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CHARACTERIZATION OF n-RECTIFIABILITY IN TERMS
OF JONES’ SQUARE FUNCTION: PART II

Jonas Azzam and Xavier Tolsa

Abstract. We show that a Radon measure μ in R
d which is absolutely continuous

with respect to the n-dimensional Hausdorff measure Hn is n-rectifiable if the so
called Jones’ square function is finite μ-almost everywhere. The converse of this
result is proven in a companion paper by the second author, and hence these two
results give a classification of all n-rectifiable measures which are absolutely contin-
uous with respect to Hn. Further, in this paper we also investigate the relationship
between the Jones’ square function and the so called Menger curvature of a measure
with linear growth, and we show an application to the study of analytic capacity.

1 Introduction

Let μ be a Radon measure in R
d. One says that μ is n-rectifiable if there are Lipschitz

maps fi : R
n → R

d, i = 1, 2, . . ., such that

μ

(
R

d \
⋃
i

fi(Rn)
)

= 0, (1.1)

and μ is absolutely continuous with respect to the n-dimensional Hausdorff measure
Hn. A set E ⊂ R

d is called n-rectifiable if the measure Hn|E is n-rectifiable.
This is the second of a series of two papers where we contribute to charac-

terize when measures in the Euclidean space are rectifiable. This subject stems
from the work of Besicovitch [Bes28,Bes38,Bes39] who first discovered the geometric
dichotomy between 1-rectifiable sets (sets that may be covered by one-dimensional
Lipschitz graphs) and purely 1-unrectifiable sets (sets that have H1-measure zero
intersection with any Lipschitz graph). Finding criteria to distinguish these two
classes of sets has become a field of its own due to its applications to various ana-
lytic fields.

A particular example we mention is the one of singular integrals. In [DS91], David
and Semmes studied n-Ahlfors-David regular (or n-AD) measures μ (meaning the
measure of any ball centred on its support has μ-measure at least and at most a
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constant times the radius of the ball to the power n) and classified which of these
measures are uniformly rectifiable. There are several equivalent definitions of this
term: for David and Semmes, the uniformly rectifiable measures μ were firstly the
n-AD regular measures for which a certain big class of singular integral operators
with odd kernel is bounded in L2(μ); the geometric definition, however, is more
transparent, and says that any ball B centered on supp μ with radius r(B) contains
an L-Lipschitz image of a subset of R

n of measure at least c r(B)n, where c and L
are fixed constants.

Over the course of [DS91] and [DS93], David and Semmes derived several other
equivalent formulations of uniform rectifiability. We will review the one that most
concerns us presently: given a closed ball B ⊂ R

d with radius r(B), an integer
0 < n < d, and 1 ≤ p < ∞, let

βn
μ,p(B) = inf

L

(
1

r(B)n

∫
B

(
dist(y, L)

r(B)

)p

dμ(y)
)1/p

,

where the infimum is taken over all n-planes L ⊂ R
d. Given a fixed n, to simplify

notation we will drop the exponent n and we will write βμ,p(B) instead of βn
μ,p(B).

Then an n-AD regular measure μ is uniformly rectifiable if and only if there is some
c > 0 so that, for any B centred on supp μ,

∫
B

∫ r(B)

0
βμ,2(B(x, r))2

dr

r
dμ(x) ≤ cμ(B).

The βμ,p coefficients are a generalization of the so-called Jones β-numbers intro-
duced in [Jon90]; there, he used an L∞-version of βμ,p to characterize all compact
subsets of the plane which can be contained in a rectifiable set, a characteriza-
tion that extends to higher dimensions and even to Hilbert spaces (see [Oki92] and
[Sch07]).

Many of the conditions in the David and Semmes theory rely heavily on the AD
regularity assumption on the measure. In this paper and its prequel, we show that a
suitable version of the above characterization just mentioned extends to much more
general Radon measures.

The upper and lower n-dimensional densities of μ at a point x ∈ R
d are defined,

respectively, by

Θn,∗(x, μ) = lim sup
r→0

μ(B(x, r))
(2r)n

, Θn
∗ (x, μ) = lim inf

r→0

μ(B(x, r))
(2r)n

.

In case both coincide, we denote Θn(x, μ) = Θn,∗(x, μ) = Θn
∗ (x, μ), and this is called

the n-dimensional density of μ at x.
The main result of this paper is the following:
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Theorem 1.1. Let μ be a finite Borel measure in R
d such that 0 < Θn,∗(x, μ) <

∞ for μ-a.e. x ∈ R
d. If∫ 1

0
βμ,2(x, r)2

dr

r
< ∞ for μ-a.e. x ∈ R

d, (1.2)

then μ is n-rectifiable.

The integral on the left side of (1.2) is a version of the so called Jones’ square
function. In the part I paper [Tol15] it has been shown that this is finite μ-a.e. if μ is
n-rectifiable. So by combining this result with Theorem 1.1 we deduce the following
result:

Corollary 1.2. Let μ be a finite Borel measure in R
d such that 0 < Θn,∗(x, μ) < ∞

for μ-a.e. x ∈ R
d. Then μ is n-rectifiable if and only if∫ 1

0
βμ,2(x, r)2

dr

r
< ∞ for μ-a.e. x ∈ R

d.

Notice that the preceding corollary applies to any measure μ = Hn|E , with
Hn(E) < ∞. So we have:

Corollary 1.3. Let E ⊂ R
d be an Hn-measurable set with Hn(E) < ∞. The set

E is n-rectifiable if and only if∫ 1

0
βHn|E ,2(x, r)2

dr

r
< ∞ for Hn-a.e. x ∈ E.

According to [BS14], Peter Jones conjectured in 2000 that, given an arbitrary
Radon measure μ in R

d, some condition in the spirit of (1.2) should imply that μ
is n-rectifiable in the sense that there are Lipschitz maps fi : R

n → R
d, i = 1, 2, . . .,

such that (1.1) holds, without assuming μ to be absolutely continuous with respect
to Hausdorff measure. Corollary 1.2 shows that this conjecture holds precisely in the
particular case when μ � Hn.

Let us remark that Theorem 1.1 was already known to hold under the additional
assumption that the lower density Θn

∗ (x, μ) is positive μ-a.e., by a theorem due to
Pajot [Paj97] valid for μ = Hn|E , recently extended by Badger and Schul [BS15] to
Radon measures such that 0 < Θn

∗ (x, μ) ≤ Θn,∗(x, μ) < ∞ μ-a.e. The hypothesis
on the positiveness of the lower density Θn

∗ (x, μ) is essential in the arguments in
[Paj97] and [BS15] because, roughly speaking, it allows the authors to reduce their
assumptions to the case where the measure μ is supposed to be n-AD-regular.

Recall that if μ is a measure of the form μ = Hn|E , with Hn(E) < ∞, then
Θn,∗(x, μ) > 0 μ-a.e., while it may happen that Θn

∗ (x, μ) = 0 μ-a.e. So from Pajot’s
theorem and its further generalization by Badger and Schul one cannot deduce the
characterization of n-rectifiable sets in Corollary 1.3.

We will prove Theorem 1.1 by means of a suitable corona type decomposition
in terms of some “dyadic cubes” introduced by David and Mattila [DM00]. This
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corona type decomposition has some similarities with the one from [Tol14a]: it splits
the dyadic lattice into some collections of cubes, which we will call “trees”, where,
roughly speaking, the density of μ does not oscillate too much and most of the
measure is concentrated close to a Lipschitz manifold. To construct this Lipschitz
manifold we will use a nice theorem from David and Toro [DT12] which is appropriate
to parametrize Reifenberg flat sets with holes and is particularly well adapted to
constructions of Lipschitz manifolds involving stopping time arguments, such as in
our case. Further, we will show that the family of trees of the corona decomposition
satisfies a packing condition by following arguments inspired by the some of the
techniques used in [Tol05] to prove the bilipschitz “invariance” of analytic capacity.

Our second main result in this paper relates the curvature of a measure to its

βμ,2-numbers, and it involves also the densities Θ1
μ(x, r) =

μ(B(x, r))
r

, for x ∈ R
d

and r > 0. Recall that the so called Menger curvature of μ is defined by

c2(μ) =
∫∫∫

1
R(x, y, z)2

dμ(x) dμ(y) dμ(z),

where R(x, y, z) stands for the radius of the circumference passing through x, y, z.
The notion of curvature of a measure was introduced by Melnikov [Mel95] while
studying analytic capacity. Because its relationship to the Cauchy transform on
the one hand and to 1-rectifiability on the other hand (see [MV95] and [Leg99]),
curvature of measures has played a key role in the solution of Vitushkin’s conjecture
by David [Dav98] and in the in the proof of the semiadditivity of analytic capacity
by Tolsa [Tol03]. Here we prove the following:

Theorem 1.4. Let n = 1, d = 2, μ be a finite compactly supported Radon
measure in R

2 such that μ(B(x, r)) ≤ r for all x ∈ R
2 and r > 0. Then

c2(μ) + ‖μ‖ ∼
∫∫ ∞

0
βμ,2(x, r)2 Θ1

μ(x, r)
dr

r
dμ(x) + ‖μ‖,

where the implicit constant is an absolute constant.

The notation A ∼ B means that there is some fixed positive constant c such that
c−1A ≤ B ≤ c A.

If μ is 1-AD-regular, the result stated in Theorem 1.4 was already known. In
fact, in this case one has the more precise estimate

c2(μ) ∼
∫∫ ∞

0
βμ,2(x, r)2

dr

r
dμ(x).

That the double integral on the right hand side does not exceed c2(μ) times some
constant only depending on the 1-AD-regularity of μ was proved by Mattilaet al. in
[MMV96]. The converse inequality is essentially due to Peter Jones. The reader can
find the proof of both estimates in Chapters 3 and 7 of [Tol14b], for example. For
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other analogous results for some higher dimensional versions of curvature, see the
works [LW11] and [LW09] of Lerman and Whitehouse.

Recall that the analytic capacity of a compact subset E ⊂ C is defined by

γ(E) = sup |f ′(∞)|,

where the supremum is taken over all analytic functions f : C\E → C with ‖f‖∞ ≤ 1
and f ′(∞) = limz→∞ z(f(z) − f(∞)).

The notion of analytic capacity was introduced by Ahlfors [Ahl47] in order to
study the so called Pianlevé problem, which consists in characterizing the removable
sets for bounded analytic functions in metric and geometric terms. He showed that
a compact set E ⊂ C is removable if and only if γ(E) = 0, and thus he reduced
the Painlevé problem to the metric-geometric characterization of sets with vanishing
analytic capacity. From the description of analytic capacity in terms of curvature
obtained in [Tol03] and Theorem 1.4 we get the following.

Corollary 1.5. Let E ⊂ C be compact. Then

γ(E) ∼ sup μ(E),

where the supremum is taken over all Borel measures μ in C such that

sup
r>0

Θ1
μ(x, r) +

∫ ∞

0
βμ,2(x, r)2 Θ1

μ(x, r)
dr

r
≤ 1.

The plan of the paper is the following. In Section 2 we recall the properties of
the dyadic lattice of David and Mattila mentioned above. In Section 3 we introduce
the so called balanced balls and we prove some technical results about them which
will be necessary for the construction of the corona decomposition. We state the
Main Lemma 4.1 in Section 4. This is the essential ingredient for the construction
of the corona decomposition in the subsequent Section 5. Theorem 1.1 is proved
in the same Section 5 by using this corona decomposition. On the other hand, the
proof of Main Lemma 4.1 is deferred to Section 6. In Section 7 we explain that
the assumption (1.2) in Theorem 1.1 can be weakened by multiplying the integrand
β2,μ(x, r)2 by any power of the density μ(B(x, r))/rn, which we then use to prove
Theorem 1.4. This proof will rely heavily on the proofs and results contained in
[Tol05] and [Tol14a], and we recommend reading this section with these papers on
hand as references.

In this paper we will use the letters c, C to denote absolute constants which
may change their values at different occurrences. On the other hand, constants with
subscripts, such as c1, do not change their values at different occurrences.

The notation A � B means that there is some fixed constant c such that A ≤ c B.
So A ∼ B is equivalent to A � B � A. If we want to write explicitely the dependence
on some constants c1 of the relationship such as “�”, we will write A �c1 B.
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2 The Dyadic Lattice of Cubes with Small Boundaries

We will use the dyadic lattice of cubes with small boundaries constructed by David
and Mattila in [DM00, Theorem3.2]. The properties of this dyadic lattice are sum-
marized in the next lemma.

Lemma 2.1 (David, Mattila). Let μ be a Radon measure on R
d, E = supp μ, and

consider two constants C0 > 1 and A0 > 5000 C0. Then there exists a sequence of
partitions of E into Borel subsets Q, Q ∈ Dk, with the following properties:

• For each integer k ≥ 0, E is the disjoint union of the “cubes” Q, Q ∈ Dk, and
if k < l, Q ∈ Dl, and R ∈ Dk, then either Q ∩ R = ∅ or else Q ⊂ R.

