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AN OBSTRUCTION TO THE SMOOTHABILITY OF
SINGULAR NONPOSITIVELY CURVED METRICS ON

4-MANIFOLDS BY PATTERNS OF INCOMPRESSIBLE TORI

Stephan Stadler

Abstract. We give new examples of closed smooth 4-manifolds which support
singular metrics of nonpositive curvature, but no smooth ones, thereby answer-
ing affirmatively a question of Gromov. The obstruction comes from patterns of
incompressible 2-tori sufficiently complicated to force branching of geodesics for
nonpositively curved metrics.
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1 Introduction

The goal of this note is to exhibit new examples of closed smooth 4-manifolds which
support singular metrics of nonpositive (sectional) curvature, but no smooth ones.
Such manifolds had first been found by Davis, Januszkiewicz and Lafont [DJL12].
The approaches are different, but they both rely on a basic rigidity phenomenon
in nonpositive curvature, namely that free abelian subgroups in the fundamental
group of a closed nonpositively curved manifold are carried by totally-geodesically
immersed flat tori. The fundamental groups Γ of the singular locally CAT(0) 4-
manifolds M studied in [DJL12] contain few (“isolated”) copies of Z

2. The obstruc-
tion to the existence of a smooth nonpositively curved metric on M is that they,
respectively, the corresponding invariant flats in the universal covering ˜M , are knot-
ted at infinity. This is impossible for 2-flats in smooth Hadamard 4-manifolds. We
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consider fundamental groups Γ which contain plenty of copies of Z
2 and exploit the

fact that this rigidifies the geometry of nonpositively curved metrics on M , singular
or smooth, since it enforces a complicated pattern of immersed flat 2-tori. Extreme
cases occur in “higher rank”: When Γ splits as a product Γ1 × Γ2 of subgroups,
then the universal cover splits as a metric product. Or (in dimensions ≥ 5) when Γ
is the fundamental group of an irreducible higher rank locally symmetric space of
noncompact type, then the geometry of nonpositively curved metrics is completely
rigidified by Mostow rigidity, i.e. it is essentially unique up to rescaling. We con-
sider “rank one” situations where there are still plenty of subgroups isomorphic to
Z

2 which however only partially rigidify the geometry. Heuristically, singular non-
positively curved metrics allow more complicated patterns of tori than smooth ones
because, due to possible branching, the tori can be packed “more densely”. It is
therefore conceivable that sufficiently complicated patterns which occur for singular
nonpositively curved metrics cannot occur in the smooth case because they enforce
the branching of geodesics. Indeed, natural candidates to which this line of reason-
ing could apply had been pointed out by Gromov in (the first exercise of) [BGS85],
namely the fundamental groups of branched coverings M → Σ × Σ of products of
higher genus surfaces Σ with themselves with branching locus the diagonal. The
purpose of this note is to do this exercise. More precisely, we prove

Theorem 1 (Exercise 1 in [BGS85]). Let V be a closed 4-dimensional manifold
which admits a non-trivial finite branched covering β : V → Σ×Σ over the product
of a hyperbolic surface Σ with itself such that the branching locus equals the diagonal
ΔΣ ⊂ Σ×Σ. Then V admits no smooth Riemannian metric of nonpositive sectional
curvature.

The above theorem is an application of a more general result (Theorem 2), which
provides an obstruction for a discrete group Γ to act geometrically on a Hadamard
manifold. The obstruction comes from the existence of a CAT(0) model space Xmodel

which contains a specific “singular configuration” and admits a geometric action
Γ � Xmodel.

In short, the singular configuration in Xmodel consists of two rigid convex subsets.
Their rigidity ensures that one finds corresponding convex subsets in every CAT(0)
space which allows for a geometric action by Γ. The singular nature of Γ is reflected
in the way these two sets interact. On the one hand, their correlation forces the
presence of branching geodesics. On the other hand, they are inseparable, in the
sense that their interaction persists when passing to corresponding sets in other
CAT(0) spaces with geometric actions by Γ. Consequently, any CAT(0) space which
permits a geometric action by Γ has to be singular.

