j), φ(σ(g)(j)))<
√

δ, ρ(gφ(j), φ(j))>
δ′

2

}∣

∣

∣

∣

.
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Choose δ so that δ < η,
√

δ < η and
√

δ < δ′

2 . We then see that

1
d
|{j : σ(g)(j) = j}| ≤ 3η,

since η is arbitrary this proves the Lemma. ��

Proposition 6.11. Let Γ be a countable discrete group with random sofic approx-
imation κ, and (X, μ) a standard probability space. Suppose that Γ � (X, μ) is an
essentially free measure-preserving action. Then,

hκ,μ(X, Γ) ≤ sup
Σ

hΣ,μ(X, Γ)

where the supremum is over all sofic approximations of Γ.

Proof. Let κ = (κi) with κi ∈ Prob(SΓ
di

). It is well-known that there is a compact
metrizable space Y, an action Γ � Y by homeomorphisms, and a Borel probability
measure ν on Y so that Γ � (Y, ν) ∼= Γ � (X, μ) (e.g. take the spectrum of a weak∗-
dense unital separable C∗-subalgebra of L∞(X, μ) for Y ). Thus we may assume X is
a compact metrizable space, and Γ � X by homeomorphisms. Let ρ be a compatible
metric on X. We may assume that

hκ,μ(X, Γ) > −∞.

As

sup
Σ

hΣ,μ(X, Γ) = sup
ε>0

sup
Σ

hΣ,μ(ρ, ε)

it is enough to show that for any ε > 0,

sup
Σ

hΣ,μ(ρ, ε) ≥ hκ,μ(ρ, ε).

Let F ′
n be an increasing sequence of finite subset of Γ, so that

Γ =
∞
⋃

n=1

F ′
n,

let δ′
n be a decreasing sequence of positive real numbers converging to zero, and let

L′
n be an increasing sequence of finite subsets of C(X) so that

C(X) =
∞
⋃

n=1

Ln.

Applying the preceding Lemma, we may assume that there are an increasing se-
quence of finite subsets Fn, Ln of Γ, C(X) with F ′

n ⊆ Fn, L′
n ⊆ Ln and 0 < δ < δ′ so

that if σ : Γ → Sd is any function, and

Map(ρ, Fn, δn, Ln, σ) �= ∅
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then

ud

⎛

⎝

⋂

g,h∈F ′
n,g �=h

{j : σ(g)(j) �= σ(h)(j)}

⎞

⎠ ≥ 1 − 2−n.

Choose an increasing sequence of integers in so that

1
din

log
∫

Sε(Map(ρ, Fn, Ln, δn, σ), ρ2) dκin
(σ) ≥ hκ(ρ, Fn, Ln, δn, ε) − 2−n,

κin

(

{σ : udin
({j : σ(g)σ(h)(j) = σ(gh)(j)}) ≥ 1 − 2−n for all g, h ∈ Fn}

)

= 1.

Since

hκ(ρ, Fn, Ln, δn, ε) ≥ hκ(ρ, ε) > −∞,

we can find a σn ∈ SΓ
din

so that for all g, h ∈ Fn

udin
({j : σn(g)σn(h)(j) = σn(gh)(j)}) ≥ 1 − 2−n,

and

Sε(Map(ρ, Fn, Ln, δn, σn), ρ2) ≥ max(1, exp(din
[hκ(ρ, Fn, Ln, δn, ε) − 2−n])).

So by the preceding Lemma,

udin

⎛

⎝

⋂

g,h∈F ′
n,g �=h

{j : σn(g)(j) �= σn(h)(j)}

⎞

⎠ ≥ 1 − 2−n.

If m ≥ n, then

Sε(Map(ρ, Fm, Lm, δm, σm), ρ2) ≤ Sε(Map(ρ, Fn, Ln, δn, σm), ρ2)

so if we set Σ = (σn)∞
n=1, then Σ is a sofic approximation with

hΣ,μ(ρ, Fn, Ln, δn, ε) ≥ max(0, hκ,μ(ρ, ε)).