• The general position of the cubes Q can be described as follows. For each k ≥ 0
and each cube Q ∈ Dk, there is a ball B(Q) = B(zQ, r(Q)) such that

zQ ∈ E, A−k
0 ≤ r(Q) ≤ C0 A−k

0 ,

E ∩ B(Q) ⊂ Q ⊂ E ∩ 28 B(Q) = E ∩ B(zQ, 28r(Q)),

and

the balls 5B(Q), Q ∈ Dk, are disjoint.

• The cubes Q ∈ Dk have small boundaries. That is, for each Q ∈ Dk and each
integer l ≥ 0, set

N ext
l (Q) = {x ∈ E\Q : dist(x, Q) < A−k−l

0 },

N int
l (Q) = {x ∈ Q : dist(x, E\Q) < A−k−l

0 },

and

Nl(Q) = N ext
l (Q) ∪ N int

l (Q).

Then

μ(Nl(Q)) ≤ (C−1C−3d−1
0 A0)−l μ(90B(Q)). (2.1)

• Denote by Ddb
k the family of cubes Q ∈ Dk for which

μ(100B(Q)) ≤ C0 μ(B(Q)). (2.2)

We have that r(Q) = A−k
0 when Q ∈ Dk\Ddb

k and

μ(100B(Q)) ≤ C−l
0 μ(100l+1B(Q)) for all l ≥ 1 such that 1001

≤ C0 and Q ∈ Dk\Ddb
k . (2.3)
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We use the notation D =
⋃

k≥0 Dk. For Q ∈ D, we set D(Q) = {P ∈ D : P ⊂ Q}.
Given Q ∈ Dk, we denote J(Q) = k. We set �(Q) = 56C0 A−k

0 and we call it the
side length of Q. Note that

1
28

C−1
0 �(Q) ≤ diam(Q) ≤ �(Q).

Observe that r(Q) ∼ diam(Q) ∼ �(Q). Also we call zQ the center of Q, and the
cube Q′ ∈ Dk−1 such that Q′ ⊃ Q the parent of Q. We set BQ = 28 B(Q) =
B(zQ, 28 r(Q)), so that

E ∩ 1
28BQ ⊂ Q ⊂ BQ.

We assume A0 big enough so that the constant C−1C−3d−1
0 A0 in (2.1) satisfies

C−1C−3d−1
0 A0 > A

1/2
0 > 10.

Then we deduce that, for all 0 < λ ≤ 1,

μ
(
{x ∈ Q : dist(x, E\Q) ≤ λ �(Q)}

)
+ μ

({
x ∈ 3.5BQ : dist(x, Q) ≤ λ �(Q)}

)
≤ c λ1/2 μ(3.5BQ). (2.4)

We denote Ddb =
⋃

k≥0 Ddb
k and Ddb(Q) = Ddb ∩ D(Q). Note that, in particular,

from (2.2) it follows that

μ(100B(Q)) ≤ C0 μ(Q) if Q ∈ Ddb.

For this reason we will call the cubes from Ddb doubling.
As shown in [DM00, Lemma5.28], any cube R ∈ D can be covered μ-a.e. by a

family of doubling cubes:

Lemma 2.2. Let R ∈ D. Suppose that the constants A0 and C0 in Lemma 2.1 are
chosen suitably. Then there exists a family of doubling cubes {Qi}i∈I ⊂ Ddb, with
Qi ⊂ R for all i, such that their union covers μ-almost all R.

The following result is proved in [DM00, Lemma5.31].

Lemma 2.3. Let R ∈ D and let Q ⊂ R be a cube such that all the intermediate
cubes S, Q � S � R are non-doubling (i.e. belong to

⋃
k≥0 Dk\Ddb

k ). Then

μ(100B(Q)) ≤ A
−10n(J(Q)−J(R)−1)
0 μ(100B(R)). (2.5)

Let us remark that the constant 10 in (2.5) can be replaced by any other positive
constant if A0 and C0 are chosen suitably in Lemma 2.1, as shown in (5.30) of
[DM00].

Given a ball B ⊂ R
d, we consider its n-dimensional density:

Θμ(B) =
μ(B)
r(B)n

.

We will also write Θμ(x, r) instead of Θμ(B(x, r)).
From the preceding lemma we deduce:
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Lemma 2.4. Let Q, R ∈ D be as in Lemma 2.4. Then

Θμ(100B(Q)) ≤ C0 A
−9n(J(Q)−J(R)−1)
0 Θμ(100B(R))

and ∑
S∈D:Q⊂S⊂R

Θμ(100B(S)) ≤ c Θμ(100B(R)),

with c depending on C0 and A0.

Proof. By (2.5),

Θμ(100B(Q)) ≤ A
−10n(J(Q)−J(R)−1)
0

μ(100B(R))
r(100B(Q))n

= A
−10n(J(Q)−J(R)−1)
0 Θμ(100B(R))

r(B(R))n

r(B(Q))n
.

The first inequality in the lemma follows from this estimate and the fact that
r(B(R)) ≤ C0 A

(J(Q)−J(R))
0 r(B(Q)).

The second inequality in the lemma is an immediate consequence of the first
one. ��

From now on we will assume that C0 and A0 are some big fixed constants so that
the results stated in the lemmas of this section hold.

3 Balanced Balls

Lemma 3.1. Let μ be a Radon measure in R
d, and let B ⊂ R

d be some ball with
radius r > 0 such that μ(B) > 0. Let 0 < t < 1 and 0 < γ < 1. Then there exists
some constant ε = ε(t) > 0 such that one of following alternatives holds:

(a) There are points x0, x1, . . . , xn ∈ B such that

μ(B(xk, tr) ∩ B) ≥ ε μ(B) for 0 ≤ k ≤ n,

and if Lk stands for the k-plane that passes through x0, x1, . . . , xk, then

dist(xk, Lk−1) ≥ γ r for 1 ≤ k ≤ n.

(b) There exists a family of balls {Bi}i∈IB , with radii r(Bi) = 4γr, centered on B,
so that the balls {10Bi}i∈IB are pairwise disjoint,∑

i∈IB

μ(Bi) � μ(B),

and

Θμ(Bi) � γ−1 Θμ(B) for all i ∈ IB.

Note that the constant ε above depends on t but not on γ.

Proof. We choose x0, x1, . . . , xn inductively as follows. First we take x0 ∈ B such
that
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μ(B(x0, tr)) ≥ 1
2

s0,

where

s0 = sup
x∈B

μ(B(x, tr)).

If x0, . . . , xk−1 have been chosen, we take xk ∈ B such that dist(xk, Lk−1) ≥ γ r
(where Lk−1 is a plane that passes through x0, . . . , xk−1) and

μ(B(xk, tr)) ≥ 1
2

sk,

where

sk = sup
x∈B:dist(x,Lk−1)≥γr

μ(B(x, tr)).

If sk ≥ 2ε μ(B) for all 0 ≤ k ≤ n (where ε will be fixed below), then the
alternative (a) in the lemma holds. Otherwise, let k0 be such that sk0 < 2ε μ(B),
with k0 minimal. Notice first that

s0 ≥ c td μ(B),

since B can be covered by at most c t−d balls of radii t r. Thus, assuming ε < c td/2,
we get s0 ≥ 2ε μ(B) and thus k0 ≥ 1. In this way, the fact that sk0 < 2ε μ(B)
means that any ball B(x, t r) with x ∈ B\Uγr(Lk0−1) (where Uh(A) stands for the
h-neighborhood of A) satisfies

μ(B(x, t r)) < εμ(B).

Since B\Uγr(Lk0−1) can be covered by c t−d balls of this type, we infer that

μ(B\Uγr(Lk0−1)) ≤ c t−d ε μ(B).

As a consequence, if ε is small enough (i.e. ε � td), it turns out that

μ(B ∩ Uγr(Lk0−1)) ≥ 1
2

μ(B). (3.1)

It is easy to check that B ∩ Uγr(Lk0−1) can be covered by at most N balls Bi of
radii 4γr, with

N =: c
(γr)d−(k0−1) rk0−1

(γ r)d
= c γ−(k0−1) ≤ c γ−(n−1).

Let ĨB the subfamily of the balls Bi such that μ(Bi) ≥ μ(B)
4N

. Since

μ

⎛
⎝ ⋃

i
∈ĨB

Bi

⎞
⎠ ≤

∑
i
∈ĨB

μ(Bi) ≤ N
μ(B)
4N

=
1
4

μ(B),
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from (3.1) we infer that

μ

⎛
⎝ ⋃

i∈ĨB

Bi

⎞
⎠ ≥ 1

2
μ(B) − μ

⎛
⎝ ⋃

i
∈ĨB

Bi

⎞
⎠ ≥ 1

4
μ(B).

Further, by an elementary covering argument, it follows that there exists a sub-
family Bi, i ∈ IB ⊂ ĨB, such that the balls 10Bi, i ∈ IB, are parwise disjoint
and

μ

( ⋃
i∈IB

Bi

)
� μ

⎛
⎝ ⋃

i∈ĨB

Bi

⎞
⎠ � μ(B).

On the other hand, since μ(Bi) ≥ μ(B)
4N

for each i ∈ IB and N � γ−(n−1), we deduce
that

Θμ(Bi) ≥ μ(B)
(4N)(4γr)n

� μ(B)
γrn

= γ−1 Θμ(B) for all i ∈ IB.

Thus we have shown that the alternative (b) holds. ��

For a fixed Radon measure μ in R
d, let B ⊂ R

d be a ball with μ(B) > 0. We say
that B is (t, γ)-balanced if the alternative (a) in Lemma 3.1 holds with parameters
t > 0, ε(t), and γ > 0.

Remark 3.2. Notice that, for a given γ > 0, if the alternative (a) holds, t is taken
small enough, and y0, . . . , yn are arbitrary points such that yk ∈ B(xk, tr) for 0 ≤
k ≤ n, denoting by Ly

k the k-plane that passes through y0, y1, . . . , yk, we will have

dist(yk, L
y
k−1) ≥ 1

2
γ r for 1 ≤ k ≤ n.

For each γ, we denote by t0(γ) some constant t such that this holds, and then we
say that B is γ-balanced if it is (t0(γ), γ)-balanced. Otherwise, we say that B is
γ-unbalanced.

Lemma 3.3. Let μ be a Radon measure in R
d and consider the dyadic lattice D

associated with μ from Lemma 2.1. Given 0 < t < 1 and 0 < γ < 1 small enough
(i.e. smaller than some absolute constant), there exists some constant ε = ε(t) > 0
such that one of the following alternatives holds for every Q ∈ Ddb:

(a) There are points x0, x1, . . . , xn ∈ B(Q) = 1
28BQ such that

μ
(
B(xk, t r(B(Q))) ∩ B(Q)

)
≥ ε μ(Q) for 0 ≤ k ≤ n,

and if Lk stands for the k-plane that passes through x0, x1, . . . , xk, then

dist(xk, Lk−1) ≥ γ r(B(Q)) for 1 ≤ k ≤ n.
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(b) There exists a family of pairwise disjoint cubes {P}P∈IQ ⊂ Ddb, which are
contained in Q, so that �(P ) � γ �(Q) and Θμ(2BP ) � γ−1 Θμ(2BQ) for each
P ∈ IQ, and ∑

P∈IQ

Θμ(2BP )μ(P ) � γ−1 Θμ(2BQ)μ(Q). (3.2)

Notice that in the previous lemma the cubes Q and P , with P ∈ IQ, are doubling.

Proof. Consider the measure σ = μ|B(Q). By applying Lemma 3.1 to σ and the ball
B(Q) we infer that either

(i) there are points x0, x1, . . . , xn ∈ B(Q) such that

σ
(
B(xk, t r(B(Q)))

)
≥ ε(t)σ(B(Q)) for 0 ≤ k ≤ n,

and

dist(xk, Lk−1) ≥ γ �(Q) for 1 ≤ k ≤ n,

(ii) or there exists a family of balls {Bi}i∈JQ
, with radii r(Bi) = 4γ r(B(Q)), cen-

tered on B, so that the balls {10Bi}i∈JQ
are pairwise disjoint,

∑
i∈JQ

σ(Bi) � σ(B(Q)),

and

Θσ(Bi) � γ−1 Θσ(B(Q)) for all i ∈ JQ.

If (i) holds, then the alternative (a) in the lemma holds, by adjusting suitably the
constant ε.

