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RATIOS OF HARMONIC FUNCTIONS WITH THE SAME
ZERO SET

Alexander Logunov and Eugenia Malinnikova

Abstract. We study the ratio of harmonic functions u, v which have the same zero
set Z in the unit ball B ⊂ R

n. The ratio f = u/v can be extended to a real analytic
nowhere vanishing function in B. We prove the Harnack inequality and the gradient
estimate for such ratios in any dimension: for a given compact set K ⊂ B we show
that supK |f | ≤ C1 infK |f | and supK |∇f | ≤ C2 infK |f |, where C1 and C2 depend
on K and Z only. In dimension two we specify the dependence of the constants on
Z in these inequalities by showing that only the number of nodal domains of u, i.e.
the number of connected components of B \ Z, plays a role.

1 Introduction

1.1 Ratios of harmonic functions and Harnack’s inequalities. Let u and
v be real-valued harmonic functions in a domain Ω ⊂ R

n. Suppose that the zero sets
of u and v coincide: Z(u) = Z(v) = Z. Then one may consider the ratio f = u/v.
It was conjectured by Dan Mangoubi [Man14] that such ratios and their gradients
satisfy the following Harnack inequalities,

sup
K

|f | ≤ C1 inf
K

|f |, (1)

and
sup
K

|∇f | ≤ C2 inf
K

|f | (2)

where K is a compact subset of Ω and the constants C1, C2 depend on K and
the nodal set Z only. The inequalities (1) and (2) follow from the classical Harnack
principle when Z = ∅. They were proved by Mangoubi in dimension two [Man14] and
then by the authors in dimension three [LM15]. In the present work we generalize the
result to higher dimensions and refine the information of the constants in the above
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inequalities in dimension two. Connections of these inequalities to the boundary
Harnack principle for harmonic functions were discussed in [Man14,LM15].

It was proved in [LM15] that if f is the ratio of two harmonic functions in Ω with
the common zero set Z, then f , defined originally on Ω \ Z, is the trace of a real
analytic function in Ω that does not vanish and therefore has a constant sign in Ω
(in the sequel we refer to this continuation as f). Furthermore, the maximum and
minimum principles hold for f . This is not surprising, since the ratio of two harmonic
functions is a solution of an elliptic equation (see [Man14,LM15]), however, since
this equation is highly degenerate, general known results are not applicable.

1.2 Main results. The present work contains two independent results. First,
we answer one of the questions posed in [Man14], by showing that in dimension two
the constants in (1) and (2) depend on the number of the nodal domains, i.e. the
number of connected components of B \ Z, only. Equivalently, we may say that the
constants depend on the length of the nodal set only, see Remark 3.4 below.

Theorem 1.1. Let u and v be harmonic functions in the unit disc D ⊂ R
2 such

that Z(u) = Z(v) and suppose the number of nodal domains of u (and v) is less
than a fixed number N . Let f be the ratio of u and v, then for any compact set
K ⊂ D there exist constants C1 = C1(K, N) and C2 = C2(K, N) depending on K
and N only such that (1) and (2) hold.

The proof uses some kind of compactness principle for harmonic functions with
a bounded number of nodal domains. The principle holds in dimension two only
and was proved by Nadirashvili [Nad99]. However, we don’t see how the estimates
(1) and (2) with uniform constants would follow immediately from this principle.
We use a structure theorem for analytic functions taking real values on a fixed
set, information about the critical set, as well as estimates from the local division
argument in [LM15], to complete the proof.

Our main result gives the affirmative answer to another question of Mangoubi
[Man14]. It contains the Harnack inequality (1) and the gradient estimate (2) for
the ratios of harmonic functions in any dimension as well as estimates for all partial
derivatives of the ratios. We look at families of harmonic functions with common
zeros and use the following notation. Let B be the unit ball in R

n and Z be its
subset, we define

HZ := {u : B → R : Δu = 0, Z(u) = Z}.

Theorem 1.2. There exist constants A = A(Z) > 0 and R = R(Z) > 0 such
that for any u, v ∈ HZ and any multiindex α ∈ Z

n
+ the ratio f = u/v satisfies

sup
B1/2

|Dαf | ≤ α!AR|α| inf
B1/2

|f |.

This theorem was proved for the three dimensional space in [LM15]. The argu-
ment therein employed the boundary Harnack principle and the structure of the
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nodal sets of harmonic functions, the latter becomes more complicated with the
growth of the dimension and it is not clear if that proof can be generalized to higher
dimensions. We suggest another approach here.

The main ingredients of the proof of Theorem 1.2 include doubling constants
for harmonic functions, the �Lojasiewicz exponents, and some known techniques of
potential theory; we refer in particular to Lemma 8.7.10 in [AG01]. Any mention of
topology of the nodal set and the boundary Harnack principle is avoided.

One result from [LM15] will be required in proofs of both theorems, we cite it
here and will refer to it as to the local division principle. First we note that if v ∈ HZ

and x0 ∈ Z, then there exists a homogeneous harmonic polynomial p = p(x0, Z) of
degree k such that the Taylor expansion of v at x0 is given by

v(x) = cvp(x − x0) +
∑

|α|>k

(α!)−1Dαv(x0)(x − x0)α, cv �= 0.

The polynomial p is the same for all v ∈ HZ (see Lemma 2.1 and Lemma 2.2 in
[LM15]).