Letting n → ∞ proves that

hΣ,μ(ρ, ε) ≥ hκ,μ(ρ, ε). ��

Using results of Brandon Seward, we can apply this to f -invariant entropy of
algebraic actions.
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Proposition 6.12. Let X be a compact metrizable group, and Fr � X by auto-
morphisms, with r > 1. If the action is not essentially free (with respect to the Haar
measure), then

hU,mX
(X, Fr) = (1 − r) log |X|,

if X is finite, and

hU,mX
(X, Fr) = −∞

if X is infinite.

Proof. The finite case follows from Theorem 6.7 and the definition of the f -invariant,
so we assume X is infinite. For g ∈ Fr, we let Fixg(X) be the set of elements fixed
by g. Choose g ∈ Fr \ {e} so that Fixg(X) has positive measure. We first show that
the entropy of 〈g〉 � (X, mX) is zero.

For this, note that Fixg(X) is a closed subgroup of X, and by assumption it has
positive measure. Since X is compact, this forces

[X : Fixg(X)] < ∞.

Set

Y =
⋂

x∈X

x Fixg(X)x−1,

then Y is a closed normal subgroup of X, and it is a standard fact that

[X : Y ] < ∞.

Since g acts by automorphisms, we know that Y is 〈g〉-invariant. We have the fol-
lowing exact sequence of compact groups with 〈g〉-actions

1 −−−−→ Y −−−−→ X −−−−→ X/Y −−−−→ 1.

Since 〈g〉 is cyclic we may apply Yuzvinskǐı’s addition formula (see [Yuz67]) to see
that

hmX
(X, 〈g〉) = hmY

(Y, 〈g〉) + hmX/Y
(X/Y, 〈g〉) = hmY

(Y, 〈g〉),

since X/Y is finite, and 〈g〉 ∼= Z. Since 〈g〉 � Y trivially, we know that

hmY
(Y, 〈g〉) = 0,

so

hmX
(X, 〈g〉) = 0.

We now prove the proposition. Let α be a finite partition of X, then

hU,μ(α) ≤ hU,μ(α; α).
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Let S be the σ-algebra of measurable sets generated by {hα : h ∈ Fr}, let (Z, ζ) be
the factor of (X, mX) corresponding to S. By Theorem 6.7, we have

hU,μ(α) ≤ hU,μ(α; α) = hU,ζ(Z, Fr) = fζ(Z, Fr).

Since entropy for actions of amenable groups decreases under factor maps, we know
that

hζ(Z, 〈g〉) = 0.

Thus by [Sew] Theorem 1.6, we know that

fζ(Z, Fr) = −∞.

Thus,

hU,μ(α) = −∞,

as α is arbitrary we know that

hU,μ(X, Fr) = −∞. ��

Corollary 6.13. Let r ∈ N with r > 1. Let h ∈ Mm,n(Z(Fr)) and suppose λ(h) is
injective. Let U = (uHom(Fr,Sn)), then

hU,mXh
(Xh, Fr) ≤ log det+L(Fr)(h)

with equality if m = n. In particular, if the action Fr � (Xh, mXh
) has a generator

with finite Shannon entropy, then

fmXh
(Xh, Fr) ≤ log det+L(Fr)(h)

with equality if m = n.

Proof. The “in particular” part is a consequence of Proposition 6.8. The lower bound
when m = n, follows Proposition 6.9, and the proof of Theorem 5.10. The upper
bound is a consequence of the preceding proposition and Proposition 6.11. ��

Corollary 6.14. Let r ∈ N with r > 1. Let h ∈ Mm,n(Z(Fr)) and suppose
that λ(f) has dense image but is not injective (so necessarily m < n.) Let U =
(uHom(Fr,Sn)), then

hU,mXh
(Xh, Fr) = ∞.

Proof. Automatic from Proposition 6.9 and the proof of Theorem 5.11. ��
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Using results of Brandon Seward, we can extend these results to virtually free groups.
In [Sew14], it is proved that if Λ ⊆ Fr has finite index, and (X, μ) is a standard
probability space with Fr � (X, μ) by measure-preserving transformations, then if
the action has a generator with finite Shannon entropy,

fμ(X, Λ) = [Fr : Λ]fμ(X, Fr). (40)

Thus, if Γ is a virtually free group, and Γ � (X, μ) is a standard probability measure-
preserving action with a finite Shannon entropy generator, we can define

fμ(X, Γ) =
1

[Γ: Λ]
fμ(X, Λ)

where Λ ⊆ Γ is any finite index free group. By (40), this does not depend on the
choice of finite index subgroup.