Suppose now that the option (ii) holds. For each i ∈ JQ consider the cube P̃i with
A−1

0 γ�(Q) < �(P̃i) ≤ γ �(Q) which intersects Bi and has maximal μ-measure. From
the fact that the balls 10Bi, i ∈ JQ, are pairwise disjoint we deduce that the cubes
P̃i, i ∈ JQ are pairwise different. On the other hand, since Bi ∩ E can be covered by
a bounded number of cubes with side length comparable to γ �(Q), we infer that

μ(P̃i) ≥ σ(P̃i) � σ(Bi)

and so ∑
i∈JQ

μ(P̃i) � σ(B(Q)) ∼ μ(2BQ), (3.3)

since Q ∈ Ddb. We also deduce that

Θμ(2BP̃i
) � Θσ(Bi) � γ−1 Θσ(B(Q)) ∼ γ−1 Θμ(2BQ), (3.4)

taking into account again that Q ∈ Ddb in the last estimate. Observe that the fact
that μ(B(Q) ∩ P̃i) = σ(P̃i) > 0 ensures that P̃i ⊂ Q.
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For each i ∈ JQ, consider the cube Pi ∈ Ddb which contains P̃i and has minimal
side length. Since Q ∈ Ddb, such a cube exists and Pi ⊂ Q. From Lemma 2.4 we
infer that

Θμ(2BPi
) ∼ Θμ(100B(Pi)) � Θμ(100B(P̃i)) � Θμ(2BP̃i

). (3.5)

We extract now from {Pi}i∈J̃Q
the subfamily IQ of cubes which are maximal and thus

disjoint. This family fulfills the properties stated in the alternative (b) of the lemma.
Indeed, by construction each P ∈ IQ satisfies �(P ) � γ �(Q) and since P = Pi for
some i ∈ J̃Q,

Θμ(2BP ) � Θμ(2BP̃i
) � γ−1 Θμ(2BQ),

recalling (3.5) and (3.4). From the preceding estimate, (3.3), and the fact that∑
P∈IQ

μ(P ) ≥
∑

i∈JQ
μ(Pi), we infer that

γ−1 Θμ(2BQ)μ(Q) �
∑

P∈IQ

Θμ(2BP )μ(P ). ��

4 The Main Lemma

The next lemma concentrates the main difficulties for the proof of Theorem 1.1.

Main Lemma 4.1. Let μ be a Radon measure (not necessarily absolutely continuous
with respect to Hn) and E = suppμ. Let F ⊂ E be an arbitrary compact set such
that ∫

F

∫ 1

0
βμ,2(x, r)2

dr

r
dμ(x) < ∞. (4.1)

Let 0 < τ < 1/100 and A > 100 be some fixed constants, with τ � A−1, say.
Suppose that δ and η are small enough positive constants (depending only on τ
and A). Considering the dyadic lattice associated with μ described in Section 2, let
R ∈ Ddb be a doubling cube with �(R) ≤ δ such that

μ(R\F ) ≤ η μ(R). (4.2)

Then there exists a bi-Lipschitz injection g : R
n → R

d with the bi-Lipschitz constant
bounded above by some absolute constant and a family of pairwise disjoint cubes
Stop(R) ⊂ D(R) such that the following holds. Consider the following subfamilies
of Stop(R):

• the high density family HD(R), which is made up of the cubes Q ∈ Stop(R)
which satisfy Θμ(2BQ) ≥ A Θμ(2BR),

• the family LD(R) of low density cubes, which is made up of the cubes Q ∈
Stop(R) which satisfy Θμ(2BQ) ≤ τ Θμ(2BR),

• the unbalanced family UB(R), which is made up of the cubes Q ∈ Stop(R) ∩
Ddb\(HD(R) ∪ LD(R)) such that 1

28BQ is τ2-unbalanced.
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Let Tree(R) the subfamily of the cubes from D(R) which are not strictly contained
in any cube from Stop(R). We have:

(a) μ-almost all F ∩ R\
⋃

Q∈Stop(R) Q is contained in ΓR := g(Rn) and, moreover,

the restriction of μ to F ∩R\
⋃

Q∈Stop(R) Q is absolutely continuous with respect
to Hn|ΓR

.
(b) For all Q ∈ Tree(R), Θμ(2BQ) ≤ c A Θμ(2BR).
(c) The following holds:∑

Q∈Stop(R)\(HD(R)∪UB(R))

μ(Q) ≤ τ1/2 μ(R)

+
c(A, τ)

Θμ(2BR)

∑
Q∈Tree(R)

∫
F∩δ−1BQ

∫ δ−1�(Q)

δ�(Q)
βμ,2(x, r)2

dr

r
dμ(x).

Let us remark that the assumption that �(R) ≤ δ can be removed if we assume
that ∫

F

∫ ∞

0
βμ,2(x, r)2

dr

r
dμ(x) < ∞,

instead of (4.1). Further, let us note that the lemma asserts that the family Stop(R)
contains the subfamilies HD(R), LD(R) and UB(R) defined above. In fact, Stop(R)
will be constructed in Section 6 and will contain other subfamilies besides the pre-
ceding ones.

Note the difference with respect to Main Lemma 5.1 from [Tol14a]. Above we
are not able to estimate the measure of the high density cubes from HD(R). Instead
it turns out that the cubes from LD(R) have very little mass (although this is not
stated explicitly in the lemma). This is opposite to what is shown in Lemma 5.1
from [Tol14a], where the mass from the cubes from HD(R) is very small while one
cannot control the mass of the cubes from LD(R).

Before proving the Main Lemma 4.1 we will show in the next section how Theo-
rem 1.1 follows from this, by means of a suitable corona type decomposition.

5 Proof of Theorem 1.1 Using the Main Lemma 4.1

5.1 Preliminaries. To prove Theorem 1.1 clearly it is enough to show that μ|F
is rectifiable. Further we may and will assume that

Mnμ(x) = sup
r>0

μ(B(x, r))
rn

≤ C∗ for all x ∈ F , (5.1)

for some constant C∗ big enough. Let x0 be a point of density of F and for η > 0
let B0 = B(x0, r0) be some ball such that

μ(B0\F ) ≤ η2μ(B0) and μ(1
2B0) ≥ 1

2d+1
μ(B0). (5.2)
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Taking into account that for μ-almost every x0 ∈ F there exists a sequence of balls
like B0 (i.e. fulfilling (5.2)) centered at x0 with radius tending to 0 (see Lemma 2.8 of
[Tol14b] for example), it suffices to prove that any ball like B0 contains a rectifiable
subset with positive μ-measure.

Denote by B the family of cubes R ∈ D contained in B0 such that

μ(R\F ) ≥ η μ(R).

Next we show that the union of the cubes from B has very small μ-measure.

Lemma 5.1. We have

μ

( ⋃
R∈B

R

)
≤ c η μ(B0). (5.3)

Proof. We consider the maximal dyadic operator

Mdf(x) = sup
Q∈D:x∈Q

1
μ(Q)

∫
|f | dμ, (5.4)

which is bounded from L1(μ) to L1,∞(μ). From (4.2) we get

μ

( ⋃
R∈B

R

)
≤ μ

(
{x ∈ R

d : MdχB0\F (x) ≥ η}
)

≤ c
μ(B0\F )

η
≤ c η μ(B0),

as wished. ��

5.2 The families H̃D(R), ŨB(R), Õ(R) and S̃top(R). Recall that the Main
Lemma asserts that if R ∈ Ddb, with �(R) ≤ δ, satisfies the Assumption (4.2), then it
generates some families of cubes HD(R), UB(R) and Stop(R) fulfilling the properties
(a), (b) and (c). In this subsection we will introduce some variants of these families.
First we need the following auxiliary result.

Lemma 5.2. Assuming A big enough, for every Q ∈ HD(R) there exists P (Q) ∈ Ddb

which contains Q with �(P (Q)) ∼ �(Q) and Θμ(P (Q)) ∼ Θμ(Q).

Proof. Let P (Q) ∈ D be the smallest ancestor of P which belongs to Ddb. Such a
cube P (Q) exists and P (Q) ⊂ R because R ∈ Ddb. For i ≥ 0, denote by Qi be the
i-th ancestor of Q (i.e. Qi ∈ D is such that Q ⊂ Qi and �(Qi) = Ai

0 �(Q)). Let i ≥ 0
be such that P (Q) = Qi. Since the cubes Q1, . . . , Qi−1 do not belong to Ddb, by
Lemma 2.4 we have

A Θμ(2BR)≤Θμ(2BQ)�Θμ(100B(Q))≤C0 A−9ni
0 Θμ(100B(Qi))∼A−9ni

0 Θμ(2BQi
).

As Qi ∈ Tree(R), we have Θμ(2BQi
) ≤ c A Θμ(2BR), and the estimate above implies

that i � 1. That is, �(P (Q)) ∼ 1, which in turn gives that Θμ(2BP (Q)) � Θμ(2BQ)
and proves the lemma. ��
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We define the family HD∗(R) as follows:

HD∗(R) =
{
P (Q) : Q ∈ HD(R)

}
,

where P (Q) is as in Lemma 5.2.
Now we turn our attention to the family UB(R). Recall that, by Lemma 3.3, if

Q ∈ UB(R), there exists a family of pairwise disjoint cubes {P}P∈IQ ⊂ Ddb, which
are contained in Q, so that �(P ) � τ2 �(Q) and Θμ(2BP ) � τ−2 Θμ(2BQ) for each
P ∈ IQ, and ∑

P∈IQ

Θμ(2BP )μ(P ) � τ−2 Θμ(2BQ)μ(Q). (5.5)

We consider a family ĨQ of cubes contained in Q, with side length comparable to
a �(Q), disjoint from the ones from IQ, so that

Q =
⋃

P∈IQ∪ĨQ

P.

We define

UB∗(R) =
⋃

Q∈UB(R)

(IQ ∪ ĨQ).

On the other hand, we denote

O(R) = Stop(R)\(HD(R) ∪ UB(R)).

We set

O∗(R) = {Q ∈ D : Q is the son of some cube from O(R)},

and

Stop∗(R) = HD∗(R) ∪ UB∗(R) ∪ O∗(R).

Finally, let S̃top(R) be a maximal subfamily (and thus disjoint) of Stop∗(R). We
denote by H̃D(R), ŨB(R) and Õ(R) the subfamilies of the cubes from S̃top(R) which
belong to HD∗(R), UB∗(R) and O∗(R), respectively.

Remark 5.3. Notice that, by construction, if Q ∈ UB(R) is not contained in any
cube from H̃D(R), then all the cubes from IQ ∪ ĨQ belong to S̃top(R). Observe also
that R does not belong to S̃top(R). Indeed, R �∈ H̃D(R) because every Q ∈ HD(R)
satisfies Θμ(2BQ) � A Θμ(2BR), so for A large enough, Θμ(2BQ) > Θ”μ(2BR).
On can also deduce that R �∈ ŨB(R) from (5.5) for a small enough. On the other
hand, R �∈ Õ(R) because all the cubes from Õ(R) are sons of other cubes from
Tree(R).
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5.3 The corona decomposition. Let us continue with the proof of Theorem
1.1. From (5.3) and the fact that μ(B0) ∼ μ(1

2 B0) we infer that, for η small enough,
there exists some cube R0 ∈ Ddb satisfying R0 ⊂ 3

4B0, �(R0) ≤ δ, δ−1BR0 ⊂ 9
10B0,

and

μ

(
R0\

⋃
Q∈B

Q

)
> 0.

We are going now to construct a family of cubes Top contained in R0 inductively, by
applying the Main Lemma 4.1. To this end, we need to introduce some additional
notation.

Above, for a cube R ∈ Ddb, with �(R) ≤ δ, which satisfies (4.2), we have defined
a family of stopping cubes S̃top(R). Now it is convenient to define S̃top(R) also if
the assumption (4.2) does not hold. If R is a descendant of R0 such that R ∈ Ddb ∩B
[note that this means that (4.2) does not hold], we set S̃top(R) = ∅.

Given a cube Q ∈ D, we denote by MD(Q) the family of maximal cubes (with
respect to inclusion) from P ∈ Ddb(Q). Recall that, by Lemma 2.2, this family
covers μ-almost all Q. Moreover, by Lemma 2.4 it follows that if P ∈ MD(Q), then
Θμ(2BP ) ≤ c Θμ(2BQ). Given R ∈ Top, we denote

Next(R) =
⋃

Q∈S̃top(R)

MD(Q).

By Remark 5.3 and the construction above, it is clear that the cubes from Next(R)
are different from R.

For the record, notice that, by construction, if P ∈ Next(R), then

Θμ(2BS) ≤ c(A, τ) Θμ(2BR) for all S ∈ D such that P ⊂ S ⊂ R. (5.6)

We are now ready to construct the aforementioned family Top. We will have
Top =

⋃
k≥0 Topk. First we set

Top0 = {R0}.

Assuming Topk to be defined, we set

Topk+1 =
⋃

R∈Topk

Next(R).

Note that the families Next(R), with R ∈ Topk, are pairwise disjoint.

5.4 The families of cubes IDH, IDU and ID. We distinguish a special
type of cubes R ∈ Top. We write R ∈ IDH (increasing density because of high
density cubes) if

μ

⎛
⎝ ⋃

Q∈H̃D(R)

Q

⎞
⎠ ≥ 1

4
μ(R).



GAFA RECTIFIABILITY IN TERMS OF JONES’ SQUARE FUNCTION: PART II 1387

Also, we write R ∈ IDU (increasing density because of unbalanced cubes) if

μ

⎛
⎝ ⋃

Q∈ŨB(R)

Q

⎞
⎠ ≥ 1

4
μ(R).