2 Preliminaries

For notations and basics on CAT(0) spaces we refer the reader to the first two
chapters of [B95] and Section 2 of [KL97].



GAFA AN OBSTRUCTION TO THE SMOOTHABILITY 1577

2.1 Quasi-isometry invariance of flats. A flat F in a CAT(0) space X is a
convex subset isometric to a Euclidean space. If a flat has dimension k, then we will
also call it a k-flat.

If Γ � X is an isometric action, then a flat F ⊂ X is called Γ-periodic if its
stabilizer StabΓ(F ) acts cocompactly on it. In case of a discrete action, a finite index
subgroup of StabΓ(F ) acts on F by translations, and hence StabΓ(F ) is virtually
free abelian of rank equal to the dimension of F .

An isometric action Γ � X of a discrete group Γ on a locally compact CAT(0)
space X is called geometric if it is properly discontinuous and cocompact. Then
every abelian subgroup A ⊂ Γ preserves a flat in X on which it acts cocompactly.

Suppose that Γ � X and Γ � X ′ are geometric actions of the same group on
two locally compact CAT(0) spaces. Then there exists a Γ-equivariant quasi-isometry
Φ : X → X ′.

The following properties of CAT(0) spaces will imply Proposition 1 which will
be used further in the proof.

If F ⊂ X is a Γ-periodic flat, then its stabilizer StabΓ(F ) is virtually abelian and
preserves a flat F ′ ⊂ X ′. Hence, a Γ-equivariant quasi-isometry Φ : X → X ′ carries
Γ-periodic flats in X Hausdorff close to Γ-periodic flats in X ′.

One can also say something regarding the quasi-isometry invariance of non-
periodic flats: Recall that, for locally compact CAT(0) spaces with cocompact isom-
etry group, the maximal dimension of flats equals the maximal dimension of quasi-
flats and is in particular a quasi-isometry invariant [K99, Thm. C]. By Theorem B in
[LS97], quasi-flats of maximal dimension which are within finite Hausdorff distance
from (maximal) flats are actually within uniformly bounded Hausdorff distance from
these flats. Combining these results, one obtains the following useful

Proposition 1. There exists a constant D = D(L, A, X, X ′) such that a Γ-
equivariant (L, A)-quasi-isometry Φ : X → X ′, between CAT(0) spaces X and X ′,
maps Γ-periodic flats of maximal dimension in X D-Hausdorff close to such flats in
X ′. As a consequence, also pointed Hausdorff limits of Γ-periodic flats of maximal
dimension in X are carried D-Hausdorff close to such flats in X ′.

2.2 Product rigidity. Recall that an isometry of a CAT(0) space is called
axial, if it preserves a complete geodesic on which it acts as a nontrivial translation.
Such a geodesic is then called an axis. We will need the following product splitting
result which is a special case of Corollary 10 in [M06]. See also Proposition 2.2 in
[L00] and Theorem 1 in [S85].

Proposition 2. Let X be a locally compact CAT(0) space and let Γ ∼= Γ1×Γ2 be a
product of non-abelian free groups Γi. Suppose that Γ acts on X discretely by axial
isometries. Then there exists a minimal non-empty Γ-invariant closed convex subset
C ⊂ X which splits metrically as a product, C ∼= C1 ×C2, such that Γ preserves the
product splitting and Γi acts trivially on C3−i.
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Remark 1. If X is 4-dimensional, then the set C is unique. Indeed, the factors Ci

would have to be 2-dimensional. Since two minimal non-empty Γ-invariant closed
convex subsets are parallel and X is 4-dimensional, C is unique.

2.3 Coarse intersection of flats and quasi-isometry invariance. For a
subset A of a metric space X we denote its closure by A and its tubular r-
neighborhood by Nr(A).

Let F1, F2 ⊂ X be flats. We say that they diverge if ∂∞F1 ∩ ∂∞F2 = ∅. Equiva-
lently, the distance function d(·, F2)|F1 is proper and grows (at least) linearly.

Definition 1. Let F1, F2 ⊂ X be diverging flats. We say that F1 coarsely intersects
F2 if there exists R ≥ 0 such that for every r ≥ R holds: If B1 ⊂ F1 is a round ball
such that F1 ∩ Nr(F2) ⊂ int(B1), then its boundary sphere ∂B1 is not contractible
inside X\Nr(F2).