Corollary 6.15. Let Γ be a virtually free group, and h ∈ Mm,n(Z(Γ)) be injective
as a left multiplication operator on �2(Γ)⊕n. Suppose Γ � (Xh, mXh

) has a generator
with finite Shannon entropy, then

fmXh
(Xh, mXh

) ≤ log det+L(Γ)(h)

with equality if m = n.

Proof. Choose a finite index free subgroup Λ of Γ. Using a system of coset represen-
tatives,

Z(Γ)⊕n ∼= Z(Λ)⊕[Γ : Λ]n,

Z(Γ)⊕m ∼= Z(Λ)⊕[Γ : Λ]m,

as Z(Λ)-modules. The map

Z(Γ)⊕m → Z(Γ)⊕n

given by right multiplication by h is Z(Λ)-modular, hence under these isomorphisms
corresponds to an element ˜h ∈ M[Γ : Λ]m,[Γ : Λ]n(Z(Λ)). As operators on �2, we can
obtain ˜h by regarding �2(Γ)⊕n, �2(Γ)⊕m as isomorphic to �2(Λ)⊕[Γ : Λ]n, �2(Λ)⊕[Γ : Λ]n

as representations of Λ (using the same system of coset representatives as before).
Using the well-known formula (see [Luc02] Theorem 1.12 (6)).

dimL(Γ)(H) =
1

[Γ: Λ]
dimL(Λ)(H),

for Γ-invariant subspaces of �2(N, �2(Γ)) we have
1

[Γ: Λ]
μ|˜h| = μ|h|.

By the preceding Corollary,

fmXh
(Xh, Γ) =

1
[Γ: Λ]

fmX
˜h
(X

˜h
, Λ) ≤ 1

[Γ: Λ]
log det+L(Λ)(

˜h) = log det+L(Γ)(h),

with equality if m = n. ��
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6.2 Applications to metric mean dimension and entropy. The first ap-
plication is a complete classification of when a finitely presented algebraic action
has finite topological entropy. We use mdimΣ,M , mdimΣ for metric mean dimension
and mean dimension respectively (see [Li14] for the definition). For a Z(Γ)-module
A, we use vr(A) for the von Neumann rank of A, (see [LL13] for the definition).

Theorem 6.16. Let Γ be a countable discrete sofic group with sofic approximation
Σ = (σi : Γ → Sdi

). Suppose that A is a finitely-presented Z(Γ)-module.

(i) The following are equivalent:
(1) hΣ( ̂A, Γ) < ∞,
(2) mdimΣ,M ( ̂A, Γ) = 0,
(3) vr(A) = 0.

(ii) Suppose that Γ is residually finite. Let Γi � Γ be a decreasing sequence with
[Γ : Γi] < ∞ for all i ∈ N and

∞
⋂

i=1

Γi = {e}.

Let Σ = (σi : Γ → Sym(Γ/Γi))∞
i=1 be defined by

σi(g)(xΓi) = gxΓi.

Then (1) − (3) are equivalent to
(4) mdimΣ( ̂A, Γ) = 0.

Proof. (i): It is easy to see that (1) implies (2). The equivalence of (3) and (2) is
the content of Theorem 5.1 in [Hay].
Suppose that vr(A) = 0. We may assume A = Z(Γ)⊕n/r(f)(Z(Γ)⊕m) with
f ∈ Mm,n(Z(Γ)). By Lemma 5.4 in [LL13] vr(A) = dimL(Γ)(ker λ(f)), so our
hypothesis implies 0 = dimL(Γ)(ker λ(f)). Thus λ(f) is injective, so by Theorem
4.8

hΣ( ̂A, Γ) ≤ log det+L(Γ)(f) ≤ log ‖ ̂f‖1 < ∞.