Lemma 1.3. Let u and v be non-zero harmonic functions in the unit ball B of Rn

such that Z(u) = Z(v) = Z and 0 ∈ Z and let f = u/v and p = p(0, Z) as above.
Suppose that |cv| > ε, and |Dαu|(0) ≤ AR|α|α!, |Dαv|(0) ≤ AR|α|α! for any multi-
index α ≥ 0. Then there exist c, C > 0 and r, ρ > 0 depending on A,R and ε only,
such that

|Dαf(0)| ≤ Crαα!, (3)

sup
ρB

|f | ≤ c inf
ρB

|f |. (4)

See Lemma 2.4 and Lemma 2.3 in [LM15] for the proof.

Structure of the paper. We collect auxiliary information essential for the proof
of Theorem 1.1 in Section 2. First, we formulate the Nadirashvili compactness prin-
ciple for harmonic functions with a bounded number of nodal domains. Then we
expose some structure results on harmonic functions sharing the same zero set. The
proof of Theorem 1.1 is given in Section 3. Section 4 contains preliminary results on
harmonic functions in higher dimensions, including classical inequalities, doubling
constant techniques and the �Lojasiewicz exponents. These results are used in Sec-
tion 5, where a compactness principle for harmonic functions sharing the zero set
is established. Combining this principle with the local division argument, we prove
Theorem 1.2 in Section 6. Some comments and open questions are given at the end
of Sections 3 and 6.

2 Toolbox for Dimension Two

2.1 Compactness principle for harmonic functions with a bounded num-
ber of nodal domains. The following form of compactness principle holds.
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Lemma 2.1 (Nadirashvili). Let un be a sequence of harmonic functions in D and
let N ∈ N. Suppose that the number of nodal domains of each un is less than N .
Then there exist a subsequence unk

, a sequence αnk
of real numbers and a non-

zero function u such that αnk
unk

converge to u uniformly on compact subsets of D.
Clearly, u is harmonic in D.

The first step in the proof of Lemma 2.1 is to show that the bound on the number
of nodal domains implies a bound on the number of sign changes on the boundary
circle, see [Nad99, Section 3.4], then one may refer to an old result of M. S. Robertson
[Rob39] or follow the lines of [Nad91] and [Nad99]. In what follows we write fn ⇒ f
for uniform convergence on compact subsets.

Lemma 2.2. Let {un} and {vn} be sequences of harmonic functions in D such that
Z(un) = Z(vn), un = fnvn, fn > 0 and un ⇒ u, vn ⇒ v in D, where u and v are
non-zero functions. Then Z(u) = Z(v).

Proof. Suppose that u(z0) > 0 at some point z0 ∈ D. Then u(z) > ε in some
neighborhood of z0 and un(z) > ε/2 for all sufficiently large n. We assumed that
fn > 0, hence vn ≥ 0 in some neighborhood of z0 for all sufficiently large n. It implies
that v ≥ 0 in some neighborhood of z0. Since v is non-zero harmonic function, we
conclude that v(z0) > 0. Analogously u(z0) < 0 implies v(z0) < 0 and v(z0) > 0
implies u(z0) > 0. Thus Z(u) = Z(v). 
�
2.2 The Schwarz reflection principle and a structure result. Suppose
that U is an analytic function in D such that �U(w) = 0 if and only if �(wk) = 0.
Let ε be the k-th root of unity, then by the Schwarz reflection principle U(w) = U(w̄)
and U(wε) = U(w). The last observation implies that coefficients aj of Taylor series
of U at 0 are real and aj = 0 if j is not divisible by k. Then U = g(wk), where g is
an analytic function in D with real coefficients.

Now, suppose that u and v are harmonic functions in D with the same nodal set
Z. Let further z0 ∈ Z and W be a neighborhood of z0; suppose that W admits a
conformal mapping α onto D such that α−1(0) = z0 and v◦α−1(w) = �wk for some k.
We consider analytic functions U = ũ+iu and V = ṽ+iv on W such that �(U) = u,
�(V ) = v and U(z0) = V (z0) = 0, then V ◦ α−1(w) = wk. Clearly, u ◦ α−1 has the
same zero set in D as �wk, and by the argument above U ◦α−1(w) = (g◦V ◦α−1)(w)
for w ∈ D, where g is an analytic function with real coefficients. Thus U(z) = g◦V (z)
in W . Our aim is to extend this statement to a larger class of pairs U and V .

Theorem 2.3. Let U and V be analytic functions in the unit disc such that
Z(�U) = Z(�V ). Assume also that Ω = V −1{r1 < |z| < r2} is connected for some
r1 < r2 and there exists integer k such that V |Ω is a k-cover of {r1 < |z| < r2}.
Then U(z) = g ◦ V (z) for z ∈ Ω, where g is an analytic function on {|z| < r2} with
real coefficients.

Proof. Let S = {z : r1 < |z| < r2, −π < arg(z) < π}, it is a simply connected open
set and V −1(S) = ∪k

j=1Dj is a disjoint union of k open subsets of Ω. For each of
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them there is a covering V |Dj
: Dj → S that is a bijection. Thus we can find the

inverse functions V −1
1 , . . . , V −1

k that map S onto D1, . . . , Dk respectively.
Let γ be a closed circle with radius r ∈ (r1, r2) let z0 �= −r be a fixed point on

γ. For each Dj there is one point pj ∈ Dj such that V (pj) = z0 and a lift of γ that
starts at pj and ends at some pj′ . Then j �→ j′ is a bijection and since Ω is connected
this permutation has no cycles of length less then k. We renumerate the preimages
of S to make the bijection: j �→ j + 1, k �→ 1.