We set

ID = IDH ∪ IDU .

Lemma 5.4. Suppose that A is big enough and τ small enough. If R ∈ ID, then

Θμ(2BR)μ(R) ≤ 1
2

∑
Q∈Next(R)

Θμ(2BQ)μ(Q). (5.7)

Proof. Suppose first that R ∈ IDH . Recalling that Θμ(2BQ) � A Θμ(2BR) for every
Q ∈ H̃D(R), we deduce that

Θμ(2BR)μ(R) ≤ 4
∑

Q∈H̃D(R)

Θμ(2BR)μ(Q) ≤ c A−1
∑

Q∈H̃D(R)

Θμ(2BQ)μ(Q).

Since the cubes from H̃D(R) belong to Ddb it follows that H̃D(R) ⊂ Next(R) and
then it is clear that (5.7) holds if A is taken big enough.

Consider now the case that R ∈ IDU , and take Q ∈ ŨB(R). By construction,
there exists a cube Q̂ ∈ UB(R) which contains Q, with Q ∈ IQ̂ ∪ ĨQ̂, and such that

all the cubes from IQ̂ ∪ ĨQ̂ belong to S̃top(R). Since the cubes from IQ̂ are doubling,
it turns out that IQ̂ ⊂ Next(R). Denote by UB0(R) the cubes from UB(R) which

contain some cubes from ŨB(R) (they coincide with the cubes from UB∗(R) which
are not contained in any cube from H̃D(R)). Then we have

Θμ(2BR)μ(R) ≤ 4
∑

Q∈ŨB(R)

Θμ(2BR)μ(Q) = 4
∑

S∈UB0(R)

Θμ(2BR)μ(S).

Using now that Θμ(2BR) ≤ τ−1 Θμ(2BS) (since the cubes from UB(R) do not belong
to LD(R)) and recalling (5.5), we infer that

Θμ(2BR)μ(R) ≤ 4 τ−1
∑

S∈UB0(R)

Θμ(2BS)μ(S) � τ−1τ2
∑

S∈UB0(R)

∑
Q∈IS

Θμ(2BQ)μ(Q).

Since for all S ∈ UB0(R) the cubes from IS belong to Ddb, we have IS ⊂ Next(R) ,
and thus (5.7) also holds in this case if τ is small enough. ��



1388 J. AZZAM AND X. TOLSA GAFA

5.5 The packing condition. Next we prove a key estimate.

Lemma 5.5. If τ is chosen small enough in the Main Lemma, then

∑
R∈Top

Θμ(2BR)μ(R) ≤ C∗ μ(R0) + c(A, τ, η, δ)
∫

F

∫ 1

0
βμ,2(x, r)2

dr

r
dμ(x), (5.8)

where C∗ is the constant in (5.1).

Proof. For a given k ≤ 0, we denote

Topk
0 =

⋃
0≤j≤k

Topj ,

and also

IDk
0 = ID ∩ Topk

0.

To prove (5.8), first we deal with the cubes from the ID family. By Lemma 5.4,
for every R ∈ ID we have

Θμ(2BR)μ(R) ≤ 1
2

∑
Q∈Next(R)

Θμ(2BQ)μ(Q)

and hence we obtain
∑

R∈IDk
0

Θμ(2BR)μ(R)≤ 1
2

∑
R∈IDk

0

∑
Q∈Next(R)

Θμ(2BQ)μ(Q) ≤ 1
2

∑
Q∈Topk+1

0

Θμ(2BQ)μ(Q),

because the cubes from Next(R) with R ∈ Topk
0 belong to Topk+1

0 . So we have
∑

R∈Topk
0

Θμ(2BR)μ(R) =
∑

R∈Topk
0\IDk

0

Θμ(2BR)μ(R)+
∑

R∈IDk
0

Θμ(2BR)μ(R)

≤
∑

R∈Topk
0\IDk

0

Θμ(2BR)μ(R)+
1
2

∑
R∈Topk

0

Θμ(2BR)μ(R)+c C∗μ(R0),

where we took into account that Θμ(2BR) � C∗ for every R ∈ Top (and in particular
for all R ∈ Topk+1) for the last inequality. So we deduce that

∑
R∈Topk

0

Θμ(2BR)μ(R) ≤ 2
∑

R∈Topk
0\IDk

0

Θμ(2BR)μ(R) + c C∗μ(R0).

Letting k → ∞, we derive
∑

R∈Top
Θμ(2BR)μ(R) ≤ 2

∑
R∈Top\ID

Θμ(2BR)μ(R) + c C∗μ(R0). (5.9)
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We split the first term on the right hand side of (5.9) as follows:
∑

R∈Top\ID

Θμ(2BR)μ(R) =
∑

R∈Top\(ID∪B)

· · · +
∑

R∈Top∩B
· · · =: S1 + S2. (5.10)

To estimate the sum S1 we use the fact that, for R ∈ Top\(ID ∪ B), we have

μ

⎛
⎝R\

⋃
Q∈H̃D(R)∪ŨB(R)

Q

⎞
⎠ ≥ 1

2
μ(R),

and then we apply the inequality (c) in the Main Lemma to get

μ(R) ≤ 2 μ

⎛
⎝R\

⋃
Q∈S̃top(R)

Q

⎞
⎠ + 2 μ

⎛
⎝ ⋃

Q∈S̃top(R)\H̃D∪ŨB(R)

Q

⎞
⎠

≤ 2 μ

⎛
⎝R\

⋃
Q∈Next(R)

Q

⎞
⎠ + 2

∑
Q∈Stop(R)\(HD(R)∪UB(R))

μ(Q)

≤ 2 μ

⎛
⎝R\

⋃
Q∈Next(R)

Q

⎞
⎠ + 2τ1/2 μ(R)

+
c(A, τ)

Θμ(2BR)

∑
Q∈Tree(R)

∫
F∩δ−1BQ

∫ δ−1�(Q)

δ�(Q)
βμ,2(x, r)2

dr

r
dμ(x).

Hence, if τ1/2 ≤ 1/4, say,

μ(R) ≤ 4 μ

⎛
⎝R\

⋃
Q∈Next(R)

Q

⎞
⎠

+
c(A, τ)

Θμ(2BR)

∑
Q∈Tree(R)

∫
F∩δ−1BQ

∫ δ−1�(Q)

δ�(Q)
βμ,2(x, r)2

dr

r
dμ(x).

So we deduce that

S1 ≤ 4
∑

Q∈Tree(R)

Θμ(2BR)μ

(
R\

⋃
Q∈Next(R)

Q

)

+ c(A, τ)
∑

R∈Top

∑
Q∈Tree(R)

∫
F∩δ−1BQ

∫ δ−1�(Q)

δ�(Q)
βμ,2(x, r)2

dr

r
dμ(x). (5.11)

To deal with the first sum on the right hand side above we take into account that
Θμ(2BR) � C∗ for all R ∈ Top by (5.1) and that the sets R\

⋃
Q∈Next(R) Q, with

R ∈ Top, are pairwise disjoint. Then we get
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∑
Q∈Tree(R)

Θμ(2BR)μ

⎛
⎝R\

⋃
Q∈Next(R)

Q

⎞
⎠ ≤ c C∗ μ(R0).

On the other hand, the last sum on the right hand side of (5.11) does not exceed
∑
Q∈D

∫
F∩δ−1BQ

∫ δ−1�(Q)

δ�(Q)
βμ,2(x, r)2

dr

r
dμ(x) ≤ c(δ)

∫
F

∫ 1

0
βμ,2(x, r)2

dr

r
dμ(x),

by the finite superposition of the domains of integration of the integrals on the left
hand side. So we obtain

S1 ≤ c C∗ μ(R0) + c(A, τ, δ)
∫

F

∫ 1

0
βμ,2(x, r)2

dr

r
dμ(x).

Concerning the sum S2 in (5.10) we take into account that, by construction, the
cubes R ∈ Top ∩ B are pairwise disjoint, because Next(R) = ∅ for such cubes R. So
we have

S2 ≤ c C∗
∑

R∈Top∩B
μ(R) ≤ c C∗ μ(R0),

as Θμ(2BR) � C∗ for every R ∩ Top.
Gathering the estimates we obtained for S1 and S2 and applying (5.9), the lemma

follows. ��
5.6 Proof of Theorem 1.1. From Lemma 5.5 we deduce that for μ-a.e. x ∈ R0,∑

R∈Top:x∈R

Θμ(2BR) < ∞. (5.12)

For a given x ∈ R0\
⋃

Q∈B Q such that (5.12) holds, let R0, R1, R2, . . . be the cubes
from Top such that x ∈ Ri. Suppose that this is an infinite sequence and assume
that R0 ⊃ R1 ⊃ R2 ⊃ . . ., so that for each i ≥ 0, Ri+1 ∈ Next(Ri). From (5.6) it
follows that

Θμ(x, r) ≤ c(A, τ) Θμ(2BRi
) for

1
10

�(Ri+1) ≤ r ≤ 1
10

�(Ri).

As a consequence,

Θn,∗(x, μ) ≤ c(A, τ) lim sup
i→∞

Θμ(2BRi
).

From (5.12), we infer that the limit on the right hand side above vanishes and thus
Θn,∗(x, μ) = 0. So we have shown that for any x ∈ R0 satisfying (5.12), the condition
Θn,∗(x, μ) > 0 implies that the collection of cubes R ∈ Top which contain x is finite.

By the property (a) in the Main Lemma and the above construction, if R ∈
Top\B, then there exists a set ZR of μ-measure 0 and a set WR ⊂ ΓR such that

R ⊂ ZR ∪ WR ∪
⋃

Q∈Top(R)

Q, (5.13)

with μ|WR
being absolutely continuous with respect to H1|ΓR

.



GAFA RECTIFIABILITY IN TERMS OF JONES’ SQUARE FUNCTION: PART II 1391

Suppose now that Θn,∗(x, μ) > 0, that

x ∈ R0\

⎛
⎝ ⋃

R∈Top
ZR ∪

⋃
Q∈B

Q

⎞
⎠ , (5.14)

and that (5.12) holds. Note that the set of such points is a subset of full μ-measure
of R0\

⋃
Q∈B Q. Let Rn be the smallest cube from Top which contains x. Since

x �∈
⋃

Q∈B Q, we have Rn �∈ B and so (5.13) holds for Rn. Since x �∈ ZRn
and x

does not belong to any cube from Next(Rn) (by the choice of Rn), we infer that
x ∈ WRn

⊂ ΓRn
. Thus μ-almost all the subset of points x with Θn,∗(x, μ) > 0

satisfying (5.14) and (5.12) is contained in
⋃

n WRn
, which is an n-rectifiable set

such that μ|⋃
n WRn

is absolutely continuous with respect to Hn|⋃
n WRn

. ��

6 Proof of the Main Lemma

In this section, we prove the Main Lemma. We will assume that all implicit constants
in the inequalities that follow depend on C0, A0, and d.

6.1 The stopping conditions. Take R ∈ Ddb with diam(R) ≤ �(R) ≤ δ < 1/2
so that (4.2) holds. We denote by Stop(R) the family of the maximal cubes Q ⊂ R
for which one of the following holds:

(1) Q ∈ HD(R) ∪ LD(R) ∪ UB(R),
(2) Q ∈ LF(R) (“low concentration of F”) where LF(R) is the set of cubes Q ⊂ R

for which

μ(Q ∩ F ) ≤ μ(Q)/2,

(3) Q ∈ J(R) (“big Jones’ function”) , meaning Q �∈ (HD(R) ∪ LD(R) ∪ UB(R) ∪
LF(R)) and

∑
Q⊂Q′⊂R

β(Q′)2 ≥ α2

where α > 0 is a number we will pick later and

β(Q′)2Θμ(2BR) :=
∫

δ−1BQ′∩F

∫ δ−1�(Q′)

δ�(Q′)

βμ,2(x, r)2

μ(Q′ ∩ F )
dr

r
dμ(x).

For the reader’s convenience, let us say that we will choose α � min(τ, A−1).
Recall that Tree(R) is the subfamily of the cubes from D(R) which are not

strictly contained in any cube from Stop(R). The following statement is an immediate
consequence of the construction of Stop(R) and Tree(R).
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Lemma 6.1. If Q ∈ D, �(Q) ≤ �(R), and Q ∈ Tree(R)\Stop(R), then Q �∈ LF(R)
and

τ Θμ(2BR) ≤ Θμ(2BQ) ≤ A Θμ(2BR).

If moreover Q ∈ Ddb, then 1
28BQ is τ2-balanced.