So we have shown that (3) implies (1).
(ii): By Theorem 6.2 in [Hay], we know that

vr(A) = mdimΣ( ̂A, Γ)

and so (4) is equivalent to (3). ��

It is easy to prove Theorem 1.1 (i) from the above.

Corollary 6.17. Let Γ be a countable discrete sofic group with sofic approxima-
tion Σ = (σi : Γ → Sdi

) and fix f ∈ Mm,n(Z(Γ)). Then hΣ(Xf , Γ) < ∞ if and only
if λ(f) is injective.
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Proof. Set

A = Z(Γ)⊕n/r(f)(Z(Γ)⊕m)

(so Xf = ̂A). Then arguing as in the preceding theorem we see that vr(A) = 0
if and only if λ(f) is injective. Hence it follows by the preceding theorem that
hΣ(Xf , Γ) < ∞ if and only if λ(f) is injective. ��

For the next application, we need to single out a nice class of groups.

Definition 6.18. Let Γ be a countable discrete group. Let O(Γ) denote the abelian
subgroup of Q generated by |Λ|−1 for all finite subgroups Λ ⊆ Γ. We say that Γ has
the Strong Atiyah property if dimL(Γ)(ker(λ(f))) ∈ O(Γ) for all f ∈ Mm,n(Z(Γ)).

For example, let C be the smallest class of groups containing all free groups, and
closed under direct unions and extensions with elementary amenable quotients, then
by Theorem 10.19 in [Luc02] we know that Γ has the strong Atiyah property.

Theorem 6.19. Let Γ be a countable discrete sofic group with the Strong Atiyah
property, and such that

sup{|Λ| : Λ ⊆ Γ is finite } < ∞.

Let Σ be a sofic approximation of Γ. Let A be a finitely generated Z(Γ)-module.
Then mdimΣ,M ( ̂A, Γ) = 0 if and only if hΣ( ̂A, Γ) < ∞.

Proof. Our proof is essentially the same as the proof of Corollary 9.5 in [LL13]. It
is straightforward to see that

hΣ( ̂A, Γ) < ∞

implies that

mdimΣ,M ( ̂A, Γ) = 0.

Conversely, suppose that

mdimΣ,M ( ̂A, Γ) = 0.

Without loss of generality A = Z(Γ)⊕n/B, for some Z(Γ)-submodule B of Z(Γ)⊕n.
Write

B =
∞
⋃

m=1

Bm

where Bm are finitely generated. By the proof of Lemma 2.3 in [Hay], we know that

0 = vr(A) = lim
m→∞

vr(Z(Γ)⊕n/Bm).
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Our assumptions imply that O(Γ) is discrete and thus for all large m

vr(Z(Γ)⊕n/Bm) = 0.

The preceding theorem and Theorem 5.1 in [Hay] then imply that

hΣ((Z(Γ)⊕n/Bm)̂, Γ) < ∞.

As

̂A ⊆ (Z(Γ)⊕n/Bm)̂,

we find that

hΣ( ̂A, Γ) ≤ hΣ((Z(Γ)⊕n/Bm)̂, Γ) < ∞. ��

6.3 Failure of Yuzvinskǐı addition formula and relation to torsion. In
this section, we study when the Yuzvinskǐı addition formula fails for a non-amenable
sofic group Γ. As we shall see, the Yuzvinskǐı addition formula will automatically fail
when Γ contains a nonabelian free group. We also show that it fails if the L2-torsion
of Γ is defined and nonzero. Unfortunately, we cannot come up with an example of
a sofic group Γ not containing a free subgroup, and with nonzero L2-torsion, so at
this stage this is just another point of view on the Yuzvinskǐı addition formula.

Definition 6.20. Let Γ be a countable discrete sofic group with sofic approximation
Σ. Let C be a class of Z(Γ)-modules. We say that (Γ, Σ) fails Yuzvinskǐı’s addition
formula for the class C if there is an exact sequence of Z(Γ) modules

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

with A, B, C ∈ C such that

hΣ( ̂B,Γ) �= hΣ( ̂A, Γ) + hΣ( ̂C, Γ).

Let us first note that failure of the Yuzvinskǐı addition formula is closed under
supergroups. For this, we need the notion of coinduction.