For each j the function U◦V −1
j is an analytic function on S which takes real values

on (r1, r2). Therefore U(V −1
j (z)) = U(V −1

j (z)) for any z ∈ S. Similarly, looking at
the preimages of {z : r1 < |z| < r2, 0 < arg(z) < 2π}, we see that U(V −1

j (z)) =

U(V −1
j+1(z)). Then U(V −1

j (z)) = U(V −1
j′ (z)) and U(V −1

j (z)) = U(V −1
i (z)) for any

i, j ∈ 1..k. Thus if V (z1) = V (z2) for z1,2 ∈ Ω, then U(z1) = U(z2). That gives us
U = g ◦ V on V −1(r1 < |z| < r0), where g is an analytic function on B = {r1 <
|z| < r2}, which takes real values on segments ±(r1, r2).

Let h be the harmonic continuation of �g|γ to the disc {|z| < r}. Then �U =
h ◦ V on {|z| = r}. Since �U and h are harmonic functions in {|w| < r} with
the same boundary values, �U and h are equal on {|w| < r}. Then g also admits
analytic continuation (−h̃ + ih) to {|w| < r} such that U = g ◦V . Since g takes real
values on segments ±(r1, r2) it has real values on (−r2, r2) and therefore g has real
coefficients. 
�
Corollary 2.4. Let {Un} and {Vn} be sequences of analytic functions in D such
that Z(�Un) = Z(�Vn), and Vn ⇒ V = zk in D. Then for any ρ < 1 there exists
n0 = n0(ρ) such that for n > n0 we have Un(z) = gn ◦ Vn(z), when |z| < ρ, and gn

is an analytic function with real coefficients.

3 Proof of Theorem 1.1

3.1 Harnack’s inequality for the ratios. Before we proceed to the proof of
Theorem 1.1, we make a simple but useful observation. Suppose there exist two
sequences un and vn of harmonic functions in D such that Z(un) = Z(vn), the
number of nodal domains of each un and vn is not greater than N , and the ratios
fn = un/vn enjoy either

(a)
sup
K

|fn|
inf
K

|fn| →
n→∞ +∞ or (b)

sup
K

|∇fn|
inf
K

|fn| →
n→∞ +∞. (5)

By Lemma 2.1 we may assume αnun normally converge to a non-zero harmonic in
D function u, and βnvn normally converge to a non-zero harmonic in D function v,
where αn and βn are sequences of non-zero real numbers. Multiplying un and vn by
constants, we do not change the properties (5a) and (5b), so we may assume that all
αn = 1 and all βn = 1. Then un normally converge to u and vn normally converge
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to v. The ratio fn = un/vn does not vanish in D and we may also assume that all
fn are positive in D.

Now we start the proof of (1) in Theorem 1.1. Assume the contrary. The obser-
vation above reduces the question to the following statement.

Proposition 3.1. Let {un} and {vn} be sequences of harmonic functions in D such
that Z(un) = Z(vn), un = fnvn, fn > 0 and un ⇒ u, vn ⇒ v in D, where u and v
are non-zero functions. Then

sup
n

(
sup
K

fn/ inf
K

fn

)
< +∞.

Proof. Let Z denote the nodal set of u and v, see Lemma 2.2. By Zs we denote the
singular set of Z, namely Zs = {z ∈ D : u(z) = |∇u(z)| = 0} = {z ∈ D : v(z) =
|∇v(z)| = 0}. (It is uniquely determined by Z, see Lemma 1.3). The critical set is a
countable set with no accumulation points within D.

We consider an open disc of radius r ∈ (0, 1) such that K ⊂ Dr ⊂ D and
∂Dr ∩ Zs = ∅. Note that Z ∩ ∂Dr is the union of a finite number of points zi,
1 ≤ i ≤ k. Each zi does not belong to the critical set, hence |∇v(zi)| > ε for some
ε > 0 and for any i, 1 ≤ i ≤ k. We fix i and consider a neighborhood Vi ⊂ D of
zi such that |∇v|(z) > ε/2 for z ∈ Vi. Recall that vn normally converge to v as
n → +∞, it implies that there exists a neighborhood Wi ⊂ Wi ⊂ Vi of zi such that
|∇vn|(z) > ε/4 for all z ∈ Wi and for all n large enough. Further, there exists M > 0
such that supWi

|vn| < M and supWi
|un| < M for all n ∈ N.

The next step is to show that there exist a constant Ci and a radius ri > 0 such
that supBi

|fn| < Ci infBi
|fn| for all n ∈ N, where Bi = Bri

(zi). If ri is small enough,
then 2Bi ⊂ Wi. By the standard Cauchy estimates there exist A, R > 0 such that
the following estimates of partial derivatives of un and vn hold:

sup
Bri

(zi)
|Dαun| ≤ AR|α|α! & sup

Bri
(zi)

|Dαvn| ≤ AR|α|α!.

The symbol α denotes the multi-index, A and R do not depend on n.
We know that u(zi) = v(zi) = 0, it implies that for any d > 0 there are ξ+ and

ξ−: v(ξ−) < 0 and v(ξ+) > 0, |zi − ξ+| < d, |zi − ξ−| < d, hence for any n large
enough vn(ξ−) < 0 and vn(ξ+) > 0, so there is a zero of vn in a segment [ξ−, ξ+]. The
last argument implies that there exists a sequence of points ξn such that ξn → zi

and vn(ξn) = 0. Now we apply Lemma 1.3 to Di = Bri
(ξn). Then (4) implies

sup
ρBri

(ξn)
|fn| ≤ c inf

ρBri
(ξn)

|fn|.

Let z ∈ (∂Dr \Z), then there is rz > 0 such that u and v do not vanish in B2rz
(z).