From now on, we say that Q ∈ D is balanced if B(Q) = 1
28BQ is τ2-balanced, or

just balanced. Otherwise, we say that it is τ2-unbalanced, or just unbalanced
Note that for η small enough, we can guarantee that R �∈ Stop(R). Moreover,

observe that the cubes in LF(R) are disjoint and so
∑

Q∈LF(R)

μ(Q) ≤ 2
∑

Q∈LF(R)

μ(Q\F ) ≤ 2μ(R\F ) < 2α. (6.1)

Just as well, the cubes in J(R) are disjoint and thus

Θμ(2BR)α2
∑

Q∈J(R)

μ(Q)≤
∑

Q∈J(R)

∑
Q⊂Q′⊂R

∫
δ−1BQ′ ∩F

∫ δ−1�(Q′)

δ�(Q′)
βμ,2(x, r)2

dr

r
dμ(x)

μ(Q)
μ(Q′ ∩ F )

≤
∑

Q′∈Tree(R)\LF(R)

∫
δ−1BQ′ ∩F

∫ δ−1�(Q′)

δ�(Q′)
βμ,2(x, r)2

dr

r
dμ(x)

μ(Q′)
μ(Q′ ∩ F )

≤ 2
∑

Q′∈Tree(R)

∫
δ−1BQ′ ∩F

∫ δ−1�(Q′)

δ�(Q′)
βμ,2(x, r)2

dr

r
dμ(x).

6.2 The theorem of David and Toro. All that remains to show is that we
can cover the portion of F ∩ R not in any stopped cube by a bi-Lipschitz image of
R

n and to control the sum of the cubes in LD(R), that is,
∑

Q∈LD(R)

μ(Q) < τ
1
2 μ(R). (6.2)

The main ingredient to proving these two facts is a theorem of David and Toro.
To state this, we need some additional notation. Given two closed sets E and F ,
x ∈ R

d, and r > 0, we denote

dx,r(E, F ) =
1
r

max

{
sup

y∈E∩B(x,r)
dist(y, F ), sup

y∈F∩B(x,r)
dist(y, E)

}
.

Theorem 6.2 (David, Toro). For k ∈ N ∪ {0}, set rk = 10−k and let {xjk}j∈Jk
be

a collection of points so that for some n-plane V ,

{xj0}j∈J0 ⊂ V,

|xik − xjk| ≥ rk,
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and, denoting Bjk = B(xj,k, rk),

xik ∈
⋃

j∈Jk−1

2Bjk−1. (6.3)

To each point xjk associate an n-plane Ljk ⊂ R
d and set

εk(x) = sup{dx,104rl
(Ljk, Lil) : j ∈ Jk, |l − k| ≤ 2, i ∈ Jl, x ∈ 100Bjk ∩ 100Bil}.

There is ε0 > 0 such that if ε ∈ (0, ε0) and∑
k≥0

εk(x)2 < ε for all x ∈ R
n, (6.4)

then there is an L-bi-Lipschitz injection g : R
n → R

d, with L = L(n, d), so that the
set

E∞ =
∞⋂

K=1

∞⋃
k=K

{xjk}j∈Jk
(6.5)

is contained in g(Rn).
Moreover, g(x) = limk fk(x) where |fk(xjk) − xjk| � εrk, and

dist(x, g(Rd)) � εrk for all x ∈ 40Bjk ∩ Ljk. (6.6)

This theorem is a slight restatement of Theorem 2.5 in [DT12], where the last
inequality follows from Proposition 5.1 and equation (6.8) in the same paper. In
[DT12], the points xj0 are allowed to be near some surface Σ0 [see (2.7) in that
paper], so in our case V = Σ0. Moreover, in our application below, R is assumed to
have diameter less than 1, and so {xj0}k∈J0 consists of a single point, and thus the
condition that {xj0}k∈J0 ⊂ V for some n-plane V is trivially satisfied.

We would like to point out here the versatility of this result. While there is
some technical effort to adapting this theorem to our scenario, it is very natural for
stopping-time arguments. Traditionally, given a Reifenberg flat topological surface
for example, the points {xjk}j∈Jk

are taken to be a nested sequence of maximal rk-
nets in the surface. The way the theorem is stated, however, does not require this.
In fact, the theorem only requires that, when we pick maximally separated points at
each scale rk, that they are close to points chosen for the previous scale [see (6.3)].
Thus, in choosing these xjk, we can stop adding points in a specific region and add
points elsewhere, much like a stopping-time process.

Our goal now is to pick appropriate choices of xjk and Ljk for Theorem 6.2.
Roughly speaking, the points xjk correspond to centers of the cubes Q ∈ Tree(R)
and the n-planes Ljk to the best approximating n-planes, and our control on the
βμ,2-numbers in Tree(R) will help us control εk. However, this is not quite true,
since, for example, the best approximating plane might not pass through or even
close to the center of the cube, our cubes decrease at a much faster rate than just rk,
and moreover, not every cube Q ∈ Tree(R) is balanced, which is a crucial property
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we will need to control the angles between nearby planes. Thus, there are many
adjustments to be made.

We first remedy the issue of not all cubes being balanced by showing that, for
any cube, there is always an ancestor close by that is balanced.

Lemma 6.3. There is some constant c2(A, τ) > 0 small enough so that for any cube
Q ∈ Tree(R) there exists some cube Q′ ⊃ Q such that Q′ ∈ Ddb ∩ Tree(R)\Stop(R)
(so Q is balanced) and �(Q′) ≤ c2(A, τ) �(Q).

Proof. Let Q = Q0 ⊂ Q1 ⊂ Q2 . . . be cubes such that each Qi is son of Qi+1. If
Q0, Q1, . . . , Qi are not doubling, from the fact that R ∈ Ddb it follows that al the
cubes Q1, . . . , Qi belong to Tree(R)\Stop(R). By Lemma 2.4 we have

τΘμ(2BR) ≤ Θμ(2BQ1) � Θμ(100B(Q1))

� A
−9n (j−1)
0 Θμ(100B(Qj)) � c A

−9n (j−1)
0 Θμ(2BQi+1),

and thus Θμ(2BQj+1) > A Θμ(2BR) if j is big enough (depending on A and τ), which
contradicts the fact that Qj+1 ∈ Tree(R). ��

Consider ε ∈ (0, ε0) to be chosen later. Set

T = {Q ∈ Tree(R) : Q � P for some P ∈ (Tree(R) ∩ Ddb)\Stop(R)}

and set T k = T ∩Dk(R). For Q ∈ Tree(R), let Q̂ ∈ Tree(R)\Stop(R) be the smallest
cube in T containing Q, so that Q̂ is doubling, balanced, and, by Lemma 6.3, �(Q̂) �
�(Q).

Let C = 60 � δ−1. For Q ∈ T , pick xQ ∈ Q ∩ F such that

∫ Cr(Q)

C−1r(Q)
βμ,2(xQ, r)2

dr

r
≤ β(Q)2Θμ(2BR)

and ρ(Q) ∈ [(C − 1)r(Q), Cr(Q)] such that

βμ,2(xQ, ρ(Q)) � β(Q)Θμ(2BR)
1
2

Observe, that, since C = 60, and xQ ∈ Q ⊂ BQ = 28B(Q) = B(zQ, 28r(Q)),

B(Q) = B(zQ, r(Q)) ⊂ B(xQ, r(Q) + 28r(Q)) ⊂ B(xQ, ρ(Q))

and

B(xQ, ρ(Q)) ⊂ B(zQ, ρ(Q) + 28r(Q)) ⊂ B(zQ, 88r(Q)) ⊂ 100B(Q).

Thus, we always have

B(Q) ⊂ B(xQ, ρ(Q)) ⊂ 100B(Q). (6.7)
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Let LQ be an n-plane so that

βμ,2(xQ, ρ(Q))2 =
∫

B(xQ,ρ(Q))

(
dist(y, LQ)

ρ(Q)

)2 dμ(y)
ρ(Q)n

. (6.8)

We now are going to assign to each cube Q ∈ T a point yQ ∈ Q and an n-plane LQ

passing through yQ.

(a) If Q = Q̂, then Q is doubling, so by (6.7), μ(B(xQ, ρ(Q))) ∼ μ(B(Q)). Moreover,

μ(B(Q)) ≤ μ(2BQ) ≤ μ(100B(Q)) � μ(B(Q)),

and by Lemma 6.1 we also have

μ(B(xQ, ρ(Q))) ∼ μ(2BQ) = Θμ(2BQ)�(Q)n ∼A,τ Θμ(2BR)ρ(Q)n. (6.9)

Thus, by Chebyshev’s inequality and (6.8), there is yQ ∈ B(Q) so that

dist(yQ, LQ) � 1
Θμ(2BR)1/2

βμ,2(xQ, ρ(Q))ρ(Q) � β(Q)�(Q).

Set LQ be the n-plane parallel to LQ containing yQ.
(b) If Q �= Q̂, let Q′ ∈ Tree(R)\Stop(R) be a doubling cube properly contained in

Q with maximal side length (this exists by our definition of T ). Then

2BQ′ = B(zQ′ , 56r(Q′)) ⊂ 100B(Q′)

and since Q′ is doubling,

μ(2BQ′) ≤ μ(100B(Q′)) � μ(Q′) ≤ μ(2BQ′).

Since zQ ∈ Q ⊂ Q̂ ⊂ BQ,

B(xQ̂, ρ(Q̂)) ⊂ B(xQ̂, 60r(Q̂)) ⊂ B(zQ̂, (28 + 60)r(Q̂)) ⊂ 100B(Q̂).

Also, taking into account that Q′, Q̂ �∈ Stop(R),

μ(B(xQ̂, ρ(Q̂))) ≤ μ(100B(Q̂)) � μ(Q̂) ≤ μ(2BQ̂).

Since �(Q′) ∼A,τ �(Q) ∼A,τ �(Q̂) by Lemma 6.3, we have by Lemma 6.1 and the
previous case applied to Q̂,

μ(2BQ̂) ∼A,τ μ(2BQ′) � μ(Q′) ≤ μ(Q) ≤ μ(B(xQ̂, ρ(Q̂)))

� μ(2BQ̂) ∼A,τ Θμ(BR)�(Q̂)n ∼A,τ Θμ(2BR)�(Q)n. (6.10)

Thus, we can use Chebychev’s inequality to find yQ ∈ Q so that

dist(yQ, LQ̂) �A,τ

βμ,2(xQ̂, ρ(Q̂))ρ(Q̂)

Θμ(2BR)
1
2

�A,τ β(Q̂)�(Q̂).

We now let LQ be the n-plane parallel to LQ̂ but containing yQ.
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Observe that, after replacing LQ with LQ in either of these cases, we still have

∫
B(xQ̂,ρ(Q̂))

(
dist(y, LQ)

ρ(Q̂)

)2
dμ(y)

ρ(Q̂)n
�A,τ βμ,2(xQ̂, ρ(Q̂))2 �A,τ β(Q̂)2Θμ(2BR).

(6.11)
We need now to estimate the angles between the n-planes LQ corresponding to

cubes Q that are near each other. This task is carried out in the next two lemmas.
The first one is a well known general result alluded to at the end of Section 5
in [DS91], without proof. For the reader’s convenience, we include a proof in the
Appendix.

Lemma 6.4. Suppose P1 and P2 are n-planes in R
d and X = {x0, ..., xn} are points

so that

(a) η = η(X) = min{dist(xi, SpanX\{xi})/diamX ∈ (0, 1) and
(b) dist(xi, Pj) < ε diamX for i = 0, ..., n and j = 1, 2, where ε < ηd−1/2.

Then

dist(y, P1) ≤ ε

(
2d

η
dist(y, X) + diamX

)
. (6.12)

The next lemma tailors the previous one to our setting.

Lemma 6.5. Suppose Q1, Q2 ∈ T ∩ Ddb are such that Q̂i = Qi and dist(Q1, Q2) �
�(Q1) ∼ �(Q2). Let P ∈ T ∩ Ddb be the smallest cube such that B(xP , ρ(P )) ⊃
B(xQ1 , ρ(Q1)) ∪ B(xQ2 , ρ(Q2)). Then �(P ) ∼ �(Q1) ∼ �(Q2) and

dist(y, LQ1) �A,τ β(P )
(
dist(y, Q1) + �(Q1) + dist(y, Q2) + �(Q2))

≤ α (dist(y, Q1) + �(Q1) + dist(y, Q2) + �(Q2)
)

for all y ∈ LQ2 .
(6.13)

Proof. Note that since B(xR, ρ(R)) ⊃ B(xQ1 , ρ(Q1)) ∪ B(xQ2 , ρ(Q2)), Lemma 6.3
implies P is well defined and B(xP , ρ(P )) ⊃ B(xQ1 , ρ(Q1)) ∪ B(xQ2 , ρ(Q2)). More-
over, observe that β(P ) < α since P �∈ J(R).