Remark 2. (i) This is independent of the choice of the ball B1 ⊂ F1.
(ii) The notion is asymptotic in the sense that it only depends on the ideal bound-

aries of the flats, i.e. passing to parallel flats does not affect coarse intersection.
(iii) Coarse intersection is not a symmetric relation.
(iv) In general, disjoint flats can coarsely intersect. However, this cannot occur in

geodesically complete smooth spaces, i.e. in Hadamard manifolds.

We need a criterion to recognize whether flats coarsely intersect. In the smooth
case “coarse intersection” simply becomes “nontrivial transversal intersection”, i.e.
two flats in a Hadamard manifold intersect coarsely if and only if they intersect
transversely in one point. This is clear, because for a flat F in a Hadamard manifold
X there is a deformation retraction of X\F onto X\Nr(F ) using the gradient flow
of d(·, F ).

More generally, we have:

Lemma 1. Let F1 and F2 be flats in a CAT(0) space X. Suppose that F2 is contained
in an open convex subset C ⊂ X which is Riemannian, i.e. the metric on C is induced
by a smooth Riemannian metric. If F1 and F2 intersect transversely in one point,
then F1 coarsely intersects F2.

Proof. Otherwise spheres in F1\F2 around the intersection point F1 ∩ F2 could be
contracted in X\F2. But this would be absurd since X\F2 retracts to C\F2 along
normal geodesics. �	

It will be crucial for us that coarse intersection is quasi-isometry invariant.

Lemma 2. Let Φ : X → X ′ be a quasi-isometry of CAT(0) spaces with a quasi-
inverse Φ′ : X ′ → X. Let F1, F2 ⊂ X and F ′

1, F
′
2 ⊂ X ′ be flats such that Φ(Fi)

is Hausdorff close to F ′
i. Then F1 coarsely intersects F2 if and only if F ′

1 coarsely
intersects F ′

2.
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Proof. First note that F1 and F2 diverge if and only if F ′
1 and F ′

2 do. The quasi-flat
Φ|F1 may not be continuous, but since X is CAT(0), it is uniformly (in terms of the
quasi-isometry constants) Hausdorff close to a continuous quasi-flat q : F1 → X ′.
Suppose that q(F1) is D-Hausdorff close to F ′

1. If F ′
1 does not coarsely intersect

F ′
2, then for every tubular neighborhood Nr(F ′

2) of F ′
2 all large spheres in F ′

1

are contractible in the complement of Nr(F ′
2). Because the q-image of a sphere in

F1 can be homotoped to F ′
1 by a D-short homotopy, we obtain that q-images of

large spheres in F1 are contractible in X\Nr(F ′
2). The Φ′-image of a (contracting)

homotopy is again uniformly Hausdorff close to a continuous map. Since Φ′ ◦ Φ is
at finite distance from idX , it follows that we can for every radius r > 0 contract
sufficiently large spheres in F1 in the complement of the tubular r-neighborhood of
F2. Consequently, F1 does not coarsely intersect F2. �	

3 Configurations of convex product subsets in dimension 4

3.1 Flat half-strips in CAT(0) surfaces with symmetries. By a flat strip,
respectively, half-strip of width w ≥ 0 in a CAT(0) space we mean a convex subset
isometric to R × [0, w], respectively, to [0, +∞) × [0, w].

The following observation restricts the possible positions of flat half-strips in a
CAT(0) surface relative to the action of its isometry group.

Lemma 3. Let Y be a smooth CAT(0) surface, and let h ⊂ Y be a flat half-strip.
Suppose that h is asymptotic to a periodic geodesic c ⊂ Y , i.e. to an axis c of an
axial isometry γ of Y .

Then either w = 0, or h extends to a (periodic) flat strip in Y parallel to c.