Then for n large enough un and vn do not vanish in B3rz/2(z) and by the classical
Harnack inequality there is cz > 0 such that

sup
Brz (z)

|fn| ≤ cz inf
Brz (z)

|fn|, for all n > n0(z).
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Note that {Br(z)}z∈∂Dr
form an open covering of the compact set ∂Dr, using the

standard compactness argument, it is easy to see that

sup
∂Dr

|fn| ≤ C inf
∂Dr

|fn|.

The proposition follows from the maximum and minimum principles for the ratios
of harmonic functions, see [LM15]. 
�
3.2 Gradient estimate for the ratios. We assume the contrary, as above,
and take sequences of functions un and vn such that (5b) holds and un, vn converge
normally to u and v respectively, once again Z(u) = Z(v) = Z.

Now, if (5b) holds then, by Proposition 3.1, we have

sup
n

sup
x∈K

|∇fn(x)|
|fn(x)| = +∞.

We may assume that |∇fn(xn)|/fn(xn) → ∞ and xn converge to x0.
For each a ∈ K ∩ Z, let B(a) be a disc with center at a that admits a conformal

mapping βa : B(a) → D such that β(a) = 0 and v ◦ β−1
a (w) = �wk for some

k = k(a) ≥ 0, β(B(a)) = D. Further, let D(a) = β−1
a (1

4D). Then K ∩ Z can be
covered by finitely many of the sets {D(a)}a∈K∩Z , let K ∩ Z ⊂ ∪J

j=1D(aj) = O and
δ1 = dist(K \ O, Z).

Then either x0 ∈ D(aj) for some j or Bδ1(x0) does not intersect Z. In the
latter case un and vn do not change sign in Bδ1/2(x0) for n large enough and the
usual Harnack inequality for positive harmonic functions leads to a contradiction.
Otherwise we write β = βaj

and define g̃ = g ◦ β−1, where g ∈ {un, vn, u, v, fn}.
Clearly |∇β−1| is bounded in 1

4D. We have reduced the gradient estimate for the
ratios to the following

Proposition 3.2. Let {ũn} and {ṽn} be sequences of harmonic functions in D such
that Z(ũn) = Z(ṽn), ũn = f̃nṽn, f̃n > 0 and ũn ⇒ ũ, ṽn ⇒ ṽ in D, where ṽ = �zk.
Then

sup
n

sup
1
4
D

|∇f̃n|
f̃n

< +∞.

Proof. Let Ṽn be analytic in D with �Ṽn = ṽn and such that Ṽn ⇒ zk, Ṽn = w̃n+iṽn.
By Corollary 2.4 for each r0 < 1 we have ũn = �(gn◦Ṽn) in r0D for all n = n(r0) large
enough, where gn =

∑∞
1 an,jz

j is an analytic function in r1D with real coefficients
an,j , r1 < r

1/k
0 . We get

f̃n =
ũn

ṽn
=

∞∑

j=1

an,j
�(w̃n + iṽn)j

ṽn

=
∞∑

j=1

an,j

[(j−1)/2]∑

k=0

(−1)k

(
j

2k + 1

)
w̃j−2k−1

n ṽ2k
n . (6)
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By Proposition 3.1, f̃n are bounded from above and below in 1
4D uniformly in n

(since f̃n(x0) → ũ(x0)/ṽ(x0) when x0 �∈ Z(v)). Then it is enough to show that
|∇f̃n| are bounded from above in 1

4D.
We have |ṽn|, |w̃n| ≤ M0 and |∇ṽn| = |∇w̃n| ≤ M1 in 1

4D, for some constants M0

and M1 and n ≥ n0, we may also assume that M0 < 1/3 by taking n0 large enough.
Further, since ũn ⇒ ũ in D, we get that gn are uniformly bounded in r1D, |gn| ≤ A
in r1D. Then, the Cauchy estimate implies |aj | ≤ Ar−j

1 . Finally,

|∇f̃n| ≤ AM1

∞∑

j=1

j2jM j−2
0 r−j

1 < +∞,

when r0 and r1 are chosen close to 1. 
�
3.3 Concluding remarks. Theorem 1.1 implies the following corollary, which
generalizes the standard Cauchy estimate.

Corollary 3.3. Let u and v be harmonic functions in the disc rD ⊂ R
2 of radius

r such that Z(u) = Z(v) and let f be the ratio of u and v. Suppose the number
of nodal domains of u (and v) is less than a fixed number N . Then there exists C,
depending on N only such that |∇ log |f ||(0) ≤ Cr−1.

We have obtained estimates for the ratios of harmonic functions and their gra-
dients. Following the same pattern and using the expression for the ratio as in (6),
we can also show that maxK |Dαf | ≤ Cα!R|α| where f = u/v and C = C(K, N).
See [LM15] for a similar argument.

Remark 3.4. Suppose that the length of Z is bounded by L. Then the uniform
estimates (1), (2) will remain true with the constants C1,2 depending on L and K
only. It can be explained by the fact that the number of nodal domains in the unit
disc can be estimated from above by the length of the nodal set in a bigger disc and
vice versa. We provide some references here. First, the number of nodal domains can
be estimated by the doubling constant (the definition is given in Section 4 below) in
a larger disc, and vice versa, see [Nad99]. The estimate of the length of the nodal set
from above by the doubling constant is well known, see for example [Han07]. The
reverse estimate follows from the connection between the number of sign changes on
a circle and the doubling constant, which can be found in [NPS05], see also references
therein.

Theorem 2.3 on analytic functions taking real values on the same curves can
be considered in a more general and complicated framework of structure theory by
Stephenson [Ste86]. We gave an elementary proof for the case needed in this note.