Let x0, ..., xn ∈ Q1 be the points from Lemma 3.1 for the cube Q = Q1 with
γ = τ2 and t = t0(γ) (see Remark 3.2). Then by (6.9),

μ(B(xi, tρ(Q1))) ≥ ε(t)μ(Q1)
�A,τ μ(B(xQ1 , ρ(Q1)))∼A,τΘμ(2BQ1)�(Q1)n ∼A,τΘμ(2BR)�(Q1)n,

and so

−
∫

B(xi,tρ(Q1))

(
dist(x,LQ1)

tρ(Q1)

)2

dμ(x) �A,τ

∫
B(xQ1 ,ρ(Q1))

(
dist(x,LQ1)

ρ(Q1)

)2
dμ(x)

Θμ(2BR)ρ(Q1)n

�A,τ
βμ,2(xQ1 , ρ(Q1))2

Θμ(2BR)
.
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Observe that since B(xQ1 , ρ(Q1)) ⊂ B(xP , ρ(P )), we have by (6.10)

βμ,2(xQ1 , ρ(Q1))2 ≤ −
∫

B(xQ1 ,ρ(Q1))

(
dist(x, LP )
ρ(Q1)n+1

)2

dμ(x)

� −
∫

B(xP ,ρ(P ))

(
dist(x, LP )
ρ(P )n+1

)2

dμ(x)

= βμ,2(xP , ρ(P ))2 � β(P )2Θμ(2BR).

Thus,

−
∫

B(xi,tρ(Q1))

(
dist(x, LQ1)

tρ(Q1)

)2

dμ(x) �A,τ β(P )2.

Similarly,

−
∫

B(xi,tρ(Q1))

(
dist(x, LP )

tρ(Q1)

)2

dμ(x) �A,τ β(P )2.

Using Chebyshev’s inequality, we may find yi ∈ B(xi, tρ(Q1)) ∩ supp μ such that

max{dist(yi, L
Q1), dist(yi, L

P )} �A,τ β(P ).

From the definition of t0(γ), we can guarantee that, independently of our choice of
yi ∈ B(xi, tr), if Ly

k denotes the k-plane containing y0, ..., yk, then dist(yk, L
y
k−1) ≥

τ2 r/2. By Lemma 6.4, it follows that

dist(y, LP ) �A,τ β(P )(dist(y, Q1) + �(Q1)) for all y ∈ LQ1

and

dist(y, LQ1) �A,τ β(P )(dist(y, Q1) + �(Q1)) for all y ∈ LP .

With the roles of Q1 and Q2 reversed, we also get

dist(y, LP ) �A,τ β(P )(dist(y, Q2) + �(Q2)) for all y ∈ LQ2

and

dist(y, LQ2) �A,τ β(P )(dist(y, Q2) + �(Q2)) for all y ∈ LP .

Thus, by the triangle inequality, we obtain (6.13). ��

For rk = 10−k, k ∈ N, pick s(k) so that 56C0A
−s(k)
0 ≤ rk < 56C0A

−s(k)+1
0 and

let {xjk}j∈Jk
be a maximally rk-separated subset of {yQ : Q ∈ T s(k)}, set Qjk to be

the cube in T s(k) so that xjk = yQjk
, and let Bjk be as in Theorem 6.2.

We claim that the points xjk satisfy (6.3). So let xjk be one of our points. If
s(k) = s(k − 1), then xjk = yQjk

for some Qjk ∈ T s(k) = T s(k−1), but since the
xi,k−1 are a maximal rk−1-net for {yQ : Q ∈ T s(k−1)} and s(k) = s(k − 1), we know
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xjk ∈ Bi,k−1 for some i ∈ Jk−1, which finishes this case. If s(k) < s(k − 1), let
P ∈ T s(k−1) be the unique (and strictly larger) ancestor of Qjk in Tree(R) [note
that we may assume that such an ancestor exists, for otherwise Qjk = R, {xik}i∈Jk

consists only of yR, so xjk = yR, but moreover, {xi,k−1}i∈Jk−1 = {yR}, and so we
trivially have (6.3)]. Then yP ∈ Bi,k−1 for some i ∈ Jk−1 since {xi,k−1}i∈Jk−1 is a
maximal rk−1-net in {yT : T ∈ Ds(k−1)}. Moreover,

diamP ≤ diamBP ≤ 56C0A
−s(k−1)
0 ≤ rk−1,

and since xjk ∈ Qjk ⊂ P and Qjk ∩ Bi,k−1 �= ∅, the above estimate implies xjk ∈
2Bi,k−1, and this proves the claim.

Set Ljk = LQ̂jk . In order to apply Theorem 6.2, we need to check that the
estimate (6.4) holds. For a given x ∈ R

d, fix k0 and pick xj0k0 so that x ∈ 100Bj0k0 ,
if it exists.

Suppose x ∈ 100Bjk ∩ 100Blm for some k ≤ k0, |k − m| ≤ 2, j ∈ Jk, l ∈ Jm, and
k ≤ m. Let Qk

j0k0
denote the ancestor of Qj0k0 in T s(k), and let Pk ⊃ Qk

j0k0
be an

ancestor that is doubling and such that B(xPk
, rPk

) ⊃ B(xQ̂jk
, rQ̂jk

)∪B(xQ̂lm
, rQ̂lm

)

and �(Pk) � �(Qk
j0k0

) ∼ �(Q̂jk) ∼ �(Q̂lm). By Lemma 6.5, we have

dist(y, Ljk) �A,τ β(Pk) (dist(y, Q̂jk) + �(Q̂jk) + dist(y, Q̂lm)

+�(Q̂lm)) for all y ∈ LQlm , (6.14)

as well as the same inequality if we trade the roles of Q̂jk and Q̂lm. Note that Q̂jk

and Q̂lm are at a distance at most 100rk from x and have side lengths comparable
to rk, hence

dist(y, Ljk) �A,τ β(Pk)(|y − x| + rk) for all y ∈ Llm

and from this it is not difficult to show

dxjk,104rl
(Ljk, Llm) �A,τ β(Pk).

Taking the maximum over all xjk and xml with x ∈ 100Bjk ∩ 100Blm, |k − m| ≤ 2,
j ∈ Jk, l ∈ Jm, and m ≥ k (we let k stay fixed), we get εk(x) �A,τ β(Pk).

Note that for any cube P there can be at most a bounded number of cubes Pk

(depending on A0 and C0) for which Pk = P . Therefore, since T contains no cubes
in J(R),

k0∑
k=0

εk(x)2 �A,τ

∑
Qj0k0⊂P⊂R

β(P )2 < α2,

and since k0 is arbitrary, we also get
∑∞

k=0 εk(x)2 �A,τ α2. Hence, for α > 0 small
enough, this sum is less than ε and (6.4) is fulfilled.

Now we can apply Theorem 6.2 to obtain an L-bi-Lipschitz homeomorphism
g : R

n → R
d, where L is a universal constant, so that the set E∞ from (6.5) is
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contained in g(Rn) and (6.6) holds. Set ΓR = g(Rd). Note that if x ∈ F is not
contained in a cube from Stop(R), then it is contained in infinitely many cubes from
Tree(R) and hence infinitely many cubes from T . Thus, we can write x as the limit
of a sequence yQk

where x ∈ Qk ∈ T k, and yQk
∈ Bjkxk

for some jk ∈ Jk. Therefore,
we can write x as a limit of the form x = limxj(k),k for some j(k) ∈ Jk, which
implies F ⊂ E∞ ⊂ ΓR.

6.3 The small measure of the cubes from LD(R). All that is left to do
now now is control the measure of the low-density cubes. To this end, we will show
first that most of the measure of R lies close to the surface ΓR. To the authors’
surprise, the arguments below work with βμ,2 but not with βμ,p with p < 2. This
seems to indicate a subtle difference between these coefficients.

Let

Far =
{
x ∈ R : dist(x, LQ) ≥ α1/2�(Q) for some Q ∈ T ∩ Ddb

}
.

By Chebyshev’s inequality we have

α1/2 μ(Far) ≤
∫

R

⎛
⎝ ∑

x∈Q∈T ∩Ddb

(
dist(x, LQ)

�(Q)

)2
⎞
⎠

1
2

dμ(x).

By Cauchy-Schwarz, the right hand side is at most

⎛
⎝∫

R

∑
Q∈T ∩Ddb

(
dist(x, LQ)

�(Q)

)2

dμ(x)

⎞
⎠

1
2

μ(R)
1
2 .

Since �(Q) ∼A,τ ρ(Q) and μ(2BQ) = Θμ(2BQ)r(2BQ)n ∼A,τ Θμ(2BR)ρ(Q)n by
Lemma 6.1, we get that the above does not exceed

c(A, τ)

⎛
⎝ ∑

Q∈T ∩Ddb

∫
B(xQ,ρ(Q))

(
dist(x, LQ)

rQ

)2
dμ(x)
ρ(Q)n

μ(2BQ)
Θμ(2BR)

⎞
⎠ μ(R)

1
2 .

By (6.11) the last integral does not exceed c(A, τ)β(Q)2Θμ(2BR), and so the above
inequalities imply

α1/2 μ(Far) �A,τ

⎛
⎝ ∑

Q∈T ∩Ddb

β(Q)2μ(2BQ)

⎞
⎠

1
2

μ(R)
1
2 �A,τ

⎛
⎝ ∑

Q∈T ∩Ddb

β(Q)2μ(Q)

⎞
⎠

1
2

μ(R)
1
2

=

⎛
⎝∫

R

∑
x∈Q∈T ∩Ddb

β(Q)2dμ(x)

⎞
⎠

1
2

μ(R)
1
2 ≤ α μ(R),
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where in the last inequality we used the fact that no cube in T is in J(R). Thus, for
α small enough (depending on A, τ), we have

μ(Far) ≤ 1
2

τ
1
2 μ(R).

So to prove (6.2) it suffices to show
∑

Q∈LDclose(R) 
=∅
μ(Q)≤ 1

2
τ

1
2 μ(R), where LDclose(R) = {Q ∈ LD(R) : Q\Far �= ∅}.

(6.15)
We claim that it suffices to prove that for each Q ∈ LDclose(R) there is a point

ξQ ∈ 3
2
BQ ∩ ΓR. (6.16)

Assuming this for a moment, let us finish the proof of the theorem. By the Besicovitch
covering theorem, there are cubes Qj ∈ LDclose(R) so that

⋃
Q∈LDclose(R) 2BQ ⊂⋃

j 2BQj
and so that no point is contained in at most N = N(d) many 2BQj

.
Moreover, since R �∈ LD(R), we know that each Q ∈ LD(R) is such that r(Q) ≤
C0A

−1
0 r(R), and thus 2BQ ⊂ 2BR for A0 large enough. Since ΓR = g(Rn) where g

is L-bi-Lipschitz and L depends only on n and d, we know ΓR is Ahlfors regular.
Using these facts and that R ∈ Ddb, Θμ(2BQ) ≤ τ Θμ(2BR) for Q ∈ LD(R), and
B(ξQ, r(BQ)/2) ⊂ 2BQ, we obtain

∑
Q∈LDclose(R)

μ(Q) ≤
∑

j

μ(2BQj
) =

∑
j

Θμ(2BQj
)r(2BQj

)n

� τΘμ(2BR)
∑

j

Hn(ΓR ∩ B(ξQj
, r(BQj

)/2))

≤ τΘμ(2BR)
∑

j

Hn(ΓR ∩ 2BQj
)

� τΘμ(2BR)Hn

⎛
⎝ΓR ∩

⋃
j

2BQj

⎞
⎠ ≤ τΘμ(2BR)Hn(ΓR ∩ 2BR)

� τΘμ(2BR)r(2BR)n ∼ τμ(2BR) � τμ(R)

and so for τ small enough we have (6.15).
We now focus on showing (6.16). The main idea is that we know if Q ∈ LDclose(R),

there is x close to LQ̂ (from the definition of LDclose(R)). We would like to use (6.6)
to conclude that x is close to ΓR and hence we can find an appropriate ξQ, but we
can only use that inequality if LQ̂ happens to be one of the Ljk we used to apply
Theorem 6.2. However, we can still find a cube Qjk of size and distance from Q̂
comparable to �(Q), and by our work above we know that the distance between the
planes Ljk and LQ̂ is small. Thus, x is close to a point y ∈ LQ̂, which is close to a
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point z ∈ Ljk which, by (6.6), is close to a point ξQ ∈ ΓR Now we will provide the
details.

For a given Q ∈ LDclose(R) there exists x ∈ Q such that dist(x, LQ̂) ≤ α1/2 �(Q̂)
�A,τ α1/2�(Q). Let y ∈ LQ̂ be the projection of x onto LQ̂, so y ∈ 5

4BQ for α > 0
small enough. Pick k so that Q̂ ∈ Ds(k), thus r(BQ̂) ≤ rk. Then there is Qjk with
yQ̂ ∈ Bjk, and so

dist(Q̂, Qjk) ≤ |yQ̂ − xjk| ≤ rk ∼ �(Qjk) ∼A,τ �(Q̂).

Thus, we can use Lemma 6.5 and the fact that y ∈ LQ̂ ∩ 5
4BQ to conclude

dist(y, Ljk) � α(dist(y, Q̂) + �(Q̂) + dist(y, Qjk) + �(Qjk)) �A,τ α �(Q).