Proof. We may assume that γ translates towards the ideal endpoint of h and pre-
serves the orientation transversal to c. If w > 0 and r(t) is a ray in int(h), then the
ray γ−1r is strongly asymptotic to r, i.e. d(γ−1r(t), r) → 0 as t → +∞. Therefore,
γ−1r must enter int(h), because int(h) is open in Y . Consequently, γ−1r extends r,
and γ−1h extends h. It follows by induction that h is contained in a γ-invariant flat
strip. �	
3.2 Configurations not occuring in smooth spaces. Let X be a CAT(0)
space.

We describe a configuration of convex product subsets which can occur if X is
singular, but not if it is smooth.

We assume that X contains two closed convex subsets, namely a product

Y1 × Y2

of smooth CAT(0) surfaces Y1 and Y2 with boundary such that int(Y1) × int(Y2) is
open in X; and a product

Z × R
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η0

η+

η−

l−
l+

l0

Z

Figure 1: The ideal triangle contained in Z

ξ1

ξ2

η0 η+η−

∂∞Y1

∂∞Y2

∂∞(Z × R)

Figure 2: The configuration in ∂∞X

whose (not necessarily smooth) cross section Z contains an ideal triangle with three
ideal vertices η0, η+, η−. We denote the sides asymptotic to η0 and η± by l∓ and the
side asymptotic to η+ and η− by l0 (Fig. 1).

We assume furthermore, that these product subsets interact as follows:1

(i) The intersection of the flat F± = l± × R ⊂ Z × R with Y1 × Y2 contains a
quadrant r±

1 × r±
2 , where r±

i are asymptotic rays in Yi. We denote their common
ideal endpoint by ξi ∈ ∂∞Yi.

(ii) η0 is an interior point of the Tits arc ξ1ξ2 of length π
2 in ∂∞X.

Then the intersection Y1 × Y2 ∩ Z × R is nonempty and, by condition (ii), the
product structures (i.e. the directions of the factors) do not match on it. The latter

1 See Figure 2.
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implies that the convex subset Y1 × Y2 ∩ Z × R is flat.2 As a consequence, subrays
of the rays r±

i bound a flat half-strip hi ⊂ Yi.
In addition, we impose a symmetry condition:
(iii) The rays r±

i are asymptotic to a periodic geodesic ci ⊂ Yi.
Using Lemma 3 above, we conclude: Either subrays of the rays r±

i coincide, or
subrays extend to geodesics c±

i ⊂ Yi parallel to ci.

Claim 1. If conditions (i)–(iii) hold, then X cannot be smooth.

Proof. Suppose that X is smooth. Then our discussion implies that the flats F±
either have a quadrant in common and therefore coincide, or contain parallel half-
planes and their intersection of ideal boundaries ∂∞F+ ∩ ∂∞F− contains an arc of
length π of the form ξ1ξ2ξ̂1 or ξ2ξ1ξ̂2 with an antipode ξ̂i ∈ ∂∞Yi for i = 1 or 2. It
follows that ∠T its(η±, ξ̂i) < π

2 and hence ∠T its(η+, η−) < π, a contradiction. �	
3.3 Not equivariantly smoothable configurations. Now, we restrict to
symmetric situations and consider geometric actions

Γ � X

by discrete groups on locally compact CAT(0) spaces, i.e. actions which are isometric,
properly discontinuous and cocompact.

We will tie the configuration considered above sufficiently closely to the action
so that it will carry over to other geometric actions Γ � X ′ on CAT(0) spaces.
This will then be used to rule out such actions on smooth CAT(0) spaces, i.e. on
Hadamard 4-manifolds.

In addition to the conditions (i)–(iii) above, we assume:
(iv) X contains no 3-flats.
(v) Y1 ×Y2 is preserved by a subgroup Γ1 ×Γ2 ⊂ Γ with non-abelian free factors

Γi, and the restricted action Γ1 × Γ2 � Y1 × Y2 is a product action (not necessarily
cocompact).

(vi) The flats F± and the flat F0 = l0×R in Z×R are Γ-periodically approximable
(i.e. pointed Hausdorff limits of Γ-periodic flats).

(vii) The geodesics ci ⊂ Yi are Γi-periodic. Moreover, there exist Γi-periodic
geodesics di ⊂ int(Yi) which intersect the rays r±

i ⊂ Yi transversally in points.
Under the assumptions (i)–(vii), we look for a corresponding configuration in X ′.