All our arguments, except for the proof of Lemma 2.2, were essentially two-
dimensional. We don’t know if, for example, Proposition 3.1 holds in higher dimen-
sions.



GAFA RATIOS OF HARMONIC FUNCTIONS 917

4 Toolbox for Higher Dimensions

4.1 Classical Harnack inequality and elliptic estimates. The following
facts about harmonic functions in the unit ball of R

n are well-known and follow
immediately from the Poisson formula. Let 0 < r < 1, there exist constants hr, ar, br

that depend on r and n only such that

• Harnack’s inequality: for any positive harmonic function u in the unit ball

inf
Br

u ≥ hr sup
Br

u.

• Cauchy estimates: for each multiindex α and any harmonic function u one has

sup
Br

|Dαu| ≤ α!a|α|
r sup

B1

|u|.

• Equivalence of norms: for any harmonic function u in the unit ball

sup
Br

|u| ≤ br

(
−
∫

∂B1

|u|2
)1/2

.

4.2 Doubling constants. Let u be a non-zero harmonic function in some do-
main Ω. For each x ∈ Ω and ρ < dist(x, ∂Ω) let

Hu(x, ρ) = −
∫

∂Bρ(x)
|u|2, Nu(x, ρ) = Hu(x, 2ρ)Hu(x, ρ)−1.

By −
∫
∂Bρ(x) we denote the integral with respect to the normalized surface measure

on ∂Bρ such that −
∫
∂Bρ(x) 1 = 1.

By considering the expansion of u in homogeneous harmonic polynomials, it
is not difficult to see that log Hu(x, ρ) is a convex function of log ρ and therefore
Nu(x, ρ) is a non-decreasing function of ρ. See [Han07] for the details. Further,
limρ→0 Nu(x, ρ) = 22k, where k is the order of vanishing of u at x.

Given a harmonic function u with Z(u) �= ∅, we define

δu(x) = dist(x, Z(u)),

clearly δu depends on Z = Z(u) only. We will skip sub-index u in δu, when it does
not lead to any ambiguity.

Lemma 4.1. There exists a constant K > 1 depending on the dimension n only such
that for any function u harmonic in B1 with Z(u)∩B1/2 �= ∅ and any x ∈ B1/4 with
u(x) �= 0 and δu(x) < (4K)−1 there exists a point x̃ for which |x̃ − x| ≤ Kδu(x) and
|u(x̃)| ≥ 2|u(x)|.
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Proof. Let y ∈ Z be a such point that |y−x| = δ(x). Then u(y) = 0 and consequently
limρ→0 Nu(y, ρ) ≥ 4. Therefore Nu(y, ρ) ≥ 4 for any ρ ∈ (0, 1/2) since Nu is non-
decreasing in ρ.

Assuming that K > 2s + 1, where s is a positive integer, we get

max
B(K−1)δ(x)(y)

u2 ≥ −
∫

B(K−1)δ(x)(y)
u2 ≥ 4s−1−

∫

B2δ(x)(y)
u2. (7)

By the equivalence of norms, we have

max
B(K−1)δ(x)(y)

u2 ≥ b−2
1/24

s−1|u(x)|2 ≥ 4|u(x)|2,

for K (and s) large enough. Hence there exists x̃ ∈ B(K−1)δ(x)(y) such that |u(x̃)| ≥
2|u(x)|. Clearly, |x − x̃| ≤ |x − y| + |y − x̃| ≤ Kδ(x). 
�

We remark that the sign of u(x̃) can be opposite to the sign of u(x).
Let v be a given non-constant harmonic function in B1 and let A be the maximum

of |v| over B1/4. Define

m = min
a∈[−A,A],x∈B1/4

−
∫

∂B1/4(x)
(v − a)2, M = max

a∈[−A,A],x∈B1/4

−
∫

∂B1/2(x)
(v − a)2.

Since v is a non-constant harmonic function, m is greater than 0. Also note that
M < +∞. Then for any x ∈ B1/4 and r < 1/4 we get

Nv−v(x)(x, r) ≤
−
∫
∂B1/2(x)(v − v(x))2

−
∫
∂B1/4(x)(v − v(x))2

≤ M/m. (8)

We call N1(v) := maxx∈B1/4,r∈(0,1/4) Nv−v(x)(x, r) the generalized doubling constant
of v.

4.3 �Lojasiewicz exponents. The following well-known fact is related to gen-
eral real analytic functions. For any function f , real analytic in B1, with Z(f) �= ∅
there exist constants l, L, γ > 0 depending on f such that

L · d(x, Z(f)) ≥ |f(x)| ≥ l · d(x, Z(f))γ

for any x ∈ B1/2; we refer the reader to the textbook [KP02] or to the original work
of S. �Lojasiewicz [Loj59].

Later we will apply this fact to a fixed harmonic function with a prescribed zero
set. It will be convenient to measure the distance from a point to the zero set by
evaluating the harmonic function at this point.
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5 Key Estimate

5.1 Main proposition. We fix the nodal set Z ⊂ B and one harmonic function
v such that Z(v) = Z, as before δ(x) = δv(x) = dist(x, Z). We will assume that
Z ∩ B1/2 �= ∅, otherwise the statement of Theorem 1.2 follows from the classical
Harnack inequality. The aim of this section is the prove the following statement.

Proposition 5.1. There exist constants M = M(Z) > 0 and c = c(Z) > 0 such
that

sup
B1/16

|u| ≤ M sup
y∈B1/2,δ(y)≥c

|u|(y)

for any function u ∈ HZ .