Definition 6.21. Let Λ ⊆ Γ be countable discrete groups. Let X be a compact
metrizable space and Λ � X by homeomorphisms. Let

Y = {f : Γ → X : f(gλ) = λ−1f(g) for all g ∈ Γ, λ ∈ Λ},

and give Y the product topology. Then Y is a compact metrizable space and Γ � Y
by homeomorphisms as follows:

(gf)(x) = f(g−1x).

The action Γ � Y is called the coinduced action of Λ � X.
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We use Γ/Λ for the set of left cosets of Λ in Γ. Suppose we choose a section
s : Γ/Λ → Γ, i.e. s(a)Λ = a. And consider the corresponding cocycle c : Γ×Γ/Λ → Λ
given by

gs(a) = s(ga)c(g, a).

Then it is not hard to show that the coinduced action is isomorphic to the action
Γ � XΓ/Λ given by

(gx)(a) = c(g−1, a)−1x(g−1a).

Proposition 6.22. Let Λ ⊆ Γ be countable discrete sofic groups, and let Σ be a
sofic approximation of Γ. Let X be a compact metrizable space and Λ � X by
homeomorphisms. Let Γ � Y be the coinduced action. Then

hΣ(Y,Γ) = h
Σ
∣

∣

Λ

(X, Λ).

Proof. Let Σ = (σi : Γ → Sdi
). Let ρ be a compatible metric on X. Define a dynam-

ically generating pseudometric on Y by ρ̃(α, β) = ρ(α(e), β(e)). Given F ⊆ Γ finite,
δ > 0, and φ ∈ Map(ρ̃, F, δ, σi), let αφ : {1, . . . , di} → X be given by

αφ(j) = φ(j)(e).

Then αφ ∈ Map(ρ, F ∩ Λ, δ, σi) and ρ(αφ, αψ) = ρ̃(φ, ψ) for φ, ψ ∈ Map(ρ̃, F, δ, σi).
Thus

hΣ(Y,Γ) ≤ h
Σ
∣

∣

Λ

(X, Λ).

For the reverse inequality, let s : Γ/Λ → Γ be a section of the quotient map, i.e.
s(c)Λ = c, additionally we assume that s(Λ) = e. Let c : Γ × Γ → Λ be the induced
cocycle given by

gs(hΛ) = s(ghΛ)c(g, h).

As explained before the proposition, we may regard Y as XΓ/Λ with the action of Γ
given by

(gx)(a) = c(g−1, a)−1x(g−1a).

We use the dynamically generating pseudometric ρ̃ on XΓ/Λ given by

ρ̃(x, y) = ρ(x(Λ), y(Λ)).

Let F ⊆ Γ be finite, δ > 0, and let F ′ ⊆ Λ finite, δ′ > 0 to be determined. Given
α ∈ Map(ρ, F ′, δ′, σi), let φα : {1, . . . , di} → Y be given by

φα(j)(a) = α(σi(s(a)−1)(j)).
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Set F ′ = {c(g, e) : g ∈ F ∪ F−1} ∪ {e} ∪ {c(g, e)−1 : g ∈ F ∪ F−1}. We claim that if
δ′ > 0 is sufficiently small, the for all sufficiently large i and all α ∈ Map(ρ, F ′, δ′, σi),
we have φα ∈ Map(ρ̃, F, δ, σi). Note that

(gφα)(j)(Λ) = c(g−1, Λ)−1α(σi(s(g−1Λ)−1)(j)),

φα(σi(g)(j))(Λ) = α(σi(g)(j)).

So

ρ̃2(gφα, φα ◦ σi(c(g−1, Λ)−1)σi(s(g−1Λ)−1)) < δ′, (41)

and by soficity,

sup
α∈Xdi

ρ̃2(φα ◦ σi(c(g−1, Λ)−1)σi(s(g−1Λ)−1),

φα ◦ σi(c(g−1Λ)−1s(g−1, Λ)−1)) →i→∞ 0. (42)

As s(Λ) = e, we have g−1 = s(g−1Λ)c(g−1, Λ) so

g = c(g−1, Λ)−1s(g−1Λ)−1. (43)

Now choose δ′ to be any number less than δ. Then Eqs. (41),(42),(43) show that for
all large i, and for any α ∈ Map(ρ, F ′, δ′, σi) we have that φα ∈ Map(ρ, F, δ, σi). As
ρ2(α, β) = ρ̃2(φα, φβ), we see that

h
Σ
∣

∣

Λ

(X, Λ) ≤ hΣ(Y,Γ). ��

We can show that the coinduction of an algebraic action is an algebraic action.