Let Φ : X → X ′ denote a Γ-equivariant quasi-isometry.
By (v) and Proposition 2, there exists a Γ1 × Γ2-invariant closed convex product

subset (in general singular)

Y ′
1 × Y ′

2 ⊂ X ′

on which Γ1 × Γ2 acts by a product action. The Γi-periodic image quasigeodesics
Φ(ci) are Hausdorff close to Γi-periodic geodesics c′

i ⊂ Y ′
i.

2 This follows from the fact that a geodesic triangle in a product of CAT(0) spaces is flat if and
only if its projections to the factors are flat.
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By (iv+vi) and Proposition 1, the quasi-flats Φ(F±) and Φ(F0) are Hausdorff
close to flats F ′± and F ′

0. We have that any one of these flats is contained in a
tubular neighborhood of the union of the other two. Hence its ideal boudary circle is
contained in the union of the ideal boudary circles of the other two. This leaves only
the possibility that the union of their ideal boudaries is a spherical suspension of
three points. It follows that the flats are contained in a closed convex product subset

Z ′ × R ⊂ X ′

whose cross section Z ′ contains an ideal triangle with corresponding ideal vertices
η′

0, η
′
+, η′− and sides l′+, l′−, l′0, such that F ′± = l′± × R and F ′

0 = l′0 × R.
Furthermore, if ρ ⊂ Z is a ray asymptotic to one of the ideal vertices η0, η+ or η−,
then Φ carries the vertical half-plane ρ×R ⊂ Z×R Hausdorff close to a vertical half-
plane ρ′×R ⊂ Z ′×R where ρ′ ⊂ Z ′ is a ray with corresponding ideal endpoint η′

0, η
′
+

or η′−. This follows from the fact that the half-plane ρ × R is Hausdorff close to the
intersection of sufficiently large tubular neighborhoods of two of the flats F± and F0.

Since the ci are periodic, Φ carries the quadrants r±
1 × r±

2 Hausdorff close to a
quadrant r′

1 × r′
2 for rays r′

i ⊂ c′
i. The quadrants r±

1 × r±
2 are contained in vertical

half-planes with ideal boundary semicircle ∂∞F+∩∂∞F− and, by condition (ii), their
ideal boundary arc ξ1ξ2 of length π

2 is contained in the interior of this semicircle.
Denoting the ideal endpoints of the rays r′

i by ξ′
i = ∂∞r′

i it follows that the arc
ξ′

1ξ
′
2 of length π

2 is contained in the interior of the semicircle ∂∞F ′
+ ∩ ∂∞F ′−, and

η′
0 is an interior point of the arc ξ′

1ξ
′
2 of length π

2 .
In summary, the interaction of the product subsets Y ′

1 × Y ′
2 and Z ′ × R at

infinity is as for the configuration in X. However, without further assumptions, the
intersection Y ′

1 × Y ′
2 ∩ Z ′ × R could be empty.

Claim 2. X ′ cannot be smooth Riemannian.

Proof. Suppose that X ′ is smooth. We show that then the intersection Y ′
1 × Y ′

2 ∩
Z ′ × R must be nonempty.

Note that there exist Γi-periodic geodesics d′
i ⊂ Y ′

i with the same stabilizers as
the geodesics di. By (vii), the periodic flat d1 × d2 transversally intersects the flats
F± in points inside the smooth region int(Y1)× int(Y2). Hence, by Lemma 1, d1 ×d2

coarsely intersects F±. It follows from Lemma 2 that d′
1×d′

2 coarsely intersects F ′±.
Now we use that X ′ is smooth to deduce that d′

1 × d′
2 intersects F ′± transversally

in a point. In particular, Y ′
1 × Y ′

2 ∩ Z ′ × R 
= ∅.
It follows that conditions (i)–(iii) are satisfied by the product subsets Y ′

1 × Y ′
2

and Z ′ × R of X ′. By Claim 1, this is a contradiction. �	
We have proved:

Theorem 2 (Obstruction to smooth action). If a discrete group Γ admits a geo-
metric action Γ � X on a locally compact CAT(0) space satisfying conditions
(i)–(vii), then Γ does not act geometrically on any smooth Hadamard 4-manifold.
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Remark 3. The regularity assumptions can be relaxed. The argument works more
generally and shows that Γ does not act geometrically on locally compact, geo-
desically complete CAT(0) spaces X ′ without branching geodesics, for instance C2-
smooth Hadamard 4-manifolds [St13].