The constants in the Proposition and in Lemmas below depend on the dimen-
sion and on v (or, equivalently, on Z) only, unless otherwise stated. They can be
expressed explicitly through constants depending only on the dimension, the gen-
eralized doubling constant N1(v) and constants in the �Lojasiewicz inequalities for
v.

5.2 Three lemmas. We postpone the proof of the proposition and start with
auxiliary lemmas.

Lemma 5.2. There exists a constant C = C(v) > 1 such that for any x ∈ B1/4 with

v(x) �= 0 there is x̃ ∈ B1/2 with |x − x̃| ≤ 3
4δ(x) and |v(x̃)| ≥ C|v(x)|.

The statement looks similar to Lemma 4.1 but has a very different nature. Here
we find the new point x̃ in the same nodal domain as x, the constant K from Lemma
4.1 turns into 3/4 but now the constant C (that was equal to two in Lemma 4.1)
depends on the function v.

Proof. Consider any x ∈ B1/4. If δ(x) ≥ 1/8, put x̃ to be the point on ∂B1/16(x) at
which |v| attains the maximal value. Clearly,

C0(v) = inf
x∈B1/4

max∂B1/16(x) |v|
|v(x)| > 1.

If δ(x) < 1/8, then

max∂Bδ(x)(x) |v − v(x)|2
max∂Bδ(x)/2(x) |v − v(x)|2 ≤ c

−
∫
∂B2δ(x)(x)(v − v(x))2

−
∫
∂Bδ(x)/2(x)(v − v(x))2

≤ c
−
∫
∂B1/2(x)(v − v(x))2

−
∫
∂B1/8(x)(v − v(x))2

≤ cN1(v)2,

where c = b2
1/2 from the elliptic estimate. The last two inequalities follow from

monotonicity of the doubling constant. That implies

max
∂Bδ(x)(x)

|v − v(x)|2 ≤ cN1(v)2 max
∂Bδ(x)/2(x)

|v − v(x)|2.
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We may assume that v(x) > 0, then we have

max
∂Bδ(x)/2(x)

|v − v(x)| ≥ c1 max
∂Bδ(x)(x)

|v − v(x)| ≥ c1v(x),

where c1 = c−1/2N1(v)−1.
Denote max∂B 3

4 δ(x)(x)(v − v(x)) by A = A(x). Let us show that

A ≥ c2 max
∂Bδ(x)/2(x)

|v − v(x)|.

Clearly, by the maximum principle, A ≥ max∂B 1
2 δ(x)(x)(v − v(x)) > 0. The func-

tion ṽ(·) := A − v(·) + v(x) is positive on B 3
4
δ(x)(x) and therefore, by the Harnack

inequality,

A = ṽ(x) ≥ h2/3 max
∂Bδ(x)/2(x)

(A − v + v(x)) ≥ h2/3 max
∂Bδ(x)/2(x)

(−v + v(x)),

where 0 < h2/3 < 1 is a constant depending on the dimension only. We conclude

max
∂B 3

4 δ(x)(x)
(v − v(x)) = A ≥ h2/3 max

∂Bδ(x)/2(x)
|v − v(x)| ≥ h2/3c1v(x).

Thus max∂B 3
4 δ(x)(x) v ≥ Cv(x) with C = 1 + h2/3c1. 
�

Now, assume that x ∈ B1/8 and v(x) �= 0. Then, applying Lemma 5.2 several
times, we can construct a finite sequence x0 = x, x1, . . . , xm such that for i =
0, 1, . . . , m − 1

(i) |v(xi+1)| ≥ C|v(xi)|,
(ii) |xi+1 − xi| ≤ 3

4δ(xi),
(iii) xi ∈ B1/4 and xm ∈ B1/2 \ B1/4.

Lemma 5.3. There exists c = c(v) ∈ (0, 1/2) such that for any x ∈ B1/8 and xm

defined above the inequality δ(xm) ≥ c(v) holds.

Proof. First, recall that there exist positive constants L, l and γ ≥ 1 depending on
v such that

Lδ(x) ≥ |v(x)| ≥ lδγ(x) (9)
for any x ∈ B3/4. It is sufficient to show that |v(xm)| ≥ c(v) for some constant
c(v) > 0.

By (i) we have |v(xi)| ≤ Ci−m|v(xm)| for i ∈ {0, 1, . . . , m}. Then

δ(xi) ≤ l−1/γ |v(xi)|1/γ ≤ l−1/γC
i−m

γ |v(xm)|1/γ .

Since C > 1, the sum S :=
∑∞

j=0 C
−j

γ is finite and, by (ii),

|x0 − xm| ≤
m−1∑

i=0

|xi − xi+1| ≤
m−1∑

i=0

δ(xi) ≤ Sl−1/γ |v(xm)|1/γ .

Recall that x0 ∈ B1/8 and xm /∈ B1/4. It implies |x0 −xm| ≥ 1/8. Thus |v(xm)| ≥ c3,
where c3 = c3(v). 
�
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Lemma 5.4. There exists a constant β = β(Z) = β(v) > 0 such that for any function
u ∈ HZ and a point x ∈ B1/8 there is a point y ∈ B1/2 such that δ(y) ≥ c(v) > 0
and |u(y)| ≥ |u(x)|δβ(x), where c(v) was defined in Lemma 5.3.

Proof. We will assume that δ(x) ≤ 1/2, otherwise we can take x = y. Applying the
construction from Lemma 5.3 (for the point x and the function v), we put y = xm,
then δ(y) ≥ c > 0 and y ∈ B1/2.