Proposition 6.23. Let Λ ⊆ Γ be countable discrete groups. Let A be a Z(Λ)-
module, and let

B = Z(Γ) ⊗Z(Λ) A.

Then Γ � ̂B is the coinduced action of Λ � ̂A.

Proof. Let Y = {f : Γ → ̂A : f(gλ) = λ−1f(g), g ∈ Γ, λ ∈ Λ} with Γ action as in the
definition of coinduction. We have a map Φ: ̂B → Y given by Φ(χ)(g)(a) = χ(g⊗a).
Further if f ∈ Y, we may define Bf : Γ × A → T by Bf (g, a) = f(g)(a). Then
Bf (gλ, a) = Bf (g, λa) and so there is a Ψ(f) ∈ ̂B, so that Ψ(f)(g ⊗ a) = Bf (g, a).
It is easy to check that Φ, Ψ are continuous Γ-equivariant, and inverse to each
other. ��
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Corollary 6.24. Let Γ be a countable discrete sofic group with sofic approxima-
tion Σ. Suppose that Λ ⊆ Γ, and that (Λ, Σ

∣

∣

Λ
) fail Yuzvinskǐı’s addition formula

for a class of Z(Λ)-modules C. Let C′ be the class of all Z(Γ)-modules of the form
Z(Γ) ⊗Z(Λ) A for A ∈ C. Then (Γ, Σ) fails Yuzvinskǐı’s addition formula for the
class C′. In particular, if Γ contains a nonabelian free subgroup, then (Γ, Σ) fails
Yuzvinskǐı’s addition formula for the class of finitely presented modules.

Proof. The first half is a combination of Propositions 6.22 and 6.23, along with the
fact (left as an exercise) that Z(Γ)⊗Z(Λ)? preserves exact sequences. For the second
half, we use that Ornstein-Weiss at the end of [OW87] found a continuous surjective
homomorphism

(Z/2Z)F2 → ((Z/2Z)⊕2)F2 .

And this gives a counterexample to the Yuzvinskǐı addition formula for F2. ��

Lastly, we relate the existence of a Yuzvinskǐı addition formula to the L2-torsion
of Z(Γ)-modules A.

Definition 6.25. Let Γ be a countable discrete sofic group, and A a Z(Γ)-module.
A partial resolution of A is an exact sequence of Z(Γ)-modules of the form

Z(Γ)⊕nk −−−−→ Z(Γ)⊕nk−1 −−−−→ · · · Z(Γ)⊕n0 −−−−→ A −−−−→ 0.

Suppose the map Z(Γ)⊕nj → Z(Γ)⊕nj−1 is given by r(fj) for some fj ∈Mnj ,nj−1(Z(Γ)).
If we then have im(λ(fj−1)) = ker(λ(fj)), we call this resolution a �2-partial resolu-
tion of A. We call k the length of the resolution. We write C∗ for the complex

Z(Γ)⊕nk −−−−→ Z(Γ)⊕nk−1 −−−−→ · · · Z(Γ)⊕n0 −−−−→ A −−−−→ 0,

and sometimes say C∗ → A is a �2-partial resolution. If C∗ → A is a �2-partial
resolution, we define the L2-torsion of C∗ by

ρ(2)(C∗, Γ) =
k
∑

j=1

(−1)j+1 log det+L(Γ)(fj).