4 An example

In this section, we consider the geometric actions on 4-dimensional singular CAT(0)
spaces suggested by Gromov in the first exercise of [BGS85] and verify that they
contain configurations satisfying conditions (i)–(vii).

Let Σ be a closed surface of genus ≥ 2, and let

β : V → Σ × Σ

be a non-trivial finite branched covering with branching locus the diagonal ΔΣ ⊂
Σ × Σ. Then the group

Γ := π1(V )

admits geometric actions on 4-dimensional singular CAT(0) spaces: Let πV : X → V
denote the universal covering, and π := β ◦ πV : X → Σ × Σ. We equip Σ with a
hyperbolic metric and pull back the corresponding product metric on Σ × Σ to
singular metrics on V and X. In this way the 4-manifold X becomes a CAT(0)
space, and the deck action

Γ � X

becomes a geometric action.
Regarding the geometry of X, note first that the singular locus π−1(ΔΣ) ⊂ X is

a disjoint union of isometrically embedded hyperbolic planes. The restriction of π
to any of them is a universal covering of the branching locus ΔΣ ⊂ Σ × Σ.

We look for patterns of flats in X which obstruct the existence of geometric
Γ-actions on Hadamard manifolds, as described in Sections 3.2 and 3.3.

The space X contains no 3-dimensional flats, but plenty of 2-dimensional ones.
There are two kinds of them: flats disjoint from π−1(ΔΣ), and flats which intersect
π−1(ΔΣ) orthogonally in one or several parallel geodesics.

Let F0 denote the set of flats disjoint from π−1(ΔΣ). There are obvious subfam-
ilies of F0 which occur in convex product subsets of X. Namely, let

Σ = Σ+ ∪ Σ− (1)

be a decomposition of Σ into two subsurfaces Σ± along a finite family of disjoint
closed geodesics. Then the open product block int(Σ+×Σ−) ⊂ Σ×Σ is disjoint from
ΔΣ, and hence the connected components of its inverse image π−1(int(Σ+ ×Σ−)) in
X are convex subsets isometric to int(˜Σ+ × ˜Σ−) on which π restricts to a universal
covering of int(Σ+ × Σ−).
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The other flats in X important for our argument are, somewhat unexpectedly,
the flats which intersect π−1(ΔΣ) in precisely one geodesic; let us denote the set of
these flats by F1. Understanding them leads us to considering flat half-planes.

We define H as the set of injectively immersed flat half-planes H ⊂ Σ × Σ which
intersect the branching locus precisely along their boundary line, H ∩ΔΣ = ∂H, and
are orthogonal to it, H ⊥ ΔΣ. Furthermore, we define ˜H as the set of isometrically
embedded flat half-planes ˜H ⊂ X such that ˜H ∩π−1(ΔΣ) = ∂ ˜H and ˜H ⊥ π−1(ΔΣ).
We say that a half-plane ˜H ∈ ˜H covers or is a lift of a half-plane H ∈ H if π|

˜H

is a local isometry onto H. A flat in F1 is the union of two half-planes in ˜H with
common boundary line.

We collect some facts about H and ˜H needed for our argument.
If H ∈ H, then ∂H is an injectively immersed line in ΔΣ and therefore of the form

∂H = Δc for a nonperiodic simple geodesic c ⊂ Σ. It follows that H ⊂ c× c because
H is flat. We also see that half-planes in H occur in pairs of opposite half-planes
with common boundary line.