Recall that, by (ii), |xi+1−xi| ≤ 3
4δ(xi). Since u does not change sign in Bδ(x)(x),

the Harnack inequality implies |u(xi)| ≤ h−1
3/4|u(xi−1)|, where h3/4 depends on the

dimension only. Therefore |u(x)| = |u(x0)| ≤ h−m
2/3 |u(y)|.

By (i), we have |v(xm)| ≥ Cm|v(x0)| and, by (9),

lδγ(x0) ≤ |v(x0)|, |v(xm)| ≤ Lδ(xm) ≤ L.

It shows that δγ(x0) ≤ Ll−1C−m. We can choose β1 = β1(v) > 0 such that C−β1 ≤
h2/3 and then find β2 = β2(v) > 0 for which 2β2 ≥ (Ll−1)β1 . Since δ(x) = δ(x0) ≤
1/2, we obtain

δγβ1+β2(x) ≤ (Ll−1C−m)β12−β2 ≤ hm
2/3.

Finally, when β = γβ1 + β2, we obtain the required inequality. 
�
5.3 Proof of Proposition 5.1. Suppose that u ∈ HZ and let c = c(v) be as
in Lemma 5.3, we will prove Proposition 5.1 with this c. Suppose that sup{|u(y)| :
y ∈ B1/2, δ(y) ≥ c} ≤ 1. We wish to prove that

sup{|u(y)| : y ∈ B1/16} ≤ M

for some M = M(c, Z) > 0.
Suppose that x0 ∈ B1/16 and |u(x0)| > M0. Applying Lemma 4.1 for x0, we

can find x1 such that d(x1, x0) ≤ Kδ(x0) and |u(x1)| ≥ 2|u(x0)|. Let us conse-
quently employ Lemma 4.1 infinitely many times and find the sequence {xi}∞

i=1

with |u(xi+1)| ≥ 2|u(xi)| and d(xi+1, xi) ≤ Kδ(xi). However we may use the lemma
for xi only if xi ∈ B1/4. Let us show that all xi are in B1/8 if M0 is large enough.

By Lemma 5.4 if xi ∈ B1/8, then there is yi such that yi ∈ B1/2, δ(yi) ≥ c and
|u(xi)| ≤ |u(yi)|(1/δ(xi))β ≤ (1/δ(xi))β . Note that

|u(xi)| ≥ 2i|u(x0)| ≥ 2iM0.

We conclude

δ(xi) ≤ 1
|u(xi)|1/β

≤ M
−1/β
0 2−i/β ,

d(xi+1, xi) ≤ Kδ(xi) ≤ KM
−1/β
0 2−i/β .

It is easy to see that the sum
∑+∞

i=0 KM
−1/β
0 2−i/β is finite. If M0 is sufficiently large,

then
∑∞

i=0 d(xi+1, xi) < 1/16. Since x0 ∈ B1/16, all xi are in B1/8 and so does the
limit limi→+∞ xi =: x∞. Here comes the contradiction with limi→+∞ |u(xi)| = +∞.
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6 The Harnack Inequality for the Ratios

6.1 Proof of Theorem 1.2. We cover B1/2 by a finite number of balls Bj with
centers in B1/2 and radii 1/32. For each Bj we denote by Dj the concentric ball of
radius 1/2. Now, we apply Proposition 5.1 to the function v and each of the finitely
many balls Dj (in place of the unit ball). Taking the maximum of the corresponding
constants M and the minimum of the constants c, we obtain

sup
B1/2

|u| ≤ M sup
y∈B3/4,δ(y)≥c

|u|(y)

for any u ∈ HZ and some c, M depending on Z only.
First, we wish to show that for any y0 ∈ B1/2 \ Z there exists C1 = C1(y0, Z)

such that supB1/2
|u| ≤ C1|u(y0)| for any u ∈ HZ . It suffices to establish

sup
y∈B3/4,δ(y)≥c

|u| ≤ C2|u(y0)|. (10)

Let Ωi, i = 1..k be the connected components of B3/4 \ Z. Put

Vi := Ωi ∩ {y ∈ B3/4 : δ(y) ≥ c)}.

Clearly, Vi is a compact subset of a nodal domain of u. Decreasing c, if necessary,
we may assume that each Vi is non-empty. Fix any points yi ∈ Vi. By the Harnack
inequality, supVi

|u| ≤ C3,i|u(yi)|. Hence

sup
B1/2

|u| ≤ C sup
y∈B3/4,δ(y)≥c

|u| ≤ C4 max{|u(y1)|, . . . , |u(yn)|}.

To establish (10) we will show that if max{|u(y1)|, . . . , |u(yn)|} = 1, then |u|(y0) ≥ c1

for some c1 = c1(Z) > 0. Assume the contrary, suppose there is a sequence of func-
tions ui ∈ HZ such that max{|ui(y1)|, . . . , |ui(yn)|} = 1 and |ui(y0)| → 0 as i → ∞.
Since supB1/2

|u| ≤ C4, we can choose a subsequence of ui to be uniformly converg-
ing on compact subsets of B1/2. Let u be the pointwise limit of such subsequence in
B1/2. Then u is a harmonic function in B1/2. However |ui(y0)| → 0, hence u(y0) = 0.
Let y0 lie inside of the nodal domain Ωj . We may assume that all uj are positive in
Ωj , then the pointwise limit u is non-negative in Ωj and u is equal to zero in the
interior point y0 of Ωj . Thus by the strict maximum principle u is identically zero.
Since max{|ui(y1)|, . . . , |ui(yn)|} = 1, then max{|u(y1)|, . . . , |u(yn)|} = 1 and u is
not identically zero.