Let z be the projection of y onto Ljk, so by the above inequality, |z −y| �A,τ α�(Q).
Thus, this inequality, our definition of y, and the fact that x ∈ Q imply

|z − xjk| ≤ |z − y| + |y − x| + |x − yQ̂| + |yQ̂ − xjk| �A,τ α�(Q)

+α1/2�(Q) + r(BQ̂) + rk < 3rk

if α is small enough. Thus, by (6.6) in Theorem 6.2, dist(z, ΓR) � εrk ∼ ε�(Q), and
thus

dist(x,ΓR) ≤ |x − y| + |y − z| + dist(z, ΓR) � α1/2�(Q) + α�(Q) + ε�(Q) <
3
2
r(BQ)

if α and ε are chosen small enough. Thus, we can find ξQ ∈ ΓR ∩ B(x, 3
2r(BQ)),

which proves (6.16).

7 The β2’s and Menger Curvature, and Further Remarks

By arguments analogous to the ones used to prove Theorem 1.1 one also gets the
following:

Theorem 7.1. Let p ≥ 0 and let μ be a finite Borel measure in R
d such that

0 < Θn,∗(x, μ) < ∞ for μ-a.e. x ∈ R
d. If

∫ 1

0
βμ,2(x, r)2 Θμ(x, r)p dr

r
< ∞ for μ-a.e. x ∈ R

d, (7.1)

then μ is n-rectifiable.

Clearly, since Θn,∗(x, μ) < ∞, the larger is p, the weaker is the assumption (7.1).
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We will now sketch the required changes to obtain this result. First, it is easy to
check that in Main Lemma 4.1 one can replace the inequality in (c) by

∑
Q∈Stop(R)\(HD(R)∪UB(R))

μ(Q) ≤ τ1/2 μ(R)

+
c(A, τ)

Θμ(2BR)p+1

∑
Q∈Tree(R)

∫
F∩δ−1BQ

∫ δ−1�(Q)

δ�(Q)
βμ,2(x, r)2 Θμ(x, r)p dr

r
dμ(x).

Using this estimate and arguments analogous to the ones in Lemma 5.5, one deduces
the following:

Lemma 7.2. If τ is chosen small enough in the Main Lemma, then

∑
R∈Top

Θμ(2BR)p+1 μ(R) ≤ Cp+1
∗ μ(R0)

+ c(A, τ, η, δ)
∫

F

∫ 1

0
βμ,2(x, r)2 Θμ(x, r)p dr

r
dμ(x), (7.2)

where C∗ is the constant in (5.1).

With this result at hand, using that for μ-a.e. x ∈ R0,∑
R∈Top:x∈R

Θμ(2BR)p+1 < ∞

instead of (5.12), the same arguments as in Section 5.6 show that μ is n-rectifiable.
The case p = 1 of Theorem 7.1 is particularly interesting because of the rela-

tionship with the Menger curvature of measures and singular integrals due to the
estimate (7.2) and the results in Sections 17 and 19 in [Tol14a].

Our goal now is to prove Theorem 1.4, which we state below again for the reader’s
convenience.

Theorem. Let μ be a finite Radon measure in R
2 such that μ(B(x, r)) ≤ r for

all x ∈ R
2. Then

c2(μ) + ‖μ‖ ∼
∫∫ ∞

0
βμ,2(x, r)2 Θμ(x, r)

dr

r
dμ(x) + ‖μ‖,

where the implicit constant is an absolute constant.

Consider the family Top defined in Section 5, with R0 = F = suppμ and B = ∅.
Arguing as in Lemma 17.6 of [Tol14a], one deduces that if μ(B(x, r)) ≤ r for all
x ∈ R

2, then

c2(μ) �
∑

R∈Top
Θμ(2BR)2 μ(R).
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Combining this estimate with Lemma 7.2 (with n = p = 1), we obtain

c2(μ) � ‖μ‖ +
∫∫ ∞

0
βμ,2(x, r)2 Θμ(x, r)

dr

r
dμ(x).

To complete the proof of Theorem 1.4 it remains to prove the converse by showing
that ∫∫ ∞

0
βμ,2(x, r)2 Θμ(x, r)

dr

r
dμ(x) � c2(μ) + ‖μ‖. (7.3)

To this end, we will use the corona decomposition of [Tol05]. To describe it we
follow quite closely the approach in [Tol14a, Section 19]. To state the precise result
we need, first we will introduce some terminology which is quite similar to the one
of the corona construction in Section 5. An important difference is that it involves
the usual dyadic lattice D(R2), instead of the David-Mattila lattice D.

Let μ be a finite Radon measure, and assume that there exists a dyadic square
R0 ∈ D(R2) such that suppμ ⊂ R0 with �(R0) ≤ 10 diam(supp(μ)), say. Let Top∗ ⊂
D(R2) be a family of dyadic squares contained in R0, with R0 ∈ Top∗.

Given R ∈ Top∗, we denote by End∗(R) the subfamily of the squares P ∈ Top∗
satisfying

• P � R,
• P is maximal, in the sense that there does not exist another square P ′ ∈ Top∗

such that P ⊂ P ′
� R.

Also, we denote by Tr∗(R) the family of squares D(R2) which intersect supp μ, are
contained in R, and are not contained in any square from End∗(R). Notice that

{P ∈ D(R2) : P ⊂ R0, P ∩ supp μ �= ∅} =
⋃

R∈Top∗

Tr∗(R).

The set of good points contained in R equals

G∗(R) := R ∩ supp(μ)\
⋃

P∈End∗(R)

P.

Given a square Q ⊂ R
2, we denote

Θμ(Q) =
μ(Q)
�(Q)

,

and given two squares Q ⊂ R, we set

δμ(Q, R) :=
∫

2R\Q

1
|y − zQ| dμ(y),

where zQ stands for the center of Q. We also set

βμ,2(Q) = inf
L

(
1

�(Q)

∫
Q

(
dist(y, L)

�(Q)

)2

dμ(y)

)1/2

,

where the infimum is taken over all the lines L ⊂ R
2.
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Lemma 7.3 (The dyadic corona decomposition of [Tol05]). Let μ be a Radon mea-
sure on R

2 with linear growth and finite curvature c2(μ). Suppose that there exists
a dyadic square R0 ∈ D(R2) such that supp μ ⊂ R0 with �(R0) ≤ 10 diam(supp(μ)).
Then there exists a family Top∗ as above which satisfies the following. For each
square R ∈ Top∗ there exists an AD-regular curve ΓR (with the AD-regularity con-
stant uniformly bounded by some absolute constant) such that:

(a) μ almost all G∗(R) is contained in ΓR.
(b) For each P ∈ End∗(R) there exists some square P̃ ∈ D(R2) containing P , con-

centric with P , such that δμ(P, P̃ ) ≤ CΘμ(7R) and 1
2 P̃ ∩ ΓR �= ∅.

(c) If P ∈ Tr∗(Q), then Θμ(7P ) ≤ C Θμ(7R).

Further, the following packing condition holds:

∑
R∈Top∗

Θμ(7R)2μ(7R) ≤ C ‖μ‖ + C c2(μ). (7.4)

Let us remark that the squares from the family Top∗ may be non-doubling.
The preceding lemma is not stated explicitly in [Tol05]. However it follows imme-

diately from the Main Lemma 3.1 of [Tol05], just by splitting the so called 4-dyadic
squares in [Tol05, Lemma3.1] into dyadic squares. Further, the family Top∗ above is
the same as the family Topdy from [Tol05, Section8.2].

We need a couple of auxiliary results from [Tol05]. The first one, introduces a
regularized version of the family End∗(R) for R ∈ Top∗ and is proved in Lemmas 8.2
and 8.3 of [Tol05].

Lemma 7.4. Let Top∗ be as in Lemma 7.3. For each R ∈ Top∗ there exists a family
of dyadic squares Reg∗(R) which satisfies the following properties:

(a) The squares from Reg∗(R) are contained in R and are pairwise disjoint.
(b) Every square from Reg∗(R) is contained in some square from End∗(R).
(c)

⋃
Q∈Reg∗(R) 2Q ⊂ R

2\G∗(R) and supp μ ∩ R\
⋃

Q∈Reg∗(R) Q ⊂ G∗(R) ⊂ ΓR.

(d) If P, Q ∈ Reg∗(R) and 2P ∩ 2Q �= ∅, then �(Q)/2 ≤ �(P ) ≤ 2�(Q).
(e) If Q ∈ Reg∗(R) and x ∈ Q, r ≥ �(Q), then μ(B(x, r) ∩ 4R) ≤ CΘμ(7R) r.

(f) For each Q ∈ Reg∗(R), there exists some square Q̃, concentric with Q, which
contains Q, such that δμ(Q, Q̃) ≤ CΘμ(7R) and 1

2Q̃ ∩ ΓR �= ∅.

We denote by Treg(R) the family of squares D(R2) which intersect supp μ, are
contained in R, and are not contained in any square from Reg∗(R). Clearly, we have

Tr∗(R) ⊂ Treg(R).

The second auxiliary result shows how, in a sense, the measure μ can be approxi-
mated on each tree Treg(R) by another measure supported on ΓR which is absolutely
continuous with respect to length. This is proved in Lemma 8.4 of [Tol05].
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Lemma 7.5. For R ∈ Top∗, denote Reg∗(R) =: {Pi}i≥1. For each i, let P̃i ∈ D(R2)
be a square containing Pi such that δμ(Pi, P̃i) ≤ CΘσ(7R) and 1

2 P̃i ∩ ΓR �= ∅, with
minimal side length (as in (e) of Lemma 7.4). For each i ≥ 1 there exists some
function gi ≥ 0 supported on ΓR ∩ P̃i such that

∫
ΓR

gi dH1 = μ(Pi), (7.5)

∑
i

gi � Θμ(7R), (7.6)

and

‖gi‖∞ �(P̃i) � μ(Pi). (7.7)

Proof of (7.3) We will show that

∑
Q∈D(R2):Q⊂R0

βμ,2(3Q)2 Θμ(3Q)μ(Q) � c2(μ) + ‖μ‖, (7.8)

which is easily seen to be equivalent to (7.3). We consider the corona decomposition
of μ given by Lemma 7.3. By the packing condition (7.4), to prove (7.8) it suffices
to show that for every R ∈ Top∗,

∑
Q∈Treg(R)

βμ,2(3Q)2 Θμ(3Q)μ(Q) � Θμ(7R)2μ(7R).

Since Θμ(3Q) � Θμ(7Q) � Θμ(7R), it is enough to prove that

∑
Q∈Treg(R)

βμ,2(3Q)2 μ(Q) � Θμ(7R)μ(7R). (7.9)

Let ΩR = R
2\ΓR, and consider the following family of Whitney squares in ΩR: we

let W(ΩR) be the set of maximal dyadic squares Q ⊂ ΩR such that 15Q ∩ ΓR = ∅.
These squares have disjoint interiors and can be easily shown to satisfy the following
properties:

(a) 7�(Q) ≤ dist(x,Ωc
R) ≤ 16 diam(Q) for all x ∈ Q,

(b) If Q, Q′ ∈ W(ΩR) and 3Q ∩ 3Q′ �= ∅, then �(Q) ∼ �(Q′).

We now split the family Treg(R) into two subfamilies: Tregsmall and Tregbig(R).
The former is made up of the squares from Treg(R) which are contained in some
square from W(ΩR), while Tregbig(R) = Treg(R)\Tregsmall(R). That is, Tregbig(R)
consists of the squares Q ∈ Treg(R) which are not contained in any square from
W(ΩR).
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First we will deal with the sum associated with the squares from Tregsmall(R).
We set∑

Q∈Tregsmall(R)

βμ,2(3Q)2 μ(Q) =
∑

S∈W(ΩR)

∑
Q∈Treg(R):Q⊂S

βμ,2(3Q)2 μ(Q)

=
∑

S∈W(ΩR)

∑
i:Pi⊂S

∑
Q∈Treg(R):Pi⊂Q⊂S

βμ,2(3Q)2 μ(Pi).

For Q as above we use the trivial estimate βμ,2(3Q)2 � Θμ(3Q), and then we obtain∑
Q∈Tregsmall(R)

βμ,2(3Q)2 μ(Q) �
∑

S∈W(ΩR)

∑
i:Pi⊂S

μ(Pi)
∑

Q∈Treg(R):Pi⊂Q⊂S

Θμ(3Q).

Let Pi ⊂ S with S ∈ W(ΩR). From the definitions of P̃i and of the Whitney squares,
we deduce that S ⊂ cP̃i, where c is some absolute constant. In fact, we may assume
without loss of generality that

�(P̃i) ∼ max
(
�(S), �(Pi)

)
,

since otherwise we may replace P̃i by a small concentric cube which does the job
(i.e. so that both (f) from Lemma (7.4) and the above estimate hold). So we easily
infer that ∑

Q∈Treg(R):Pi⊂Q⊂S

Θμ(3Q) � δμ(Pi, cP̃i) + sup
Q∈Treg(R):Pi⊂Q⊂S

Θμ(3Q)

� δμ(Pi, P̃i) + Θμ(7R) � Θμ(7R).