A half-plane H ∈ H lifts to a half-plane ˜H ∈ ˜H because it is simply-connected
and the branched covering β is a true covering over Σ × Σ − ΔΣ. More precisely, for
a point p ∈ H − ∂H and a lift p̃ of p there exists a unique lift ˜H of H with p̃ ∈ ˜H.
A lift ˜l ⊂ π−1(ΔΣ) of the boundary line ∂H extends in several ways to a lift ˜H of
H, because points close to ∂H can be lifted in several ways to points close to ˜l. The
number of lifts is given by the local branching order of π at ˜l.

If ˜H ∈ ˜H, then its boundary line ∂ ˜H projects to an immersed line Δc in ΔΣ. The
geodesic c ⊂ Σ must be nonperiodic simple, because otherwise ( ˜H−∂ ˜H)∩π−1(ΔΣ) 
=
∅. Thus, all half-planes in ˜H are lifts of half-planes in H.

If ˜H1, ˜H2 ∈ ˜H are distinct half-planes with the same boundary line, ∂ ˜H1 = ∂ ˜H2,
then their projections H1, H2 ∈ H either coincide or are a pair of opposite half-
planes. The local geometry of branched coverings implies, that ˜H1, ˜H2 have angle π
along their common boundary line and their union ˜H1 ∪ ˜H2 is a flat in F1.

We will use the following consequence of this discussion: Let c× c ⊂ Σ×Σ be an
injectively immersed plane, and let H± be the half-planes into which it is divided
by Δc. Then for every lift ˜H+ of H+ there exist at least two distinct lifts ˜H1−, ˜H2−
of H− with the same boundary line ∂ ˜H i− = ∂ ˜H+, and the union of any two of the
three half-planes ˜H+, ˜H1−, ˜H2− is a flat in F1.

The flats in F1 are nonperiodic. Nevertheless, they are useful for investigating
geometric Γ-actions on other CAT(0) spaces. This is due to the following fact:

Lemma 4. Let F ∈ F1. Suppose that the nonperiodic simple geodesic π(F ∩
π−1(ΔΣ)) in ΔΣ is the pointed Hausdorff limit of periodic simple geodesics in ΔΣ.
Then F is the pointed Hausdorff limit of Γ-periodic flats in X.

Proof. We denote ˜l = F ∩ π−1(ΔΣ). Let (cn, pn) → (c, p) be a sequence of pointed
periodic simple geodesics in Σ converging to the nonperiodic simple geodesic c ⊂ Σ
with π(˜l) = Δc. There exist geodesics ˜ln ⊂ π−1(ΔΣ) lifting the cn and lifts p̃n, p̃ of
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the base points pn, p such that (˜ln, p̃n) → (˜l, p̃). We choose embedded subsegments
sn ⊂ cn of increasing lengths centered at the base points pn such that also (sn, pn) →
(c, p) and lifted segments s̃n ⊂ ˜ln centered at the p̃n such that (s̃n, p̃n) → (˜l, p̃).

The main step of the argument is to approximate F by isometrically embedded
flat squares ˜Qn ⊂ π−1(sn × sn) with diagonals s̃n, ( ˜Qn, p̃n) → (F, p̃). This will
imply the assertion because isometrically embedded flat squares in π−1(cn × cn) are
contained in Γ-periodic flats. Indeed, the subsets π−1(cn × cn) ⊂ X have cocompact
stabilizers in Γ, and their connected components are convex subsets which split as
metric products of the line with discrete metric trees. All flats contained in them
are limits of Γ-periodic ones.

To find the squares ˜Qn, we proceed as follows. The flat F is divided by ˜l into
two half-planes ˜H± ∈ ˜H. We will approximate these simultaneously by isometrically
embedded right-angled isosceles triangles ˜Tn± ⊂ π−1(sn × sn) with sides s̃n.

Let q̃± ∈ ˜H± − ∂ ˜H± be base points close to p̃, and let q̄± = π(q̃±) ∈ c × c −
Δc denote their projections. There exist sequences of points q̄n± ∈ sn × sn − Δsn

approximating them, q̄n± → q̄±. More precisely, we choose them such that they are
close to Δpn

∈ Δsn
intrinsically in sn × sn, i.e. such that the segments Δpn

q̄n± ⊂
sn × sn. Furthermore, there exists a sequence of lifts q̃n± ∈ π−1(q̄n±) close to p̃n such
that q̃n± → q̃±.