We say that A is �2 − FL if there is an exact sequence of the form

0 −−−−→ Z(Γ)⊕nk −−−−→ Z(Γ)⊕nk−1 −−−−→ · · · Z(Γ)⊕n0 −−−−→ A −−−−→ 0,

where if fj is as before, then im(λ(fj−1)) = ker(λ(fj)). If we again write C∗ for this
complex, then the L2-torsion of C∗ will be called the L2-torsion of A. We say that
the L2-torsion of Γ is defined, if the trivial Z(Γ)-module Z is of type �2-FL, and in
this case define the L2-torsion of Γ by ρ(2)(Γ) = ρ(2)(Z, Γ).
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One remark about this definition. By Corollary 2.5, we know that if Γ is sofic
then det+L(Γ)(f) ≥ 1 for all f ∈ Mm,n(Z(Γ)). By the results in Chapter 3 of [Luc02]
if A is �2-FL, then the L2-torsion of A does not depend on the choice of �2-free
resolution. We would also like to point out that, at least to our knowledge, sofic
groups are the largest class of groups for which it is known that det+L(Γ)(f) ≥ 1 for
all f ∈ Mm,n(Z(Γ)). That is there is no group Γ which is not known to be sofic,
yet which is known to have det+L(Γ)(f) ≥ 1 for all f ∈ Mm,n(Z(Γ)). We have the
following result. It is mostly a nice remark, as most examples that can be obtained
this way can also be obtained from other methods. However, it may eventually be
of interest.

Proposition 6.26. Let Γ be a countable discrete sofic group with sofic approxima-
tion Σ. Suppose that Γ satisfies Yuzvinskǐı’s addition formula for finitely presented
algebraic actions. That is, for every exact sequence

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

of finitely presented Z(Γ)-modules, we have

hΣ( ̂B,Γ) = hΣ( ̂A, Γ) + hΣ( ̂C, Γ).

Let A be a finitely presented Z(Γ)-module with vr(A) = 0. Let C∗ → A be a �2-partial
resolution of A. Then

hΣ( ̂A, Γ) ≤ ρ(2)(C∗),

if C∗ has odd length and

hΣ( ̂A, Γ) ≥ ρ(2)(C∗)

if C∗ has even length. Further if A is �2-FL, then

hΣ( ̂A, Γ) = ρ(2)(A, Γ).

Proof. Once we know Theorems 4.8 and 4.4, the proof is the same as the proof of
Theorem 1.1 in [LT14]. ��

This theorem may be useful to disprove the Yuzvinskǐı addition formula for
certain groups. For example, we may be able to directly compute both sides and
show they are not equal (this is what we will do to get our concrete counterexamples
in this work). Additionally it might be possible to find an �2-FL Z(Γ)-module A for
which ρ(2)(A, Γ) < 0, and so cannot be the entropy of some action. For example,
we can use [Luc02] Theorem 3.152 and the preceding discussion to give another
proof of the fact that fundamental groups of certain hyperbolic manifolds must fail
the Yuzvinskǐı addition formula. Additionally, one may be able to compute the L2-
torsion of some partial resolution C∗ → A, if for example C∗ has odd length and has
negative torsion, then we get a contradiction to the above inequality. We now show
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that if the L2-torsion of Γ is defined and nonzero, then Γ fails Yuzvinskǐı’s addition
formula. For this, we need to know that a trivial action of a sofic group has zero
entropy (see [KL14] Corollary 8.5, or [Haya] Corollary 7.11).

Corollary 6.27. Let Γ be a countable discrete sofic group with sofic approxima-
tion Σ. Suppose that Γ ⊇ Λ, where the L2-torsion of Λ is defined and nonzero.
Then Yuzvinskǐı’s addition formula fails for (Γ, Σ) and the class of finitely presented
Z(Γ)-modules.

Proof. This is automatic from Proposition 6.26, Corollary 8.4 in [KL14] and Corol-
lary 6.24. ��

Let us close by proving Proposition 1.2 from the introduction.

Proposition 6.28. Let Γ be a cocompact lattice in SO(n, 1) with n odd. Consider
the trivial Z(Γ)-module Z. Then:

(i): Γ is a sofic group,
(ii): the L2-torsion of Z as a Z(Γ)-module is defined,
(iii): for every sofic approximation Σ of Γ, one has

hΣ(T, Γ) �= ρ(2)(Z, Γ),

hΣ,mT
(T, Γ) �= ρ(2)(Z, Γ).