By the contradiction above we have obtained

|u(y0)| ≤ sup
B1/2

|u| ≤ C1(y0, Z)|u(y0)| (11)

for any u ∈ HZ .
Now, let x0 ∈ Z ∩ B1/2. Assume that the homogeneous polynomial expansion

of u at x0 starts with a non-zero homogeneous polynomial of order k: u(x) =
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∑+∞
i=k pi,u(x − x0). By the local division principle pk,u = cup, where p = p(Z, x0).

Now, we fix p and wish to show that

|cu| ≤ C5(x0, Z) sup
B1/2

|u| ≤ C6(x0, Z)|cu| (12)

for any u ∈ HZ .
The first inequality is trivial and follows immediately from the standard Cauchy

estimates of derivatives of harmonic functions. The proof of the second inequality
is similar to the proof of (11). Assume the contrary, suppose there exist ui ∈ HZ ,
cui

→ 0 as i → +∞, but supB1/2
|ui| = 1. We may assume that all ui have the same

sign in each component of B1 \Z. By (11), we can choose a subsequence of ui which
normally converges in B1/2 to a non-zero harmonic function u. Moreover the nodal
set of u in B1/2 will be Z ∩ B1/2. The order of vanishing of u at x0 must be k as
well. But the normal convergence implies cu = 0 and the contradiction is found.

Now, fix a point y0 ∈ B1/2 \ Z and consider functions ũ, ṽ ∈ HZ with ũ(y0) =
ṽ(y0) = 1. Let y be an arbitrary point in B1. By (11) we know that supB1

|ũ| and
supB1

|ṽ| are not greater than C1. Hence, by the standard Cauchy estimates, we
obtain |Dαũ(y)| ≤ ar|α|α! and |Dαṽ(y)| ≤ ar|α|α! for any multi-index α, where
a, r > 0 and depend only on C1 and y. Further, the first homogeneous polynomial in
the Taylor expansion of ṽ at y is equal to cṽp, where p = p(Z, y)and the coefficient
|cṽ| > c(Z, y) > 0 by (12). Then, applying (3) in Lemma 1.3 to f = ũ

ṽ , we obtain
that |Dαf(y)| ≤ AyR

|α|
y α!, where Ay, Ry depend on a, r, c(Z, y), p(Z, y) only.

Note, that the constants Ay, Ry depend on y. However, using the real analyticity
of f , we may conclude that |Dαf(x)| ≤ 2Ay(2Ry)|α|α! for any x ∈ Bε(y), where
ε = ε(Ay, Ry). Further, we may cover B1/2 by

⋃
y∈B1/2

Bε(y)(y) and choose a finite
covering B1/2 ⊂ ⋃m

i=1 Bε(yi)(yi). In each Bε(yi)(yi) we find corresponding Ai, Ri and
put A = max(A1, . . . , Am) and R = max(R1, . . . , Rm).

Finally, |f(y)| ≤ A for any y ∈ B1/2. If we swap ũ and ṽ, we obtain 1/|f(y)| ≤ A.
That gives us the Harnack inequality supB1/2

|f | ≤ A2 infB1/2 |f | and the gradient
estimate supB1/2

|Dαf | ≤ A2R|α| infB1/2 |f |.
6.2 Concluding remarks and questions. A very natural question is how one
can find (non-trivial) pairs of real-valued harmonic functions with the common zero
set. In dimension two the situation is fairly well understood, due to the connections
with complex analysis; we refer the reader to [Ste86,Man14] for examples and further
discussion. In higher dimensions simple examples can be constructed by extending
functions of two variables or by applying the Cauchy–Kovalevskaya theorem, see
[LM15] for details, but it is not clear how to describe all pairs of harmonic functions
that share the same zero set. Related questions on hypersurfaces where families of
eigenfunctions vanish were recently discussed by Bourgain and Rudnick in [BR11]
and by Agranovsky in [Agr15]. A non-trivial example of an infinite family of har-
monic polynomials in dimension four (and some higher dimensions) that vanish on
the same set in the unit ball was given in [LM15], by constructing a homogeneous



924 A. LOGUNOV AND E. MALINNIKOVA GAFA

harmonic polynomial of degree two that divides infinitely many linearly independent
harmonic polynomials. To the best of our knowledge, the question if such non-trivial
families exist in dimension three is open.

Another question about entire real valued harmonic functions was raised by Bran-
nan, Fuchs, Hayman and Kuran in [BFHK76]. It is known that every three entire
harmonic functions in R

2 that have the same zero set are linearly dependent. In
dimension 3 the last claim is not true, see example in [BFHK76]. Suppose that u
is a harmonic function in R

n and log |u(x)| ≤ o(|x|) as |x| → ∞. Is it true that
any harmonic function in R

n with the same nodal set as u is a multiple of u? For
instance, it is true and known if u is a homogeneous harmonic polynomial. One can
use Theorem 1.2 or some other way to see that.

Given an entire harmonic function in R
n, one can consider its analytic extension

to C
n. Theorem 1.2 shows that if two harmonic functions u, v in the unit ball

B ⊂ R
n have the same zero set Z, then their complex zeros coincide in some complex

neighborhood of B. Is it true that the zeros in R
n of a real valued entire harmonic

function u uniquely determine its complex zeros in C
n if u is of exponential type

zero? It is not true without assumption on exponential type zero. For instance,
ex sin y and coshx sin y have the same real zeros but not the complex zeros. The
positive answer to the question from [BFHK76] that was formulated above would
surely imply the positive answer to the question about complex and real zeros.
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