Then we get∑
Q∈Tregsmall(R)

βμ,2(3Q)2 μ(Q) �
∑

S∈W(ΩR)

∑
i:Pi⊂S

Θμ(7R)μ(Pi) ∼ Θμ(7R)μ(R).

(7.10)
We turn now our attention to the sum corresponding to the squares

Q ∈ Tregbig(R). For such a square Q and a line LQ to be chosen below we write

βμ,2(3Q)2 �(3Q) ≤
∑

i:Pi∩3Q�=∅

∫
Pi

(
dist(x,LQ)

�(Q)

)2

dμ(x) +
∫

3Q∩G∗(R)

(
dist(x,LQ)

�(Q)

)2

dμ(x)

=
∑

i:Pi∩3Q�=∅

∫ (
dist(x,LQ)

�(Q)

)2

gi(x) dH1|ΓR
(x)

+
∑

i:Pi∩3Q�=∅

∫ (
dist(x,LQ)

�(Q)

)2 (
χPi

(x) dμ(x) − gi(x) dH1|ΓR
(x)

)

+
∫

3Q∩G∗(R)

(
dist(x,LQ)

�(Q)

)2

dμ(x)

=: I1 + I2 + I3. (7.11)
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We claim now that, for Q ∈ Tregbig(R),

if Pi ∩ 3Q �= ∅, then P̃i ⊂ c3Q, (7.12)

for some absolute constant c3 > 1. For the moment we assume this to hold and we
continue with the proof of (7.3).

We choose LQ as some line which minimizes βμ,2(c3Q). To estimate the term I1

on the right hand side of (7.11) we use that
∑

i gi � Θμ(7R) by (7.6), and that
supp gi ⊂ P̃i ⊂ c3Q (for i such that Pi ∩ 3Q �= ∅). Then we get

∑
i:Pi∩3Q
=∅

∫ (
dist(x, L3Q)

�(Q)

)2

gi(x) dH1|ΓR
(x)

� Θμ(7R)
∫

c3Q

(
dist(x, L3Q)

�(Q)

)2

dH1|ΓR
(x)

∼ Θμ(7R)βH1|ΓR
,2(c3Q)2 �(c3Q).

To deal with I3 recall that μ|G∗(R) is absolutely continuous with respect to H1|ΓR

with density not exceeding c Θμ(7R). So we have

I3 � Θμ(7R)
∫

3Q

(
dist(x, L3Q)

�(Q)

)2

dH1|ΓR
(x) � Θμ(7R)βH1|ΓR

,2(c3Q)2 �(c3Q).

We consider now the term I2 on the right hand side of (7.11). For i such that
Pi ∩ 3Q �= ∅, we take into account that

∫
gi(x) dH1|ΓR

(x) = μ(Pi), and then we
derive∫ (

dist(x, LQ)
�(Q)

)2 (
χPi

(x) dμ(x) − gi(x) dH1|ΓR
(x)

)

=
∫ [(

dist(x, LQ)
�(Q)

)2

−
(

dist(zPi
, LQ)

�(Q)

)2
] (

χPi
(x) dμ(x) − gi(x) dH1|ΓR

(x)
)
,

where zPi
is the center of Pi. Notice that for x ∈ supp(gi H1|ΓR

− χPi
μ) ⊂ P̃i,∣∣∣∣∣

(
dist(x, LQ)

�(Q)

)2

−
(

dist(zPi
, LQ)

�(Q)

)2
∣∣∣∣∣≤

|x−zPi
|

�(Q)
· dist(x, LQ)+dist(zPi

, LQ)
�(Q)

� �(P̃i)
�(Q)

.

Thus, ∣∣∣∣∣
∫ (

dist(x, LQ)
�(Q)

)2 (
gi(x) dH1|ΓR

(x) − χPi
(x) dμ(x)

)∣∣∣∣∣ � �(P̃i)
�(Q)

μ(Pi).

So we get

I2 �
∑

i:Pi⊂c3Q

�(P̃i)
�(Q)

μ(Pi).
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From (7.11) and the estimates we got for I1, I2 and I3 we deduce

βμ,2(3Q)2 � Θμ(7R)βH1|ΓR
,2(c3Q)2 +

∑
i:Pi⊂c3Q

�(P̃i)
�(Q)2

μ(Pi).

Therefore,
∑

Q∈Tregbig(R)

βμ,2(3Q)2 μ(Q) � Θμ(7R)
∑

Q∈Tregbig(R)

βH1|ΓR
,2(c3Q)2 μ(Q)

+
∑

Q∈Tregbig(R)

∑
i:Pi⊂c3Q

�(P̃i)
�(Q)2

μ(Pi)μ(Q). (7.13)

For the first sum on the right hand side, using that μ(Q) � Θμ(7R) �(Q) and that
ΓR is an AD-regular curve, we get

Θμ(7R)
∑

Q∈Tregbig(R)

βH1|ΓR
,2(c3Q)2 μ(Q) � Θμ(7R)2

∑
Q∈Tregbig(R)

βH1|ΓR
,2(c3Q)2 �(Q)

� Θμ(7R)2�(R) ∼ Θμ(7R)μ(7R).

To estimate the last sum on the right hand side of (7.13) we use that μ(Q)/�(Q) �
Θμ(7R) and we interchange the order the summation:

∑
Q∈Tregbig(R)

∑
i:Pi⊂c3Q

�(P̃i)
�(Q)2

μ(Pi)μ(Q) � Θμ(7R)
∑

i

μ(Pi)
∑

Q∈Tregbig(R):c3Q⊃Pi

�(P̃i)
�(Q)

� Θμ(7R)
∑

i

μ(Pi) � Θμ(7R)μ(R).

Hence we get
∑

Q∈Tregbig(R)

βμ,2(3Q)2 μ(Q) � Θμ(7R)μ(7R),

which together with (7.10) gives (7.9).
To conclude it remains to prove the claim (7.12). So let Q ∈ Tregbig(R) and

Pi such that Pi ∩ 3Q �= ∅. Clearly, the statement in the claim is equivalent to
saying that �(P̃i) � �(Q). To prove this we distinguish two cases. Suppose first that
Pi ∈ Tregbig(R). In this case �(P̃i) ∼ �(Pi) since cPi ∩ ΓR �= ∅ for some absolute
constant c > 1. We may assume that

�(Q) < �(Pi)/4, (7.14)

since otherwise �(P̃i) ∼ �(Pi) � �(Q) and we are done. It is easy to check that the
condition (7.14) implies that Q ⊂ 2Pi. By the definition of the squares in Treg(R)
we have Q ∩ supp μ �= ∅, and then from the properties of the family Reg∗(R) in
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Lemma 7.4 we infer that there exists some square Pj ∈ Reg∗(R) with Pj ⊂ Q. Since
2Pj ∩ 2Pi �= ∅, we deduce that �(Pj) ∼ �(Pi), by (d) in Lemma 7.4. So we infer that

�(Q) ≥ �(Pj) ∼ �(Pi) ∼ �(P̃i),

as wished.
Suppose now that Pi ∈ Tregsmall(R). Let S ∈ W(ΩR) be such that Pi ⊂ S, so

that �(P̃i) ∼ �(S). We have to show that �(S) � �(Q). To this end, assume that
�(Q) < �(S)/4, otherwise we are done. This implies that Q ⊂ 3S. Since ΓR has
empty interior, there exists a Whitney square S′ ∈ W(ΩR) such that S′ ∩ Q �= ∅.
Since Q ∈ Tregbig(R), we have S′ ⊂ Q, and thus 3S′ ∩ 3S �= ∅, and then by the
property (b) of Whitney squares, we derive �(S) ∼ �(S′). Thus, we get

�(Q) ≥ �(S′) ∼ �(S),

as desired.
Finally, to prove Corollary 1.5 we use Theorem 1.4 and the main theorem from

[Tol03], which asserts that, given a compact set E ⊂ C, we have γ(E) ∼ μ(E), where
the supremum is taken over all measures μ supported on E such that μ(B(x, r)) ≤ r
for all x ∈ C, r > 0, and c2(μ) ≤ μ(E). Indeed, given μ satisfying these estimates,
by applying Theorem 1.4 and Chebyshev, we find a compact subset F ⊂ E such
that μ(F ) ≥ μ(E)/2 and∫ ∞

0
βμ,2(x, r)2 Θ1

μ(x, r)
dr

r
� 1 for all x ∈ F .

Thus, for a suitable positive absolute constant c, it easily follows that the measure
ν = c μ|F satisfies

sup
r>0

Θ1
ν(x, r) +

∫ ∞

0
βν,2(x, r)2 Θ1

ν(x, r)
dr

r
≤ 1 for all x ∈ E,

and moreover γ(E) � μ(E) ∼ ν(F ). The arguments to prove the converse inequality
in Corollary 1.5 are similar.

Appendix: Proof of Lemma 6.4

We recall the statement of the lemma.

Lemma. Suppose P1 and P2 are n-planes in R
d and X = {x0, ..., xn} are points so that

(a) η = η(X) =
1

diamX
min{dist(xi,SpanX\{xi}) ∈ (0, 1) and

(b) dist(xi, Pj) < εdiamX for i = 0, ..., n and j = 1, 2, where ε < ηd−1/2.

Then

dist(y, P1) ≤ ε

(
2d

η
dist(y,X) + diamX

)
. (.15)
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Proof. Assume first that x0 = 0 ∈ P1 ∩ P2 and X ⊂ P1. Define a linear map A : R
n → R

d

by setting A(ei) = xi, were e1, ..., en are the standard basis vectors (but e0 = 0). Then

|A| = sup
|z|=1

|Az| ≤ sup
|z|=1

∑
| 〈z, ei〉 | · |xi| ≤ d

1
2 |z| diamX.

Let z ∈ R
n be so that |A−1|−1 = |Az| and let i be such that | 〈z, ei〉 | ≥ n− 1

2 |z| (since this
has to happen for some 〈z, ei〉). Then we get

|A−1|−1 = |Az| ≥ dist(Az,Span(X\{xi}))

= | 〈z, ei〉 |dist(xi,Span(X\{xi})) ≥ n− 1
2 |z|η diam X

Thus, we have that A/diamX is n1/2/η-bi-Lipschitz. If we define another operator B by
setting B(ei) = πP2(xi). Then, for any z ∈ R

n, by our standing assumptions,

|A(z) − B(z)| =

∣∣∣∣∣
n∑

i=1

(A − B)(ei) 〈z, ei〉
∣∣∣∣∣ ≤ ε|z|d 1

2 diamX.

Hence, since ε < ηd−1/2,

|B′| = sup
|z|=1

|B(z)| ≤ εd
1
2 |z| diamX + sup

|z|=1

|A(z)| ≤ η

2d
1
2

· d
1
2 |z|diamX + d

1
2 |z| diamX

< 2d
1
2 |z| diamX

and

inf
|z|=1

|B(z)| ≥ inf
|z|=1

|A(z)| − εd
1
2 diamX ≥ 1

2d
1
2
|z|η diamX.

Thus, B/diamX is a 2d
1
2

η -bi-Lipschitz map from R
d onto P2. For y ∈ P2, if B(z) = y, then

A(z) ∈ P1 and so

dist(y, P1) ≤ |A(z) − y| = |A(z) − B(z)| ≤ ε|z|d 1
2 diamX ≤ 2dε

η
|B(z)| =

2dε

η
|y|

and for y ∈ P1, if A(z) = y, then

dist(y, P2) ≤ |B(z) − y| = |B(z) − A(z)| ≤ ε|z|d 1
2 diamX ≤ dε

η
|y|.

Now, if it happens that 0 �∈ P1 ∩ P2 but X ⊂ P2, we can replace P1 with P ′
1, the translate

of P1 containing 0, and apply the same arguments above to get an estimate between P ′
1 and

P2. Since P1 and P ′
1 are distance at most dist(0, P1) < εdiamX, this gives

dist(y, P1) ≤ ε

(
2d

η
|y| + diamX

)
for all y ∈ P2

and

dist(y, P2) ≤ ε

(
2d

η
|y| + diamX

)
for all y ∈ P1.

Now, if X �⊂ P2, let P0 denote the smallest n-plane containing X (again, assume x0 = 0).
Then we apply the above estimates between P1 to P0 and P0 to P2 using the triangle
inequality and we obtain

dist(y, P1) ≤ 2ε

(
2d

η
|y| + diamX

)
for all y ∈ P2
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and

dist(y, P2) ≤ 2ε

(
2d

η
|y| + diamX

)
for all y ∈ P1. ��

Now, there is no need to assume x0 = 0, since we can just replace |y| with |x0 − y| above.
Finally, there was no special reason we dealt with x0 in particular, and so minimizing the
above inequalities over all |x0 − y|, ...., |xn − y|, we obtain the desired estimate.
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[Leg99] J. C. Léger. Menger curvature and rectifiability. Annals of mathematics, 149
(1999), 831–869.

[LW11] G. Lerman and J. T. Whitehouse. High-dimensional Menger-type curvatures-
part I: geometric multipoles and multiscale inequalities. Revista Matemática
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