(iv): If in addition n is congruent to 1 modulo 4, then for any random sofic approx-
imation κ of Γ we have

hκ(T, Γ) �= ρ(2)(Z, Γ),

hκ,mT
(T, Γ) �= ρ(2)(Z, Γ).

Proof. Part (i) is a consequence of the fact that Γ is a linear group. Part (ii) follows
from [Luc02] Theorem 3.152 which shows that in fact ρ(2)(Z, Γ) �= 0. To prove (iii)
fix a sofic approximation Σ of Γ. First note that

hΣ(T, Γ) = 0

when Γ � T trivially. By the variational principle, we see that

hΣ,mT
(T, Γ) ∈ {−∞, 0}.

Since L2-torsion, when it is defined, is never −∞ and ρ(2)(Z, Γ) �= 0, we have proved
(iii). The proof of (iv) is similar except in this case we note that

• ρ(2)(A, Γ) > 0, (again this follows from [Luc02] Theorem 3.152),

• hκ(T, Γ) = 0 (again because 0 is a fixed point),

• hκ,mT
(T, Γ) ≤ 0 (again by the variational principle).

This completes the proof. ��
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7 Remaining Questions and Conjectures

Related to our relation between the failure of a Yuzvinskǐı addition formula and
possible values of L2-torsion we ask the following.

Question 1. Does there exists a non-amenable sofic group Γ not containing any
free subgroups, so that the L2-torsion of Γ is defined and ρ(2)(Γ) �= 0?

Given Corollary 6.24 we conjecture the following.

Conjecture 1. Let Γ be a countable discrete non-amenable sofic group with sofic
approximation Σ. Then there is an exact sequence

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0,

of countable Z(Γ)-modules so that

hΣ( ̂B,Γ) �= hΣ( ̂A, Γ) + hΣ( ̂C, Γ).

This conjecture is also an analogue of what is already conjectured for metric mean
dimension. For example, given our previous work in [Hay] a failure of additivity of
metric mean dimension for finitely generated algebraic actions reduces to the case
of sofic groups Conjecture 6.48 in [Luc02] (see Section 7 of [Hay]).

We conjecture the opposite however for Lewis Bowen’s f -invariant entropy.

Conjecture 2. Let r ∈ N, and

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

be an exact sequence of Z(Fr)-modules. Suppose that the actions of Fr on ( ̂A, m
̂A),

( ̂B, m
̂B),( ̂C, m

̂C) all have finite generating partitions. Then

fm
̂B
( ̂B, Fr) = fm

̂A
( ̂A, Fr) + fm

̂C
( ̂C, Fr).

We actually conjecture that this should hold with the f -invariant replaced more gen-
erally by the random sofic entropy with respect to the random sofic approximation
given by uHom(Fr,Sn). Conjecture 2 has been proven by Bowen-Gutman in [BG14]
(see Theorem 2.2) when each of the actions Γ � ( ̂B, m

̂B), � ( ̂A, m
̂A) Γ � ( ̂C, m

̂C)
has a finite generating partition and one of the following two conditions hold:

• either A is finitely generated as an abelian group, or
• there exists a finite, abelian group D so that C embeds into D(G) as a Z(G)-

module.

Although we have already settled finiteness of topological entropy, we propose
the following question for measure-theoretic entropy.
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Question 2. Let Γ be a countable discrete sofic group with sofic approximation
Σ. Let f ∈ Mm,n(Z(Γ)) and suppose that f is not injective as a left multiplication
operator on �2(Γ)⊕n. Is it true that

hΣ,mXf
(Xf , Γ) = ∞?

The following is an interesting question.

Question 3. Let Γ be a countable discrete sofic group. For what Z(Γ) modules A
and sofic approximations Σ do we have

hΣ( ̂A, Γ) = hΣ,m
̂A
( ̂A, Γ)?

We caution the reader that we cannot allow (A, Σ) to be arbitrary. For example,
if Γ is a nonabelian free group, then for every transitive action of Γ on a finite
set F with at least two elements there is a sofic approximation Σ of Γ so that
hΣ,uF

(F, Γ) = −∞. See e.g. the proof Lemma 3.2 in [Sew15].
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