The injectively immersed square sn × sn ⊂ Σ × Σ is divided by Δsn
into two

triangles. Let Tn± be the subtriangle containing q̄n±. (Possibly Tn
+ = Tn−.) Since the

injectively immersed flat triangles Tn± meet ΔΣ only along their hypotenuses Δsn
, we

can lift them to isometrically embedded flat triangles ˜Tn± in X with hypotenuses s̃n,
as we could lift the half-planes in H to half-planes in ˜H. The lifts are again uniquely
determined by the lift of one off-hypotenuse point. Thus we can choose them such
that q̃n± ∈ ˜Tn± ⊂ π−1(cn×cn). Then the pointed triangles (˜Tn±, q̃n±) Hausdorff converge
to a flat half-plane in ˜H with base point q̃± and boundary line ˜l. The only such half-
plane is ˜H±, i.e. (˜Tn±, q̃n±) → ( ˜H±, q̃±).

The two triangles Tn± either coincide or have angle π along their common side Δsn
.

The local geometry of branched coverings implies that the lifted triangles ˜Tn± have
angle π along their common side s̃n. (They are distinct for large n, ˜Tn

+ ∩ ˜Tn− = s̃n.)
Hence their union ˜Qn = ˜Tn

+ ∪ ˜Tn− is an embedded flat square in X. These are the
squares we were looking for. As desired, they satisfy ( ˜Qn, p̃n) → (F, p̃). This finishes
the proof. �	

Now we describe a configuration in X which satisfies conditions (i)–(vii) formu-
lated in Sections 3.2 and 3.3.

We consider a decomposition (1) of Σ and choose an injectively immersed geodesic
line c ⊂ Σ which intersects Σ+ ∩ Σ− transversally in precisely one point p. The
geodesic c is divided by p into the injectively immersed rays r± = c ∩ Σ±. We can
arrange our choices (of Σ, Σ± and c) so that

(a) r± is asymptotic to a simple closed geodesic c± ⊂ int(Σ±), and
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(b) c is a pointed Hausdorff limit of simple closed geodesics cn ⊂ Σ.

Indeed, if Σ± and c± are chosen appropriately then there exists a simple closed
curve a, which intersects c+ and c− transversally in one point each and Σ+ ∩ Σ−

transversally in two points. It is divided by its intersection points with c± into two
arcs a+− and a−+. The concatenations a+− ∗nc− ∗a−+ ∗nc+ are freely homotopic to
simple closed geodesics cn which, when equipped with suitable base points, Hausdorff
converge to an injectively immersed line c with the desired properties.

Let H ∈ H be the half-plane H ⊂ c × c with boundary line ∂H = Δc and
containing the quadrant r+ × r−. There exist two distinct flats F1, F2 ∈ F1 which
contain the same lift ˜H ∈ ˜H of H (and branch along its boundary line ∂ ˜H). Their
union F1 ∪ F2 splits metrically as Z × R, and the cross section Z is a degenerate
ideal triangle (a tripod). By Lemma 4, the three flats contained in Z × R, i.e. F1, F2

and (F1 ∪ F2) − int( ˜H), are Γ-periodically approximable.
Let r̃+ × r̃− ⊂ ˜H be the quadrant lifting r+ × r−. There exists a closed convex

product subset P = Y + ×Y − ⊂ X such that π|P is a universal covering of Σ+ ×Σ−

and Fj ∩ P = r̃+ × r̃− for j = 1, 2.
The product subsets Y + × Y − and Z × R satisfy conditions (i)–(vii). Applying

Theorem 2, we therefore obtain:

Theorem 1 (Exercise 1 in [BGS85]). Let V be a closed 4-dimensional manifold
which admits a non-trivial finite branched covering β : V → Σ×Σ over the product
of a hyperbolic surface Σ with itself such that the branching locus equals the diagonal
ΔΣ ⊂ Σ×Σ. Then V admits no smooth Riemannian metric of nonpositive sectional
curvature.

Remark 4. As in Theorem 2, one can relax the regularity assumptions and rule out
the existence of C2-smooth Riemannian metrics on V [St13].
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